Refactoring Kieker’s Monitoring Component
to Further Reduce the Runtime Overhead

Hannes Strubel
Software Engineering Group
Kiel University, Germany

hstr@informatik.uni-kiel.de

Abstract

Kieker’s monitoring component is tuned for a low run-
time overhead. Nevertheless, we recently identified
potential for improvement. Unfortunately, we could
utilize this potential only by refactoring major parts
of its architecture. In this paper, we describe these
changes and discuss their advantages. Moreover, we
present an evaluation which shows that our changes
reduce the runtime overhead to 17% in our setup while
simultaneously having a complexity of only 73%.

1 Introduction

Ten years ago, Kieker [5] was released for the first
time. At that time, its monitoring component pro-
vides basic capabilities to record the runtime behavior
of a given application. Over the years, Kieker’s mon-
itoring component has been continuously expanded
to include new monitoring approaches and technolo-
gies (e.g., [2, 8]). In 2012, Waller et al. [6, 7] started to
systematically analyze also non-functional attributes
of Kieker. For monitoring frameworks in general, it is
crucial to influence the application under monitoring
as less as possible. Otherwise, the recorded data does
not reflect the actual runtime behavior. As a result of
their analyses, Waller et al. were able to significantly
reduce the runtime overhead introduced by Kieker.
Recently, we identified further potential for im-
provement which however requires to change the inter-
nal architecture of the current monitoring component.
In this paper, we describe these changes and discuss
their advantages. The resulting monitoring compo-
nent is not tailored to Kieker and thus can easily be
adapted by other monitoring frameworks. Compared
to the current version 1.12, its architecture is less com-
plex and has a considerably lower runtime overhead.
In our evaluation, we show that we reduced the com-
plexity of the monitoring component to 73% and the
mean overhead measured by MooBench [4, 6] to 17%.

2 Current Monitoring Component

Figure 1 shows the data flow of monitored runtime in-
formation encapsulated as records through the archi-
tecture of the current monitoring component. For the

Christian Wulf
Software Engineering Group
Kiel University, Germany

chw@informatik.uni-kiel.de

sake of brevity, we describe the data flow toward the
asynchronous TCP writer which writes the collected
runtime information to a TCP stream. All other writ-
ers are executed in a similar way.

A record, emitted by a probe, first reaches the mon-
itoring controller which serves as a facade for Kieker.
Then, it is delegated to the writer controller which
passes the record to the blocking queue of the TCP
writer. At that point, the application thread returns
and the writer’s worker thread takes control over the
record. It reads the record from the queue and sends it
out via the associated TCP stream. However, before
sending, the record is compressed to save bandwidth.
Each string attribute of the record is replaced by a
unique 4-byte identifier (id). The id and the string are
registered as a registry record in an internal registry
maintained by the registry controller. Upon a new
registration, the registry record is passed from the reg-
istry through the monitoring controller to the writer
controller which puts the record into the writer’s non-
blocking queue. Afterwards, another worker thread
of the writer takes the registry record from this queue
and sends it out via TCP. In this way, the receiver is
able to reconstruct the record’s strings from the ids.

This monitoring architecture has some potential for
improvement. Besides collecting runtime information,
the application threads atomically increase the num-
ber of transfered records to identify the beginning of
monitoring by testing for zero. They also check in the
writer controller for the type of the incoming record
to put it into the correct queue. In addition, the used
implementation of queues is very slow which unneces-
sarily delays all application threads. Since the record
compression uses an additional worker thread, the se-
rialization is performed asynchronously although the
registry records must be transmitted prior to their as-
sociated records. For this reason, the corresponding
string registry is synchronized. Additionally, all writ-
ers are expected to use the string registry. Hence,
there is a central registry maintained by the registry
controller although some writers write uncompressed
records as plain text to the console or to a text file.
Finally, each writer has to declare and to manage its
own set of worker threads which unnecessarily burdens
the programmer with concurrency issues.



TCP

Writer
Controller

I

(7
| Probes | Momtorlng
il i Controller

AsyncWriter Writer

NonBlockingQueue

Application thread I
Writer threadl\

BlockingQueue

TCPWriter

. Registry |,
\{ Registry I | Controller |~

N ——

|__Thread

Figure 1: The architecture and the data flow of Kieker’s current monitoring component

3 Refactored Monitoring Component

We refactored the current monitoring component in
the following way. First, we reduced the effort of the
applications threads by removing the atomic counter.
Instead, we introduced an event-based system which
triggers an event at the beginning of the monitoring.
Moreover, we removed the registry records so that the
application threads do not check for record types any-
more. Instead, new string-id pairs are now registered
and immediately serialized by the writer without the
indirection via the controllers. In this way, we also
avoid one of the two queues. We then replaced the
blocking implementation of the remaining queue by
a high-performance, lock-free alternative of JCTools!.
Finally, we removed all synchronous writers to prevent
programmers to use or to extend them. This restric-
tion guarantees that the applications threads only add
their records to queue and return immediately.
Second, we reduced the effort by the writer threads.
Since we removed the registry records and their cor-
responding queue, we also removed their associated
writer thread. Instead, the remaining writer thread
first checks whether the string attributes of the record
has already been registered and serialized. If so, it
writes out the compressed record. Otherwise, it seri-
alizes the corresponding string-id pairs first. In this
way, we avoid instantiating registry records and thus
reduced the pressure on the garbage collector. If a
writer does not make use of the compression, it does
not declare a registry. Since the registry is now lo-
cal to the individual writers, we removed the origi-
nal registry implementation which is a synchronized
map written completely by hand. Instead, we provide
a faster, unsynchronized writer registry which reuses
Java’s default map implementation. Furthermore, we
could now remove the central registry and the registry
controller. Finally, we moved the thread management
from the individual writers to the writer controller.

4 Complexity Evaluation

We expect a lower complexity from the refactored
monitoring component due to the following main rea-
sons: (1) It does not use a registry controller anymore.
(2) It avoids a special handling of registry records by
the writer controller. (3) It provides a single record
queue and a single monitoring thread for all writer
implementations. We use Eclipse Neon? with the Hy-

Ihttps://github.com/JCTools/JCTools
2https://eclipse.org/neon

Kieker Lines of | Cyclomatic | Information
Version Code Complexity | Complexity
Current 1092 2.48 242
Refactored | (60%) 654 | (70%) 1.73| (73%) 176

Table 1: The complexity of the current and the refac-
tored monitoring component (1) in their lines of code,
(2) in their cyclomatic complexity, and (3) in their in-
formation complexity. The percentages represent the
fraction of the refactored to the current version.

pergraph-based Software Evaluation-Plugin® to apply
the following three complexity metrics on all changed
files for both Kieker versions: lines of code, cyclomatic
complexity [3], and information complexity [1].

Table 1 shows our results. The refactored version
comprises only 60% of the original number of lines
of code. Moreover, its cyclomatic and information
complexity are only 70% and 73%, respectively, of the
current version. Thus, the refactored version can be
considered as less complex than the current version.

The reduced lines of code mainly result from the
new, lean writer registry implementation and the re-
moval of several, now obsolete classes, e.g., the reg-
istry controller. The cyclomatic and information com-
plexity are reduced because we avoid to pass registry
records through the monitoring component. Instead,
each writer is now responsible for its serialization.
Moreover, it does not need to create and to manage its
worker threads anymore. Now, the writer controller
takes over this task in a uniform way for all writers.

5 Runtime Overhead Evaluation

We expect a lower overhead from the refactored ver-
sion due to the following reasons: (1) It is less com-
plex (see Section 4). (2) It uses a high-performance,
lock-free queue for all writer implementations. (3) It
reduces the pressure on the garbage collector since it
avoids creating registry records. (4) It does not count
the number of processed records anymore by default.

To measure and compare both versions, we use
MooBench [4], a benchmark for assessing the over-
head of monitoring frameworks. We executed it on
Debian 3.16.7 with the Java HotSpot 1.8.0_51 running
on an Intel Xeon E5-2650 with 128 GB RAM. We con-
figured MooBench to measure the ”Discard Writer”,
which discards incoming records, and the TCP writer.

Shttps://build.se.informatik.uni-kiel.de/eus/se/
snapshot in version 1.0.0.201608110354


https://github.com/JCTools/JCTools
https://eclipse.org/neon
https://build.se.informatik.uni-kiel.de/eus/se/snapshot
https://build.se.informatik.uni-kiel.de/eus/se/snapshot

e s e s e s e

/
I q Monitoring
| App Probes Controller
\

Application thread

Writer
Controller 1

\
Writer |
Registry I

/

Writer thread

Figure 2: The architecture and the data flow of Kieker’s refactored monitoring component

Kieker No |Deact. | Data || Discard | TCP
Version Instr. | Probe | Coll. || Writer | Writer
Current 0.087| 0.478|2.607| 18.932|19.715
95%-ci (£) | 0.000| 0.005|0.007 0.014| 0.015
Refactored* | 0.088 | 0.468|2.335|| 12.424|16.855
95%-ci (£) | 0.000| 0.004|0.007 0.007| 0.035
Refactored | 0.083| 0.472|2.384 2.785| 3.265
95%-ci (£) | 0.000| 0.006|0.012 0.009| 0.011

Table 2: Mean response times (in ps) of MooBench’s
internal operation call [4, 6] monitored by Kieker’s
current version and by the refactored version (* repre-
sents the version with Java’s LinkedBlockingQueue).

We set the number of VM runs to 10 and the num-
ber of method calls to 20 mio. (method time of 0 ms;
recursive depth of 10). We used MooBench’s default
warmup policy which discards the first half of calls (10
mio.) per run. We chose this configuration because it
has yielded stable results for both versions.

In order to understand how much the change in
the architecture and the replacement of the queue
implementation contribute to the overhead, we ap-
plied MooBench on our refactored version first with
Kieker’s blocking queue and then with JCTools’ MpSc
queue. Table 2 shows the mean response time in us
of MooBench’s internal operation call monitored by
Kieker’s current version and by the two refactored ver-
sions. The first two phases ”No Instrumentation” and
”Deactivated Probe” do not show any differences if we
include the confidence intervals and the OS’s timer
precision? of 40.015 us. However, the current version
has a higher overhead in the ”Data Collection” phase
due to the atomic counter. The last two columns ” Dis-
card Writer” and " TCP Writer” show the results for
the corresponding writers. We reduced the runtime
overhead from 18.9 us to 12.4 us and, respectively,
from 19.7 pus to 16.8 ps. These improvements result
from the lower complexity and the reduced pressure
on the garbage collector as mentioned at the begin-
ning of this section.

However, we reached the most significant speedup
by replacing Java’s LinkedBlockingQueue by JC-
Tools” MpScArrayQueue. The results show that we
reduced the runtime overhead from 12.4 us to 2.7 us
and, respectively, from 16.8 us to 3.1 us. Hence, the
TCP writer of the refactored version has an overhead
of only 17% compared to the current version.

4Measured with https://git.io/végtt

6 Conclusion

We described how the architecture of the current mon-
itoring component looks like and why it hinders to fur-
ther reduce the monitoring overhead. Then, we pre-
sented a refactored version and compared it with the
current one. In short, we minimized the load on the
application threads and replaced the blocking queue
by a lock-free alternative. Our evaluation shows that
we could reduce the runtime overhead to 17% in this
way. This result is especially impressive because the
complexity is also reduced, namely to 73%.

As future work, we plan to further reduce the
overhead by pooling records in the data collection
phase. This approach would avoid the runtime costs
of frequently creating and removing record instances.
Moreover, it could pre-fill records with static informa-
tion such as the class and method name so that such
information may not be collected at runtime anymore.

References

[1] E. B. Allen, S. Gottipati, and R. Govin-
darajan. “Measuring size, complexity, and cou-
pling of hypergraph abstractions of software:
An information-theory approach”. In: Software
Quality Journal 15.2 (2007), pp. 179-212.

[2] R. Jung. An Instrumentation Record Language
for Kieker. Tech. rep. Kiel University, Aug. 2013.

3] T. J. McCabe. “A Complexity Measure”. In:
IEEE Transactions on Software Engineering SE-
2.4 (Dec. 1976), pp. 308-320.

[4] MooBench. URL: https : / / build . se .
informatik.uni-kiel.de/kieker/moobench.

[5] A. Van Hoorn, J. Waller, and W. Hasselbring.
“Kieker: A Framework for Application Perfor-
mance Monitoring and Dynamic Software Anal-
ysis”. In: Proc. of the ICPE. 2012.

[6] J. Waller, F. Fittkau, and W. Hasselbring. “Ap-
plication Performance Monitoring: Trade-Off be-
tween Overhead Reduction and Maintainability”.
In: Proc. of the Symp. on Software Perf. 2014.

[7] J. Waller and W. Hasselbring. “A Comparison of
the Influence of Different Multi-Core Processors
on the Runtime Overhead for Application-Level
Monitoring”. In: Proc. of MSEPT. 2012.

[8] C. Zirkelbach, W. Hasselbring, and L. Carr.
“Combining Kieker with Gephi for Performance

Analysis and Interactive Trace Visualization”. In:
Proc. of the Symp. on Software Perf. 2015.


https://git.io/v6gtt
https://build.se.informatik.uni-kiel.de/kieker/moobench
https://build.se.informatik.uni-kiel.de/kieker/moobench

	Introduction
	Current Monitoring Component
	Refactored Monitoring Component
	Complexity Evaluation
	Runtime Overhead Evaluation
	Conclusion

