
Information and Software Technology 87 (2017) 259–277

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Software landscape and application visualization for system

comprehension with ExplorViz

Florian Fittkau

1 , ∗, Alexander Krause, Wilhelm Hasselbring

Software Engineering Group, Kiel University, D-24098 Kiel, Germany

a r t i c l e i n f o

Article history:

Received 20 December 2015

Revised 12 July 2016

Accepted 14 July 2016

Available online 15 July 2016

Keywords:

Software visualization

Dynamic analysis

System comprehension

a b s t r a c t

Context: The number of software applications deployed in organizations is constantly increasing. Those

applications – often several hundreds – form large software landscapes.

Objective: The comprehension of such landscapes and their applications is often impeded by, for in-

stance, architectural erosion, personnel turnover, or changing requirements. Therefore, an efficient and

effective way to comprehend such software landscapes is required.

Method: In our ExplorViz visualization, we introduce hierarchical abstractions aiming at solving sys-

tem comprehension tasks fast and accurately for large software landscapes. Besides hierarchical visualiza-

tion on the landscape level, ExplorViz provides multi-level visualization from the landscape to the level of

individual applications. The 3D application-level visualization is empirically evaluated with a comparison

to the Extravis approach, with physical models and in virtual reality. To evaluate ExplorViz, we conducted

four controlled experiments. We provide packages containing all our experimental data to facilitate the

verifiability, reproducibility, and further extensibility of our results.

Results: We observed a statistical significant increase in task correctness of the hierarchical visualiza-

tion compared to the flat visualization. The time spent did not show any significant differences. For the

comparison with Extravis, we observed that solving program comprehension tasks using ExplorViz leads

to a significant increase in correctness and in less or similar time spent. The physical models improved

the team-based program comprehension process for specific tasks by initiating gesture-based interaction,

but not for all tasks. The participants of our virtual reality experiment with ExplorViz rated the realized

gestures for translation, rotation, and selection as highly usable. However, our zooming gesture was less

favored.

Conclusion: The results backup our claim that our hierarchical and multi-level approach enhances the

current state of the art in landscape and application visualization for better software system comprehen-

sion, including new forms of interaction with physical models and virtual reality.

© 2016 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

[

F

i

l

o

(

s

t

m

i

r

a

s

h

0

. Introduction

While program comprehension has been researched extensively

1] , system comprehension has received much less attention [2] .

rom a historical point of view, program comprehension became

mportant when programs reached more than a few hundreds

ines of code. Today’s IT infrastructures in enterprises often consist

f several hundreds of applications forming large software land-
∗ Corresponding author.

E-mail addresses: florian.fittkau@gmx.de (F. Fittkau), akr@informatik.uni-kiel.de

A. Krause), hasselbring@email.uni-kiel.de (W. Hasselbring).

URL: http://se.informatik.uni-kiel.de (W. Hasselbring)
1 Present address: PPI AG, Wall 55, 24103 Kiel, Germany.

m

W

fl

c

t

ttp://dx.doi.org/10.1016/j.infsof.2016.07.004

950-5849/© 2016 The Authors. Published by Elsevier B.V. This is an open access article u
capes [3] . Therefore, system comprehension – in our terminology

he comprehension of such landscapes – is a crucial part of the

aintenance process [4] . This circumstance is intensified by, for

nstance, Cloud Computing which provides scalability through

eplication of nodes and thus increases the number of deployed

pplications.

One way to achieve system comprehension is software land-

cape visualization. Current software landscape visualizations are

ostly found in application performance management (APM) tools.

hile surveying them, we observed that these tools often use a

at graph-based representation of nodes, applications, and their

ommunication.

In contrast, our ExplorViz approach [5] , which provides live

race visualization for large software landscapes, introduces three
nder the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

http://dx.doi.org/10.1016/j.infsof.2016.07.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.07.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:florian.fittkau@gmx.de
mailto:akr@informatik.uni-kiel.de
mailto:hasselbring@email.uni-kiel.de
http://se.informatik.uni-kiel.de
http://dx.doi.org/10.1016/j.infsof.2016.07.004
http://creativecommons.org/licenses/by-nc-nd/4.0/

260 F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277

l

c

d

h

p

2

D

s

r

a

t

o

f

n

a

“

c

b

o

w

c

t

o

u

o

c

o

s

x

n

l

n

a

l

u

2

c

o

e

i

t

c

l

o

l

W

p

T

a
hierarchical abstractions [3] . First, there are systems which consist

of one or more server nodes. Second, especially designed for cloud

environments and their horizontal scalability, our hierarchical visu-

alization features node groups which cluster nodes that are running

the same application configuration. Third, the amount of communi-

cation between the applications is represented by the thickness of

the communication links.

Besides such hierarchical visualizations on the landscape level,

the ExplorViz approach offers multi-layer monitoring from land-

scape level to application level [5] .

While these visualizations seem reasonable, it should still be

evaluated whether they provide any benefits concerning the com-

prehension process [6–8] . For example, the users might not un-

derstand the abstractions, or the abstractions might not support

or might even hinder the user in solving system comprehension

tasks.

The main contributions of the present paper in this context are:

1. An introduction to the hierarchical and multi-layer visualization

of large software landscapes with ExplorViz, including its meta

model and the process of generating these models from moni-

toring traces.

2. The reusable design and execution of a controlled experiment

comparing a flat landscape visualization to our hierarchical

landscape visualization in system comprehension tasks, with an

emphasis on the methodology of how we operate a controlled

experiment. This includes a thorough analysis of typical sources

of error and the strategies chosen by the participants for each

task.

3. For evaluating the application-level visualization of ExplorViz,

we summarize the controlled experiments for comparing Ex-

plorViz with the Extravis trace visualization approach, for em-

ploying physical 3D-printed ExplorViz models, and for explor-

ing 3D ExplorViz models in virtual reality.

Beneath evaluating whether a hierarchical and multi-level visu-

alization provides benefits, we conducted these experiments to get

input for improving our ExplorViz tool. 2

The remainder of this article is organized as follows. Our live

trace visualization ExplorViz – building the foundation – is de-

scribed in Section 2 . Section 3 presents the flat, state-of-the-art vi-

sualization of software landscapes and introduces our hierarchical

landscape visualization. Afterwards, Section 4 presents a controlled

experiment to evaluate the impact of using a hierarchical visual-

ization for system comprehension on the landscape level instead

of a flat visualization. Section 5 presents the empirical evaluation

of application-level visualizations in ExplorViz. Related work is dis-

cussed in Section 6 . Finally, we draw the conclusions and illustrate

future work in Section 7 .

2. ExplorViz

ExplorViz offers live monitoring of large software landscapes

[3] . In particular, the ExplorViz approach offers hierarchical visu-

alization [9] and multi-layer monitoring from landscape level to

application level [5] . ExplorViz provides mechanisms to acquire

up-to-date (live) information that is consistent with the actual

enterprise application landscape and information systems. Our tool

introspects applications and information systems to a fine-grained

level, and facilitates to improve the resource capacity [10,11] in en-

terprise application landscapes by means of a control center [12] .

We introduce ExplorViz via modeling the software landscape of

the Kiel Data Management Infrastructure at the Helmholtz Cen-

tre for Ocean Research Kiel (GEOMAR) in Section 2.1 . We intro-

duce the application level in Section 2.2 . ExplorViz generates these
2 http://www.explorviz.net.
andscape and application level visualizations from the information

ontained in the monitoring traces. Section 2.3 introduces the un-

erlying meta model of ExplorViz. The trace-to-model mapping, i.e.

ow these visualizations are generated from the monitoring log, is

resented in Section 2.4 .

.1. Landscape-level visualization

Fig. 1 shows the modeled infrastructure of the GEOMAR’s Kiel

ata Management Infrastructure for ocean science 3 on the land-

cape level. The large gray boxes with, e.g., PubFlow () [13] , rep-

esent the systems present in the software landscape. They can

lso be minimized such that only the system and its communica-

ion are visible, without their interior. Thus, providing abstraction

n the level of systems and only visualizing systems currently in

ocus.

The smaller green boxes in one system represent the contained

ode groups () or nodes (). Node groups are labeled with

 textual representation of their contained nodes, for example,

10.0.0.1 –10.0.0.7”. We introduced node groups because in cloud

omputing, for instance, nodes are scaled for performance reasons,

ut typically keep their application configuration. For providing an

verview, these nodes are grouped. However, they can be extended

ith the plus symbol near the node group.

A node can contain different applications (). The communi-

ation between applications is visualized by lines. In accordance

o their call count, the line thickness changes, i.e., higher amount

f communication leads to thicker communication lines (). The

ser can navigate to the application-level perspective by choosing

ne application.

As already stated, we feature a time shift mode to analyze spe-

ific situations (). To provide an indication, when large amounts

f calls are processed, the call count of the entire landscape is

hown on the y-axis. A configurable time window is shown on the

-axis.

We employ auto-layout algorithms to ensure that the user does

ot need to manually layout the nodes which can be infeasible in

arge software landscapes. The employed flow-based auto-layout,

amed KLay Layered

4 [14] , orders the nodes and applications in

ccordance to our defined communication flow direction, i.e., from

eft to right. Future work should make the flow direction config-

rable in the GUI.

.2. Application-level visualization

Fig. 2 displays the application-level perspective of the source

ode analyzer PMD

5 with ExplorViz. The flat green boxes () in

ur 3D visualization represent packages showing their contained

lements. The green boxes on the top layer are packages () hid-

ng their internal details. They can be opened or closed interac-

ively. Classes are visualized by purple boxes and the communi-

ation link is displayed by orange lines (). The width of the

ine corresponds to the call frequency of the represented meth-

ds. The height of classes maps to the active instance count. The

ayout is a modified version of the layout used in CodeCity [15] .

hile CodeCity visualizes the static software structure, ExplorViz

rovides dynamic live visualization of monitoring logs.

ExplorViz follows a hierarchical, top-down approach [16] .

herefore, details about the classes and their communication links

re provided on demand following the Shneiderman mantra [17] of
3 https://portal.geomar.de.
4 http://rtsys.informatik.uni-kiel.de/confluence/x/joAN.
5 https://pmd.github.io/.

http://www.explorviz.net
https://portal.geomar.de
http://rtsys.informatik.uni-kiel.de/confluence/x/joAN
https://pmd.github.io/

F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277 261

Fig. 1. Landscape-level perspective visualization of the Kiel Data Management Infrastructure for ocean science in ExplorViz.

Fig. 2. Application-level perspective visualization of PMD in ExplorViz.

262 F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277

Fig. 3. ExplorViz meta model.

p

r

a

t

t

m

a

I

c

r

w

g

c

a

d

o

o

n

s

h

I

h

r

o

2

f

b
“Overview first, zoom and filter, then details-on-demand.” To ex-

plore the relationships between classes, the user can mark classes

by clicking on them to highlight their incoming and outgoing com-

munication links and to obtain details through tooltips.

2.3. The ExplorViz meta model

Fig. 3 displays the ExplorViz meta model. A Landscape class rep-

resents the top-level entity of the meta model. It contains a times-

tamp attribute to represent the timestamp of the ExplorViz model’s

creation. Furthermore, it has a list of landscape events , e.g., “Node

Demo1 has been added” and a list of exceptions which occurred in

the landscape. The Landscape class has a reference list of System s.

In our terms, a System represents a logical union of multiple ap-

plications and servers. The System class contains a name attribute

representing the actual name of the system. Furthermore, System

holds a reference list of NodeGroup s.

A NodeGroup forms a logical abstraction from the servers and

applications by representing servers which have the same applica-

tion configuration. An equal application configuration typically oc-

curs in, for instance, cloud environments. A NodeGroup contains an

attribute name which is formed by the range of the lowest IP ad-

dress and the highest IP address in it. Furthermore, A NodeGroup

has a reference list to Node s. One Node has a name (hostname)

and an IP address. In addition, it contains attributes to represent

the current utilization of the server and the current average CPU

utilization. A Node holds a reference list of Application s running

on it.

An Application has the attributes name, last usage representing

the last timestamp where activity was monitored, whether it is a

database or not, and the programming language . In addition, it holds

a list of DatabaseQueries which represent one database query, i.e.,

its SQL statement , the return value , and the execution time . An Ap-
lication contains a reference list to Component s. Component s rep-

esent logical organization units of classes [18] . For example, pack-

ges can be Component s in the context of Java. A Component has

he attributes name and full qualified name . The latter represents

he full name including the names of parent Component s. Further-

ore, a Component contains a list of Component s, i.e., its children,

nd a list of Class es.

A Class represents the lowest level entity in our meta model.

t has a name , a full qualified name representing its name and in-

luding parent components’ names, and an instance count attribute

epresenting how many instances were active.

The Landscape class also holds a list of Communication links

hich exist between Application s. In addition, the source and tar-

et class are referenced by the Communication link. A Communi-

ation link has the attributes requests which can also be zero, an

ttribute technology meaning the actual technology used to con-

uct the Remote Procedure Call (RPC), and an average response time

f the RPC.

An Application also contains a list of Communication links but

n the Class level. The CommunicationClass class contains a method

ame attribute and has a source and target Class . To be able to vi-

ualize the actual traces in the application-level perspective, it also

olds a reference map between a trace identifier and a Runtime

nformation . A Runtime Information provides the information about

ow many times the trace was called , the overall trace duration , the

equest amount of the method, the average response time , and a list

f order indexes representing the position in the trace.

.4. Trace-to-model mapping

Monitoring the software landscape generates trace information

rom the running systems. As a prerequisite, the software needs to

e instrumented with monitoring probes [19–21] . After processing

F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277 263

t

i

f

q

g

i

m

c

a

g

s

o

c

c

e

a

a

n

a

t

a

u

o

t

l

r

l

r

f

t

i

a

a

u

3

p

a

T

S

3

u

p

c

D

b

h

s

i

c

m

t

t

s

t

c

u

o

v

h

o

s

p

d

c

c

f

n

l

n

a

t

o

s

i

a

a

p

3

v

w

i

n

d

g

n

g

t

s

g

C

a

a

g

c

p

r

s

c

m

T

r
hese traces from the monitoring sources, the model – correspond-

ng to the meta model of the previous subsection – is generated

rom the information contained in the monitoring traces. Subse-

uently, the ExplorViz model provides the required information to

enerate the visualizations.

In this subsection, we describe how the information contained

n the monitoring traces are used to create a ExplorViz model. Each

onitoring trace includes HostApplicationMetaDataRecord s which

ontain information about the originating system, the IP address

nd hostname of the server, the application name, and the pro-

ramming language. Since the traces are generated in a distributed

ystem and potentially each monitoring record might be processed

n different analysis servers, every operation monitoring record

ontains such information. The contained information are used to

reate the counterpart in the ExplorViz model. For example, the

xisting systems are iterated and if the current system is not found,

 new instance for the new system is created. This procedure also

pplies to nodes and application instances. After inserting a new

ode or application into the model, the node groups get updated

ccordingly.

For generating the components, classes, and communication on

he application level, the operation monitoring records of the trace

re iterated. The contained method signature is used to create or

pdate components and classes. The method call is used to create

r update the communication links on the class level. In addition,

he Runtime Information is created as part of this communication

ink. As explained in Section 2.2 , this runtime information may be

etrieved by selecting the corresponding orange communications

inks.

Beneath this normal mapping of the traces, there exist separate

ecords for special purposes. The special caller and callee records

or RPC monitoring are matched to create the communication on

he landscape level. Another special record is the SystemMonitor-

ngRecord which contains information about the CPU utilization

nd RAM usage. This record is used to update the utilization of

 node. Furthermore, the record for monitoring database calls is

sed to generate a list of database queries for each application.

. Flat vs. hierarchical landscape visualization

In Section 4 , we will present a controlled experiment to com-

are a flat, state-of-the-art landscape visualization to our hier-

rchical visualization in the context of system comprehension.

hese flat and hierarchical visualizations are now introduced in

ections 3.1 and 3.2 , respectively.

.1. Flat landscape visualization

This section introduces the flat software landscape visualization

sed in the experiment by the control group to solve system com-

rehension tasks.

Current landscape visualizations can mostly be found in appli-

ation performance management (APM) tools, for instance, App-

ynamics, 6 Foglight, 7 or Dynatrace. 8 Those tools are often driven

y commercial interest and thus are not free to use or – if they

ave an evaluation phase – it is explicitly prohibited to conduct

tudies with these versions. Therefore, we had to create our own

mplementation of the visualization which follows the concepts of

urrent landscape visualizations available in APM tools. By imple-

enting the visualization into our ExplorViz tool, we also assure

hat interaction capabilities are the same between both groups in
6 http://www.appdynamics.com.
7 http://www.foglight.com.
8 http://www.dynatrace.com.

c

h

he experiment. This also leads to a higher reliability of the pre-

ented results.

After surveying the available visualizations, we implemented

he visualization depicted in Fig. 4 which is a mixture of the con-

epts we rated as best suitable for system comprehension. The fig-

re shows an excerpt of the used object landscape, i.e., a model

f the technical IT infrastructure of the Kiel University. Nodes are

isualized as green boxes () with white labels representing the

ostname of each node at the bottom. The applications running

n the nodes are visualized by purple boxes (). A white label

hows the application name at the center. Besides the label, the

rogramming language or – in the special case of a database – a

atabase symbol is depicted. The communication between appli-

ations is represented by orange lines (). The conducted request

ount is shown next to a line in black letters in the abbreviated

orm of, e.g., 10 req .

We employ auto-layout algorithms to ensure that the user does

ot need to manually layout the nodes which can be infeasible in

arge software landscapes. The employed flow-based auto-layout,

amed KLay Layered

9 [14] , orders the nodes and applications in

ccordance to our defined communication flow direction, i.e., from

op to bottom. In our object landscape, all communication paths

riginate at a Network entity visualized as a globe which is not

hown in the picture. The cropped lines at the top directly lead

nto this globe entity.

All entities provide more information on demand by means of

 tooltip when hovering over them with the mouse. Further inter-

ction possibilities include the dragging of the view for navigation

urposes, and zooming for an overview of the landscape.

.2. Hierarchical landscape visualization

This section briefly presents our hierarchical software landscape

isualization. The hierarchical visualization [3,22] is part of our

eb-based ExplorViz tool [5] which enables live trace visualization

n large software landscapes.

Our hierarchical visualization is shown in Fig. 5 . It visualizes

odes and applications in the same way as the flat visualization

oes. However, it also features hierarchies, i.e., systems and node

roups. In our terms, systems () are made up of one or more

odes which form a semantic union. Systems are visualized as

ray boxes with their name labeled at the top. Nodes running

he same application configuration form a node group () repre-

ented by a dark green frame. In a node group, the hostnames are

rouped to a joint label, for example, Cloud Node Server 1 -
loud Node Server 8 . Furthermore, systems and node groups

re interactively extensible and collapsible to get a quick overview

nd details on demand. By default, systems are opened and node

roups are collapsed.

A further difference to the flat visualization is the display of

ommunication lines () in the hierarchical visualization. This

rovides a further abstraction from the flat visualization which

epresents the request count through labels. In our hierarchical vi-

ualization, the thickness of the communication lines follows its

onducted request count. For instance, the orange line displayed at

is thicker than the other communication lines, indicating that

ore request are conducted between the connected applications.

he thickness of the lines is determined by linearly grouping the

equest count into four categories. The actual number of request

an also be viewed on demand – like in the flat visualization – by

overing over the communication line.
9 http://rtsys.informatik.uni-kiel.de/confluence/x/joAN.

http://www.appdynamics.com
http://www.foglight.com
http://www.dynatrace.com
http://rtsys.informatik.uni-kiel.de/confluence/x/joAN

264 F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277

Fig. 4. An excerpt (29 of 140 applications) of the model of the technical IT infrastructure of the Kiel University in the flat landscape visualization.

Fig. 5. An excerpt of the model of the technical IT infrastructure of the Kiel University in the hierarchical landscape visualization.

v

t

t

l

h

t

l
4. Evaluation of landscape-level visualization with ExplorViz

In this section, we present our controlled experiment which

compares the usage of a flat, state-of-the-art landscape visualiza-

tion to our hierarchical landscape visualization in system compre-

hension tasks. The experiment was first described in [9] and this

section is a substantial extension to this paper by describing how

we generate the landscape model and providing details on our de-
eloped tutorial and questionnaire mode used to operate the con-

rolled experiments. To the best of our knowledge, we are the first

o conduct such a controlled experiment comparing two software

andscape visualizations.

In our experiment, 29 participants solved five system compre-

ension tasks. We used a medium-sized model of the IT infrastruc-

ure of the Kiel University containing 140 applications as object

andscape. To facilitate the verifiability and reproducibility of our

F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277 265

r

d

r

o

c

C

n

g

s

t

i

v

4

g

o

d

h

o

v

g

t

4

w

r

4

t

m

a

t

a

4

s

t

s

r

4

t

l

c

o

t

k

m

a

w

t

m

g

l

s

h

4

w

c

e

o

b

c

t

a

p

i

w

a

T

D

esults, we provide a package [23] containing all our experimental

ata including source code for both visualizations, input files, tuto-

ial material, questionnaires, R scripts, raw data, and 29 recordings

f the participant sessions. The package is available with source

ode under the Apache 2.0 License and the data under a Creative

ommons License (CC BY 3.0).

For our object landscape we measure the time spent and correct-

ess for each task which are typical metrics in the context of pro-

ram comprehension [24] . Afterwards, we analyze the employed

trategies and possible differences between both groups.

We describe the design of our controlled experiment, its opera-

ion, data collection, analysis, results, discussion (including reason-

ng about the different performances in each task), and threats to

alidity.

.1. Experimental design

In addition to general software engineering experimentation

uidelines [25–29] , we follow the designs of Wettel et al. [30] and

f Cornelissen et al. [1] . Similar to them, we use a between-subjects

esign. Thus, each subject solves tasks either using the flat or the

ierarchical visualization. Following GQM [31] , we define the goal

f our experiment as quantifying the impact of using either the flat

isualization or the hierarchical one for system comprehension.

We name the control group Flat Group and the experimental

roup Hierarchical Group . Due to space constraints, we abbreviate

he groups as Flat and Hierarchical in figures and tables.

.1.1. Research questions & hypotheses

We define three research questions (RQ) for our defined goal:

• RQ1: What is the ratio between Flat Group and Hierarchical

Group in the time required for completing

system comprehension tasks?
• RQ2: What is the ratio between Flat Group and Hierarchical

Group in the correctness of solutions to system comprehension

tasks?
• RQ3: Which sources of error exist when solving system com-

prehension tasks with either of the two visualization types?

Accordingly, we formulate two hypotheses:

• H1 Flat Group and Hierarchical Group require different times

for completing system comprehension tasks.
• H2 The correctness of solutions to system comprehension tasks

differs between Flat Group and Hierarchical Group .

The null hypotheses H1 0 and H2 0 follow analogously. For RQ3,

e conduct an in-depth analysis of the results and analyze the

ecorded sessions of each participant in detail.
able 1

escription of the system comprehension tasks for the experiment.

ID Description

Context: Identification of critical dependencies

T1 Name three applications that have a high fan-in (at least two incoming commun

one node and not distributed over multiple nodes.

Context: Potential Bottleneck Detection

T2 Name the Top 3 communications with the highest request count in descending

Context: Scalability Evaluation

T3 Which applications are duplicated on multiple nodes? The answer should conta

The hostname of the nodes, where the applications are running, are numbere

Context: Service Analysis

T4 What is the purpose of the WWWPRINT application in your opinion? How does

Context: Risk Management

T5 What are the consequences of a failure of the LDAP application? Name all affect

the received paper about the introduction to the university landscape.
.1.2. Dependent and independent variables

The independent variable is the visualization used for the sys-

em comprehension tasks, i.e., flat or hierarchical visualization. We

easured the accuracy (correctness) and response time (time spent)

s dependent variables. These are usually investigated in the con-

ext of program comprehension [1,24,30] and thus should also be

pplicable in the context of system comprehension.

.1.3. Treatment

The control group used the flat visualization to solve the given

ystem comprehension tasks. The experimental group solved the

asks utilizing the hierarchical visualization which includes the ab-

tractions of systems, node groups, and the communication lines

epresenting the conducted requests by the line’s thickness.

.1.4. Tasks

We selected a medium-sized software landscape (140 applica-

ions). Our model of the IT infrastructure of the Kiel University

andscape represents services of our working group, computing

enter services, examination services, information services, system

perating group services, and management services. We modeled

he landscape by available information from the Internet and prior

nowledge, and thus the model might not reflect the real deploy-

ent in detail. However, this is unimportant for the tasks.

In Table 1 , our defined tasks including their context and achiev-

ble maximum points are displayed. To prevent guessing, all tasks

ere given as open questions. Our task set starts with less complex

asks (identifying applications with a high fan-in) and ends with a

ore complex risk management task. This enabled each subject to

et familiar with the visualization in the first tasks and raises the

evel of complexity in the following ones. We chose only five tasks

ince we aimed to stay in a one hour time slot and prevent ex-

austion issues.

.1.5. Population

The 29 subjects were students from the master course “Soft-

are Engineering for Parallel and Distributed Systems.” For suc-

essfully solving one task, they received bonus points for the final

xam of the course. As further motivation, the students could win

ne of ten gift cards over 10 € for the sole participation and the

est five subjects each received a gift card over 30 € .

The subjects were assigned to the Flat Group or Hierarchi-

al Group by random assignment. To validate the equal distribu-

ion of experiences, we asked the participants to perform a self-

ssessment on a 5-point Likert Scale [32] ranging from 0 (no ex-

erience) to 4 (expert with years of experience) before the exper-

ment. The average programming experience in the control group

as 2.5 versus 2.6 in the experimental group. The average dynamic

nalysis experience was between no experience and beginner in
Score

ication lines). The two incoming communication lines should be on 3

order. Write down the start application and the end application. 4

in all 8 duplicated applications which are all named differently. Hint:

d, e.g., Server 1, Server 2,...

4

 the process might work to achieve the functionality for the user? 4

ed applications and briefly describe their purposes. Hint: Remember 7

266 F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277

Fig. 6. Modeling the object landscape.

s

p

a

t

s

4

a

m

t

a

d

m

f

4

p

s

f

e

s

o

a

k

t

t

s

w

t

t

5

u

t

t

h

4

4

m

s

W

e
both group. Since the experience was self-assessed, we assume

that random assignment succeeded.

4.2. Operation

4.2.1. Generating the input

We generated the input for the experiment by modeling the

object landscape in ExplorViz by means of a modeling editor us-

ing our ExplorViz visualization language (see Fig. 6). Afterwards,

we exported the model as a Ruby script file. This file contains one

entry for each application that should be started. We have writ-

ten a small configurable RPC application which acts as a server

and connects to different servers configurable on the command

line. This small application can pass off as the application names

from the modeled landscapes which is also a part of one entry

in the script. Therefore, the script imitates the real object land-

scape without having the need to instrument the productive ap-

plications. After executing the script and receiving the monitored

data of the remote procedure calls, ExplorViz persists its created

landscape model into a file which acts as a replay source during

the experiment.

4.2.2. Tutorials

We provided automated tutorials for both groups of the experi-

ment. This enhanced the validity of our experiments by eliminating

human influences. For the tutorial system, we used a small-sized

model of the Kiel Data Management Infrastructure for ocean sci-

ence [3] to make the subjects familiar with the visualization. Both

groups had the same explanation text for the tutorial except in-

formation about the abstractions in the hierarchical visualization

which were only available to the associated group. As example,

Fig. 7 displays the second tutorial step for the Hierarchical Group

. The message dialog contains a description and an action which

is to be completed by the subject. To help the user, the red arrow

points at the designated entity which is to be interacted with. The

tutorial was done right before the study.

4.2.3. Questionnaire

Both groups answered the questions on an electronic question-

naire. Fig. 8 shows the first question displayed in our electronic

questionnaire. It starts with the task description and important

words and phrases are emphasized. If there is more than one re-

quired answer, the dialog displays n input fields. In the example,

these are the three expected answers. Underneath is an elapsed

time counter which shows the maximum time and switches to a

red color when the time is exceeded. The Next Button takes the

user to the next question. Notably, we do not provide a Back But-

ton since the recorded time for the question might overlap with

the other recorded time of other questions.
An electronic version provides three advantages over using

heets of paper for us. First, time cheating by the subjects is im-

ossible since the timings are automatically recorded. Second, we

void a possible error-prone manual digitalization by direct elec-

ronic capture. Lastly, the participants are forced to input valid an-

wers for category fields, e.g., their experience.

.2.4. Pilot study

To check whether the material and questions are understand-

ble for the target population, we conducted a pilot study with two

aster students as participants before the actual experiment. After

his study, we improved the materials based on the feedback. In

ddition, we added hints to the tasks which were perceived as too

ifficult or which were misunderstood. While the hint for Task 3

ight hinder the visual query in the Hierarchical Group , the hint

or Task 5 does not favor any group.

.2.5. Procedure

Our experiment took place at the Kiel University. Each partici-

ant had a single session of up to 45 minutes. All subjects used the

ame computer which had a display resolution of 1920 × 1200. Be-

ore the experiment took place, we benchmarked the computer to

nsure that both types of visualization run smoothly. We run the

tudy one student at a time.

At the beginning of each session, each subject received a sheet

f paper containing a short introduction to the object landscape

nd a description of selected applications which might be un-

nown. We gave the subjects sufficient time for reading before

hey could access the computer. After telling the participants that

hey can ask questions at all times, a tutorial for the respective vi-

ualization type was started. Subsequently, the questionnaire part

as started with personal questions and experiences. Afterwards,

he system comprehension tasks begun. The session ended with

he debriefing questions.

The less complex tasks (T1, T2, T3, T4) had a time allotment of

 minutes. The more complex task T5 had an allotment of 10 min-

tes. The elapsed time was displayed beneath the task descrip-

ion during each task. The subjects were instructed to adhere to

his timing. However, if they reached overtime, the timer was only

ighlighted in red and they were not forced to end the task.

.3. Data collection

.3.1. Timing and tracking information

The timing information for each task is automatically deter-

ined by our electronic questionnaire. In addition, the computer

creen of every session is captured using a screen capture tool.

ith the screen recordings, we could analyze the behavior of

ach participant. Furthermore, it enabled us to look for exceptional

F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277 267

Fig. 7. Second tutorial step of the Hierarchical Group.

c

t

i

t

c

r

o

4

f

s

d

t

r

d

4

v

s

i

g

s

t

z

m

u

i

s

ases, for instance, tool-related problems encountered by the par-

icipants such as accidentally closing the web browser. The record-

ngs become important in the case of tool-related problems since

he timing data must manually be corrected and it must be re-

onstructed how long the subject actually worked on the task. The

ecordings are provided in the replication package [23] , such that

ther researchers may re-check these manual corrections.

.3.2. Correctness information

The open question format implies to conduct a blind review

or rating the given answers. The two reviewers first agreed upon

ample solutions and a maximum score for each task. A script ran-

omized the order of the solutions so that no association between

he answers and the originating group could be drawn. Then, both

eviewers evaluated all solutions independently. Afterwards, any

iscrepancies in the ratings were discussed and resolved.
.3.3. Qualitative feedback

The participants were asked to give suggestions to improve the

isualization they used for solving the tasks. Due to space con-

traints, we only list the Top 3 for each group.

In the Flat Group , five users noted that some labels represent-

ng the request count overlapped such that they were forced to

et the count by hovering over the communication line. Two users

uggested to implement a sortable table for Task T2. Furthermore,

wo subjects disliked that the font size is not increasing when

ooming out.

In the Hierarchical Group , three subjects suggested to use ani-

ations for opening and closing the systems or node groups. Two

sers would like to be able to highlight nodes or connections. As

n the flat visualization group, one subject disliked that the font

ize is not increasing when zooming out.

268 F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277

Fig. 8. First question displayed in our electronic questionnaire.

Table 2

Descriptive statistics of the results related to time spent (in minutes) and correct-

ness (in points).

Time spent Correctness

Flat Hierarchical Flat Hierarchical

Mean 23 .49 23 .45 17 .07 19 .5

Difference −0 .17% + 14 .24%

Effect size d 0 .0093 0 .7827

sd 3 .87 5 .29 3 .27 2 .93

min 15 .03 15 .93 9 11

Median 24 .64 23 .14 17 .25 20 .5

max 29 .68 33 .16 22 22

Shapiro–Wilk W 0 .9232 0 .9605 0 .9156 0 .7933

Levene F 2 .1048 1 .2307

Student’s t -test

df 27 27

t 0 .0251 –2 .4102

p-value 0 .9802 0 .02303

Fig. 9. Overall time spent and correctness for our experiment.

r

c

o

R

t

i

t

o

o

s

i

s

c

w

f

R

i

o

g

w

H

a

f

a

a

g

a

4.4. Analysis and results

Descriptive statistics for the results of our experiment are

shown in Table 2 . Although we had three outliers, we did not re-

move any subjects from our analysis since the errors were com-

prehensible and did not result from exceptional cases. We use the

two-tailed Student’s t -test for our analysis which assumes normal

distribution and depends on equal or unequal variances. To test for

normal distribution, we use the Shapiro–Wilk test [33] which is

considered more powerful [34] than, for instance, the Kolmogorov–

Smirnov test [35] . We conduct a Levene test [36] to check for equal

or unequal variances. The effect size is a quantitative measure of

the strength of a phenomenon. For each type of effect-size, a larger

absolute value always indicates a stronger effect. In our evaluation,

the effect size for correctness is an order of magnitude higher than

the effect size for the time spent.

We used the 64-bit R package in version 3.1.3. 10 for the analy-

sis. As supplementary packages, we utilize gplots and lawstat
for drawing bar plots and for importing Levene’s test functionality,
10 http://www.r-project.org.

b

H

d

espectively. Furthermore, we chose α = 0 . 05 to check for signifi-

ance. The raw data, R scripts, and results are available as part of

ur experimental data package [23] .

Q1 (Time spent)

We start by checking the null hypothesis H1 0 which states that

here is no difference between the flat and the hierarchical visual-

zation in respect to the time spent on the system comprehension

asks. The box plot for the time spent is displayed on the left side

f Fig. 9 . Table 2 shows the differences between the mean values

f Flat Group and Hierarchical Group .

The Shapiro–Wilk test for normal distribution in each group

ucceeds and hence we assume normal distribution of our data

n each group. The Levene test also succeeds and thus we as-

ume equal variances between the Flat Group and the Hierarchi-

al Group. The Student’s t -test reveals a probability value of 0.98

hich is above our chosen significance level of 0.05. Therefore, we

ail to reject the null hypothesis H1 0 .

Q2 (Correctness)

Next, we check the null hypothesis H2 0 which states that there

s no difference between the two groups in respect to correctness

f the solutions. A box plot for the overall correctness in each

roup is shown on the right side of Fig. 9 .

The Shapiro–Wilk test for the Flat Group succeeds and hence

e assume normal distribution in this group. The test fails for the

ierarchical Group . Therefore, we plotted a histogram and looked

t the actual distribution. Most points are near 100% and the rest

ollows a normal distribution to the left side. Since 100% imposes

 natural cutoff for the task correctness and the rest of the values

re normal distributed, we also assume normal distribution for this

roup. The Levene test succeeds and thus we assume equal vari-

nces between both groups.

The Student’s t -test reveals a probability value of 0.02 which is

elow our chosen significance level of 0.05. As a result, we reject

2 0 in favor of the alternative hypothesis H2 (t -test t = −2.4102,

f = 27, p = 0.02303).

http://www.r-project.org

F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277 269

Fig. 10. Average time spent per task and average correctness per task.

4

H

s

l

n

s

t

d

c

t

m

a

t

i

T

t

o

T

l

a

o

l

h

a

p

G

t

g

a

d

b

s

T

p

l

q

h

t

t

s

b

a

o

G

t

s

t

T

c

f

a

q

a

G

c

i

p

s

e

p

t

d

i

t

i

o

d

w

h

T

p

t

l

t

n

t

t

–

t

r

t

t
.5. Task-based analysis

The results for the time spent are not statistically significant.

ence, there is no statistical evidence for a difference in the time

pent meaning it could be equal or even be different. However, it is

ikely that the impact of using a flat or hierarchical visualization is

egligible in terms of time spent. Whether one group took a few

econds less, usually not of interest. In terms of task correctness,

he Hierarchical Group outperformed the Flat Group by 14%. This

ifference is statistically significant in our experiment.

Since the time spent is negligibly different or equal, and the

orrectness of the solutions are higher in the hierarchical visualiza-

ion, we conclude that using the hierarchical visualization provides

ore benefits than the flat visualization.

To investigate the reasons for this circumstance, we conducted

n in-depth analysis of the recorded user sessions and looked for

he employed strategies and typical sources of error. In the follow-

ng, these findings are described (Fig. 10).

1 (Identification of critical dependencies)

Both groups used the same strategy to find the three applica-

ions with a high fan-in. At first, the subjects got a general idea

f the software landscape looking at its coarse-grained structure.

hen, they zoomed in such that they can read the application

abels and moved the view until they discovered the wanted

pplications. Some of the participants began their search from

ne side (left or right) such that they only needed to go over the

andscape once. Others started at a random position and therefore,

ad to go over the landscape twice if they did not find the wanted

pplications.

A source of error in this task was the distinction between ap-

lications and nodes. We observed this confusion more in the Flat

roup than in the Hierarchical Group which could be a reason for

he 17% higher task correctness in the hierarchical visualization

roup. Since the hierarchical visualization group uses more hier-

rchies, the participants in this group might be more aware of the

ifferences between each abstraction level.
A further possible reason for the higher task correctness might

e that the hierarchical landscape visualization is more compact

ince node groups are closed and thus take less space.

2 (Potential bottleneck detection)

Since the presentation of request labels are different in each ex-

eriment group, each group used a different strategy.

Subjects in the Flat Group again started from one side of the

andscape visualization searching for the label with the highest re-

uest count. Sometimes the labels overlapped and the participants

overed over the communication line to get the number as popup.

The Hierarchical Group zoomed out to get an overview where

he thickest communication lines are located. They hovered over

hese lines to get the actual request count and to form the de-

cending order. Interestingly, the subjects often only distinguished

etween small and larger lines (4 steps of line thickness were visu-

lized). Therefore, they also looked at medium sized lines instead

f only looking at the largest lines.

In respect to time spent and task correctness, the Hierarchical

roup outperformed the Flat Group in both metrics. One reason for

his circumstance might be that in the flat visualization the manual

earch for the highest request count can be error-prone in respect

o finding and in respect to the descending order.

3 (Scalability evaluation)

In this task, both groups used the same strategy to find dupli-

ated applications at the beginning. Participants from both groups

ormed the visual query for applications that are named equally

nd run on different nodes. The Flat Group succeeded with this

uery since the visualization only contains nodes and applications

nd no closed node group entities. In contrast, the Hierarchical

roup did not find such applications since the node groups are

losed by default. Often they realized this circumstance after go-

ng through the whole landscape without finding any duplicate ap-

lications and then they looked for the node groups. Only a few

ubjects in the hierarchical visualization looked for the node group

ntity right from the start.

From our expectations, the Hierarchical Group should have out-

erformed the Flat Group . However, the opposite happened. While

he task correctness is roughly equal, the time spent was larger

ue to the wrong visual query in the beginning. Therefore, the

ntroduced node groups abstraction confused the subjects in this

ask. We attribute this to a first time use and properly this behav-

or changes in long-term usage.

A further reason for the good performance of the Flat Group

riginates from our layout which visually grouped nodes running

uplicated applications instead of distributing the nodes over the

hole landscape. Otherwise, the comparison of applications would

ave been much harder in this group.

4 (Service analysis)

Both groups followed the same strategy for describing the pur-

ose of the WWWPrint application. First, the subjects had to search

he application. After finding it, they looked at the communication

ines and the connected applications. Then, they reasoned about

he purpose on the basis of the application names and their con-

ections. Additionally, the introduction sheet provided hints about

he meaning of certain terms, e.g., LDAP .
In average, the Hierarchical Group required 30 s more time for

his task. Since the visualization of the WWWPrint node is similar

except communication lines –, we expected an equal timing for

his task. Therefore, we also looked at the median which actually

eveals an roughly equal time spent. The average is influenced by

wo outliers (User 5 and User 25 – both taking around 6 min.).

One source of error in this task was overlooking the connection

o LDAP and thus not detected that WWWPrint requires authen-

270 F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277

Table 3

Debriefing questionnaire results for our experiment 1 is better – 5 is worse.

Flat Hierarchical

mean stdev. mean stdev.

Time pressure (1–5) 2 .14 0 .77 2 .20 0 .94

Tool speed (1–5) 2 .07 1 .00 1 .60 0 .83

Tutorial helpfulness (1–5) 2 .21 0 .58 1 .6 0 .51

Tutorial length (1–5) 3 .21 0 .70 3 .00 0 .65

Achieved comprehension (1–5) 2 .50 0 .85 2 .20 0 .68

Perceived task difficulty (1–5)

T1 2 .36 0 .84 2 .20 0 .77

T2 2 .64 0 .93 2 .00 0 .53

T3 2 .64 0 .63 3 .00 0 .76

T4 3 .00 0 .78 2 .93 0 .70

T5 2 .93 0 .73 3 .00 0 .53

T

r

e

r

s

n

i

c

a

t

m

i

d

e

o

c

a

i

T

t

i

M

p

p

i

h

t

t

a

t

4

S

l

s

w

a

f

h

H

f

m

m
tication. We observed this behavior more often in the Flat Group

than in the Hierarchical Group which might be a reason for the

higher task correctness.

T5 (Risk management)

Again, both groups had the same strategy. First, they searched

for the LDAP application. Afterwards, they followed the communi-

cation lines backward to find the services which would fail when

LDAP fails.

Similar to Task T4, we expected an equal or lower time spent

in this task since the layout is more compact in the Hierarchical

Group . However, the time spent is 25 seconds higher in average.

In the median, it is actually 25 s lower than the time spent by the

Flat Group , again influenced by User 25 who took about 16 min.

A typical source of error in this task was not describing the pur-

pose of the potentially failing services. We did not observe any dif-

ference in the occurrence of this behavior between the two groups

which possibly led to the similar task correctness.

Summary

In summary, we observed three issues leading to a higher time

spent or lower task correctness in the Flat Group . The subjects

mistook nodes for applications. This happened also in the Hierar-

chical Group but less frequently. Furthermore, when space became

narrow, the request labels overlapped. This led to manually hover-

ing over the connection to get the actual request count. The third

issue is related to the layout that was inherently larger due to the

absence of abstractions, i.e., especially a node group abstraction.

Therefore, the Flat Group often required more time to find entities.

Subjects in the Hierarchical Group often did not utilize the node

group abstraction efficiently right from the start. Therefore, this ab-

straction imposes a non-zero learning curve.

One general issue which affected both groups was that some

participants mixed up the direction of the communication which

goes from top to bottom in our layout. They sometimes thought it

would go from bottom to top. This issue could probably be solved

by an always visible legend.

4.6. Threats to validity

In this section, we discuss the threats to internal and external

validity [37–39] that might have influenced our results.

4.6.1. Internal validity

We split the internal validity into three parts for our experi-

ment: threats concerning the subjects, the tasks, and miscellaneous

threats.

Subjects. The subjects might not have been sufficiently competent.

Most participants rated themselves as having regular programming

experience which should be sufficient for our task set.

A further threat is that the experience of the subjects might not

have been fairly distributed across the Flat Group and the Hierar-

chical Group . This threat is mitigated by randomly assigning the

participants to each group. We checked that the random assign-

ment resulted in a fairly distributed self-assessed experience. The

concrete numbers were already described in Section 4.1.5 .

The subjects might not have been properly motivated which

imposes another threat to validity of our experiment. The students

were not forced to take part in the experimenter since in addi-

tion to the lottery, the students received only bonus points which

are not required to pass the exam. Furthermore, while watching

the recorded user sessions, we did not encounter any unmotivated

user behavior.
asks. One task-related threat is that the solutions were incor-

ectly rated or a reviewer might have been biased towards one

xperiment group. We mitigated this threat by employing a blind

eview process. Before the actual reviewing process took place, the

olutions were mixed by a script such that no trace to the origi-

ating group was possible for the reviewers. Then, two reviewers

ndependently reviewed each solution. Afterwards, the seldom dis-

repancies in the ratings were discussed. These discrepancies were

t most one point suggesting a high inter-rater reliability.

The tasks might have been too difficult which imposes another

hreat to validity. However, subjects from both groups achieved the

aximum score in each task. The average perceived task difficulty

s shown in Table 3 . Since the average rating of each task is never

ifficult (4) or too difficult (5), we conclude that the difficulty of

ach task was appropriate.

Another threat is that the tasks might have been biased towards

ne type of visualization. Since the average perceived task diffi-

ulty only differs significantly in T2 and T3 between both groups,

t least the other tasks are not biased towards one type of visual-

zation. Task T2 was perceived easier in the Hierarchical Group and

ask T3 was perceived harder in this group. Therefore, we conclude

hat this potential bias is fairly distributed between the two exper-

ment groups.

iscellaneous. The possible different quality of the tutorials im-

ose another threat to validity. In both groups, the teams had the

ossibility to continue to use the tutorial until they felt confident

n their understanding of the semantics. In addition, both groups

ad the same tutorial text except the hierarchical abstractions in

he Hierarchical Group.

The too loose or strict time constraints might have influenced

he results of our experiment. However, both groups had the same

verage perceived time pressure (Level 2). Therefore, we assume

hat the time pressure was well fitted for the tasks.

.6.2. External validity

Our experiment only involved one single object landscape.

ince this is usually not representative for all available software

andscapes, further experiments with different object landscapes

hould be conducted.

Another threat concerns the system comprehension tasks,

hich might not reflect real tasks. Unfortunately, we did not find

ny task frameworks for composing system comprehension tasks

or software landscapes. We also took a look at program compre-

ension task frameworks, e.g., the framework by Pacione et al. [40] .

owever, we could not adapt the tasks in a reasonable way. There-

ore, we used our present knowledge about software landscapes to

ade up tasks in interesting contexts from real usage scenarios.

Only students participated in our experiment. Professionals

ight act differently which could result in a different outcome

F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277 271

o

t

s

r

5

w

i

S

S

i

5

a

p

g

e

w

w

a

b

a

e

c

p

t

t

o

a

t

t

u

t

C

c

t

l

o

e

n

s

e

t

r

w

T

w

p

t

t

s

r

c

l

t

s

s

f

t

c

M

t

d

m

t

q

w

r

t

f

t

E

t

a

a

u

f

t

s

A

t

s

2

n

s

s

t

a

i

r

i

t

s

r

w

s

5

p

t

a

o

b

b

i

s

e

i

m

f our experiment. To investigate the impact of this threat, fur-

her controlled experiments should be conducted. To lower the

etup effort f or such experiment s, our experiment al design can be

eused.

. Evaluation of application-level visualization in ExplorViz

For evaluating the application-level visualization of ExplorViz,

e summarize the results of controlled experiments for compar-

ng ExplorViz with the Extravis trace visualization approach in

ection 5.1 , for employing physical 3D-printed ExplorViz models in

ection 5.2 , and for exploring 3D ExplorViz models in virtual real-

ty in Section 5.3 .

.1. Comparing ExplorViz with the Extravis trace visualization

pproach

We performed controlled experiments with 80 subjects to com-

are the trace visualization tools Extravis and ExplorViz for pro-

ram comprehension tasks [41] . We replicated the first controlled

xperiment with a second one targeting a differently sized soft-

are system.

Cornelissen et al. [1,42] conducted a controlled experiment

hich provides quantitative, empirical evidence that the additional

vailability of a trace visualization tool (Extravis [43]) can provide

enefits with respect to time and correctness over using sole static

nalysis in program comprehension tasks. In our experiments, we

xpanded upon the controlled experiment of Cornelissen et al. to

ompare different trace visualization techniques for program com-

rehension through controlled experiments. Specifically, we inves-

igated whether Extravis provides the most efficient and effec-

ive solution to typical program comprehension tasks compared to

ther trace visualization tools.

For our comparison, we employ Extravis using circular bundling

nd a massive sequence view with the application-level visualiza-

ion in ExplorViz, as introduced in Section 2.2 . Extravis focuses on

he visualization of one large execution trace. For this purpose, it

tilizes two interactive, linked views: the circular bundle view and

he massive sequence view.

ircular bundle view. The centered visualization of Extravis is the

ircular bundle view (in Fig. 11). The classes are arranged at

he inner circle. Due to the high number of classes in the ana-

yzed software system PMD

11 (279 visualized classes), the names

f the classes are only visible through tooltips on the respective

ntity. The outer circles represent the packages of PMD. In the in-

er field of the circle, the method calls between classes is repre-

ented by lines. The names of the method calls are visible by hov-

ring over these lines. Extravis utilizes color coding for the direc-

ion of the visualized communication. In its default setting, green

epresents outgoing calls and red expresses incoming calls. The

idth of each line corresponds to the call frequency of the method.

he application-level perspective visualization of PMD in ExplorViz

as displayed in Fig. 2, Section 2.2 .

Extravis follows a hierarchical, bottom-up strategy [44] , i.e., all

ackages show their internal details at the beginning. It is possible

o close packages and thus hide the contained classes to gain fur-

her insights into the global structure of the visualized software

ystem. Furthermore, edge bundling provides hints about strong

elationships between packages. The communication between two

lasses can be filtered by marking both classes. This selection high-

ights the method calls in the massive sequence view. In addi-

ion to displaying the communication direction, Extravis enables
11 https://pmd.github.io/.

t

s

d

witching to a chronological trace analysis () by changing the

emantics of the line colors. In this mode, color is globally used

or representing the occurrence in time of the method call in the

race. In its default setting, dark blue represents the oldest method

all and yellow corresponds to the newest method call.

assive sequence view. The massive sequence view () visualizes

he method calls over time similar to a compressed UML sequence

iagram. On top, the classes and packages are displayed and their

ethod calls are listed beneath. The direction of the communica-

ion is color coded as in the circular bundle view. The massive se-

uence view enables to filter the method calls according to a time

indow from point A in a trace to point B in a trace. This filtering

estricts the massive sequence view and the circular bundle view

o only contain method calls within the selected time window. A

urther feature of Extravis is a history of the previously selected

ime windows ().

xperiment results. Fig. 12 , left-hand side, displays a box plot for

he time spent in both experiments. Fig. 12 , right-hand side, shows

 box plot for the overall correctness in both experiments. The

nalysis of the results reveals a significant higher correctness for

sers of ExplorViz in both experiments. We concluded that the ef-

ect of using ExplorViz for solving typical program comprehension

asks leads to a significant increase in correctness and in less or

imilar time spent on the tasks in comparison to using Extravis.

lthough subjects spent similar time on program comprehension

asks with both tools for a small-sized system, analyzing a larger

oftware system resulted in a significant efficiency advantage of

8% less time spent by using ExplorViz. Concerning the effective-

ess (correct solutions for program comprehension tasks), we ob-

erved a significant improvement of correctness for both object

ystem sizes of 39 and 61% with ExplorViz. For a detailed presen-

ation and analysis of these experiments refer to [41] .

Besides our own replication of the first experiment, we provide

 package containing all our experimental data to facilitate the ver-

fiability, reproducibility and further extensibility of our presented

esults [45] . It contains the employed version of ExplorViz (includ-

ng source code and manual), input files, tutorial materials, ques-

ionnaires, R scripts, datasets of the raw data and results, and 80

creen recordings of the user sessions. We explicitly invite other

esearches to compare their trace visualizations with ExplorViz and

e provide as complete material as possible to lower the effort for

etting up similar experiments.

.2. Employing physical 3D-printed ExplorViz models

Although 3D visualizations can deliver more information com-

ared to 2D visualizations due to its additional dimension, it is of-

en difficult for users to navigate in 3D spaces using a 2D screen

nd a 2D input device [46] . As a consequence, users may get dis-

riented [47] and thus the advantages of the third dimension may

e abolished.

Traditional engineering disciplines overcome these issues by

uilding solid, physical 3D models of their designs. Beneath resolv-

ng navigation issues, the physical models are used for better pre-

entation, comprehension, and communication among stakehold-

rs. We intend to transfer these advantages to software engineer-

ng by building physical models following the 3D software city

etaphor through 3D printing.

Physical models take significant effort to be produced [48] , but

hey provide a plethora of future research possibilities. We envision

everal potential usage scenarios for physical models which we will

iscuss in the following subsections.

https://pmd.github.io/

272 F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277

Fig. 11. The recorded execution trace of PMD for the first controlled experiment visualized in Extravis.

e

p

u

e

s

u

i

i

d

F
5.2.1. Program comprehension in teams

Gestures support in thinking and communication processes

[49] . Since physical models are more accessible than 2D screens

and provide a natural interaction possibility, they might increase

the gesticulation of users. This might lead to faster and better un-

derstanding when applied in a team-based program comprehen-

sion scenario due to its supporting nature. Furthermore, the advan-

tages might increase when applied in larger teams. Since software

systems are often changing, the model should only be printed for

special occasions, e.g., a new developer team or upcoming major

refactorings.
Fig. 13. Physical 3D-printed and manually painted ExplorV
We evaluated the impact of using physical 3D ExplorViz mod-

ls on program comprehension in teams through a controlled ex-

eriment [50] . Fig. 13 displays our physical 3D-printed and man-

ally painted ExplorViz model of PMD that we employed for the

xperiment. In our experiment, we compare the usage of the on-

creen model of Fig. 2 (visualized on a plain 2D screen) to the

sage of a physical model in Fig. 13 for program comprehension

n small teams. To investigate the impact of using physical models

n each task and the reasons for this impact, we conducted an in

epth analysis of the camera and screen recordings of 112 subjects.

ig. 14 , left-hand side, displays a box plot for the time spent, and
iz model of PMD (334 mm wide and 354 mm deep).

F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277 273

Fig. 12. Overall time spent and correctness for comparing ExplorViz with Extravis.

Fig. 14. Overall time spent and correctness for our experiment on using physical

3D ExplorViz models.

F

n

s

p

u

i

a

i

b

i

t

w

d

5

t

c

e

p

a

h

t

o

5

t

t

–

i

t

m

T

i

c

5

i

n

v

[

a

[

m

e

p

u

h

m

l

n

s

W

t

m

s

p

m

T

m

c

a

p

t

p

o

i

12 http://www.oculus.com.
13 http://www.microsoft.com/en-us/kinectforwindows.
ig. 14 , right-hand side, shows a box plot for the overall correct-

ess in the experiment.

To summarize the impact of using physical models in our task

et: Two tasks (concept location and design understanding) were

ositively influenced by the physical model. In contrast, structural

nderstanding was negatively influenced. The achieved correctness

n metric-based analysis increased with the physical model but

lso the time spent increased, leading to no clear statement of the

mpact. We observed that the physical models improved the team-

ased program comprehension process for specific tasks by initiat-

ng gesture-based interaction. For further additional details about

he experiment, we refer to [48,50] .
To facilitate the verifiability and reproducibility of our results,

e provide a package containing all our data including the raw

ata and 112 recordings of the participant sessions [51] .

.2.2. Educational visualization

A further usage scenario is the usage of 3D models for educa-

ional purposes. Like an anatomic skeleton model used in a biology

ourse, 3D models of design patterns, architectural styles, or ref-

rence architectures could be 3D-printed. Advantages include the

ossibly increased interest of the students and due to a 3D visu-

lization and the possibility to touch the model, there might be a

igher chance to remain in memory. Further interaction possibili-

ies, e.g., plugging mechanisms, with the 3D model could be devel-

ped to support the learning process of the students.

.2.3. Effort visualization in customer dialog

A further potential field of application are dialogs with cus-

omers. Customers often see the GUI as the program since the ac-

ual program logic code is often invisible for them. Therefore, the

possible large – effort to add a feature or to refactor the code

s also often invisible for them. Presenting a physical 3D model of

he status quo and another physical 3D model of the desired state,

ight convince the customer of the effort of the required change.

his could also be achieved with two on-screen software visual-

zations but a touchable and solid 3D model might provide higher

onviction.

.3. Exploring 3D ExplorViz models in virtual reality

Another solution candidate for the above-mentioned navigation

ssue in 3D spaces is Virtual Reality (VR) [52] . VR can employ the

atural perception of spatial locality of users and thus provide ad-

antages for 3D visualization [53,54] . In addition to stereoscopic

55,56] display, natural interaction beyond the 2D mouse provides

dvantages, e.g., creativity can be enhanced by walking around

57] . However, it relies on – sometimes expensive – extra equip-

ent which has to be purchased and might not function in every

nvironment.

We extended ExplorViz with a VR approach to explore Ex-

lorViz visualizations following the 3D software city metaphor by

sing a head-mounted display and gesture-based interaction. As

ead-mounted display, we employed the Oculus Rift , 12 Develop-

ent Kit Version 1. Fig. 15 shows the user’s view. Head rotation

eads to viewpoint rotation in the virtual space. Hence, users only

eed to rotate their head to view surrounding model elements in-

tead of moving them to the center of a firm viewpoint.

For gesture recognition, we use the Microsoft Kinect v2 for

indows . 13 It contains a depth camera and can be used as body

racker. There are two basic concepts for designing gesture-based

ovement actions. The first concept is commonly used by control

ticks in game controllers. A user performs a gesture and holds the

osition at a boundary. While she or he holds this position, the

ovement is conducted continuously into the implied direction.

he second concept is a direct mapping between the hand move-

ent and the movement actions in the model, similar to how a

omputer mouse works. In our prior tests, users familiarized with

 direct mapping faster than with the first concept. Furthermore,

articipants working with the continuous movement sometimes

ried to manipulate the model as if they would use a direct map-

ing approach. Thus, we discarded the first concept and designed

ur gestures with a direct mapping of hand to manipulation.

In an iterative process, we realized the following gestures for

nteraction with the ExplorViz visualization in VR. Fig. 16 a shows

http://www.oculus.com
http://www.microsoft.com/en-us/kinectforwindows

274 F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277

Fig. 15. View on the software city of PMD through the Oculus Rift.

Fig. 16. Gesture concepts for interacting with the software city model.

6

o

c

c

s

a

s

a

t

t

t

R

s

t

a

i

e

t

s

c

o

h

i

a

v

the gesture for moving the model. The user lifts the right hand,

clenches into a fist, and then moves the object. Fig. 16 b shows the

design rotating the model. It is very similar to the translation ges-

ture and only differs in using the left hand. Fig. 16 c shows the

design for zooming. The gesture is derived from real life interac-

tion similar to rowing. The gesture maps to pulling and pushing

the model towards or away from the viewer. To select an entity in

the software city model, the user raises his right hand, and quickly

closes and opens it.

As evaluation, we conducted structured interviews where

eleven participants had to solve three program comprehension

tasks and rate the usability of the used gestures and general VR

experience for program comprehension. The participants of our in-

terviews rated the developed gestures for translation, rotation, and

selection as highly usable. However, our zooming gesture was less

favored. In general, the subjects see potential for virtual reality in

program comprehension. For further additional details about the

experiment and the empirical evaluation, we refer to [52] .

To facilitate the verifiability and reproducibility of our results,

we provide a package containing all our evaluation data including

source code, raw data, and eleven video recordings of the partici-

pant sessions [58] .

6. Related work

In this section, we describe related work concerning landscape

visualization, application visualization and experiments in the con-

text of software visualizations.
.1. Landscape-level visualizations

Web Services Navigator [59] provides 2D graph visualizations

f the communication of web services. Streamsight [60] visualizes

ooperating distributed components of streaming applications. In

ontrast to both tools, our approach aims at general software land-

capes and introduces interactive explorable hierarchies to provide

 higher visual scalability.

APM tools also often provide a visualization of a software land-

cape. Most APM tools do not provide different abstraction levels

t the software landscape visualization. Furthermore, if the APM-

ool allows detailed analysis of one application, the used visualiza-

ion often is a tree-based viewer, which can hinder the analysis of

races with thousands of events.

Briand et al. [61] utilize UML sequence diagrams to visualize

emote Procedure Calls by adding a hostname to the object repre-

entation. Single method calls are shown in the diagrams. In con-

rast, we provide a single relation entity between communicating

pplications and therefore a higher visual scalability.

RanCorr [62] visualizes the dependencies between applications

n a root cause analysis scenario. The root cause probability of

ach application is visualized by a color-coding. In contrast to

hem, our approach uses hierarchies to provide a higher visual

calability.

VisuSniff [63] shows the communication between servers. In

ontrast to our approach, they visualize every communication path

n each port and protocol. Therefore, communicating servers often

ave several connected communication lines and thus the visual-

zation does not scale to large software landscapes.

In relation to our hierarchical visualization, we did not find

ny tool providing the same hierarchy concepts as we use in our

isualization.

F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277 275

6

m

W

d

m

c

w

u

t

t

a

v

d

m

m

b

i

m

i

t

t

t

a

e

6

s

e

r

g

n

t

h

s

t

E

a

i

E

i

t

t

m

p

6

e

b

r

C

7

a

w

o

d

s

a

f

a

a

o

d

t

o

i

g

t

b

t

i

e

t

w

b

c

t

H

fi

t

t

i

p

i

f

c

i

m

f

i

E

s

f

p

l

a

h

a

a

o

a

s

l

a

.2. Application-level visualizations

Knight and Munro [64] were the first to transfer the city

etaphor to software visualization. In their visualization Software

orld , the buildings represent methods, and classes are mapped to

istricts.

Panas et al. [65] developed a city metaphor where classes are

apped to buildings and a city represents one package. They fo-

used on providing a visualization looking as real as possible, e.g.,

ith trees and photo-realistic textures.

Wettel and Lanza [66] created the tool CodeCity which also

ses the city metaphor. In addition to Panas et al. [65] , they use

he width and depth of the buildings to represent, for instance,

he amount of attributes of a class. Furthermore, the package hier-

rchy is represented by stacking districts similar to our ExplorViz

isualization.

EvoSpaces, developed by Alam and Dugerdil [67] , introduces a

ay and night mode utilizing the city metaphor. While the day

ode provides information gathered from static analysis, the night

ode displays dynamic information as connections between each

uilding.

Imsovision [68] aims at representing object-oriented software

n a virtual reality environment. The user is tracked with electro-

agnetic sensors attached to the shutter glasses and a wand which

s used for the 3D navigation.

SkyscrapAR [69] is an augmented reality approach employing

he city metaphor to visualize software evolution. The user can in-

eract with a physical marker platform in an intuitive way while

he actual visualization can be seen only on the monitor.

In contrast to the aforementioned approaches, ExplorViz en-

bles the user to create physical models and to use virtual-reality

quipment for intuitive navigation.

.3. Experiments comparing to the state of the art

Marcus et al. [70] conducted an experiment comparing their

v3D tool to an IDE and a text file containing metrics values. The

xperiment resulted in sv3D not decreasing the task correctness. In

espect to time, the sv3D group performed worse than the control

roup which – according to the authors – originates from using a

ew technology.

Quante [71] performed a controlled experiment for the evalua-

ion of dynamic object process graphs. They failed to reject the null

ypothesis that the availability of dynamic object process graphs

upport program comprehension in general.

Cornelissen [1] investigated the impact of using solely Eclipse

o using Eclipse with additional access to the trace visualization

xtravis for solving program comprehension tasks. The group with

dditional access to Extravis had a decrease in time spent and an

ncrease in task correctness.

Wettel et al. [30] compare the usage of CodeCity to using

clipse and Excel on two object systems (Azureus and Findbugs)

n a controlled experiment. The CodeCity group achieved a statis-

ically significant decrease in time completion and an increase in

ask correctness.

In contrast to the above mentioned experiments, our experi-

ent operates on the software landscape level and not on the ap-

lication level.

.4. Experiments comparing software visualizations

Storey et al. [7] compared three software visualizations in an

xperiment. They present a detailed discussion of the tools’ usage

ut provide no quantitative results.
Lange and Chaudron [72] investigated the benefits of their en-

iched UML views by comparing them to traditional UML diagrams.

ontrary, we compare two landscape visualizations.

. Conclusions and outlook

ExplorViz provides a hierarchical and multi-level visualization

pproach for solving system comprehension tasks for large soft-

are landscapes and individual software applications. To evaluate

ur hierarchical and multi-level visualization approach, we con-

ucted four controlled experiments.

For evaluating our hierarchical landscape abstraction, we pre-

ented two different types of software landscape visualizations, i.e.,

 flat and a hierarchical one. The flat visualization was derived

rom concepts currently found in commercial APM tools. Our hier-

rchical landscape visualization extends this state-of-the-art visu-

lization by abstractions, i.e., systems, node groups, and thickness

f communication links representing the request count. We con-

ucted a controlled experiment to investigate which visualization

ype supports solving system comprehension tasks more effectively

r efficiently. Our experiment resulted in a statistically significant

ncrease of 14% task correctness in the hierarchical visualization

roup for system comprehension tasks. The time used by the par-

icipants on the tasks did not differ significantly. To evaluate the

enefits of a visualization, both metrics must be combined. Since

he time spent is approximately equal and the task correctness is

mproved by our hierarchical visualization, it provides a valuable

nhancement to the current state of the art in landscape visualiza-

ions in the context of system comprehension. During our analysis,

e identified some challenges encountered by the participants in

oth visualizations types. Some subjects mistook nodes for appli-

ations. This happened more frequently in the Flat Group than in

he Hierarchical Group . Furthermore, some participants from the

ierarchical Group did not utilize the node group abstraction ef-

ciently right from the start. A further challenge was imposed by

he flow-based layout. Some participants from both groups some-

imes mixed up the direction of the communication.

The ExplorViz 3D application-level visualization of applications

s empirically evaluated with a comparison to the Extravis ap-

roach, with physical models and in virtual reality. For the compar-

son with Extravis, we observed that the effect of using ExplorViz

or solving program comprehension tasks leads to a significant in-

rease in correctness and in less or similar time spent on the tasks

n comparison to using Extravis. We observed that the physical

odels improved the team-based program comprehension process

or specific tasks, but not for all tasks, by initiating gesture-based

nteraction. The participants of our virtual reality experiment with

xplorViz rated the realized gestures for translation, rotation, and

election as highly usable. However, our zooming gesture was less

avored. In general, the subjects see potential for virtual reality in

rogram comprehension.

The results backup our claim that our hierarchical and multi-

evel approach enhances the current state of the art in landscape

nd application visualization for better software system compre-

ension, including new forms of interaction with physical models

nd virtual reality.

To facilitate the verifiability and reproducibility for replications

nd further experiments [73] , we provide packages containing all

ur experimental data for the four experiments [23,45,51,58] .

The experiments gave us precious insights on how users actu-

lly perceive and interact with the visualization. Based on the re-

ults, we decided to enhance our visualization by an always visible

egend and to enhance our tutorial with more introductions to the

bstractions to flatten the learning curve.

276 F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277

[

As future work, our experiment could be replicated for in-

creased external validity [74] . Especially, it should be conducted

with professionals as test subjects. Since our experiments inves-

tigated first time use, the results might be different in long term

usage. This should be addressed in further experiments.

For our visualization of software landscapes and applications,

future work could investigate the usage of new visual metaphors

to further enhance the visualization. New perspectives on employ-

ing physical models [50] and virtual reality [52] could be fur-

ther explored. The resulting visualizations should be compared to

each other and to our hierarchical software landscape visualiza-

tion in controlled experiments where our experiment design can

be reused to ensure lower setup costs of such experiments.

ExplorViz provides a component-based [18] 3D visualization

of applications. Microservices-based [75] applications are struc-

tured into independently deployable, distributed self-contained

smaller systems. Such architectures blur the boundaries of land-

scapes and applications. The new (commercial) monitoring tool In-

stana, 14 for instance, is specifically designed for monitoring such

microservices-based systems. Instana provides a 3D visualization

on the landscape level. It would be interesting to investigate how

3D visualizations could be beneficial on ExplorViz’ landscape level,

in combination with the 3D visualization on the application level.

References

[1] B. Cornelissen , A. Zaidman , A. van Deursen , B. van Rompaey , Trace visual-

ization for program comprehension: a controlled experiment, in: Proceed-
ings of the 17th IEEE International Conference on Program Comprehension

(ICPC 2009), 2009, pp. 100–109 .

[2] I. Hadar , O. Hazzan , On the contribution of UML diagrams to software system
comprehension, J. Obj. Technol. 3 (1) (2004) 143–156 .

[3] F. Fittkau , S. Roth , W. Hasselbring , ExplorViz: visual runtime behavior analy-
sis of enterprise application landscapes, in: Proceedings of the 23rd European

Conference on Information Systems (ECIS 2015), AIS, 2015, pp. 1–13 .
[4] C. Tjortjis , N. Gold , P. Layzell , K. Bennett , From system comprehension to pro-

gram comprehension, in: Proceedings of the 26th Annual International Com-

puter Software and Applications Conference (COMPSAC 2002), IEEE, 2002,
pp. 427–432 .

[5] F. Fittkau , J. Waller , C. Wulf , W. Hasselbring , Live trace visualization for com-
prehending large software landscapes: the ExplorViz approach, in: Proceedings

of the 1st International Working Conference on Software Visualization (VIS-
SOFT 2013), 2013, pp. 1–4 .

[6] R. Koschke , Software visualization in software maintenance, reverse engineer-

ing, and re-engineering: a research survey, J. Softw. Maintenance. Evol. 15 (2)
(2003) 87–109 .

[7] M.-A. Storey , K. Wong , H.A. Müller , How do program understanding tools affect
how programmers understand programs? in: Proceedings of the 4h Working

Conference on Reverse Engineering (WCRE 1997), IEEE, 1997, pp. 12–21 .
[8] V.R. Basili , The role of controlled experiments in software engineering re-

search, in: Empirical Software Engineering Issues: Critical Assessment and Fu-
ture Directions, Springer, 2007, pp. 33–37 .

[9] F. Fittkau , A. Krause , W. Hasselbring , Hierarchical software landscape visual-

ization for system comprehension: a controlled experiment, in: Proceedings of
the 3rd IEEE Working Conference on Software Visualization (VISSOFT 2015),

IEEE, 2015, pp. 36–45 .
[10] A. van Hoorn , M. Rohr , I.A. Gul , W. Hasselbring , An adaptation framework en-

abling resource-efficient operation of software systems, in: Proceedings of the
Warm Up Workshop (WUP 2009) for ICSE 2010, ACM, 2009, pp. 37–40 .

[11] F. Fittkau , W. Hasselbring , Elastic application-level monitoring for large soft-

ware landscapes in the cloud, in: Service Oriented and Cloud Computing, Vol.
9306 of Lecture Notes in Computer Science, Springer-Verlag, 2015, pp. 80–94 .

[12] F. Fittkau , A. van Hoorn , W. Hasselbring , Towards a dependability control cen-
ter for large software landscapes, in: Proceedings of the 10th European De-

pendable Computing Conference (EDCC 2014), IEEE, 2014, pp. 58–61 .
[13] P.C. Brauer , W. Hasselbring , PubFlow: A scientific data publication framework

for marine science, in: Proceedings of the International Conference on Ma-

rine Data and Information Systems (IMDIS 2013), Vol. 54, Lucca, Italia, 2013,
pp. 29–31 .

[14] C.D. Schulze , M. Spönemann , R. von Hanxleden , Drawing layered graphs with
port constraints, J. Visual Lang. Comput., Spec. Issue Diagram Aesthet. Layout

25 (2) (2014) 89–106 .
[15] R. Wettel , Software systems as cities, University of Lugano, 2010 Ph.d. thesis .

[16] R. Brooks , Towards a theory of the comprehension of computer programs, Int.

J. Man-Mach. Stud. 18 (6) (1983) 543–554 .
14 https://www.instana.com/.

[17] B. Shneiderman , The eyes have it: A task by data type taxonomy for infor-
mation visualizations, in: Proceedings of the IEEE Symposium on Visual Lan-

guages, IEEE, 1996, pp. 336–343 .
[18] W. Hasselbring , Component-based software engineering, in: Handbook of Soft-

ware Engineering and Knowledge Engineering, World Scientific Publishing,
2002, pp. 289–305 .

[19] M. Boskovic , W. Hasselbring , Model driven performance measurement and as-
sessment with MoDePeMART, in: Proc. Model Driven Engineering Languages

and Systems, 12th International Conference (MODELS 2009), Vol. 5795 of Lec-

ture Notes in Computer Science, Springer-Verlag, Denver, Colorado, USA, 2009,
pp. 62–76 .

[20] A. van Hoorn , J. Waller , W. Hasselbring , Kieker: A framework for applica-
tion performance monitoring and dynamic software analysis, in: Proceedings

of the 3rd Int. Conf. on Performance Engineering (ICPE 2012), ACM, 2012,
pp. 247–248 .

[21] H. Knoche , A. van Hoorn , W. Goerigk , W. Hasselbring , Automated source-level

instrumentation for dynamic dependency analysis of COBOL systems, in:
Proceedings of the 14. Workshop Software-Reengineering (WSR ’12), Soft-

waretechnik-Trends 32(2), 2012, pp. 45–46 .
[22] F. Fittkau, P. Stelzer, W. Hasselbring, Live visualization of large software land-

scapes for ensuring architecture conformance, in: Proceedings of the 2014 Eu-
ropean Conference on Software Architecture Workshops (ECSAW 2014), ACM,

2014 28:1–28:4, doi: 10.1145/2642803.2642831 .

[23] F. Fittkau, A. Krause, W. Hasselbring, Experimental data for: Hierarchical soft-
ware landscape visualization for system comprehension: A controlled experi-

ment, 2015, 10.5281/zenodo.18853.
[24] V. Rajlich , G.S. Cowan , Towards standard for experiments in program compre-

hension, in: Proceedings of the 5th International Workshop on Program Com-
prehension (IWPC 1997), IEEE, 1997, pp. 160–161 .

[25] B.A. Kitchenham , S.L. Pfleeger , L.M. Pickard , P.W. Jones , D.C. Hoaglin ,

K.E. Emam , J. Rosenberg , Preliminary guidelines for empirical research in soft-
ware engineering, IEEE TSE 28 (8) (2002) 721–734 .

[26] A. Jedlitschka , D. Pfahl , Reporting guidelines for controlled experiments in soft-
ware engineering, in: Proceedings of the International Symposium on Empiri-

cal Software Engineering (ISESE 2005), IEEE, 2005, pp. 95–104 .
[27] G.A.D. Lucca , M.D. Penta , Experimental settings in program comprehension:

Challenges and open issues, in: Proceedings of the 14th IEEE International Con-

ference on Program Comprehension (ICPC 2006), IEEE, 2006, pp. 229–234 .
[28] M.D. Penta , R.E.K. Stirewalt , E. Kraemer , Designing your next empirical study

on program comprehension, in: Proceedings of the 15th IEEE International
Conference on Program Comprehension (ICPC 2007), 2007, pp. 281–285 .

[29] M. Sensalire , P. Ogao , A. Telea , Evaluation of software visualization tools:
Lessons learned, in: Proceedings of the 5th IEEE International Workshop on

Visualizing Software for Understanding and Analysis (VISSOFT 20 09), 20 09,

pp. 19–26 .
[30] R. Wettel , M. Lanza , R. Robbes , Software systems as cities: a controlled ex-

periment, in: Proceedings of the 33rd International Conference on Software
Engineering (ICSE 2011), ACM, 2011, pp. 551–560 .

[31] V.R. Basili , D.M. Weiss , A methodology for collecting valid software engineer-
ing data, IEEE TSE 10 (6) (1984) 728–738 .

[32] R. Likert , A technique for the measurement of attitudes, Archives of Psychology
22 (140) (1932) 5–55 .

[33] S.S. Shapiro , M.B. Wilk , An analysis of variance test for normality (complete

samples), Biometrika (1965) 591–611 .
[34] N. Razali , Y.B. Wah , Power comparisons of shapiro-wilk, kolmogorov-smirnov,

lilliefors and anderson-darling tests, J. Stat. Model. Anal. 2 (1) (2011) 21–33 .
[35] E. Pearson , H. Hartley , Biometrika Tables for Statisticians, 2nd edition, Cam-

bridge University Press, 1972 .
[36] H. Levene , Robust tests for equality of variances, Contrib. Probab. Stat. 2 (1960)

278–292 .

[37] W.R. Shadish , T.D. Cook , D.T. Campbell , Experimental and quasi-experimental
designs for generalized causal inference, Wadsworth – Cengage Learning, 2002 .

[38] N. Juristo , A.M. Moreno , Basics of software engineering experimentation,
Springer, 2010 .

[39] C. Wohlin , P. Runeson , M. Höst , M.C. Ohlsson , B. Regnell , A. Wesslén , Experi-
mentation in software engineering, Springer, 2012 .

[40] M.J. Pacione , M. Roper , M. Wood , A novel software visualisation model to sup-

port software comprehension, in: Proceedings of the 11th Working Conference
on Reverse Engineering (WCRE 2004), 2004, pp. 70–79 .

[41] F. Fittkau , S. Finke , W. Hasselbring , J. Waller , Comparing trace visualizations
for program comprehension through controlled experiments, in: Proceedings

of the 23rd IEEE International Conference on Program Comprehension (ICPC
2015), IEEE, 2015, pp. 266–276 .

[42] B. Cornelissen , A. Zaidman , A. van Deursen , A controlled experiment for

program comprehension through trace visualization, IEEE TSE 37 (3) (2011)
341–355 .

[43] B. Cornelissen , D. Holten , A. Zaidman , L. Moonen , J.J.V. Wijk , A.V. Deursen ,
Understanding execution traces using massive sequence and circular bundle

views, IEEE (2007) 49–58 .
44] B. Shneiderman , Software Psychology: Human Factors in Computer and Infor-

mation Systems, Winthrop Publishers, Inc., 1980 .

[45] F. Fittkau, S. Finke, W. Hasselbring, J. Waller, Experimental data for: Compar-
ing trace visualizations for program comprehension through controlled exper-

iments, 2015, 10.5281/zenodo.11611.
[46] A. Teyseyre , M. Campo , An overview of 3D software visualization, IEEE Trans.

Visual. Comput. Graphics 15 (1) (2009) 87–105 .

http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0012
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0016
https://www.instana.com/
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0021
http://dx.doi.org/10.1145/2642803.2642831
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0028
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0029
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0030
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0031
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0032
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0033
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0034
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0035
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0036
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0037
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0038
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0039
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0040
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0041
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0042
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0043
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0044
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0044

F. Fittkau et al. / Information and Software Technology 87 (2017) 259–277 277

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[47] K.P. Herndon , A. van Dam , M. Gleicher , The challenges of 3D interaction: A CHI
’94 Workshop, SIGCHI Bull 26 (4) (1994) 36–43 .

48] F. Fittkau, E. Koppenhagen, W. Hasselbring, Research perspective on supporting
software engineering via physical 3D models, Tech. rep., Kiel University, 1507 .

(Jun. 2015). URL http://eprints.uni-kiel.de/28949/
49] S. Goldin-Meadow , Hearing gesture: How our hands help us think, Harvard

University Press, 2005 .
50] F. Fittkau , E. Koppenhagen , W. Hasselbring , Research perspective on support-

ing software engineering via physical 3D models, in: Proceedings of the 3rd

IEEE Working Conference on Software Visualization (VISSOFT 2015), IEEE, 2015,
pp. 125–129 .

[51] F. Fittkau, E. Koppenhagen, W. Hasselbring, Experimental data for: Research
perspective on supporting software engineering via physical 3D models, 2015,

10.5281/zenodo.18378.
52] F. Fittkau , A. Krause , W. Hasselbring , Exploring software cities in virtual reality,

in: Proceedings of the 3rd IEEE Working Conference on Software Visualization

(VISSOFT 2015), IEEE, 2015, pp. 130–134 .
53] A. Elliott , B. Peiris , C. Parnin , Virtual reality in software engineering: affor-

dances, applications, and challenges, in: Proc. of 37th Int Conf. on Software
Engineering (ICSE 2015), IEEE, 2015, pp. 547–550 .

54] D. Delimarschi , G. Swartzendruber , H. Kagdi , Enabling integrated development
environments with natural user interface interactions, in: Proceedings of the

22nd International Conference on Program Comprehension (ICPC 2014), ACM,

2014, pp. 126–129 .
55] C. Ware , K. Arthur , K.S. Booth , Fish tank virtual reality, in: Proceedings of

the INTERACT 1993 and Conference on Human Factors in Computing Systems
(CHI 1993), ACM, 1993, pp. 37–42 .

56] C. Ware , P. Mitchell , Reevaluating stereo and motion cues for visualizing graphs
in three dimensions, in: Proceedings of the 2nd Symposium on Applied Per-

ception in Graphics and Visualization (APGV 2005), ACM, 2005, pp. 51–58 .

[57] M. Oppezzo , D.L. Schwartz , Give your ideas some legs: the positive effect
of walking on creative thinking, J. Exp. Psychol. Learn., Mem., Cognit. 40 (4)

(2014) 1142–1152 .
58] F. Fittkau, A. Krause, W. Hasselbring, Experimental data for: Exploring software

cities in virtual reality, 2015, 10.5281/zenodo.23168.
59] W. De Pauw , M. Lei , E. Pring , L. Villard , M. Arnold , J.F. Morar , Web services

navigator: Visualizing the execution of web services, IBM Syst. J. 44 (4) (2005)

821–845 .
60] W. De Pauw , H. Andrade , L. Amini , Streamsight: A visualization tool for large-s-

cale streaming applications, in: Proceedings of the 4th ACM Symposium on
Software Visualization (SoftVis 2008), ACM, 2008, pp. 125–134 .

[61] L.C. Briand , Y. Labiche , J. Leduc , Toward the reverse engineering of UML se-
quence diagrams for distributed Java software, IEEE Transaction on Software

Engineering 32 (9) (2006) 642–663 .

62] N.S. Marwede , M. Rohr , A. van Hoorn , W. Hasselbring , Automatic failure di-
agnosis in distributed large-scale software systems based on timing behavior

anomaly correlation, in: Proceedings of the 13th European Conference on Soft-
ware Maintenance and Reengineering (CSMR 2009), IEEE, 2009, pp. 47–57 .

63] R. Oechsle , O. Gronz , M. Schler , VisuSniff: A tool for the visualization of net-
work traffic, in: Proceedings of the Second Program Visualization Workshop,

ACM, 2002, pp. 118–124 .
64] C. Knight , M. Munro , Virtual but visible software, in: Proceedings of the IEEE

International Conference on Information Visualization (IV 20 0 0), IEEE, 20 0 0,

pp. 198–205 .
65] T. Panas , R. Berrigan , J. Grundy , A 3D metaphor for software production visu-

alization, in: Proceedings of the 7th International Conference on Information
Visualization (IV 2003), IEEE Comput. Soc., 2003, pp. 314–320 .

66] R. Wettel , M. Lanza , Visualizing software systems as cities, in: Proceedings of
the 4th IEEE International Workshop on Visualizing Software for Understand-

ing and Analysis (VISSOFT 2007), IEEE, 2007, pp. 92–99 .

[67] S. Alam , P. Dugerdil , Evospaces visualization tool: Exploring software architec-
ture in 3D, in: Proceedings of the 14th Working Conference on Reverse Engi-

neering (WCRE 2007), 2007, pp. 269–270 .
68] J.I. Maletic , J. Leigh , A. Marcus , G. Dunlap , Visualizing object-oriented software
in virtual reality, in: Proceedings of the 9th International Workshop on Pro-

gram Comprehension (IWPC 2001), Society Press, 2001, pp. 26–35 .
69] R. Souza , B. Silva , T. Mendes , M. Mendonca , SkyscrapAR: an augmented reality

visualization for software evolution, in: Proceedings of the II Brazilian Work-
shop on Software Visualization (WBVS 2012), 2012, pp. 17–24 .

[70] A. Marcus , D. Comorski , A. Sergeyev , Supporting the evolution of a software vi-
sualization tool through usability studies, in: Proceedings of the 13th Interna-

tional Workshop on Program Comprehension (IWPC 20 05), 20 05, pp. 307–316 .

[71] J. Quante , Do dynamic object process graphs support program understanding?
– a controlled experiment., in: Proceedings of the 16th IEEE International Con-

ference on Program Comprehension (ICPC 2008), 2008, pp. 73–82 .
[72] C. Lange , M.R.V. Chaudron , Interactive views to improve the comprehension

of UML models – An experimental validation, in: Proceedings of the 15th
IEEE International Conference on Program Comprehension (ICPC 20 07), 20 07,

pp. 221–230 .

[73] T. Crick , B.A. Hall , S. Ishtiaq , Can I implement your algorithm?: a model for re-
producible research software, in: Proceedings of the 2nd Workshop on Sustain-

able Software for Science: Practice and Experiences (WSSSPE2), arXiv, 2014,
pp. 1–4 .

[74] J. Siegmund , N. Siegmund , S. Apel , Views on internal and external validity in
empirical software engineering, in: IEEE/ACM 37th IEEE International Confer-

ence on Software Engineering (ICSE 2015), 2015, pp. 9–19 .

75] W. Hasselbring, Microservices for scalability: keynote talk abstract, in: Pro-
ceedings of the 7th ACM/SPEC on International Conference on Performance

Engineering (ICPE 2016), ACM, New York, NY, USA, 2016, pp. 133–134, doi: 10.
1145/2851553.2858659 .

http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0045
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0045
http://eprints.uni-kiel.de/28949/
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0047
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0048
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0049
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0049
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0049
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0049
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0050
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0051
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0052
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0052
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0052
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0052
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0053
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0053
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0053
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0054
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0054
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0054
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0055
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0055
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0055
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0055
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0055
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0055
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0055
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0056
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0056
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0056
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0056
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0057
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0057
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0057
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0057
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0058
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0058
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0058
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0058
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0058
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0059
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0059
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0059
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0059
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0060
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0060
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0060
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0061
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0061
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0061
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0061
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0062
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0062
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0062
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0063
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0063
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0063
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0064
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0065
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0065
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0065
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0065
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0065
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0066
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0066
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0066
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0066
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0067
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0067
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0068
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0068
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0068
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0069
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0069
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0069
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0069
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0070
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0070
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0070
http://refhub.elsevier.com/S0950-5849(16)30118-5/sbref0070
http://dx.doi.org/10.1145/2851553.2858659

	Software landscape and application visualization for system comprehension with ExplorViz
	1 Introduction
	2 ExplorViz
	2.1 Landscape-level visualization
	2.2 Application-level visualization
	2.3 The ExplorViz meta model
	2.4 Trace-to-model mapping

	3 Flat vs. hierarchical landscape visualization
	3.1 Flat landscape visualization
	3.2 Hierarchical landscape visualization

	4 Evaluation of landscape-level visualization with ExplorViz
	4.1 Experimental design
	4.1.1 Research questions & hypotheses
	4.1.2 Dependent and independent variables
	4.1.3 Treatment
	4.1.4 Tasks
	4.1.5 Population

	4.2 Operation
	4.2.1 Generating the input
	4.2.2 Tutorials
	4.2.3 Questionnaire
	4.2.4 Pilot study
	4.2.5 Procedure

	4.3 Data collection
	4.3.1 Timing and tracking information
	4.3.2 Correctness information
	4.3.3 Qualitative feedback

	4.4 Analysis and results
	 RQ1 (Time spent)
	 RQ2 (Correctness)

	4.5 Task-based analysis
	 T1 (Identification of critical dependencies)
	 T2 (Potential bottleneck detection)
	 T3 (Scalability evaluation)
	 T4 (Service analysis)
	 T5 (Risk management)
	 Summary

	4.6 Threats to validity
	4.6.1 Internal validity
	4.6.2 External validity

	5 Evaluation of application-level visualization in ExplorViz
	5.1 Comparing ExplorViz with the Extravis trace visualization approach
	5.2 Employing physical 3D-printed ExplorViz models
	5.2.1 Program comprehension in teams
	5.2.2 Educational visualization
	5.2.3 Effort visualization in customer dialog

	5.3 Exploring 3D ExplorViz models in virtual reality

	6 Related work
	6.1 Landscape-level visualizations
	6.2 Application-level visualizations
	6.3 Experiments comparing to the state of the art
	6.4 Experiments comparing software visualizations

	7 Conclusions and outlook
	 References

