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Kieker Architecture
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• Low monitoring overhead

• Fast Pipe-and-Filter-based analyses
(migration completed soon)

• Resolved performance anti-patterns [WulfSSP15] 

[WallerSSP13]

[WulfSSP14]



Agenda

Refactoring Kieker's Monitoring Component

• Introduction
• Current Monitoring Component
• Refactored Monitoring Component
• Evaluation

– Complexity
– Runtime Overhead

• Conclusions
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• The Application threads atomically increase the number of transferred records
• The WriterController checks for the type of the incoming record
• The used implementation of the synchronized queues is very slow
• The string registry

• is synchronized since it is used by two writer threads
• is maintained by the registry controller

• Each writer has to declare and to manage its own set of worker threads



Refactored Monitoring Component
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• Introduction of a new event-based system
=> replaces the atomic counter 

• Removal of registry records 
=> application threads do not check for record types anymore

• Avoidance of one of the two queues
• Introduction of a high-performance, lock-free queue based on JCTools1

=> replaces the slow blocking queue
• No synchronous writer anymore

1: https://github.com/JCTools/JCTools



Refactored Monitoring Component
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• Remaining writer thread first checks a record’s the string attributes
• String registry declaration on demand by each writer
• Faster, unsychronized string registry
• No need for the registry controller anymore
• Writer controller now handles the thread management



Evaluation

Refactoring Kieker's Monitoring Component

• Complexity
– Using the Hypergraph-based Software Evaluation-

Plugin for Eclipse1

• Runtime Overhead
– Using MooBench2
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1 https://build.se.informatik.uni-kiel.de/eus/se/snapshot
2 https://build.se.informatik.uni-kiel.de/kieker/moobench



Complexity Evaluation
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Runtime Overhead Evaluation
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Conclusions
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• Refactored architecture of the monitoring component
• Information complexity reduced to 73 %
• Runtime overhead reduced to 17 % (!)

http://kieker-monitoring.net http://teetime.sourceforge.net

Future work
• Record pooling to reduce pressure on GC
• Record data pre-filling to minimize data collection at runtime



Record Pooling
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Lifetime of a record within the monitoring component
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Record Data Pre-Filling
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Aspectj limited: unable to intercept weaving
process

=> No access to static code information at weaving,
such as class and method name
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className
operationName
timestamp

class Hello {
void greetings() {

System.out.println(„Moin“);
}

}

collected at instrumentation time

collected at run time

Proposition: instrumentation via a low-level framework such 
as ASM/Javassist
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