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Abstract
Herring, Clupea harengus, is one of the ecologically and commercially most important spe-

cies in European northern seas, where two distinct ecotypes have been described based

on spawning time; spring and autumn. To date, it is unknown if these spring and autumn

spawning herring constitute genetically distinct units. We assessed levels of genetic diver-

gence between spring and autumn spawning herring in the Baltic Sea using two types of

DNA markers, microsatellites and Single Nucleotide Polymorphisms, and compared the

results with data for autumn spawning North Sea herring. Temporally replicated analyses

reveal clear genetic differences between ecotypes and hence support reproductive isola-

tion. Loci showing non-neutral behaviour, so-called outlier loci, show convergence between

autumn spawning herring from demographically disjoint populations, potentially reflecting

selective processes associated with autumn spawning ecotypes. The abundance and

exploitation of the two ecotypes have varied strongly over space and time in the Baltic Sea,

where autumn spawners have faced strong depression for decades. The results therefore

have practical implications by highlighting the need for specific management of these co-

occurring ecotypes to meet requirements for sustainable exploitation and ensure optimal

livelihood for coastal communities.

Introduction
Intra-specific variation is an important component of biodiversity and it is a central issue to
determine evolutionary divergent population units in conservation and management. For
instance, ecosystem and hereunder fisheries management hinges on the ability to estimate pop-
ulation- (or ‘stock’-) specific dynamics and rates of exchange of individuals among local
demes. Population genetic tools have been successfully applied to describe and monitor popu-
lation structure across a range of marine taxa [1]. However, many marine species display traits
such as large effective population size, high fecundity and high levels of dispersal and gene flow
that impede the detection of local demographics using standard population genetic approaches
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(e.g. [1,2]). An alternative approach is to use variation in genetic markers which reflect adapta-
tion to ecologically divergent local habitats [3]. These markers exhibit elevated levels of genetic
divergence, and can be used as a ‘tag’ for identifying reproductively isolated populations when
neutral marker variation is uninformative (e.g. [4]). The detection of these ‘outlier loci’ linked
to selective processes has been facilitated by relatively easy access to genome-wide sequence
data, and extends to non-model species.

Atlantic herring, Clupea harengus, is a classic example of a widely distributed marine fish
exhibiting very large and fluctuating population sizes [5] with weak genetic structuring across
the North Atlantic [6–11]. Although genetic structure is evident, most inference on population
divergence stems from analysis of genetic markers that are ‘outlier loci’, i.e. exhibiting variation
that is not statistically reconcilable with expectations under a neutral model (e.g. [12–15]), and
thus may reflect local selective responses. Thus, a suite of recent genomic sequencing studies
indicate the existence of substantial genetic divergence at these loci even among individuals
sampled across geographically limited (<300 km) scales ([14, 16–17], but also see [18]).

The Baltic Sea is a semi-enclosed, brackish, oceanographically highly heterogeneous and
dynamic environment. Due to its young geological age and spatially contrasting environmental
conditions adaptive evolution has been fast, and several species live at the limits of their physio-
logical tolerance (e.g. [19, 20]) exhibiting relatively low genetic diversity [20]. Neutral marker
based studies of herring report weak population structure in the Baltic Sea [6,10,12,14,21].
Nonetheless, within this environmentally highly heterogeneous area several demographically
disjoint spring and autumn spawning herring sub-populations have been described, based on
differences in life-history traits, otolith appearance, morphology and growth ([22] and refer-
ences therein). Most Baltic herring mature at two years of age and spawn inshore in spring
(April-June). In contrast, Baltic autumn spawning herring mature at 3–4 years and spawn off-
shore in August-November, at relatively deeper and broader depth ranges [23]. While meta-
morphosis of the spring spawning herring larvae takes place in the same year as spawning, the
larvae of autumn spawning herring mostly overwinter at a larval stage and metamorphose the
following spring [23].Thus, autumn and spring herring exhibit major differences in several key
traits and may be characterised as ecotypes. However, based on a suite of traits including oto-
lith growth patterns and genetic markers, spawning time appears to be a plastic trait in herring
[24–25] and individuals may even shift spawning time between years [26]. Spawning time may
therefore not be a population delineating factor per se [27] and the demographic connectivity
and ultimately evolutionary linkages between Baltic herring spawning at different times remain
un-described. An example of co-occurring spring- and autumn spawning ecotypes is Gulf of
Riga herring. The Gulf of Riga is a relatively autonomous sub-system in the Baltic Sea. Herring
is economically the most important species by far in this region, and has been systematically
investigated since the late 1940s [28].

In the present study we used both neutral and ‘selective outlier’marker information gener-
ated for temporally replicated samples from three spawning locations within the Gulf of Riga
in conjunction with previously published data to test the hypotheses that autumn and spring
spawning herring in the gulf constitute a single genetic population and whether ecotypes co-
vary with outliers at broader geographic scales. We compared inference from neutral markers
that allow insights into demographic parameters following neutral model expectations, with
outlier markers to assess levels of ecotype differentiation and demographic connectivity. We
show that outlier markers, but not neutral markers, support a link between ecotype and geno-
type. Also, even disjoint autumn spawning populations display convergent allele frequencies at
specific loci. Our results contribute both towards a general understanding of genetic processes
in marine fish populations, and specifically point to the importance of incorporating ecotype
variation in fisheries management.
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Material and Methods

Samples
Spring spawning herring (here abbreviated SS) were collected from commercial trapnet catches
in Pärnu Bay in the Gulf of Riga (abbreviated GoR): Samples were expected to represent mostly
local GoR SS but may have included SS transient migrants from elsewhere. Autumn spawning
herring (abbreviated AS) were obtained from gillnets operating in two spawning areas: near
Kihnu Island, and at the southern coast of the Island Saaremaa (Fig 1). The AS feeding in the
northeastern Baltic Proper spawn around the coast of Saaremaa, whereas the GoR AS utilize
spawning areas around Kihnu Island [29]. All samples represented dead fish obtained from
commercial fishermen and no specific permissions were required for obtaining them. None of
the material was from endangered or protected species. All collected fish (Table 1) were mea-
sured for total length and total weight, aged from otoliths and their sex and maturation stage
was determined using methods developed for herring [30]. The collected samples contained
both fully ripe herring as well as herring with developing gonads. The latter were presumably
non-spawning fish, representing either ‘skipped spawners’ [31] of local origin or migrants not
belonging to local spawning components. A sample of fin tissue was collected for each fish and
stored in 96% ethanol until molecular analysis.

Fig 1. Clupea harengus sampling locations in the Gulf of Riga (inset) and adjacent areas in the Baltic Sea and the North Sea.Numbers show
sampling locations for respectively 1. Pärnu Bay, 2. Kihnu Island, and 3. Saaremaa. Four stars show origin of collections from [14].

doi:10.1371/journal.pone.0148499.g001
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Molecular analyses
DNA was extracted from all 288 fish using E.Z.N.A. Tissue DNA kit (Omega Bio-Tek, Nor-
cross, GA, USA). A NanoDrop Spectrophotometer (Thermo Fisher Scientific Inc.) was used to
ensure adequate quality and quantity of DNA prior to genotyping.

All individuals were genotyped for Single Nucleotide Polymorphism (SNP) and microsatel-
lite marker variation as follows. Variation was screened for 96 SNP loci selected from [32] to
maximise clustering and genotyping success, and exhibiting minor allele frequencies> 0.02 in
previously genotyped Baltic Sea samples. Based on a set of 281 SNPs including those analysed
here, Limborg et al. [14] reported population structure across NE Atlantic populations, includ-
ing six Baltic spring spawning populations. They found that sixteen loci exhibited evidence of
being ‘selective outliers’, that is, loci exhibiting population divergence above neutral expecta-
tions, suggesting that they are either located in or are in linkage disequilibrium with genes
under divergent selection [33]. Although such loci may not always behave as outliers we
hypothesised that they would exhibit non-neutral behaviour in collections tested here. Four-
teen of these outlier loci were included in our analysis. Two were excluded as they exhibited
minor allele frequencies <0.02 in previously examined Baltic Sea populations [14] and their
information content therefore was expected to be low. Individuals were additionally screened
for 19 transcriptome-derived di-, tri-, and tetra-nucleotide microsatellite loci selected from
[34]. These loci were expected to reflect neutral demographic processes as none exhibited evi-
dence of ‘selective outlier’ behaviour in spring or summer spawning populations across the Bal-
tic Sea [21]. Locus names are listed in S1 Table. To compare local (GoR) with Baltic Sea scale
genetic structure, as well as with extant AS populations, we compared our SNP marker data
with data from [14] for the same set of loci typed in two additional Baltic SS populations, and
in two AS populations from the western North Sea (Fig 1).

Table 1. C. harengus samples in the analysis. Numbers of genotyped fish; numbers in brackets show numbers of fish per sample in pre-spawning stage
(i.e. non-spawning).

Location Sample size (# non-
spawning)

Collection
date

Spawning
type

Markers typed (M = micro,
S = SNP)

Latitude/longitude

Pärnu Bay 48 (4) 24.04.2014 Spring S,M 58° 17,195’ N/24° 21,967’
E

48 (1) 30.04.2014 Spring S,M 58° 16,139’ N/24° 26,337’
E

Kihnu 48 (1) 11.09.2014 Autumn S,M 58° 02,253’ N/23° 50,320’
E

48 (9) 01.10.2014 Autumn S,M 58° 01,697’ N/23° 50,199’
E

Saaremaa 48 (0) 03.09.2014 Autumn S,M 58° 02,253’ N/23° 50,320’
E

48 (2) 18.09.2014 Autumn S,M 58° 02,253’ N/23° 50,320’
E

Bothnian Bay§ 30 (NA) Jun-2009 Spring/
summer

S 65° 02’37.75 N/24°
45’13.17 E

Gulf of Finland§ 23 (NA) May-2009 Spring S 60° 10’01.54 N/25°
37’14.67 E

C North Sea, Banks§ 30 (NA) Aug-2009 Autumn S 56° 29’31.16 N/0°
33’32.15 E

N North Sea,
Shetland§

30 (NA) Aug-2009 Autumn S 60° 04’34.07 N/1°
25’17.88 W

§ Data from [14].

doi:10.1371/journal.pone.0148499.t001
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For SNPs, PCR amplification and genotyping were performed in 96.96 Dynamic Arrays
using the Fluidigm IFC thermal cycler and BioMark instruments with SNPtypeTM chemistry.
Genotypes were scored using the BioMark Genotyping Analysis software (Fluidigm, San Fran-
cisco, California, USA). SNP genotypes obtained using a different genotyping platform from
[14] were validated across platforms, as described in [15]. Microsatellite loci were amplified in
two multiplex (11-plex and 8-plex) PCR reactions. The 10 μl PCR reaction consisted of ca. 20
ng template DNA, 1x Type-it Multiplex PCRMaster Mix (QIAGEN, Germany), and 150 to
200 nM of each primer. Forward primers were labelled fluorescently by 6-FAM, ATTO 550,
ATTO 565 or Yakima Yellow. Amplifications were carried out in a Biometra Professional
Thermal cycler with an initial heat-activation at 95°C for 5 min followed by 28 cycles of dena-
turation at 95°C for 30 s, annealing at 56°C for 90 s, extension at 72°C for 30 s, and a final
extension for 30 min at 60°C. Multiplex PCR products were electrophoresed on an Applied
Biosystems 3500 Genetic Analyser (Life Technologies, USA) and the loci were genotyped using
GeneMapper v.5 software (Life Technologies, USA).

Statistical analyses of genetic variation
Conformance with Hardy-Weinberg proportions (HWE) and gametic phase equilibrium (LD)
were examined for all markers and collections using Genepop [35]. Observed and expected het-
erozygosity and allelic richness were estimated per locus and sample using the R-package hierf-
stat [36]. Differentiation overall and between pairs of samples was estimated using θ [37], and
statistical significance of population differentiation was examined using exact G-tests in Gene-
pop. Table-wide statistical significance levels were adjusted using False Discovery Rate, FDR,
following [38]. To assess evidence for consistency in which markers behaved as outliers in the
samples collected here with those in [14], we performed an outlier detection analysis, applying
the Bayesian likelihood method implemented in the software BayeScan (http://www.cmpg.
unibe.ch/software/bayescan/), adopting the same settings as [14]. A log10 Bayes factor above
0.5 was considered evidence for outlier behaviour [39].

For exploration of the genetic structure reflected in the SNP data within and among SS and
AS collections from the Baltic and the North Sea, we applied discriminant analysis of principal
components, DAPC [40], implemented in R-package adegenet [41]. We first used the find.clus-
ters() function to run K-means clustering of the individual genotypes for K = 1–40. The best
supported number of clusters was estimated through comparison of the Bayesian Information
Criterion (BIC) for the different values of K. We then described the relationships between the
inferred clusters using the dapc() function. This function constructs synthetic variables, dis-
criminant functions (DFs) that maximise variation between, while minimising variation
within, groups and computes coordinates along these functions for each individual. We
retained the first hundred principle components (PCs) from the preliminary data transforma-
tion step, as this was indicated to be the optimal number based on the optim.a.score() function.
From the derived DFs, we obtained posterior cluster membership probabilities for each indi-
vidual to the K clusters, and estimated the contributions of individual loci to each of the PCs of
the analysis. The analysis was first performed using information for all SNP markers, and was
then repeated for information for non-outlier SNPs, thus using neutral marker information to
assess demographic relationships among populations.

Finally, to assess potential bias of including non-spawning individuals, we used adegenet to
perform a clustering analysis where these fish were excluded from the initial clustering analysis
and then tested the clustering (‘assignment’) of these hold-out fish against a model fitted to
spawning fish only.
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Results

Estimates of genetic variation
A total of 287 and 279 individuals were genotyped successfully for microsatellite and SNP loci,
respectively. For microsatellites, the total numbers of alleles per locus varied between four and
24 (S2 Table), and global mean allelic richness was 7.12. One microsatellite locus, Her114,
exhibited heterozygote deficiency and statistically significant deviation from HWE proportions
in three collections (following correction for multiple testing). This locus was therefore
excluded from further analysis. For SNPs, one locus (Cha_8386.6_423) suffered technical error
(lack of clustering) in genotyping and was excluded from further analysis. Generally, levels of
He, Ho and allelic richness were similar across all collections (S2 Table). Three of the 678
(0.044%) tests for HWE were statistically significant following FDR correction indicating low
risk of biased allele frequency estimates. Nine locus comparisons out of 6328 (0.001%) exhib-
ited statistically significant deviation from gametic phase equilibrium following correction for
FDR. As no deviation occurred across multiple samples LD was not expected to bias results.

Combining information for all loci, pairwise sample divergence ranged between 0.000 and
0.013 among GoR samples. Statistically significant differentiation was observed for several
pairs of collections; all involving comparisons between SS and AS (Table 2). For individual loci,
four SNPs (Cha_15360.2_279, Cha_381.2_437, Cha_16330.7_357, Cha_2884.1_367) and one
microsatellite locus (Her142) exhibited statistically significant differentiation between SS and
AS collections following correction for multiple testing. One SNP locus, Cha_7833.1_97, exhib-
ited low but statistically significant differentiation between AS from Kihnu and Saaremaa, hint-
ing at differentiation between gulf- versus open sea components. Generally, SNPs exhibited
higher global differentiation than microsatellites, and save a few exceptions, previously identi-
fied outlier SNPs generally exhibited higher than average differentiation within the GoR (Fig
2). The outlier analysis detected genetic differentiation to be above expectations for three SNP
loci, two of which were also outliers in [14] (Fig 2). When microsatellite data were analysed
alone, global population differentiation was estimated at 0.0005, varying between 0 and 0.005
across pairwise comparisons of collections, none of which were statistically significant across
loci.

When SNP data alone were analysed for the ten Baltic and North Sea collections, global
population divergence was estimated at 0.019, varying between 0 and 0.35 across 95 loci. The
DAPC model suggested that SNP variation could be described by three clusters that to a large
extent corresponded with three spawning-types 1) Baltic AS, 2) Baltic SS and 3) North Sea AS.
Examination of posterior membership probabilities showed that the genetic classification of an
individual into the three clusters overall corresponded with its collection location. Thus, across
the ten collections, 363 of 400 individuals (91%) were correctly classified to their spawning-

Table 2. Pairwise differentiation (θ, above diagonal) and P-values for Fisher’s tests for differentiation (below diagonal) for SNP andmicrosatellite
markers combined. Statistically significant divergence following FDR correction is shown in bold. SS and AS indicate spawning in respectively spring and
autumn.

Pärnu Bay 1 Pärnu Bay 2 Kihnu 1 Kihnu 2 Saaremaa 1 Saaremaa 2

Pärnu Bay 1 24.04.2014 (SS) 0.0022 0.0081 0.0120 0.0096 0.0105

Pärnu Bay 2 30.04.2014 (SS) 0.2342 0.0057 0.0128 0.0124 0.0106

Kihnu 1 11.09.2014 (AS) <0.0001 <0.0001 0.0014 0.0027 0.0000

Kihnu 2 01.10.2014 (AS) <0.0001 <0.0001 0.5462 0.0053 0.0016

Saaremaa 1 03.09.2014 (AS) <0.0001 <0.0001 0.3599 0.3544 0.0031

Saaremaa 2 18.09.2014 (AS) <0.0001 <0.0001 0.0519 0.7336 0.2072

doi:10.1371/journal.pone.0148499.t002
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type cluster. Inspection of PCs showed that PC1 (explaining 54% variation) differentiated Bal-
tic Sea from North Sea collections, but with closer relationships between North Sea AS and Bal-
tic Sea AS populations than North Sea AS and Baltic Sea SS populations (Fig 3A). PC2
(explaining 44% variation) differentiated Baltic Sea AS from North Sea AS and Baltic Sea SS.
Examining how individual SNP loci contributed to PCs showed that 11 loci, of which eight
were outlier loci, collectively contributed 75% of the variation in PC1 (Fig 3B). One locus
(Cha_15360.2–279) alone explained almost 40% of the total variation. For PC2, the same locus
explained 19%. For PC2, the five top ranking loci contributing to clustering (representing in
total 47% of the variation) were all outliers.

A post hoc PCA using only 15 loci, 14 outlier loci from [14] and the additional outlier
detected here, to describe genetic relationships among samples showed that the first axis sepa-
rated Baltic from North Sea populations, whereas the second axis separated SS and AS popula-
tions (S1 Fig). In contrast, using information for 80 neutral loci, samples clustered together
with no discernible pattern (S2 Fig), and post hoc analyses of neutral sample differentiation
only returned five statistically significant pairwise comparisons, three of which involved Both-
nian Bay SS versus GoR AS samples and two which involved Northern North Sea AS versus
GoR SS (not shown).

Repeating the DAPC analysis where information was initially excluded for 19 non-spawn-
ing fish distributed across collections and then ‘assigning’ non-spawners to population clusters,
showed that in most cases non-spawning fish clustered closest with the population they were
caught with. Thus, 12 of 14 fish collected in autumn assigned to the Baltic Sea AS clusters; one
showed closest grouping with North Sea AS, and one showed closest grouping with Baltic Sea
SS. All five non-spawning fish collected in spring assigned to Baltic Sea SS (S3 Fig). Therefore
the inclusion of non-spawning fish should not have seriously biased estimates of sample
differentiation.

Discussion
We show that herring spawning in spring and autumn in one distinct sub-system of the Baltic
Sea, the Gulf of Riga, are genetically highly differentiated. Differentiation was observed for

Fig 2. Locus specific differentiation across six GoR samples.Global differentiation (Weir-Cockerham’s θ) for 18 microsatellite (dark grey bars) and 95
SNP (open bars) loci ranked by θ. Hatched bars indicate SNP loci identified as selected outliers in [14] and asterisks above bars indicate three loci identified
as outliers in this study. See S1 Table for locus ID. Global θ across loci and samples was 0.0066.

doi:10.1371/journal.pone.0148499.g002
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Fig 3. Genotypes form three ecotype associated clusters strongly driven by outlier loci. (A) DAPC clustering for the first two principal components
(PCs) explaining 98% of the variation. Filled black dots: Baltic Sea AS; open circles: Baltic Sea SS; grey triangles: North Sea AS. See Table 1 for sample
details. (B) proportion of variation contributed to PC1 (grey bars) and PC2 (open bars) by individual loci. Outlier loci are indicated by vertical arrows.

doi:10.1371/journal.pone.0148499.g003
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three SNPs and for one transcriptome derived microsatellite marker, but clear population separa-
tion was only detectable with SNP markers, and neutral marker frequencies exhibited statistically
non-significant differentiation among collections. Thus, the two ecotypes can overall be correctly
classified based on 15 SNPmarkers, of which previously identified outlier loci exhibit strong
explanatory power. In contrast to [14] only three SNP loci behaved as statistical outliers in Gulf
of Riga samples. The sensitivity of outlier testing is affected by the number of populations and
markers in the analysis [39], both of which were considerably lower in our analysis compared to
[14]. Thus, the limited number of outlier loci identified here was at least to some extent expected
to be caused by increased type II error, and we therefore tentatively classified all loci having
exhibited outlier behaviour in Baltic Sea populations either here or in [14] as outliers.

Allele frequency shifts at outlier loci are expected to reflect selective responses caused by
strong ecological gradients leading to local adaptation, either for directly associated genes or
genes in linkage with the markers (‘genetic hitchhiking’). Although the mechanisms underlying
outlier differentiation may vary (reviewed in [3]) and are unknown in the present study, a likely
explanation is that outliers reflect a selective response in one or more genes, likely associated
with spawning site preference or phenology. The SNP locus explaining most of the variation
among clusters (Cha_15360.2–279) is annotated to a skeletal muscle troponin-coding gene,
and another outlier SNP exhibiting strong divergence among clusters (Cha_1025.1–149) anno-
tates to a ribosomal protein. However, whether these specific gene sequence variations have
any causative effects remains to be determined. We hypothesise that Baltic autumn spawning
herring may harbour one or more ‘genomic islands’ linked to ecotype divergence (c.f. [42]), in
this case potentially associated with adaptation to autumn spawning.

Our results show that Baltic autumn-spawners exhibit the closest genetic relationships with
Baltic spring spawning populations. This suggests that all herring sampled in the Gulf of Riga,
spring and autumn spawners, from both gulf and open sea, originate from the same post-gla-
cial colonisation event. We did not examine whether samples represented one or more of the
three phylogenetic clades represented in all Baltic collections examined to date [21].

Strikingly, for a handful of outlier SNP loci Gulf of Riga autumn-spawners showed closer
genetic similarity with autumn spawning populations from the North Sea, which are both geo-
graphically distant (>2,000 km shortest waterway) and demographically isolated [43]. Our
results could thus point to, that autumn-spawners both in the North Sea and the Baltic Sea are
affected by some common selective driver that has led to convergent allele frequencies for spe-
cific outlier loci. Convergence in gene frequencies among geographically disjoint populations
of divergent ecotypes is observed in other marine fishes, such as threespine stickleback, Gaster-
osteus aculeatus [43] and Atlantic cod, Gadus morhua [44, 45]. However, it is often unresolved
whether molecular similarities may in fact be the result of shared ancestry rather than of recur-
rent selective sweeps (e.g. [42]). Lamichhaney et al. [16] found SNP allele frequencies that were
similar between North Sea autumn-spawners and a Western Baltic autumn spawning popula-
tion. However, as Western Baltic herring in general show closer genetic relationships with
North Sea populations than with other Baltic Sea populations (e.g. [14,16]), our results thus
constitute a separate line of evidence that spawning time divergence may be associated with
divergent selection at the genomic level. We have not demonstrated that spawning time differ-
entiation is the main driver of genetic differentiation. Nonetheless, the strong covariance
between spawning traits and genotypes shows that although spawning time is a plastic trait in
this opportunistic species (e.g. [26]), reproductive isolation may play a role in maintaining
sympatric ecotypes.

The adaptive value of adopting a specific spawning time is believed to be related to trade-
offs between energy spent on migration and spawning, as well as optimising environmental
conditions experienced by developing offspring [46]. In herring, the timing of first spawning is
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highly plastic and triggered by both body condition and environmental conditions, such as
water temperature [47]. Environmental variance may thus affect the optimal timing for spawn-
ing both spatially [48] and temporally [49]. Alternative strategies with respect to spawning
time are believed to have arisen as opportunistic response to environmental variance that may,
or may not, be maintained in separate evolutionary trajectories [50]. The relative strength of
sympatric herring ecotypes conversely appears to be linked to complex interplay between feed-
ing conditions, climatic effects and competition acting on fecundity and recruitment. This may
lead to alternation in the competitive advantage and fitness of ecotypes ([49], also see [51]). In
the Gulf of Riga, the relative predominance of ecotypes is reflected in fisheries data [30]. While
spring-spawners mainly contribute to herring landings today the importance of autumn-
spawners has decreased dramatically over time. For instance, in the 1950s-1970s autumn-
spawners in some years accounted for nearly half the catches [23] but now make up less than
1% of landings (H. Shpilev, unpubl. data). These changes are also reflected in autumn-spawners
exhibiting lower individual fecundity [52] and decreased abundance [53], which may to some
extent be linked to less favourable environmental (incl. temperature and salinity) conditions
for autumn spawners [54]. The perception that Gulf of Riga herring currently thrives is thus
driven entirely by proliferation of spring spawning herring, hiding dramatic decreases in the
abundance of autumn-spawners. In spite of being comprised of populations with different ecol-
ogies, spatio-temporal dynamics [23] and genetic profiles (this study), herring in the Gulf of
Riga are exploited and managed as a single stock unit [55]. Our results suggest that in case of
complete loss of the autumn spawning herring populations, whether due to climate change,
overexploitation, eutrophication or a combination hereof, herring with genotypes enabling the
proliferation in autumn will be lost from the system, decreasing the diversity and robustness of
the ecosystem [56]. This underpins that failing to separately incorporate all ecologically and
evolutionary significant components weakens our understanding of ecosystem processes and
may ultimately lead to a suboptimal management of living marine resources.
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