
Refactoring Kieker's Monitoring Component
to Further Reduce the Runtime Overhead

Symposium on Software Performance 2016

Hannes Strubel and Christian Wulf

08.11.2016

Software Engineering Group
Kiel University, Germany



Kieker Architecture

Refactoring Kieker's Monitoring Component Hannes Strubel & Christian Wulf ― 08.11.2016 2

• Low monitoring overhead

• Fast Pipe-and-Filter-based analyses
(migration completed soon)

• Resolved performance anti-patterns [WulfSSP15] 

[WallerSSP13]

[WulfSSP14]



Agenda

Refactoring Kieker's Monitoring Component

• Introduction
• Current Monitoring Component
• Refactored Monitoring Component
• Evaluation

– Complexity
– Runtime Overhead

• Conclusions

Hannes Strubel & Christian Wulf ― 08.11.2016 3



Current Monitoring Component

App Probes Monitoring
Controller

Writer
Controller Writer

Sync
Writer

AsyncWriter

TCPWriter
Thread

Registry
ControllerRegistryApplication thread

Writer thread

TCP
Writer

NonBlockingQueue
BlockingQueue

Hannes Strubel & Christian Wulf ― 08.11.2016Refactoring Kieker's Monitoring Component 4

• The Application threads atomically increase the number of transferred records
• The WriterController checks for the type of the incoming record
• The used implementation of the synchronized queues is very slow
• The string registry

• is synchronized since it is used by two writer threads
• is maintained by the registry controller

• Each writer has to declare and to manage its own set of worker threads



Refactored Monitoring Component

App Probes Monitoring
Controller

Writer
Controller

Application thread Writer thread

Writer
RegistryWriter

Hannes Strubel & Christian Wulf ― 08.11.2016Refactoring Kieker's Monitoring Component 5

• Introduction of a new event-based system
=> replaces the atomic counter 

• Removal of registry records 
=> application threads do not check for record types anymore

• Avoidance of one of the two queues
• Introduction of a high-performance, lock-free queue based on JCTools1

=> replaces the slow blocking queue
• No synchronous writer anymore

1: https://github.com/JCTools/JCTools



Refactored Monitoring Component

App Probes Monitoring
Controller

Writer
Controller

Application thread Writer thread

Writer
RegistryWriter

Hannes Strubel & Christian Wulf ― 08.11.2016Refactoring Kieker's Monitoring Component 6

• Remaining writer thread first checks a record’s the string attributes
• String registry declaration on demand by each writer
• Faster, unsychronized string registry
• No need for the registry controller anymore
• Writer controller now handles the thread management



Evaluation

Refactoring Kieker's Monitoring Component

• Complexity
– Using the Hypergraph-based Software Evaluation-

Plugin for Eclipse1

• Runtime Overhead
– Using MooBench2

Hannes Strubel & Christian Wulf ― 08.11.2016 7

1 https://build.se.informatik.uni-kiel.de/eus/se/snapshot
2 https://build.se.informatik.uni-kiel.de/kieker/moobench



Complexity Evaluation

Refactoring Kieker's Monitoring Component Hannes Strubel & Christian Wulf ― 08.11.2016 8



Runtime Overhead Evaluation

Refactoring Kieker's Monitoring Component Hannes Strubel & Christian Wulf ― 08.11.2016 9



Conclusions

Refactoring Kieker's Monitoring Component Hannes Strubel & Christian Wulf ― 08.11.2016 10

• Refactored architecture of the monitoring component
• Information complexity reduced to 73 %
• Runtime overhead reduced to 17 % (!)

http://kieker-monitoring.net http://teetime.sourceforge.net

Future work
• Record pooling to reduce pressure on GC
• Record data pre-filling to minimize data collection at runtime



Record Pooling

Refactoring Kieker's Monitoring Component

Lifetime of a record within the monitoring component

Hannes Strubel & Christian Wulf ― 08.11.2016 11

App Probes Monitoring
Controller

Writer
Controller

Application thread Writer thread

Writer
RegistryWriter

creation sending & discard

pool



Record Data Pre-Filling

Refactoring Kieker's Monitoring Component

Aspectj limited: unable to intercept weaving
process

=> No access to static code information at weaving,
such as class and method name

Hannes Strubel & Christian Wulf ― 08.11.2016 12

className
operationName
timestamp

class Hello {
void greetings() {

System.out.println(„Moin“);
}

}

collected at instrumentation time

collected at run time

Proposition: instrumentation via a low-level framework such 
as ASM/Javassist



References

Refactoring Kieker's Monitoring Component

[WallerSSP13] Waller, J. und Hasselbring, W., „A Benchmark Engineering Methodology to Measure the 
Overhead of Application-Level Monitoring”, In: Proceedings of the Symposium on Software 
Performance: Joint Kieker/Palladio Days (KPDAYS 2013), 2013, Karlsruhe, Germany. 

[WulfSSP14] Wulf, C., Ehmke, N. C. und Hasselbring, W., „Toward a Generic and Concurrency-Aware 
Pipes & Filters Framework, In: Proceedings of the Symposium on Software Performance: Joint 
Descartes/Kieker/Palladio Days, 2014, Stuttgart, Germany. 

[WulfSSP15] Wulf, C. und Hasselbring, W., „Software Performance Anti-Patterns Observed and Resolved
in Kieker“, In: Proceedings of the Symposium on Software Performance: Joint Developer and Community 
Meeting of Descartes/Kieker/Palladio, 2015, Munich, Germany. 

Hannes Strubel & Christian Wulf ― 08.11.2016 13


	Refactoring Kieker's Monitoring Component�to Further Reduce the Runtime Overhead
	Kieker Architecture
	Agenda
	Current Monitoring Component
	Refactored Monitoring Component
	Refactored Monitoring Component
	Evaluation
	Complexity Evaluation
	Runtime Overhead Evaluation
	Conclusions
	Record Pooling
	Record Data Pre-Filling
	References

