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INTRODUCTION

Visual imaging is increasingly used to assess the
marine environment, particularly in ecological stud-
ies of the deep sea. In recent years, improvements to
subsea and photographic technologies have made
the collection of high-quality underwater photo-
graphs and video more efficient (e.g. Morris et al.
2014, Durden et al. in press). This has typically re -
sulted in a substantial increase in the number of
photo  graphs captured in a single sampling event. For

example, at the well-photographed Porcupine Abys -
sal Plain (PAP) sustained observatory, the number of
seabed images captured rose by 2 orders of magni-
tude, from ~3000 photographs acquired by a conven-
tional towed camera in 2011 (Durden et al. 2015) to
~300 000 photographs captured using an auto no -
mous underwater vehicle in 2012 (Morris et al. 2014,
Milligan et al. 2016).

Data extraction from photographs or videos (re -
ferred to as ‘annotation’) is still largely a manual pro-
cess, with automated annotation processes (e.g.
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ABSTRACT: Multiple investigators often generate data from seabed images within a single image
set to reduce the time burden, particularly with the large photographic surveys now available to
ecological studies. These data (annotations) are known to vary as a result of differences in investi-
gator opinion on specimen classification and of human factors such as fatigue and cognition. These
variations are rarely recorded or quantified, nor are their impacts on derived ecological metrics
(density, diversity, composition). We compared the annotations of 3 investigators of 73 megafaunal
morphotypes in ~28 000 images, including 650 common images. Successful annotation was defined
as both detecting and correctly classifying a specimen. Estimated specimen detection success was
77%, and classification success was 95%, giving an annotation success rate of 73%. Specimen
detection success varied substantially by morphotype (12−100%). Variation in the detection of
common taxa resulted in significant differences in apparent faunal density and community compo-
sition among investigators. Such bias has the potential to produce spurious ecological interpreta-
tions if not appropriately controlled or accounted for. We recommend that photographic studies
document the use of multiple annotators and quantify potential inter-investigator bias. Randomisa-
tion of the sampling unit (photograph or video clip) is clearly critical to the effective removal of
human annotation bias in multiple annotator studies (and indeed single annotator works).
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Schoening et al. 2012) still requiring the input of
human annotations or human-mediation of their out-
put. The determination of biological metrics is gener-
ally made through manual classification, counting
and/or sizing of specimens of interest. This is time-
consuming, particularly with large sets of photo-
graphs, when annotation encompasses a large group
of visually diverse organisms. One approach to
acquire data faster is for multiple investigators to
annotate images within a single image set.

The use of multiple investigators to assess visual
data in ecological studies is believed to be common,
but often not an acknowledged aspect of the method.
Recently developed frameworks, such as CATAMI
(Althaus et al. 2015), and software tools, such as the
Video Annotation and Reference System (Schlining &
Stout 2006) and BIIGLE (Schoening et al. 2009), have
been designed to facilitate the manual annotation of
image sets by groups of investigators. In contrast to
other methods involving multiple visual as ses sors,
such as crowd-sourced image annotation, investiga-
tors often work alone, and consensus among investi-
gators is rarely employed to reduce potential error or
bias in the data. However, some studies have found
that the differences among experts in biological
visual classifications could drastically alter the as-
sessed diversity of a community (e.g. Gobalet 2001).
Inconsistencies in taxonomic classification among ex-
perts have been documented in studies of both physi-
cal samples and imagery (e.g. Culver house et al.
2014, Howell et al. 2014). Image annotators also
suffer from systematic biases as a result of human fac-
tors in visual tasks (Culverhouse et al. 2014). Such
factors include organism size: First & Drake (2012)
found that the success in detecting plankton was re-
lated to size. Several time-related factors affect hu-
man performance in visual tasks, including increased
errors from an increased speed of labelling and an in-
creased continuous period performing the task (Cul-
verhouse et al. 2014). Howell et al. (2014) suggested
that humans learn as they annotate, so annotation re-
liability increases with experience. Fatigue and bore-
dom potentially de crease human performance in vi-
sual tasks, up to 70% after 30 min of work (Colquhoun
1959). Other psychological factors affecting human
performance in visual tasks include short-term mem-
ory limits, recency effects and positivity bias (Evans
1987). Thus, the methods of annotation should be
thoroughly documented in all aspects and planned
specifically to be robust to the biases introduced by
human investigators.

Here we expand on previous studies of investigator
agreement in image-based annotation that have eval-

uated small numbers of morphotypes in small image
datasets (Schoening et al. 2012, Howell et al. 2014).
We examine the data quality of human annotations of
a large image dataset, encompassing a large number
and variety of epibenthic megafauna, as assessed by
multiple investigators. First, we directly compare an-
notation data from 3 investigators of a common set of
photographs to quantify the accuracy of their detec-
tion and classification of the megafauna. We then as-
sess what impact any differences among investigators
may have on resulting ecological metrics, such as
density, diversity and composition. We consider 2 fac-
tors that may influence investigator detection and
classification success: the size of specimens, and time
spent annotating. Finally, we recommend methods to
reduce human annotator bias.

MATERIALS AND METHODS

Study design and data collection

The megabenthos of the PAP (48° 50’ N, 16° 30’ W;
4850 m water depth), in the vicinity of the sustained
observatory (Hartman et al. 2012), was studied. Sea -
bed images were captured within a 1 km2 area of
level seafloor, distant from any significant seabed
topography, such that no systematic variations in the
density, diversity or taxonomic composition of the
megafauna were expected.

Approximately 30 000 vertical photographs were
collected in a grid survey, at altitudes of 1.9 to 4.1 m
above the seabed, using a 5 megapixel Point Grey
Research Inc. Grasshopper 2 camera with a 2/3’ sen-
sor mounted in a downward orientation on the auto -
nomous underwater vehicle Autosub6000 during a
single deployment from the RRS ‘Discovery’ research
cruise 377 in July 2012 (Ruhl et al. 2012). Images
were processed to correct illumination, and for pitch,
roll and yaw of the vehicle, then mosaicked into
strips of 10 consecutive images (referred to as ‘tiles’;
total 2849), using the methodology detailed in Morris
et al. (2014).

Tiles were annotated for 73 benthic megafaunal
mor photypes (>1 cm in dimension, sensu Grassle et
al. 1975; listed in Supplement 1 at www. int-res. com/
articles/ suppl/m552p061_ supp.pdf), which were
iden ti fied to the lowest taxonomic level possible,
counted and measured using a custom-built macro in
the image analysis software ImagePro Plus (Media
Cybernetics). These morphotypes represented those
found in images and trawls in previous studies of the
area (Billett et al. 2010, Durden et al. 2015) and com-
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prised taxa from 9 phyla, having a wide range of
body sizes (Supplement 1) and morphologies. Gen-
eral categories (e.g. ‘Unspecified’) were used when
an investigator could not assign the specimen to a
more detailed taxonomic level. Investigators were all
previously experienced in the detection and classifi-
cation of benthic invertebrates in seabed photo-
graphs, rather than specialists in particular taxo-
nomic groups. To ensure agreement on morpho -
logical features of the fauna, a catalogue of the
megafauna of the area was consulted, and the inves-
tigators annotated an initial group of 100 common
tiles (not included in the subsequent analysis) and
discussed their classifications (e.g. Howell et al.
2014). The morphotype data were assessed at 2 lev-
els: the finest taxonomic resolution achieved, and
combined into 16 higher taxonomic categories, pre -
viously used by Billett et al. (2010).

The tiles were randomised and divided among 3
investigators for annotation (see Table 1; Supplement
2 at www. int-res. com/ articles/ suppl/  m552p061_ supp
. pdf). Of these, a sub-group of 65 were randomly
selected to be annotated by all 3 investigators (re -
ferred to as ‘common tiles’). The remaining tiles (re -
ferred to as the ‘large tile set’) were divided for anno-
tation by a single investigator only. The tiles assigned
to each investigator (including tiles from the large
tile set and the common tiles) were randomised prior
to annotation. Annotation was halted periodically,
and a subset of classifications to that point was re -
viewed to ensure continued agreement on morpho-
logical characterization of taxa. Following such
reviews, existing annotations were revised to reflect
changes in the agreed classification and to add newly
recognised morphotypes.

Comparison of common tiles

‘Annotation success’ was defined as a combination
of both detection and classification of a given speci-
men and was assessed in the common tiles (see ex-
ample in Supplement 2). ‘Detection success’ (DS) was
computed as the number of specimens detected by an
investigator as a fraction of the total number of speci-
mens detected by any investigator (n). We estimated
the true number of specimens present, including the
probability of joint non-detection (nd) by all 3 investi-
gators (nd = (1 − DS)3), as N = (1 + nd) × n. The cor-
rected detection success was then estimated as n/N.
‘Classification success’ was calculated as the number
of specimens that were identically classified by all in-
vestigators as a fraction of the number of specimens

detected by all 3 investigators. ‘Annotation success’
was computed as the number of specimens that were
both detected and identically classified by all investi-
gators as a fraction of the total number of specimens
detected by at least one investigator.

Ecological metrics

Toevaluate the impactofmultipleannotatorsoneco-
logical metrics, annotation data from individual tiles
were aggregated to produce groups of replicate sam-
ples (Supplements 2 & 3) as follows:

(1) Common tiles. In the ‘common tiles’ annotated
by all 3 investigators, tiles were randomly assigned to
1 of 4 replicates. Note that a single randomisation
was applied across the investigators, such that data
comparisons among investigators represented re -
peated measures.

(2) Large tile set. In the ‘large tile set’ (all tiles
excluding the ‘common tiles’), tiles were randomly
assigned to replicates of ~100 tiles, to yield a typical
sample size of 900 specimens per replicate. A further
group of 10 replicates was randomly selected from
the large tile set, without regard to the identity of the
investigator, to serve as an example of multi-investi-
gator data.

(3) Small tile set. For each investigator, a set of 65
tiles was randomly selected from the portion of the
large tile set annotated and assigned to 4 replicates
to match the treatment of the common tiles. A further
set was selected without regard for investigator iden-
tity to represent multi-investigator data.

Specimen counts were converted to densities using
the calculated area of seabed represented by each
tile. Instances where only a portion of a specimen
was visible in an image were counted as 0.5 in terms
of abundance. Density data in each tile were log(x +
1) transformed prior to parametric statistical analyses
and were assessed per replicate set and reported as
geometric mean density and 95% confidence inter-
val. Densities in common tile replicates were com-
pared among investigators using repeated measures
ANOVA to account for all investigators annotating
the same tiles and with conventional ANOVA for the
large tile set. Univariate diversity indices (Shannon
H’2 and Simpson Index of Diversity 1-D ; e.g. Magur-
ran 2013) were calculated using the vegan package
in R (Oksanen et al. 2012). The expected number of
morphotypes was calculated by rarefaction using
EstimateS (Colwell 2013). Total specimen counts per
morphotype were rounded up to the nearest integer
prior to diversity calculations.
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Differences in the apparent community composi-
tion among investigators were assessed using multi-
variate statistics (Bray-Curtis dissimilarity measure
and 2-dimensional non-metric multidimensional
scaling ordination), with comparisons tested using
ANOSIM and SIMPER routines implemented with
PRIMER6 (Clarke & Warwick 2008). Faunal data
were subject to a range of transformations (none,
log(x +1) and presence−absence) prior to the calcula-
tion of dissimilarity measures to assess different
aspects of inter-investigator variations (e.g. detection
and classification success). To assess the potential
impact of rare taxa, community analyses were also
completed using only morphotypes that were re -
corded in all replicates by all investigators (6 mor-
photypes in the common tiles and small tile set, 16
morphotypes in the large tile set; Supplement 1).

Quantifying bias and precision in
ecological metrics

Precision within an investigator’s annotations was
quantified by calculating the coefficient of variation
of the univariate measures for each set of tiles. The
bias of an investigator’s annotations was estimated
using the overall mean among investigators for each
parameter. Bias in community composition estimates
was calculated using ANOSIM analyses, and preci-
sion was assessed using the autosimilarity method
described by Schneck & Melo (2010). In brief, Bray-
Curtis dissimilarity was computed between 2 groups
of ‘x ’ tiles randomly selected without replacement
from the large tile set (where x = 1, 2, … half the num-
ber of tiles in the set), facilitating an assessment of the
impact of sample size (number of tiles) on the appar-
ent value and precision of faunal similarity estimates.

Human factors in annotation

Spearman’s rank correlations (rS) be tween mor pho -
type characteristics (size and number of individuals)
and annotation success were investigated with the
annotationsfromthecommontiles,using morphotypes
with more than one successful annotation. The median
size dimension of each morphotype in pixels was con-
verted to an area, either as a circle with the diameter of
this dimension, or as dimension2 × 0.25 for elongate
morphotypes (see Supplement 1).

Time-related biases in annotation were assessed
by comparing faunal densities to the time spent an -
notating a tile. The time at completion of annotation

was extracted from the timestamp stored with each
tile. The total time spent annotating tiles was esti-
mated using the number of tiles and median time
spent per tile. Note that time spent compiling the
database of morphotypes for annotation was not con-
sidered, nor was time spent training the investigators
on the trial 100 tiles. The morphotypes Amperima/
Ellipinion/ Kolga, Iosactis vagabunda and Ophi uro -
idea were selected for detailed analysis as a result of
their high densities and differing detection rates in
the common tiles.

RESULTS

Direct comparison of annotations in common tiles

In total, the 3 investigators made 1648 annotations
in the common tiles, approximately equally split
among investigators (Table 1). A total of 692 distinct
specimens were detected by at least one investigator:
399 were detected by all investigators (58%), 146
(21%) by 2 investigators, and 147 (21%) by 1 investi-
gator only. The apparent detection success was rela-
tively consistent among investigators (74−82%). The
mean detection success was 78%, yielding an appar-
ent joint non-detection probability of 0.01, equating
to some 7 potentially undetected specimens. The
mean corrected detection success was 77% (73−81%
across the investigators). The corrected probability of
detection of a specimen by all investigators was cal-
culated as 47% (322 specimens), appreciably lower
than the fraction of specimens actually detected by
all 3 investigators. These data suggested that there
was significant variation in the detectability of indi-
vidual morphotypes but that detection success was
relatively consistent among investigators across the
fauna as a whole.

Morphotype discrimination among investigators
was largely consistent: investigators found similar
numbers of morphotypes (Table 1), although none of
the investigators found all morphotypes, and 5 mor-
photypes were recorded by only 1 investigator (Sup-
plement 1). Of the 399 specimens detected by all 3
investigators, full agreement of the classification
occurred in 378 cases (95%). Of the 21 cases where
full agreement was not achieved, 2 investigators
agreed in 18 cases (5%), and all 3 investigators dis-
agreed in 3 cases (<1%). Combining detection suc-
cess (77%) and classification success (95%), overall
annotation success was estimated to be 73%. At the
higher taxonomic group level, classification success
was 98%, and annotation success was 75%.
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Detection success varied
greatly among morphotypes
(12−100%; Table 2). Of the
147 specimens de tected by a
single investigator, the most
common morpho types were
Ophiuroidea (28%), Iosactis
vaga bunda (20%), Indetermi-
nate - ‘Tube-dwelling inver-
tebrate’ (13%), and Amper-
ima/ Ellipinion/Kolga (8%).
Asses sed at the higher taxo-
nomic level, detection success
ranged from 14% (Octocoral-
lia) to 66% (Actiniaria).

Impact to ecological metrics

Faunal density

There was no significant difference in the esti-
mated faunal density among investigators in the
common tiles (repeated measures ANOVA, p > 0.05;
Table 1), or in the small tile set (ANOVA, p > 0.05).
However, an investigator bias was detected in the
large tile set (ANOVA F3,34 = 8.9, p < 0.001). The
coefficients of variation for density decreased with an
increase in sample size, while bias in the density esti-
mates increased with sample size (maximal bias per
investigator in the small tile set was 0.4, and 4.2 in
the large tile set; Table 3).

Morphotype diversity

A total of 44 morphotypes were recorded in the
common tiles, 53 in the small tile set, and 73 in the
large tile set (Supplement 1). The number of morpho-
types recorded was generally consistent among
investigators (Table 1). Shannon and Simpson’s
diversity indices were not significantly different
among investigators in the small or large tile sets
(ANOVA, p > 0.05), nor was rarefied richness
(Table 1; Supplement 4 at www. int-res. com/ articles/
suppl/  m552p061 _ supp. pdf). As the sample size
increased, the coefficients of variation and bias in the
diversity indices and estimated richness decreased
(Table 3).
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                         Annots  M               Area (ha)               No of           Density                 Shannon             Simpson’s      Rarefied richness
                                                                                          ind.           (ind. ha−1)              index (H ’2)           index (1-D)                E (S)n

Common tiles                                                                                                                                                         
Investigator 1     541     40    0.0203 (0.0196, 0.0211)    535.5   6562 (5937, 7211)   2.75 (2.42, 3.09)    0.71 (0.63, 0.77)    39.3 (35.8, 42.9)
Investigator 2     565     37    0.0203 (0.0196, 0.0211)    560.5   6889 (6462, 7328)   2.78 (2.65, 2.92)    0.71 (0.68, 0.75)    35.6 (31.8, 39.9)
Investigator 3     542     41    0.0203 (0.0196, 0.0211)    535.5   6574 (5948, 7224)   2.76 (2.44, 3.08)    0.71 (0.66, 0.75)    39.9 (33.4, 46.5)

Small tile set                                                                                                                                                           
Investigator 1                42    0.0203 (0.0196, 0.0211)     548     6662 (5534, 7873)   2.68 (2.24, 3.12)    0.68 (0.59, 0.77)    40.5 (32.9, 48.0)
Investigator 2                42    0.0204 (0.0197, 0.0212)     545     6648 (6465, 7145)   2.76 (2.58, 2.95)    0.70 (0.68, 0.71)    40.7 (35.3, 46.1)
Investigator 3                37    0.0205 (0.0197, 0.0213)    575.5   6698 (6548, 7460)   2.62 (2.37, 2.87)    0.68 (0.62, 0.74)    35.1 (27.7, 42.6)
Multi                              41    0.0204 (0.0197, 0.0210)     557     6749 (6155, 7364)   2.91 (2.70, 3.11)    0.73 (0.70, 0.75)    40.7 (36.8, 44.6)

Large tile set                                                                                                                                                           
Investigator 1                65    0.1235 (0.1232, 0.1238)    6812    6889 (6523, 7263)   2.92 (2.83, 3.00)    0.70 (0.68, 0.72)    63.0 (60.4, 65.6)
Investigator 2                65    0.1253 (0.1247, 0.1259)   8106.5  6466 (6260, 6676)   2.92 (2.84, 3.00)    0.71 (0.70, 0.72)    61.2 (55.2, 67.1)
Investigator 3                68    0.1230 (0.1212, 0.1249)   8179.5  6472 (6163, 6787)   2.96 (2.90, 3.03)    0.71 (0.70, 0.72)    63.3 (58.3, 68.3)
Multi                              71    0.1259 (0.1254, 0.1264)   8352.5  6633 (6556, 6712)   2.97 (2.91, 3.03)    0.71 (0.70, 0.72)    66.2 (60.8, 71.6)

Table 1. Ecological metrics calculated by replicate tile set and investigator. Area, density, and Shannon and Simpson’s indices are given
as geometric means (and 95% confidence interval). Richness was rarefied (n = 500 for common tiles and small tile set, n = 5000 for large 

tile set). Annots: number of annotations; M: number of morphotypes; Multi: Multi-investigator

                                                            Annotation success (%)
<50                                                                    50−80                                  >80

Amperima/Ellipinion/Kolga                    Bathycrinus sp.               Oneirophanta sp.
Actiniaria sp. 9                                      Iosactis vagabunda      Molpadiedemas villosus
Porifera type 3                                         Amphianthus sp.                            
Ophiuroidea                                              Porifera type 4                              
Indet. - ‘Hydroid’                               Psychropotes longicauda                     
Indet. - ‘Scaphopod’                                      Aphroditid                                 
Indet. - ‘Tube-dwelling invertebrate’     Stalked tunicate                             
                                                                  Cerianthid sp. 1                             
                                                                  Cerianthid sp. 3                             
                                                                         Echiura

Table 2. Annotation success by morphotype (defined as organisms detected and identified
similarly by all 3 investigators as a fraction of instances of the organism annotated by at
least 1 investigator) in the common tiles. Only morphotypes with more than 1 annotation 

by all 3 investigators are listed. Indet.: Indeterminate
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Faunal composition

Faunal composition was not significantly different
among investigators in the common tiles (log(x + 1)-
transformed data; Fig. 1a; ANOSIM, p > 0.05), but
significant differences in apparent faunal composi-
tion were detected among investigators in both the
small and large tile sets (Fig. 1b,c). In the small tile
set, a significant difference among investigators
existed when density was allowed the maximum con-
tribution (untransformed data; ANOSIM R = 0.16,
p < 0.05), and in the log(x  + 1)-transformed data
(ANOSIM R = 0.18, p < 0.05) but not in the presence−
absence data (ANOSIM, p > 0.05), suggesting that
differences among investigators were primarily
related to differences in the estimated densities of
some taxa (i.e. variations in detection success). The
significant difference among investigators in the
large tile set was apparent whether based on pres-
ence-absence (ANOSIM R = 0.20, p < 0.001), log(x +
1)-transformed-data (ANOSIM R = 0.53, p < 0.001) or
untransformed data (ANOSIM R = 0.51, p < 0.001).
This result suggests that investigator bias in faunal
composition is magnified with sample size, for exam-
ple, for log(x + 1)-transformed data the ANOSIM R
value (effect size) increased from 0.18 to 0.53 as
replicate sample size increased from 65 to 100 tiles
(Fig. 2). Differences in similarity among experts
 be came significant at ~500 tiles, while precision in
estimated community composition (as mean within-
investigator community similarity) for the multi-
investigator data was not fully asymptotic at 1400
tiles (14 000 photos, Fig. 2).

Density-driven variations in
apparent faunal composition
were detected among investiga-
tors. The morphotype contribut-
ing most (>10%) to the dissimi-
larity among investigators in the
common tiles and the small tile
set was Iosactis vagabunda, with
Ophiuroidea and Amperima/
Ellipinion/Kolga contributing at
least 10% to dissimilarity. These
3 morphotypes were the highest
ranked in terms of density and
contributed at least 5% to dis-
similarities among investigators
in the large tile set. The bias
among investigators persisted
even when the analysis was re-
stricted to common morpho-
types, in both the log(x + 1)-

transformed small tile set (6 morphotypes; ANOSIM
R = 0.18, p < 0.05) and the large tile set (Fig. 1; 16
morphotypes; ANOSIM R = 0.44, p < 0.001). These
results suggest that variation in detection success
among investigators is the primary cause of apparent
variations in faunal composition. A comparison of the
densities of these key taxa estimated by different in-
vestigators corroborates this: significant differences
were found in the estimated density of Ophiuroidea
in the small and large tile sets (ANOVA F3,12 = 5.59,
p < 0.05 and F3,34 = 18.79, p < 0.0001, respectively).
Investigators also differed significantly in the esti-
mated density of Amperima/Ellipinion/Kolga in both
the small (ANOVA F3,12 = 11.27, p < 0.001) and large
tile sets (ANOVA F3,34 = 14.88, p < 0.0001). In the
case of Iosactis vagabunda, investigators differed
significantly in the estimated density in the large tile
set (ANOVA F3,34 = 3.57, p < 0.05) but not in the small
tile set.

Human factors

Annotation success in the common tiles was not
significantly related to the pixel area of a morpho-
type (p > 0.05), nor to the total number of specimens
of a particular morphotype (p > 0.05). Estimated total
faunal density was not significantly correlated with
time spent per tile in either the common tiles, the
small tile set, or the large tile set (all p > 0.05; Supple-
ment 5 at www. int-res. com/ articles/ suppl/  m552 p061
_ supp. pdf). However, the estimated density of Ophi-
uroidea in the large tile set was significantly corre-

                  Density  Shannon index Simpson index Rarefied richness
                            CV    Bias          CV    Bias             CV     Bias             CV      Bias

Common tiles                                                                                                        
Investigator 1      8.1   −1.5         10.3   −0.5              8.3      0.0              4.6       2.7
Investigator 2      5.3     3.1           4.1     0.6              4.4      0.0              5.8     −7.0
Investigator 3      8.1   −1.5           9.8   −0.1              5.9      0.0              8.4       4.3

Small tile set                                                                                                          
Investigator 1    14.5   −0.1         13.9   −0.2            11.5    −1.0              9.5       4.5
Investigator 2      6.3   −0.3           5.6     2.8              2.0      1.9              6.7       5.0
Investigator 3      5.5     0.4           8.0   −2.5              7.6    −1.0            10.9     −9.5
Multi                  15.0   −1.1           6.1     8.3              1.9      6.3              4.9       5.0

Large tile set                                                                                                          
Investigator 1      3.7     4.2           4.4   −0.5              3.4    −0.9              2.1       0.8
Investigator 2      1.9   −2.2           4.8   −0.5              3.2      0.5              4.9     −2.1
Investigator 3      3.1   −1.5           3.9     0.9              2.6      0.5              4.0       1.3
Multi                    2.0     0.4           3.5     1.6              2.4      0.5              4.2       5.9

Table 3. Precision (coefficient of variation = CV, %) and bias (%) in the density, di-
versity metrics and richness determined, as introduced by investigators. Multi: 

Multi-investigator
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lated with time spent per tile (rS[28] = 0.48, p < 0.05;
Fig. 3). Time spent per tile differed significantly
among investigators in both the common tiles and the
large tile set (ANOVA F2,11 = 12.9, p < 0.01 and F2,27 =
38.4, p < 0.001; Supplement 5).

DISCUSSION

The direct comparison of annotations among inves-
tigators revealed that it was specimen detection,
rather than classification, that was the primary
source of bias in the annotation data. Although inves-
tigators had high and similar specimen detection
rates overall, the variable detection success of indi-
vidual morphotypes introduced significant scope for
bias. In the present study, classification success was
high. Nevertheless, it was clear that without appro-
priate randomisation of images among investigators,
the use of multiple annotators could introduce (statis-
tically backed) illusory ecological conclusions.

While some variation in annotation among investi-
gators is expected, it is the magnitude of the potential
bias that requires consideration. The classification
success rate in the common tiles (95%) was higher
than that found in a study of fewer number of morpho -
types by Culverhouse et al. (2003; 43%). In another
study, a wide range of inter-observer agreement was
found for 13 morphotypes assessed by 5 investigators
(0−97%; Schoening et al. 2012). Culverhouse et al.
(2003) suggested that some investigators are more
consistent at categorisation (classification) while in-
consistent at counting (detection), or vice versa, and
that bias may be related to increased familiarity with
certain morphotypes by particular investigators. This
familiarity has been suggested to result in investiga-
tors assigning more detailed classification to some
groups of species than others (Gobalet 2001) and may
result in some faunal groups being more successfully
annotated by some investigators than others, as we
encountered in the present study.

Investigator bias on ecological metrics was not ap-
parent in the common tiles; that is, no significant dif-
ferences among investigators were detected in terms
of density, diversity or community composition. How-
ever, significant differences in density and community
composition were detected in the small and large tile
sets, exceeding background ecological variation.
These differences appeared to be driven by low de-
tection success in the common morphotypes, rather
than differences in the detection of rare morphotypes.
In addition, it is worth noting that the use of multiple
investigators resulted in a small positive bias of
species richness; for example, in both the small and
large tile sets, rarefied morphotype richness was in-
flated by 5% over the single investigator average.

The megafaunal assemblage of the PAP is one of
high dominance by a few morphotypes. The domi-
nant morphotype (Iosactis vagabunda) contributed
55% of the individuals annotated, while Ophiuroidea
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Fig. 1. Two-dimensional non-metric multidimensional scal-
ing ordination plots of log(x + 1)-transformed megafaunal
community data as represented by investigators in (a) the
common tiles (open symbols, with replicates labeled 1 to 4)
and the small tile set (by replicate including the multi-inves-
tigator data and all morphotypes); and the large tile set by
replicate, (b) including the multi-investigator data and all
morphotypes and (c) including only the 16 morphotypes 

found in every replicate
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and Amperima/ Ellipinion/ Kolga con-
tributed a further 12 and 9%, respec-
tively, despite these 3 morphotypes
all having low detection successes.
Small variations in the de tection suc-
cess of these morphotypes substan-
tially in fluenced apparent density
and community composition.

Human factors exerted some influ-
ence on the resulting annotation data.
The time spent annotating was posi-
tively correlated with the number of
Ophi uro idea annotated. Time is an
im portant consideration in all studies
based on annotations by humans, re -
gardless of the number of annotators.
It is a known issue with human-based
data gathering. Correlations be tween
time spent annotating and apparent
density (e.g. for Ophiuro idea) are
consistent with Megaw’s (1979) sug-
gestion that time available was a
source of error in visual inspection
tasks.

Given the apparent importance of variable speci-
men detection success in driving inter-investigator
bias, computer-aided specimen detection may be of
particular value. Schoening et al. (2012) developed
the iSIS (intelligent Screening of underwater Images
System) software that detected more megafauna in a
set of training images than were in the set of gold
standard annotations generated by 5 investigators,
suggesting that the system could be used to generate
a set of detected objects for humans to review and
accept or reject. Such human-mediated machine
 an notation could allow human investigators to focus
on the classification of the detected objects, a task
achieved with high success (95%) in the present
study.

Having identified the primary source of bias as
variable specimen detection, both among morpho-
types and to a lesser extent among investigators, the
nature and occurrence of bias in particular ecological
parameters can be readily understood. Apparent
density is impacted only by specimen detection rates,
with bias becoming evident at large sample sizes.
Ap parent diversity is less impacted by specimen de -
tection rates, because diversity indices deal with rel-
ative rather than absolute abundances. Low inter-
investigator bias in species relative abundance
estimates and very low non-consensus rates in classi-
fication success do, nevertheless, combine to slightly
inflate diversity estimates in multi-investigator data.
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Fig. 2. Precision in the community structure determined by each investigator
(Inv 1−3), and in the multi-investigator data (Multi), computed as autosimilarity
of log(x + 1)-transformed data. Grey vertical lines indicate the numbers of tiles
in replicates of each of the small and large tile sets (16 and 100). Inset: Inter-

investigator similarity, with 95% confidence intervals

Fig. 3. Human factors influencing annotation data. Counts per
tile of (a) all megafauna and (b) Ophiuroidea with time spent
annotating in replicates of the large tile set. Note difference in 

y-axis scale
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In contrast, apparent faunal composition is directly
impacted by both specimen detection (where density
is or relative abundance are included in the similarity
estimates) and classification success.

Sample size-related change in the relative levels of
within-investigator variation and among-investigator
bias in annotation data has important implications for
the conduct of image-based ecological studies. We
note that many published studies that have em -
ployed seabed photography deal with sample areas
equivalent to that of the common tiles or small tile set
of the present study (e.g. Soltwedel et al. 2009, De
Leo et al. 2010), where the impact of bias may be low.
However, the complete large tile set studied here is
representative of the very extensive sets of photo-
graphs now becoming available (e.g. Morris et al.
2014, Wynn et al. 2014), particularly for ecological
studies of the benthos, and thus there may be signif-
icant issues with bias and precision in annotation
data.

CONCLUSIONS

It is clear that different annotators give different
results on either per image or per annotation bases
and that these differences may impact the ecological
metrics (i.e. community structure) derived from this
annotation data. The use of multiple annotators is a
reasonable way to reduce annotation time in large
image or video datasets, but the ‘effect size’ of inves-
tigator bias is likely to increase with sample size,
such that it may become a particular concern in the
large datasets. The statistical power to detect change
increases with sample size (and number of repli-
cates); consequently the risk of spurious ecological
interpretations of investigator bias is similarly in -
creased. In addition, all human investigators may
introduce bias to annotation data as a result of
human factors, such as time, as found here.

We recommend the following actions to reduce
investigator-related bias in image annotation data
(whether video clips or still images) and to allow fair
comparisons to other annotation data generated by
single or multiple annotators:

(1) Randomise the order of image or video clips
annotation, both in single and multiple-investigator
studies. This reduces both annotator bias in studies
with multiple investigators and time-related bias in
studies with either single- or multiple-investigator
an notation. Annotator or time-related bias becomes
spatial or temporal bias in studies where contiguous
blocks of images are annotated.

(2) Quantify potential inter-investigator bias by
directly comparing annotators in a randomly selected
subset of the imagery, as has been done in the pres-
ent study and also suggested by Howell et al. (2014).

(3) Report the use of multiple investigators and the
inter-investigator agreement achieved, including the
detection success and classification consensus.

(4) When comparing to existing data, consider the
apparent ecological effect size and potential bias
effect size.
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