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ABSTRACT 
 

Submarine hazards, such as earthquakes, submarine slope failures, and resulting tsunamis, on the 

continental margins pose great threats to coastal communities and have received much concern in 

scientific research. The 1908 Messina earthquake and tsunami, the deadliest event in Europe since then, 

is a typical event of this kind. However, no general agreement has been archived on the 

seismogenic/tsunamigenic faults, mainly because the tectonics of the Messina Strait is still unclear.  

In order to contribute to this open question, new multi-beam bathymetry data, sediment echo sounding 

data, and high-resolution 2D reflection seismic data were collected during RV Meteor Cruise M86/2 

off Southern Italy (including the Messina Strait) from December 27th, 2011 to January 17th, 2012. Based 

on the new data, many near-surface faulting structures have been identified for the first time in the 

Messina Strait. The fault patterns of the Messina Strait were built up and analysed, fault activities in 

the outer Messina Strait were reconstructed, and numerical tsunami modelling was done. Central 

questions of this thesis include:  

i) What types of faults have been identified in the Messina Strait?  

ii) How do they fit to the overall tectonic framework of the Messina Strait?  

iii) Were the faults in the outer Messina Strait active recently?  

iv) Can the faults in the outer Messina Strait generate tsunamis and how large may they get? 

The new data suggest that the inner Messina Strait is an angular graben. Near-surface faults in the 

graben strike in N-S and E-W directions. The N-S-trending near surface faults are right-lateral 

transtensional faults and distribute along the Messina Canyon and the coastline off southern Calabria, 

dipping toward the Messina Canyon; E-W-trending near-surface faults are left-lateral transtensional 

faults and located in the northern inner Messina Strait off Calabria. Most of them dip toward the south. 

The apparent dip angles of all near-surface faults are less than 50 degrees. Several newly-discovered 

near-surface faults fit to the suggested focal mechanisms of the 1908 Messina earthquake, but we were 

not able to identify the master fault of this event. The lengths of the fault planes (< 15 km) are too small 

to generate an earthquake of 7 Mw. The inferred Taormina Fault (TF) was considered as one of the 

most hazardous and largest seismic gaps in Italy. However, this fault has not been imaged on any 

seismic data set including our new seismic data. Hence, the existence of the TF is doubted. 
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In the outer Messina Strait, a prominent fault zone has been discovered and named as the Fiumefreddo 

- Melito di Porto Salvo Fault Zone (F-MPS_FZ). It is located in the source area proposed for the 1908 

Messina tsunami. The F-MPS_FZ is a E-W-trending left-lateral transtensional fault zone, which shows 

ongoing tectonic activity and supports a transtensional regime in the outer Messina Strait. Most of the 

faults in this zone dip toward the south at apparent dip angles around 60 degrees. The dominant scarp-

like structure (DSS) represents the surface expression of the master fault of the F-MPS_FZ. The F-

MPS_FZ may be a STEP-Connector Fault, linking the two postulated Subduction-Transform Edge 

Propagator (STEP) faults: the Ionian Fault and the Alfeo-Etna Fault. This STEP-Connector Fault may 

have formed in two ways: in a pull-apart basin style or in a fault-termination basin style. Based on our 

data, the pull-apart basin style model is more reasonable for this newly-discovered fault zone. 

The F-MPS_FZ reach down to the acoustic basement. It has been active during the entire regional 

tectonic evolution of the outer Messina Strait. During its evolution, the fault activity alternated between 

tranpressional and transtensional with varying apparent displacements. Currently, the F-MPS_FZ is an 

active transtensional fault zone. Based on the results of the tsunami modelling, the F-MPS_FZ could 

generate tsunamis, and an assumed slip rate of up to 15 m could generate a tsunami comparable to the 

1908 Messina tsunami, but the F-MPS_FZ may not be a candidate source for the 1908 Messina tsunami, 

because an E-W-trending fault is not in agreement with seismological data of the 1908 Messina 

earthquake, and a 15 m slip event is highly unlikely. However, the F-MPS_FZ is still a highly potential 

hazard source in Southern Italy, because it shows the most obvious vertical displacement in the entire 

Messina Strait and seems to be active. 
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ZUSAMMENFASSUNG 

 

Untermeerische Naturgefahren wie Erdbeben und Hangrutschungen im Bereich von Kontinentalhängen 

sowie damit einhergehende Tsunamis haben in den letzten Jahrzehnten einen hohen Grad an 

Aufmerksamkeit in der Forschung erhalten. Dies liegt darin begründet, dass solche teilweise 

katastrophal verlaufenden Ereignisse eine hohe Zahl an Todesopfern fordern können und immense 

Schäden in Küstenregionen mit sich bringen können. 

Das bis heute schwerwiegendste Ereignis dieser Art in Europa war 1908 das Messina-Erdbeben und 

der nachfolgende Tsunami, ein typisches Beispiel für eine solche Katastrophe. Jedoch herrscht bisher 

kein eindeutiger Konsens über die Lokation der Störungen die die Quelle für das Erbeben und den 

Tsunami waren, hauptsächlich weil die tektonischen Gegebenheiten der Straße von Messina noch nicht 

genau bekannt sind.  

Um einen Beitrag zur Beantwortung der bisher ungeklärten Frage nach den Quellregionen für das 

Erdbeben und den Tsunami leisten, wurde während der Forschungsausfahrt M86/2 (FS METEOR) vom 

27. 12. 2011 bis zum 17. 01. 2012 in Süditalien und der Straße von Messina, neue hochauflösende 

Fächerecholot-, Sedimentecholot-, und Mehrkanalseismik- Daten aufgezeichnet. Mithilfe der 

gewonnenen Daten war es nun es erstmals möglich einige unbekannte Störungszonen im Untergrund 

der Straße von Messina zu lokalisieren. 

Basierend auf diesen neuen hydroakustischen und seismischen Daten, war es möglich, zahlreiche, 

bisher unbekannte  oberflächennahen Verwerfungssysteme in und südlich der Straße von Messina zu 

identifizieren, Aktivitäten entlang dieser Störungszonen zu rekonstruieren und die numerische 

Modellierung eines möglichen Tsunami südlich der Straße von Messina durchzuführen. Die 

Hauptfragestellungen, die in dieser Arbeit behandelt werden lauten dementsprechend:  

i) Welche Typen von von tektonischen Verwerfungen sind in der Straße von Messina vorhanden? 

ii) Wie ist hängen diese Verwerfungen mit dem regionalen Störungssystem der Straße von Messina und 

von Süditalien zusammen? 

iii) Sind die neu entdeckten Verwerfungen südlich der Straße von Messina aktiv?  

iv) Könnten die Verwerfungen südlich der Straße von Messina eine Quelle für einen zukünftigen 

Tsunami darstellen und wenn ja, welche Ausmaße könnte ein solcher Tsunami haben?  
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Auf Grundlage der neu gewonnenen Daten ist zu vermuten, dass die innere Straße von Messina ein 

verkippter Graben ist. Oberflächennahe Verwerfungen im Bereich des Grabens  entlang des Messina 

Canyons und der Küstenlinie des südlichen Kalabrien streichen N-S und fallen in Richtung des Messina 

Canyons ein, während im Bereich der nördlichen inneren Straße von Messina vorhandene sinistrale 

Transtensionsstörungen O-W streichen und hauptsächlich nach Süden einfallen. Der scheinbare 

Einfallswinkel aller oberflächennahen Störungen ist kleiner als 50 °. Einige neu entdeckte 

oberflächennahe Verwerfungen passen zum vorgeschlagenen Herdmechanismus des 1908 Messina 

Erdbebens, jedoch war es nicht möglich anhand unserer Daten die Hauptstörungsfläche zu 

identifizieren. Die Länge der Störungsflächen (<15 km) wären zu gering um ein Erdbeben mit der 

Magnitude 7 zu erzeugen. Die vermutete Taormina Verwerfung (TF) wird in dieser Arbeit als die 

westliche Begrenzung des Grabens der Straße von Messina vorgeschlagen. Es wird angenommen, dass 

sie einer der größten Gefahrenherde auf Grund ihrer seismischen Kluft für Erdbeben in Italien darstellt. 

Jedoch konnte die TF bis heute, auch mit Hilfe der hier beschriebenen neuen seismischen Daten, nicht 

eindeutig nachgewiesen werden.  

Das hier erstmals beschriebene Fiumefreddo - Melito di Porto Salvo Störungssystem (F-MPS_FZ) 

wurde in der äußeren Straße von Messina identifiziert und befindet sich ebenfalls in der 

vorgeschlagenen Quellregion des Messina- Tsunamis von 1908. Beim F-MPS_FZ handelt es sich um 

ein rezent aktives Verwerfungssystem, welches als links-laterale transtensive Verwerfungszone in der 

(äußeren) Straße von Messina identifiziert werden kann. Die meisten Verwerfungen dieser 

Verwerfungszone fallen in Richtung Süden mit einem scheinbaren Winkel von ~60° ein. Die 

dominierende stufenähnliche Struktur (DSS) repräsentiert die oberflächennahe Ausprägung der 

Hauptverwerfung des F-MPS_FZ. Das F-MPS_FZ stellt eventuell eine STEP-Connector Verwerfung 

dar, die die zwei vorgeschlagenen Transform Edge Propagator (STEP) Verwerfungen verbindet: Die 

Ionian Fault und die Alfeo-Etna Fault. Diese STEP-Connector Verwerfung könnte sich auf zwei 

verschiedene Arten ausgebildet haben: dem Pull-Apart Becken Stil oder dem Verwerfungsabschluss-

Becken Stil. Anhand unserer Datengrundlage erscheint jedoch eine Bildung als Pull-Apart Basin 

plausibler. 

Das F-MPS_FZ ist ein Ost-West streichendes Verwerfungssystem, das bis in das akustische Basement 

verfolgt werden kann. Es war während der gesamten tektonischen Entwicklung der äußeren Straße von 

Messina aktiv. Während seiner Entwicklung wechselten transpressive und transtensive 

Deformationsphasen, und damit einhergehend ergaben sich Variationen in der Sprunghöhe. Rezent 

stellt das F-MPS_FZ ein aktives transtensives Verwerfungssystem dar. Daher wird diese 



Page | 8  
 

Verwerfungszone als eine mögliche Quelle für zukünftige Tsunamis, die die italienischen Küsten 

treffen könnte, erachtet. Mit einem angenommenen vertikalen Versatz von bis zu 15 m könnte ein 

Tsunami ausgelöst werden, dessen Ausmaße mit denen des Tsunami von 1908 vergleichbar wären. 

Jedoch ist nicht davon auszugehen, dass der Tsunami von 1908 an dieser Verwerfung ausgelöst wurde, 

da ein Ost-West streichendes Verwerfungssystem den gemessenen seismologischen Daten von 1908 

nach nicht die Ursache des Erdbebens war. Zudem ist ein Versatz von 15 m während eines einzigen 

seismischen Ereignisses sehr unwahrscheinlich. Jedoch ist zu vermuten, dass es sich bei diesem 

Störungssystem um einen potentiellen Gefahrenherd handelt, da es die eindeutigsten und größten 

bekannten Sprunghöhen in der gesamten Straße von Messina aufweist. 
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DEDICATIONS 
 

The 1908 Messina earthquake and tsunami, which occurred in the Messina Strait, is the deadliest event 

in Europe since then. However, no general agreement has been archived on the 

seismogenic/tsunamigenic fault [AMORUSO et al. 2002a; TINTI and ARMIGLIATO 2003b; ARGNANI et al. 

2009a]. One of the obstacles may be the unclear neo-tectonic setting of the Messina Strait. To bridge 

this gap, ARGNANI et al. [2009a] obtained the first high-resolution seismic grid in the Strait and 

successfully identified some single neo-tectonic features, but did not construct the neo-tectonic patterns 

of the Strait. 

Inspired by ARGNANI et al. [2009a]’s work and ideas, an additional survey was carried out by members 

of the Kiel Cluster of Excellence ‘The Future Ocean’ and colleagues from Italy. We recognized 

numerous faulting structures that were unknown before, and based on these newly-discovered faults, 

we are able to construct the near-surface fault patterns of the Messina Strait for the first time. The fault 

with the most remarkable surface expression is exactly located in the source area proposed by BILLI et 

al. [2008] for the 1908 Messina tsunami; this fault aroused our greatest interest. It is the master fault of 

the Fiumefreddo - Melito di Porto Salvo Fault Zone (F-MPS_FZ). This fault zone is located between 

two Subduction-Transform Edge Propagator (STEP) faults: the Ionian Fault [POLONIA et al. 2014] and 

the Alfeo-Etna Fault [GALLAIS et al. 2013; POLONIA et al. 2014]. It may work as a connector of the two 

STEP faults. The three form a larger faulting system. This kind of system has not been described before. 

It may classify a new type of fault -- a STEP-Connector Fault.  

We think that we have opened a new way of investigating submarine hazards off Southern Italy, but 

this new direction may even make the research more complicated. 
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OUTLINE OF THE DISSERTATION 
 

Chapter 1 introduces the survey area – the Messina Strait. General information on the geographic and 

tectonic characteristics of the Strait are presented. Previous research on the tectonics and submarine 

hazards of the Messina Strait are also included. 

Chapter 2 presents the objectives of this thesis.  

Chapter 3 summarizes the used data and methodology. It briefly introduces the parameters used during 

acoustic data acquisition and interpretation. Methods and parameters of cross-section restoration and 

numerical tsunami modelling are also presented. 

Chapter 4 Manuscript I 

Assessing the fault pattern of the inner Messina Strait, Southern Italy, by means of high-resolution 2D 
reflection seismics 

This chapter presents a map of the near-surface fault pattern of the inner Messina Strait based on the 

new high-resolution 2D reflection seismic data. The general fault pattern is analysed and discussed in 

the overall tectonic framework of the survey area.  

Chapter 5 Manuscript II 

An active transtensional fault zone between two STEP faults in the outer Messina Strait, Southern 
Italy 

This chapter focusses on a newly-discovered near-surface fault zone in the outer Messina Strait, namely 

the Fiumefreddo - Melito di Porto Salvo Fault Zone (F-MPS_FZ). This fault zone is interpreted as a 

transtensional fault zone connecting two Subduction-Transform Edge Propagator (STEP) faults in the 

outer Messina Strait. When analysing the relationship between the new fault zone and the regional 

tectonic framework of the outer Strait, two models for this new fault zone will be discussed: the pull-

apart basin style and the fault-termination basin style.  

Chapter 6 Manuscript III 

Tsunami potential for Southern Italy related to a newly-discovered active fault zone in the outer 
Messina Strait, based on fault activity reconstructions and tsunami modelling. 
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The reconstructions of the activity of the newly-discovered Fiumefreddo - Melito di Porto Salvo Fault 

Zone will be presented in this chapter. Numerical tsunami modelling based on derived fault parameters 

will also be presented.  

Chapter 7 will present some final conclusions and give a short outlook for the work. 
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1 INTRODUCTION 
 

1.1 Motivation 
 

Submarine hazards, such as earthquakes, submarine slope failures, and resulting tsunamis on the 

continental margins is a current focus of scientific research. These hazards pose great threats to coastal 

communities, which are homes to over sixty percent of humankind and locations of most major 

industrial installations, including increasingly offshore installations. Once these hazards strike the 

coastline, lives and properties in the coastal areas may experience severe damage. The 1908 Messina 

earthquake and tsunami is a typical event of this kind.  
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Figure 1 (a) Source models for the 1908 Messina earthquake and tsunami. Modified after BILLI et al. [2008]; FAVALLI et al. 
[2009a]; PINO et al. [2009b]. DSS, dominated scarp-like structure. The stars are epicentres proposed for the earthquake. 
The coloured straight lines together with the black rectangles show the possible seismogenic faults of the earthquake. The 
coloured straight lines indicate the intersections of the fault planes and the earth surface (cut-off lines). The black rectangles 
represent the surface projections of the fault planes. The dashed segments of the fault planes show the uncertain parts of 
those faults. The straight lines connected to the ellipses indicate the moving directions of landslides. The blue bars 
perpendicular to the frame of the figure represent the tsunami run-up heights of some cities. The numbers beside these bars 
are the values of the run-up heights in metres. (b) Overview of the Messina Strait. MS, Messina Strait. 

 



Page | 22  
 

On December 28th, 1908, a devastating earthquake, Mw=7.1 [PINO et al. 2000; CPTIWORKINGGROUP. 

2004], occurred in the Messina Strait (Fig. 1). Many cities located in the coastal areas of the Strait were 

badly destroyed, especially Messina and Reggio di Calabria (Fig. 1a). The earthquake was accompanied 

by a tsunami [PLATANIA 1909] (Fig. 1a). About 80,000 [BARATTA 1910] to 100,000 [MERCALLI 1909] 

people were killed, making the event the deadliest one in Europe since then.  

Intensive investigations have been carried out by many researchers [OMORI 1910; DENATALE and 

PINGUE 1991; ANZIDEI et al. 1998; AMORUSO et al. 2002a; GERARDI et al. 2008; GUARNIERI and 

PIRROTTA 2008; ARGNANI et al. 2009a], based on various data sets, such as seismological data, geodetic 

measurement data (levelling surveys and GPS velocity analyses), tide gauge data, data from geological 

surveys, and macroseismic observations including P-wave polarities [BOTTARI et al. 1989b; DENATALE 

and PINGUE 1991; TORTORICI et al. 1995; ANZIDEI et al. 1998; MONACO and TORTORICI 2000a], as well 

as the tsunami run-up heights (Fig. 1a) and arrival times [TINTI et al. 1999a; BILLI et al. 2008]. 

So far, various seismogenic fault models have been proposed for the 1908 Messina event. They vary 

from a central position in the Strait to the coasts, dipping toward the west or east to southeast (Fig. 1a). 

Although a NNW-SSE-trending, E-dipping normal fault, which is located in the northern central part 

of the Strait, was approved to be the seismogenic fault by many authors, no general agreement has been 

archived on the seismogenic fault of the 1908 Messina earthquake [AMORUSO et al. 2002b; TINTI and 

ARMIGLIATO 2003b; ARGNANI et al. 2009a].  

The 1908 Messina tsunami occurred following the earthquake hit the entire coastline of the Messina 

Strait. Field surveys were conducted immediately after the event. The records in the harbour of Naples 

showed that this tsunami has been the largest one ever recorded in Italy in historical time, both in terms 

of run-up height (>10 m) [PLATANIA 1909] (Fig. 1a) and impacted area. The run-up heights in the 

southern part of the Messina Strait (5 - 10 m) were significantly higher than those in the north (1 - 3 m) 

(Fig. 1a). The extreme values exceed 11 m (Fig. 1a). 

Since the 1908 Messina tsunami was assumed to be triggered by seismic activity, tsunami modellers 

[TINTI et al. 1999b; TINTI and ARMIGLIATO 2003a; FAVALLI et al. 2009b] constructed numerical models 

on some most common fault solutions, but no one came up with a consistent explanation for both 

earthquake and tsunami [TINTI et al. 1999b; GERARDI et al. 2008]. Hence, BILLI et al. [2008] postulated 

that the 1908 Messina tsunami was caused by a submarine landslide. They used triangulation methods 

to determine a possible source area, which is located in the western Ionian Basin, offshore to the 

southwest of the southwestern tip of Calabria and to the east of Giardini Naxos city (Sicily) (Fig. 1a). 
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However, several authors [ARGNANI et al. 2009b; GROSS et al. 2014] doubt the interpretation of BILLI 

et al. [2008] , as no ~100 yr old landslide deposits can be identified on high-resolution bathymetric and 

seismic data in this area. Additionally, modelling results presented by GERARDI et al. [2008] conflict 

with the landslide-generated tsunami hypothesis. The length of the inundated coast seems to be the key 

factor in discriminating the tsunami source. Tsunamis caused by dislocation propagated over a wider 

area with respect to those caused by submarine landslides [TINTI et al. 2007]. 

What are the main reasons for the existence of these disputes? The unclear neo-tectonic setting of the 

Messina Strait is probably the most important aspect. This shortcoming is mainly based on the lack of 

high-resolution and high-quality seismic data, leading to an insufficient and biased knowledge on the 

tectonics of the Messina Strait. Hence, the main objective of this thesis is to map and analyse neo-

tectonic features in the Messina Strait based on a newly-collected high-resolution acoustic and seismic 

data set. Special emphasis will be drawn on the general fault patterns, its relationship to the overall 

tectonic setting of Southern Italy, and the tsunami hazard related to selected fault patterns.  

 

1.2 Introduction to the Strait of Messina (Stretto Di Messina) 
 

The Messina Strait is a NNE-SSW striking channel, located in the central Mediterranean Sea (Fig. 1), 

between latitude 37°40’N to 38°20’N and longitude 15°20’E to 15°50’E. It separates the Italian 

Peninsula (Calabria) (east) and Sicily (west) and links the Tyrrhenian Sea (north) and the Ionian Sea 

(south) (Fig. 1). The Strait is a fan-shaped channel (Fig. 1). It is ~40 km long, ~3 km wide in the north, 

and ~16 km wide in the south.  
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1.2.1 Hydrology  
 

1.2.1.2 Tide and current 
 

 

Figure 2 Distribution of tidal height, amplitude and phase, and the tidal current speed through the Messina Strait. Computed 
by DEFANT [1940]. 

 

The Messina Strait is characterised by irregular hydrodynamic conditions. Tyrrhenian and Ionian tides 

are practically opposite in phase, so that sea level oscillations are almost null in the Strait, while currents 

are very high (Fig. 2). On the sill, currents as high as 2.00 m/s were measured. From the harmonic 

analysis, the K1 (Lunar diurnal constituent) and M2 (Principal lunar semidiurnal constituent) 

components turned out to be the most significant. The former ranged roughly between 0.10 and 0.35 

m/s, the latter between 0.40 and 1.40 m/s. Direction of such velocities varied slightly with depth and 

location, but was predominantly aligned with the Strait’s axis. 
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Figure 3 Schematic representation of the longitudinal distribution of currents at the sill of the Messina Strait, during a tidal 
period, from DEFANT [1940]. Water mass in green is the Levantine Intermediate Water. Water mass in orange is the 
Tyrrhenian Surface Water. 



Page | 26  
 

Two water masses, the Tyrrhenian Surface Water and the colder and saltier Levantine Intermediate 

Water, encounter at the sill in the narrowest part of the Strait (Fig. 3). During the maximum tidal flow, 

the heavier Levantine Intermediate Water crosses the sill from the Ionian Sea to the Tyrrhenian Sea (3h 

to 5h in Fig. 3). The pycnocline is thus lifted at the sill and then depressed north of the sill. The 

depression generates a southward and a northward propagating bore. The northward propagating bore 

keeps propagating in the Tyrrhenian Sea; the southward bore is stopped by the sill. When the semi-

diurnal tide reverses to the maximum tidal flow from the Tyrrhenian Sea to the Ionia Sea, the southward 

propagating bore undergoes a hydraulic jump over the sill and into the south of the sill and propagates 

away from the sill [CASAGRANDE et al. 2009] (7h to 9h in Fig. 3). 

The wind causes both strong drift currents at the surface and upwelling of the waters from the Ionian 

Sea or from the Tyrrhenian Sea [SANTORO et al. 2002]. Moreover, the presence and the variable width 

of the sill result in a nonhomogeneous hydrodynamic regime along the Strait’s axis in terms of current 

strength and direction [SANTORO et al. 2002]. 
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1.2.1.3 Internal wave 

 

 

Figure 4 SAR image for the Internal Wave in the Messina Strait. Data from RADARSAT1 satellite with a clear internal 
solitary waves train signature seen on 21 October 2006, 16:48 UTC. Taken from CASAGRANDE et al. [2009]. 

 

Strong barotropic tidal flow, steep bathymetry, and stable stratified environment are the three required 

ingredients for internal wave generation [ZEILON 1912]. In the Messina Strait, when the southward 

propagating bore (chapter 1.2.1.3), propagates away from the sill, its leading edge will be steepen, 

because of the nonlinear effects, until disintegrating into a “train” of interfacial nonlinear short internal 

waves (Fig. 4), due to frequency and amplitude dispersions [WARN-VARNAS et al. 2007]. A well 

pronounced wave train may consists of 4 - 10 internal solitary waves with periods of 8 to 30 min. 

Propagation speed of the internal waves varies between 0.80 and 1.15 m/s [ALPERS and SALUSTI 1983; 

CASAGRANDE et al. 2010]. 
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1.2.2 Tectonic Settings of the Messina Strait 
 

1.2.2.1 Evolution of the African-Eurasian plate convergence zone over the last 35 Ma 

 

 

Figure 5 Evolution of the African-Eurasian plate convergence zone over the last 35 Ma. Image was taken and modified 
from FACCENNA et al. [2004] and FACCENNA et al. [2001].   



Page | 29  
 

The evolution of the African-Eurasian plate boundary zone can be dated back to 35 Ma to the Late 

Oligocene  [GUEGUEN et al. 1998; FACCENNA et al. 2001; FACCENNA et al. 2003; FACCENNA et al. 2004; 

GOES et al. 2004; GUARNIERI and PIRROTTA 2008] (Fig. 5a). Since then, the western Mediterranean Sea 

progressively opened from its initial location at the Ibero-European margin toward the southeast as a 

result of the trench retreat and slab roll-back [GUEGUEN et al. 1998; FACCENNA et al. 2001; FACCENNA 

et al. 2003; FACCENNA et al. 2004; GOES et al. 2004]. The trench retreat and slab roll-back process was 

probably initiated by a gravitational pull of the subducted slab [GOES et al. 2004], which was generated 

by an adequate amount of lithospheric material subducted at the Ibero-European margin since ~80 Ma 

[GUEGUEN et al. 1998; FACCENNA et al. 2001]. As a result, a system of slow African-Europe 

convergence, and fast subduction was developed [GUEGUEN et al. 1998; GOES et al. 2004].   

During the southeastward trench retreat and slab roll-back, the overriding plate was lengthened, 

accompanied by strong extensional forces [GOES et al. 2004], leading to the opening of the Liguro-

Provencal and the Tyrrhenian back-arc basins [FACCENNA et al. 2003]. Oceanic spreading started 

[GUEGUEN et al. 1998; FACCENNA et al. 2001]. The subducted slab, which was previously characterised 

by a shallow dip, became continuously steeper with the evolution of the plate boundary zone [FACCENNA 

et al. 2001; FACCENNA et al. 2003; FACCENNA et al. 2004]. 

From ~10 Ma (Late Miocene) onwards, the trench retreat was strongly enhanced (Fig. 5b). With the 

opening of the Tyrrhenian Sea [MONACO et al. 1996; GOES et al. 2004], the Calabro-Peloritani block, 

which builds up the present Calabrian Arc, moved away from the Sardinia-Corsica block toward its 

present position [GUEGUEN et al. 1998; FACCENNA et al. 2001; GOES et al. 2004]. As a part of the 

overriding plate, compressional and extensional forces already affected the Calabro-Peloritani block 

[MONACO et al. 1996; GOES et al. 2004].  

Between ~5 Ma to ~2 Ma (Pliocene) (Fig. 5c-d), the trench migrated rapidly [GOES et al. 2004]. The 

thrust process already shifted to the Ionian offshore [MONACO et al. 1996]. 
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1.2.2.2 Recent tectonic reorganization  

 

 
Figure 6 Sketch of the consequences of the recent tectonic change on the Sicily–Calabrian area. Lines and fills are explained 
in the legend. Taken from GOES et al. [2004]. 

 

During the last phase (1 – 0.5 Ma) of trench migration, tectonics of the south-central Mediterranean 

changed [GOES et al. 2004] (Fig. 6). To the north of Sicily, Africa–Europe convergence has transferred 

to a back thrust, in response to the arrival of African continental lithosphere at the trench. When Calabria 

docked between Apulia and Sicily, Calabrian trench migration and accompanying Tyrrhenian back-arc 

extension essentially almost stalled. A northeastward divergence between the Ionian section and the 

rest of the African plate -- manifesting itself as extension in eastern Sicily and the Sicily Channel -- 

may control the current eastward motions of Calabria and Apulia relative to Africa, now that large roll-

back displacements have ceased. Very strong deformation is recorded in the region between Europe, 

Africa, and Calabria, as plate boundaries are readjusting [GOES et al. 2004].  
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Figure 7 Overall tectonic setting of the Messina Strait, Southern Italy. The red box in (b) shows the range of (a). Modified 
from [ARGNANI and BONAZZI 2005; GUARNIERI 2006; CATALANO et al. 2008; ARGNANI et al. 2009a; POLONIA et al. 2011a; 
VITI et al. 2011a; DOGLIONI et al. 2012; GALLAIS et al. 2013]. MS, Messina Strait. SL, Sangineto line; TL, Tindari-Letojanni 
faults/Taormina Line. RIF, Rosolini–Ispica faults; AF, Avola fault; WF, Western Ionian Fault; EF, Eastern Ionian Fault; 
ASF, Acireale–S. Alfio faults; PF, Piedimonte fault; TF, Taormina fault; RCF, Reggio Calabria fault; ARF, Armo fault; SF, 
Scilla faults; SEF, S. Eufemia fault; CF, Cittanova fault; SRF, Serre fault; VF, Vibo fault; CVF, Capo Vaticano fault. SCF, 
Southern Calabria fault; FA, fault discovered by ARGNANI et al. [2009a]; MSF, Messina Straits fault. 
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Figure 8 (a) 3D sketch of the Sicilian-Ionian Sea transition zone, where the Etna volcano is emplaced along the dextral 
transtensional fault due to differential slab roll-back. (b) 2D view from above on the plate boundary zone. The differential 
trench migration, as well as the measured dips of the subducted slabs is displayed, showing a gentler dip west of the Malta 
escarpment and a steeper dip east of it. Images from DOGLIONI et al. [2001].  

 

The segment of the plate convergence zone, which is between the Hyblean Plateau (Sicily) and Apulia, 

moved further southeast compared to the other parts (Figs. 6, 7a, 8). This displacement has been 

assumed to be a result of a differential plate motion [DOGLIONI et al. 2001; GOES et al. 2004], which is 

a consequence of the development of a variable dip of the subducted slab caused by a different 

composition of the subducted lithosphere  [DOGLIONI et al. 2001; D'AGOSTINO and SELVAGGI 2004] 

(Figs. 6, 7a, 8). This differential plate motion is supposed to be regulated by the Malta Escarpment 

(Figs. 7a, 8), an old, re-activated and N-S oriented Mesozoic passive margin [DOGLIONI et al. 2001], 

and by the Tindari-Letojanni faulting system (Fig. 7a), a dextral transtensional zone formed across 

northeastern Sicily, to accommodate the differential motion between Sicily (Africa) and Calabria (Fig. 

7a). Motion along this zone decouples Sicily’s Peloritani corner from the Calabrian block, with which 

it has migrated across the Tyrrhenian basin (Fig. 7a). 

FACCENNA et al. [2001] and GUEGUEN et al. [1998] estimated a total amount of up to ~780 km 

lengthening/extension of the overriding plate, due to the trench migration in the last 35 Ma. They also 

calculated an average migration rate of 2.6 cm/a, with a maximum rate exceeding 5.6 cm/a during the 

last phase of the trench retreat and slab roll-back [FACCENNA et al. 2004].  

This young and changing tectonics seems to be associated with diffuse, strongly time-dependent and 

sometimes devastating seismicity, but details are not well understood due to the lack of the information 

concerning the comprehensive tectonic framework. 
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1.2.2.3 The Calabrian Arc (CA) 

 

The Messina Strait is situated in the inner Calabrian Arc (CA) (Fig. 7a), which is on the convergent 

boundary of the Africa-Eurasia plate [MONACO et al. 1996; D'AGOSTINO and SELVAGGI 2004; GOES et 

al. 2004; BILLI et al. 2008]. The Ionian lithosphere is subducted north-westward underneath the CA, 

resulting in complex deformation and the formation of an accretionary wedge, with foreland fold-and-

thrust belts extending along the entire plate boundary zone, since at least Neogene [TORTORICI et al. 

1995; MONACO et al. 1996; ANZIDEI et al. 1998; FACCENNA et al. 2003; FACCENNA et al. 2004; FERRANTI 

et al. 2007; BILLI et al. 2008; GUARNIERI and PIRROTTA 2008]. 

The CA (Fig. 7a) is a Cenozoic–Quaternary curved orogeny running from the NW-SE-trending 

Southern Apennines to the E-W-trending Sicilian Maghrebides [MALINVERNO and RYAN 1986; 

CATALANO et al. 1996; MARIOTTI and DOGLIONI 2000; FACCENNA et al. 2004; PATACCA and SCANDONE 

2007; POLONIA et al. 2011a; CARMINATI et al. 2012]. The central part of the CA is located on top of a 

narrow subduction zone, whose activity is now close to cessation [NERI et al. 2009], but still slowly 

retreating [D'AGOSTINO et al. 2011]. The Neogene–Quaternary evolution, southeastward migration, and 

curvature development of the CA have been all controlled by the migration and roll-back, respectively, 

of the subduction zone and Ionian slab, a fragment of oceanic lithosphere between the continental 

domains of the Adriatic to the northeast and Africa to the west [MALINVERNO and RYAN 1986; CARMINATI 

et al. 1998; WORTEL and SPAKMAN 2000; FACCENNA et al. 2001; SCROCCA et al. 2005; ASCIONE et al. 

2012].  

The CA consists of two main orogenic domains (Fig. 7a): i) the outer domain, including the Southern 

Apennines and Sicilian Maghrebides, and ii) the inner domain, including the Calabro-Peloritan belt, 

which occupies the regions of Calabria, northeastern Sicily, and parts of southern Tyrrhenian. 

The outer domain is mainly composed of deformed Meso-Cenozoic platform and basin sediments 

derived from the margins of the African and Adriatic continents and from the Neogene–Quaternary 

foredeep and thrust-top basins. Contractional phases in the Southern Apennines and Sicilian 

Maghrebides started in late Miocene time and lasted until early Pleistocene time as demonstrated by 

lower Pleistocene sediments suturing the outer front of the thrust-fold belt in the Sicily Channel 

[BUTLER and GRASSOT 1993]. Contraction may be still active as demonstrated, for instance, by the 1968 

Belice earthquake in central-western Sicily [MONACO et al. 1996; LAVECCHIA et al. 2007]. Post-
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orogenic extension followed the contractional phases since late Pliocene time in the Southern 

Apennines, where this tectonic regime is still active [MONTONE et al. 2004]. 

The inner domain of the CA is mainly composed of crystalline and metamorphic rocks overlain by a 

Mesozoic sedimentary cover. These units are, in places, unconformably overlain by Neogene 

sedimentary sequences. The inner units drifted away toward the southeast from the Sardinia–Corsica 

block during early Miocene time and accreted onto the outer domain of the CA [BONARDI et al. 2001; 

VIGNAROLI et al. 2008; OLIVETTI et al. 2010]. Since late Tortonian time, most of this tectonic edifice 

was subsequently stretched apart during the extensional phases that led to the formation of the 

Tyrrhenian back-arc domain [PEPE et al. 2000]. 

Recent GPS data show a rather heterogeneous velocity field along the CA for present times 

[HOLLENSTEIN et al. 2003; D'AGOSTINO and SELVAGGI 2004; SERPELLONI et al. 2007; BILLI et al. 2008; 

DEVOTI et al. 2008; BILLI et al. 2011; PALANO et al. 2011] with a marked kinematic divergence between 

Calabria and Sicily and active shortening in the Ionian section of the CA and in the south-Tyrrhenian 

(Fig. 7a). Several sectors of the CA and adjacent areas are seismically active as demonstrated by recent 

and historical earthquakes [CHIARABBA et al. 2005; BASILI et al. 2008; GALLI et al. 2008].  

 

1.2.2.4 The Siculo-Calabrian Rift Zone (SCRZ) 

 

The recent extension of the inner Calabrian Arc mainly occurred in the Siculo-Calabrian Rift Zone 

(SCRZ) (Fig. 7a). The SCRZ extends from the Tyrrhenian side of Calabria to the Ionian coast of Sicily 

[MONACO and TORTORICI 2000b]. An indicator for this extension is the ~370 km long seismogenic belt, 

well developed in the entire zone [TORTORICI et al. 1995; MONACO and TORTORICI 2000b; CATALANO et 

al. 2008]. It extends on both sides of the Messina Strait and is considered continuous throughout the 

water arm [TORTORICI et al. 1995; MONACO and TORTORICI 2000b].  

Various normal fault segments of 10 to 45 km length are part of this zone, which is supposed to be 

responsible for major seismic events in the region [MONACO and TORTORICI 2000b; CATALANO et al. 

2008] (Fig. 7a). Most of the faults show a NE-SW to NNE-SSW orientation, for example the Reggio 

Calabria fault and the Capo Vaticano fault [TORTORICI et al. 1995; MONACO and TORTORICI 2000b] 

(Fig. 7a). The faults striking ENE-WSW, e.g., the S. Eufemia fault and the Scilla fault (Fig. 7a), were 

interpreted as sinistral faults [TORTORICI et al. 1995; MONACO and TORTORICI 2000b]. In these areas, 
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differential extensions between the Aspromonte area and the Messina Strait  are balanced [MONACO 

and TORTORICI 2000b] (Fig. 7a). In the same manner, a dextral behaviour was attributed to NW-SE and 

NNW-SSE trending faults, which occurred in the inner side of the inner CA and between Mt. Etna and 

the Hyblean Plateau [MONACO and TORTORICI 2000b] (Fig. 7a). Recent activities of the faults in the 

SCRZ are indicated by deformed upper Pleistocene sediments, as the faults typically border Plio-

Pleistocene basins [TORTORICI et al. 1995; MONACO and TORTORICI 2000b].   

 

1.2.2.5 Tectonic activity in the Messina Strait area 

 

The extension in the Messina Strait can be dated back to 0.8 - 0.6 Ma, which is in agreement with the 

start of regional uplift [TORTORICI et al. 1995; MONACO and TORTORICI 2000b; CATALANO et al. 2008; 

ARGNANI et al. 2009a]. From fault investigations as well as GPS velocity measurements, an overall 

extensional strain at a rate of 1.5 - 3.4 mm/a in a WNW-ESE to NW-SE direction can be assumed 

[D'AGOSTINO and SELVAGGI 2004; FERRANTI et al. 2007] (Fig. 7a). The region is generally viewed as a 

graben structure, as a subsidence of 1 mm/a has been measured in the Strait and numerous faults border 

the Strait [BOTTARI et al. 1989a; DE NATALE and PINGUE 1991; AMORUSO et al. 2002a]. Nevertheless, 

the graben structure theory is still under discussion due to the lack of investigations, especially in the 

offshore area [BOTTARI et al. 1989a; ANZIDEI et al. 1998; ARGNANI et al. 2009a]. 

Different theories for the active extension have been proposed. In all cases, extension is considered to 

be strongly associated with the development of differential trench retreat and slab roll-back at the plate 

boundary zone [D'AGOSTINO and SELVAGGI 2004; GOES et al. 2004; BILLI et al. 2008] (Fig. 7a, 8). Based 

on this, the differential motion of Calabria in comparison to Sicily as well as the active rifting of the 

Messina Strait may be the result of slip partitioning in the overlying forearc [D'AGOSTINO and SELVAGGI 

2004]. A similar theory assumes that the Sicilian plate boundary zone and thrust front may have shifted 

into the Tyrrhenian Sea [D'AGOSTINO and SELVAGGI 2004; GOES et al. 2004] (Fig. 7a). This assumption 

is based on observations of recent volcanic activity of the Aeolian Islands to the north of Sicily [GOES 

et al. 2004]. Within this system, the Strait area may act as a diffuse transfer zone, where dextral 

deformation outbalanced the differential motion of the plate boundary zone [GOES et al. 2004]. An 

extension of 1 - 2 mm/a would be a result, which is very similar to the observed amount of extension 

in the Messina Strait [GOES et al. 2004]. Furthermore, this theory also explains the differential motion 

of Calabria in comparison to Sicily [GOES et al. 2004]. However, the differential motion between 
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Calabria and Sicily is a matter of ongoing debate. On one hand, researchers suppose that differential 

motion exists based on modern GPS data [D'AGOSTINO and SELVAGGI 2004; GOES et al. 2004] (Fig. 7a). 

On the other hand, ANZIDEI et al. [1998] came to the conclusion that no significant difference can be 

identified in older GPS measurements from 1987 to 1994. Based on the extensional movement, a third 

theory has been put forward, which assigns the extension and the accompanying fault activities to the 

regional uplift [VALENSISE and PANTOSTI 1992; MONACO et al. 1996]. 

 

1.2.3 Turbidity Currents in the Messina Strait 
 

The shelves of the Messina Strait are very narrow (<1 km). Short, ephemeral streams can deliver 

sediment from the mountain ranges of Sicily and Calabria almost directly to the submarine slopes. This 

can generate hyperpycnal flows [MULDER and SYVITSKI 1995]. Turbidity currents may originate from 

high sediment fluxes at river mouths during floods, resulting in hyperpycnal flows that either bypass 

the narrow continental shelf or become trapped on the shelf to produce deposits subsequently mobilized 

by slope failures [MITCHELL 2005]. Some cores containing turbidities have actually been retrieved in 

the Messina Strait [SELLI et al. 1979]. Evidence for the generation of one or more turbidity currents 

associated with the 1908 earthquake was suggested by the breakage of telegraph cables crossing 

submarine channels on the abyssal Messina cone [RYAN and HEEZEN 1965]. 

Many channel heads at depths shallower than 100 m can be directly linked with particular onshore 

streams. As the local sea level dropped by ~140 m during the LGM (Last Glacial Maximum) [LAMBECK 

and PURCELL 2005], the uppermost parts of the channels would have connected with river valleys 

[SHEPARD 1972; PIPER and NORMARK 2009]. Although slumps and slides are common, the absence of 

scarps at the heads of the gullies and channels suggests that they were not formed by slope failure 

[FARRE 1983] or the failure of sediment accumulations at river mouths [CONWAY et al. 2012]; their 

association with rivers suggests a hyperpycnal origin [CASALBORE et al. 2011], although not every river 

discharge must necessarily result in hyperpycnal flow. In some cases temporary deposition near river 

mouths may occur, the deposits being subsequently remobilised during high-energy events [MITCHELL 

2005]. 

According to GOSWAMI et al. [2014], the density and spatial organization of channels and gullies in the 

Messina Strait differ on opposite sides of the basin, channel density being higher on the Sicilian than 

the Calabrian side, and channel density being also more variable along the Sicilian coast (Fig. 1a). This 
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may at least partly relate to spatial variations in the flux of sediments from land. However, the lack of 

channels on the Calabrian side seems to coincide with the main fault escarpments. The evolution of 

these faults may have somehow impeded the development of a stable channel network. Unlike some 

other more enclosed rift basins (e.g. the Eilat sub-basin in the northern Gulf of Eilat/Aqaba), there is 

relatively little evidence of modern turbidities accumulating within the Messina Strait, a feature it has 

in common with the Aqaba sub-basin in the northern Gulf of Eilat/Aqaba [TIBOR et al. 2010]. Regional 

uplift in the north maintains a steep basin gradient, causing turbidity currents to bypass the basin on its 

way to the Ionian Trench further south. 

 

1.3 Previous Research on Active Tectonic Structures in the Messina 

Strait 
 

While the overall tectonic setting of the area around the Messina Strait has intensely studied in the past, 

only very limited direct observation of active tectonic structures is available in the Messina Strait itself. 

This is mainly caused by a very difficult setting for seismic data collection. The Messina Strait is too 

narrow for running straight lines across the Strait with a long streamer but such lines are needed for 

imaging faults parallel to the axis of the Messina Straits. Seismic data collection is further complicated 

by heavy ship traffic and strong currents. Hence, only a few surveys were conducted in the past. 

DOGLIONI et al. [2012] reported a blind SE-dipping normal fault bounding the northernmost part of the 

Messina Strait, named Messina Strait Fault (MSF in Fig. 7a). It gradually disappears northeastward and 

continues as NW-dipping Scilla fault (SF in Fig. 7a). FERRANTI et al. [2007] thought that there is a 

cumulative slip rate of ~0.5 mm/yr on this Scilla fault, with coseismic slip of 1.5 - 2 m, hinting at the 

possibility of 6.9 - 7.0 Mw earthquakes. 

In the northern part of the Messina Strait, a W-dipping fault (FA in Fig. 7a) was identified by ARGNANI 

et al. [2009a]. It is located on the Calabrian side and connected to the fault system onshore near Reggio 

Calabria. The fault can be dated back to Late Pliocene-Early Pleistocene.  

In the southern part of the Messina Strait, approaching southwest Calabria, a 30 km-long W-dipping 

fault (SCF in Fig. 7a) is outcropping at the sea floor [ARGNANI et al. 2009a]. It trends NW-SE and 

represents the longest lineament within the Messina Strait. However, the undisrupted and subparallel 

Plio-Quaternary strata seen on seismic profiles is an indication against the occurrence of active faults. 
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In southern Calabria (Fig. 7a), faults were active during the Late Pleistocene-Holocene [TANSI et al. 

2007]. Ongoing investigations by different institutions will probably cast light on this fundamental 

issue.  

In Sicily (Fig. 7a), faults were active during the Late Pleistocene-Holocene [AZZARO and BARBANO 

2000]. The Malta Escarpment is generally considered as being active [MONACO and TORTORICI 1995] 

during the Holocene, which was confirmed by reflection seismic data [HIRN et al. 1997]. This fault has 

been considered as a possible source of the 1693 Sicily earthquake [HIRN et al. 1997; SIROVICH and 

PETTENATI 1999; ZOLLO et al. 1999].  

Taormina Fault has been proposed by many authors [BONFIGLIO 1981; GHISETTI and VEZZANI 1982; 

SCANDONE et al. 1991; FIRTH et al. 1996; STEWART et al. 1997a; RUST and KERSHAW 2000; ANTONIOLI 

et al. 2003; CATALANO and DE GUIDI 2003; ANTONIOLI et al. 2006a; ANTONIOLI et al. 2006b], being 

located offshore northeast coastline of Sicily (TF in Fig. 7a). Based on coastal geomorphology, the TF 

has been inferred to be an NNE-SSW trending, E-facing, active extensional fault [GHISETTI and VEZZANI 

1982; SCANDONE et al. 1991; RUST and KERSHAW 2000]. It is in the Siculo-Calabrian Rift Zone (SCRZ) 

[BONFIGLIO 1981; FIRTH et al. 1996; STEWART et al. 1997a; RUST and KERSHAW 2000; ANTONIOLI et al. 

2003; CATALANO and DE GUIDI 2003; ANTONIOLI et al. 2006a; ANTONIOLI et al. 2006b] (Fig. 7a).  

Therefore, the TF is regarded as a structure which is responsible for the formation of the Holocene 

paleo-shorelines, the coastal uplift, the abrupt coastal coseismic displacements, and the steps/flights of 

the upper Pleistocene marine terraces along the Taormina coast. 

The TF is considered as an important connecting fault in the SCRZ, linking the southern Calabria rifting 

branch to the southeastern Sicily rifting branch [STEWART et al. 1997b; MONACO and TORTORICI 2000b; 

CATALANO and DE GUIDI 2003; CATALANO et al. 2008]. This connection would let the TF be one of the 

most hazardous and largest seismic gaps in Italy, a potential site for a large future earthquake, [STEWART 

et al. 1997b; NERI et al. 2004]. A very low-level of seismicity (Mw ≤ 3.5) [AZZARO and BARBANO 2006] 

and some stronger events (e.g. the March 28th, 1780 event, Io = VII–VIII MCS, Mw = 5.6) [AZZARO et 

al. 2007] might be evidences for this characteristic.  

 

1.4 Previous Research on the Source of the 1908 Messina Earthquake 

and Tsunami 
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1.4.1 Possible Source Models for the 1908 Messina Earthquake  
 

Several  source models have been proposed for the 1908 Messina earthquake; these models show 

significant differences in fault parameters including strike, dip and length of the fault [SCHICK et al. 

1977; CAPUTO 1979; MULARGIA and BOSCHI 1983; BOTTARI et al. 1986; CAPUANO et al. 1988; BOSCHI 

et al. 1989a; DE NATALE and PINGUE 1991; VALENSISE and PANTOSTI 1992; PIATANESI et al. 1999; TINTI 

et al. 1999a; PINO et al. 2000; AMORUSO et al. 2002a; MICHELINI et al. 2005; PINO et al. 2009a] (Fig. 

1a). 

Based on inversion of the levelling data, [MULARGIA and BOSCHI 1983] initially envisaged a model 

being represented by the displacement on two normal faults, a low-angle, E-dipping fault on the Sicilian 

side of the Strait, and a high-angle, W-dipping fault on the Calabrian side (Fig. 1a). Successively, many 

inversion models proposed for the causative fault show various geometric realizations of the blind low-

angle E-dipping fault [CAPUANO et al. 1988; BOSCHI et al. 1989a; DE NATALE and PINGUE 1991; 

VALENSISE and PANTOSTI 1992; AMORUSO et al. 2002a; VALENSISE et al. 2008]. Numerical modelling 

simulations based on the E-dipping fault [TINTI et al. 2001; TINTI and ARMIGLIATO 2003b] show that 

the tsunamigenic earthquake source must have been placed under the Messina Strait, where it caused 

subsidence of the seafloor, and extends under the Ionian Sea to the south of the Strait. 

AMORUSO et al. [2002a] applied a nonlinear approach to draw the faulting mechanism by inverting P-

wave first arrivals and levelling data simultaneously. This method could improve the estimation of the 

strike, the dip and the slip of a source fault and determine the location, the width and the length of that 

fault. Their model is a ∼30 km long, N-S-striking fault, right along the Straits (Fig. 1a). Moreover, in 

order to evaluate the expected shaking to the pillars of a planned bridge over the Straits, TAYLOR and 

FRANCIS [2009] proposed a summary model centred on the E-dipping fault. 

Based on the macroseismic scenario and on structural and morphotectonic data, there is a different view 

relating the 1908 event to the rupture along NE-trending, W-dipping faults on the Calabrian side 

[SCHICK et al. 1977; GHISETTI 1984a; BOTTARI et al. 1986; GHISETTI 1992b; WESTAWAY 1992; TORTORICI 

et al. 1995; BOTTARI et al. 2008]. Actually, the area of the greatest damage was in Calabria, where 

subsidence and ground fractures were documented [MONACO and TORTORICI 2007; BLUMETTI et al. 

2008]. This second interpretation is compatible with the geological structure of the Straits, 

characterized by master faults on the Calabrian side [GHISETTI 1984a; MONTENAT et al. 1991; TORTORICI 

et al. 1995; FERRANTI et al. 2008] and by larger long- and short-term uplift patterns in southern Calabria 
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than in northeast Sicily [CATALANO et al. 2003; FERRANTI et al. 2007]. However, analogue modelling 

of the structural architecture of the Strait [BONINI et al. 2011] suggests that high-angle normal faults in 

southern Calabria represent antithetic structures and are linked to a low-angle E-dipping master fault, 

which is thought to be the source fault of the 1908 Messina earthquake. 

ALOISI et al. [2013] demonstrates that levelling data alone cannot discriminate between two oppositely 

dipping fault models. Thus, their role as a keystone for modellers is untenable. However, new 

morphotectonic and geodetic data indicate that the Armo Fault (Fig. 7a) has been very active recently 

and is currently accumulating strain [ALOISI et al. 2013]. Surface observations, together with appraisal 

of macroseismic intensity distribution, available seismic tomography and marine geophysical evidence, 

give credit to the hypothesis that the Armo fault and possibly the S. Eufemia fault are part of a major 

crustal structure that slipped during the earthquake (Fig. 1a, 7a). 

 

1.4.2 Possible Sources for the 1908 Messina Tsunami 
 

Since the tsunami was assumed to be triggered by the seismic shock, tsunami modellers built up models 

on the most common fault solution, but showed a misfit between the simulated results and the observed 

data, especially that the calculated largest run-up heights appeared in the northern Messina Strait, 

whereas the largest observed values occurred in the south [TINTI et al. 1999b; TINTI and ARMIGLIATO 

2003b]. Therefore, the modellers modified the fault solution, e.g. adjusting the heterogeneity [TINTI et 

al. 1999b], and obtained a more accurate model. Still, no fault solution comes up with a consistent 

explanation for both the earthquake and the tsunami [TINTI et al. 1999b; GERARDI et al. 2008]. 

Since the proposed seismogenic faults could not explain the observed run-up heights of the tsunami, 

BILLI et al. [2008] suggested an alternate solution for the triggering mechanisms of the 1908 Messina 

tsunami. BILLI et al. [2008] recalculated the possible source region of the tsunami (Fig. 1a) based on 

tsunami travel times and run-up values described by different scientists shortly after the event, 

especially by PLATANIA [1909],. For this purpose, BILLI et al. [2008]used a backward ray-tracing 

method, where tsunami travel time data are converted into distances, based on the assumption that the 

earthquake and tsunami were triggered more or less simultaneous [BILLI et al. 2008].  

The predicted tsunami source area lies in the Ionian Sea off Giradini on the Sicily coast and off Lazzaro 

on the Calabria Coast [BILLI et al. 2008] (Fig. 1a). As the observed run-up heights of the tsunami cannot 

be explained by the suggested seismic fault solutions [TINTI and ARMIGLIATO 2003b; BILLI et al. 2008; 
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FAVALLI et al. 2009b], BILLI et al. [2008] strongly postulated a landslide induced tsunami. Their 

argument is based on a calculation method developed by OKAL and SYNOLAKIS [2003], and they intended 

to find a massive landslide in the area of the supposed tsunami source region, visible in a seismic image 

and bathymetry data.  

However, ARGNANI et al. [2009a] strongly doubts the occurrence of a large landslide in this part of the 

Messina Strait. They argued that the seismic image used by BILLI et al. [2008] is of a bad quality and 

that their bathymetry data do not show clear landslide evidence. New high-resolution seismic and 

bathymetric data clearly show that the features interpreted by BILLI et al. [2008] do not represent a 

young landslide [ARGNANI et al. 2009b; GROSS et al. 2014]. GERARDI et al. [2008] did the same 

calculations with slightly different data, but came up with the conclusion that the 1908 Messina tsunami 

was a fault induced tsunami. Despite this, ARGNANI et al. [2009a] did not find any reliable arguments 

against the backward ray-tracing method used by BILLI et al. [2008].  
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2 OBJECTIVES 
 

The main objective of this thesis is to analyse neo-tectonic features in the Messina Strait and associated 

hazards. This is done based on new dense high-resolution acoustic data set collected during RV Meteor 

Cruise M86/2 in Dec. 2011/Jan 2012 [KRASTEL et al. 2014]. Near-surface faults were mapped and 

analysed based on the new data. The activities of selected faults were reconstructed in order to address 

the current activity. Derived input parameters were used for numerical tsunami modelling. 

Specific objectives of the thesis are:  

i) Characterization of fault patterns and their structural relevance to the overall tectonic 

framework of the inner Messina Strait.  

How are faults distributed in the Messina Straits? What types of faults can be identified? How 

do they fit to the overall tectonic framework? 

ii) Assessing the graben structure of the inner Messina Strait. 

Is it correct to characterize the Messina Strait as graben structure? How was this graben 

structure formed?  

iii) Verification / Falsification of the proposed submarine Taormina Fault. 

Is it possible to identify or exclude the proposed Taormina Fault on the new data?  

iv) Analyzing the past and recent activity of the newly-discovered Fiumefreddo - Melito di 

Porto Salvo Fault Zone in the outer Messina Strait. 

What was the evolution of the Fiumefreddo - Melito di Porto Salvo Fault Zone? Is it active in 

recent times and therefore a potential source for tsunamis? What was the relationship between 

Fiumefreddo - Melito di Porto Salvo Fault Zone and the overall tectonics, especially in recent 

time?  

v) Tsunamigenic potential of the newly-discovered Fiumefreddo - Melito di Porto Salvo 

Fault Zone in the outer Messina Strait. 

Can the newly-discovered Fiumefreddo - Melito di Porto Salvo Fault Zone generate tsunamis? 

How large may such tsunamis get?  
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3 DATA AND METHODOLOGY 
 

3.1 Acquisition and Processing of Seismic and Hydro-Acoustic Data 
 

 

Figure 9 Bathymetry of the Messina Strait with 2D seismic and hydro-acoustic survey lines (orange and yellow lines). 
Survey lines in yellow are selected to be shown in this thesis. 
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From December 27th, 2011 to January 17th, 2012, a new high-resolution 2D seismic and hydro-acoustic 

dataset was acquired during RV Meteor Cruise M86/2. The Messina Strait was one of the survey targets 

during Cruise M86/2. Data (Fig. 9) were collected by means of a bathymetric multi-beam echo sounder, 

a sediment echo sounder, and a high-resolution 2D reflection seismic system. Additional high-

resolution bathymetric data collected in the frame of the MAGIC project (Marine Geohazards along the 

Italian Coasts, CHIOCCI and RIDENTE [2011]) were assessed for this study as well.  

 

3.1.1 Bathymetric Multi-Beam Echo Sounding Data 
 

RV Meteor’s hull-mounted Kongsberg-Simrad EM122 deep-water bathymetric multi-beam echo 

sounder was used to acquire new bathymetric data. Frequencies of 12 kHz and 432 soundings per swath 

can be transmitted at the Mills cross configured transducer array. The soundings per ping are duplicated 

by using a multi-ping mode (two swaths per ping); the pings are transmitted with a small difference in 

along-track tilt, thereby improving along-track resolution. An angular coverage sector of up to 150° 

results from this configuration, with a focal length equal to six times the water depth (assuming a flat 

seafloor). Bathymetric data were processed with the open source software package Multi-Beam 

System® (version 5.2) and displayed by the Generic Mapping Tool® (GMT, version 4.9) and Global 

Mapper (Blue Marble Geographics, version 12).  

 

3.1.2 Sediment Echo Sounding Data 
 

The sediment echo sounder system we used was the Atlas PARASOUND system P70. This system 

applies the so-called parametric effect. Three signals are recorded: the primary high frequency signal 

(18 kHz; PHF), the secondary low frequency signal (selectable 0.5 to 6.0 kHz; SLF) and the secondary 

high frequency (selectable 36.5 to 42 kHz; SHF). In this thesis, only the SLF signal was used in order 

to image the upper tens of meters of the sedimentary succession. The SLF frequency was set to 4 kHz. 

ps32sgy® (version 1.5.1) and Kingdom Suite® (version 8.6) were used to process and display the data, 

respectively. 
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3.1.3 High-Resolution 2D Reflection Seismic Data 
 

High-resolution 2D reflection seismic data were collected by using 162.5 m-long, 104-channel digital 

Geometrics GeoEeL streamer. This streamer is capable of recording high-resolution seismic data, as its 

group interval is only ~1.56 m. The seismic signal was generated by a 1.7 l GI gun, operated in harmonic 

mode and a shot interval of 4 s. With a cruise speed of ~4 knots, this results in a shot spacing of ~8 m; 

sub-bottom penetration was up to 1 s TWT (Two-Way-Travel-Time).  This configuration enables the 

collection of high-resolution data in both shallow and deep water. 90 two-dimensional seismic profiles 

with a total length of ~1000 km were acquired in the Messina Strait (Fig. 9).  

 

 

Figure 10 2D seismic processing flow chart. 
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The processing steps include geometry setup, binning, band-pass filtering (10/20/600/1000 Hz, 

assumed for low truncation frequency, low cut frequency, high cut frequency, and high truncation 

frequency, respectively), Normal Move-Out (NMO) corrections, despiking, stacking and time-

migration (Fig. 10). The lateral bin size was set to 2 m, which results in an average fold of 14. Due to 

the relative short length of the streamer system, the system is not capable for a dedicated velocity 

analysis. Therefore, a constant sound velocity of 1500 m/s was applied during NMO corrections and 

data migration. Gedco Vista Seismic Processing® (Schlumberger, version 11) and IHS Kingdom Suite® 

(version 8.6) were used for processing and interpretation. 

 

3.1.4 Special Processing of the Hydro-Acoustic Data 
 

3.1.4.1 “mbeditviz” used in Multi-beam data processing  

 

During the Cruise M86/2, parts of the multi-beam data were already processed. The automatic cleaning 

tool “mbclean” was used to remove noise during initial processing. Afterwards, in the lab processing, 

we used MB-system tool “mbeditviz” instead of “mbclean”. “mbeditviz” is an interactive and therefore 

time-consuming cleaning tool, but without the risk of erasing real data in contrast to “mbclean”.  
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Figure 11 Velocity correction in bathymetry processing. [Left] Uncorrected bathymetry grid generated by “mbeditviz” with 
the corresponding editing window (underneath). At least three seafloor surfaces can be observed, due to the strong 
downward dip of the outer beams. [Right] Same area and editing window as on the left images, but velocity corrected using 
a SVP-file. Only one seafloor is visible. 

 

“mbeditviz” is an interactive editing tool deleting noise/spikes resulting from false soundings and 

inaccurate overlaps of data received from multiple surveys (Fig. 11). This tool is very handy, as it 

visualizes every single data point received within a certain editing area. Data points are visualized as 

3D data cloud that can be examined from variable perspectives. The different editing areas can be 

picked from a temporary bathymetry grid (Fig. 11) – generated by “mbeditviz” from the selected multi-

beam data package – which in addition works as an overview map to comprehend changes while editing, 

as these changes are displayed on the grid immediately. “mbedit”, a predecessor of “mbeditviz”, is 

another possible editing tool, but only offers the possibility to check every single beam for noise/spikes. 

Therefore, only “mbeditviz” was used.  

During editing, it was revealed that parts of the data show a huge downward dip of the outer beams 

(Fig. 11). This type of error is not observable in the on-board processed data, which were processed 

using an on-board measured sound-velocity-profile (SVP-file). Within this thesis, the ‘mbvelocitytool’ 
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was used to check the SVP-file for its accuracy, before using it to correct the data. The result can be 

observed in Fig. 11, showing a successful corrected bathymetry grid. 

3.1.4.2 Frequency adjustment before migration 

 

 
Figure 12 Frequency adjustment before migration. [Upper] migrated profile with an OBPF low cut frequency of 10/20 Hz 
before migration. [Lower] migrated profile with an OBPF low cut frequency of 20/40 Hz before migration. An artificial 
reflector can be noticed above the seafloor reflector in the lower image. No increase/decrease of the S/N-ratio within the 
sediment strata is observable comparing the upper and lower image. 

 

Prior to the migration, an Ormsby Band Pass Filter (OBPF) was applied, which allows comparing the 

differences in the migration with varying low cut frequency values. In Fig. 12, two migrated images are 

presented with an OBPF of 10/20 Hz and 20/40 Hz low truncation/cut frequency and 600/1000 Hz for 

the high cut/truncation frequency not showing any differences within the sub-surface reflectors. The 

section with the 20/40 Hz low truncation/cut frequency, however, shows an artificial reflector directly 
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above the seafloor. Therefore, the OBPF was kept in a very wide range as already used during the pre-

processing. A SEGY-file was exported after migration, which was imported to the software KINGDOM 

Suite for further interpretation. 

3.1.4.2 “Kill Trace” in 2D seismic processing 

 

 
Figure 13 “Kill Trace” in 2D seismic processing. The upper image displays the data after 2D despike. The middle image 
shows how the kill trace was applied to the data set. In the lower image, the result can be observed, showing a strong increase 
of the S/N-ratio as most of the assembly lines are erased. 

 

After data despike, noisy sections were still observable within the first 40 channels of the profiles P803 

to P812 (Fig. 13). Therefore, noise traces were erased using the kill-trace command. This approach is 
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very helpful as it prevents deleting entire channels or shot-points. After the application of kill trace, a 

strong increase of the data quality could be noticed (Fig. 13). The noisy sections may be the result of 

temporarily caught fishing lines or varying noise from wave actions, as a result of slight variations of 

the towing depth of the streamer (temporarily shallower towing depth results in a higher noise level). 

3.2 Methods for Data Interpretations  
 

For ease of description, we divided the Messina Strait into two subareas – the inner Strait and the outer 

Strait (Fig. 9). Seismic profiles P207, P219, P1101 and P231 in the inner Strait and P234, P807 and 

P242 in the outer Strait were selected as representatives (Fig. 9) and shown in this thesis. They cover 

major faults and abundant minor faults and typically exhibit the seismic stratigraphic settings of the 

subareas as well.  

Fault interpretations were based on the following criteria: (a) abrupt offset of steeply dipping strata 

reflections, (b) tracking of fault plane reflections, (c) sudden vertical changes of the number and shape 

of the reflectors. 

 

  



Page | 51  
 

3.3 Cross-Section Restoration 
 

 

Figure 14 Cross-section restoration flow chart, taken from Cukur et al. (2011) 

 

The cross-section restoration is involved in order to figure out whether the tectonic structures identified 

in the outer Strait were recently active or not. Seismic profiles were converted to the depth sections, 

based on an assumed well (no real well information was available), and then imported to Move 2014.2® 

to restore the cross-sections. The restoring steps include backstripping and decompacting sedimentary 

layers (decompaction), restoring faults (move on fault), and unfolding (Fig. 14). Details are given in 

Chapter 6. 
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3.4 Numerical Tsunami Modeling 
 

Numerical modelling of tsunami was performed using a nonlinear shallow water code known as 

TUNAMI-N2 developed at the Tohoku University, Japan [GOTO et al. 1997]. TUNAMI-N2, which 

solves governing equations of water motions using the leap-frog scheme of Finite Differences on a 

Cartesian Coordinate system, has been validated using experimental and field data [SYNOLAKIS and 

BERNARD 2006] and has been applied to several world’s tsunamigenic zones [YALÇINER et al. 2004; 

HEIDARZADEH et al. 2009; SUPPASRI et al. 2011]. Fault parameters used for coseismic seafloor 

calculations are: Strike, dip, rake angles, top depth of the fault, length and width of the fault as well as 

the slip amount. 
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Abstract 
 

The exact location of the seismogenic fault of the 1908 Messina earthquake is still under debate, because 

of the unclear tectonic condition of the inner Messina Strait. In order to reconstruct and shed light upon 

the fault pattern of the inner Messina Strait, we acquired a new high-resolution 2D reflection seismic 

dataset. The data suggest that the inner Messina Strait is an angular graben. Surface faults in the graben 

strike in N-S and E-W directions. The N-S-trending surface faults are right-lateral transtensional faults 

and distribute along the Messina Canyon and the coastline off southern Calabria, dipping toward the 

Messina Canyon; E-W-trending surface faults are left-lateral transtensional faults and located in the 

northern inner Messina Strait off Calabria. Most of them dip toward the south. Several of these newly-

discovered surface faults fit to the suggested focal mechanisms of the 1908 Messina earthquake, but we 

were not able to identify the master fault of this event. The lengths of the fault planes (< 15 km) are too 

small to generate an earthquake of 7 Mw. The inferred Taormina Fault (TF) was considered as one of 

the most hazardous and largest seismic gaps in Italy. However, this fault has not been imaged on any 

seismic data set, even not in our new seismic data. Hence, we doubt the existence of the TF. 
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1 Introduction 
 

During the last decades, submarine hazards at continental margins and their consequences to coastal 

communities have been addressed and investigated by the scientific community [MORGAN et al. 2009]. 

The 1908 Messina earthquake (Mw = 7.1) and tsunami (run-up height > 10 m) is the most fatal event 

in Europe since then. Large areas of Southern Italy were affected, and ~80,000 [BARATTA 1910] to 

~100,000 [MERCALLI 1909] people were killed. However, no general agreement has been archived on 

the seismogenic/tsunamigenic fault of this event [AMORUSO et al. 2002a; TINTI and ARMIGLIATO 2003b; 

ARGNANI et al. 2009a]. There may be two main reasons: i) the Messina Strait shows a high geological 

complexity and the highest seismicity in Italy; ii) the limitation of available marine seismic data, such 

as the resolution of the data, the density of the data, etc, may lead to an insufficient and biased 

knowledge on the tectonics of the Messina Strait (Fig. MI-1). 
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Figure MI- 1 (a) Overall tectonic framework of Southern Italy. Modified from ARGNANI and BONAZZI [2005], GUARNIERI 
[2006], CATALANO et al. [2008], ARGNANI et al. [2009a], POLONIA et al. [2011a], VITI et al. [2011a], DOGLIONI et al. [2012], 
and GALLAIS et al. [2013]. MS, Messina Strait. SL, Sangineto line; TL, Taormina Line. RIF, Rosolini–Ispica faults; AF, 
Avola fault; WF, Western Ionian Fault; EF, Eastern Ionian Fault; ASF, Acireale–S. Alfio faults; PF, Piedimonte fault; TF, 
Taormina fault; RCF, Reggio Calabria fault; ARF, Armo fault; SF, Scilla faults; SEF, S. Eufemia fault; CF, Cittanova fault; 
SRF, Serre fault; VF, Vibo fault; CVF, Capo Vaticano fault; SCF, Southern Calabria fault; FA, fault identified by ARGNANI 
et al. [2009a]; MSF, Messina Straits fault. Red box shows the ranges of Fig. MI-2 and Fig. MI-7a. (b) Overview map of 
central Mediterranean Sea. Red box shows the range of (a). The meanings of the symbols used in the figure are shown in 
the LEGEND. 
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The Messina Strait (Stretto di Messina) is a NNE-SSW-trending channel, located in Southern Italy 

between the Italian Peninsula (Calabria) and Sicily (Fig. MI-1). Several hypotheses have been proposed 

for the structural pattern of the Messina Strait. 

SEGUENZA [1880] suggested the existence of a syncline, with flanks forming from the crystalline rocks 

outcropping along the opposite shores of the Strait. In contrast, DI STEFANO [1907] and TARAMELLI 

[1911] identified a normal faulting system, running NE-SW, confirming that the Strait is a tectonic 

trench. OGNIBEN et al. [1973] pointed out that this faulting system shows a left transcurrence. However, 

D'AMICO et al. [1973] proposed another hypothesis, as the position of the petrographically correlated 

leuco-granodiorite along the two shores of the Strait was not compatible with horizontal displacements. 

The genesis of the Messina Strait was related to a tectonic graben by means of geodetic surveys 

[CAPUTO et al. 1981] before and after the 1908 Messina Earthquake, marine geology and neo-tectonic 

studies [SELLI et al. 1979], as well as mesostructural and regional feature analysis [GHISETTI and 

VEZZANI 1984]. Specifically, GHISETTI and VEZZANI [1982] and MULARGIA et al. [1984b] considered the 

Strait as an angular graben; GHISETTI [1984b] regarded the Strait as a half-graben.  

As for the tectonic structures in the Strait, DOGLIONI et al. [2012] reported a blind SE-dipping normal 

fault, the Messina Strait Fault (MSF in Fig. MI-1), bounding the northeast coast of Sicily north of 

Messina. It gradually vanishes northeastward and transforms into the NW-dipping Scilla fault (SF in 

Fig. MI-1a). ARGNANI et al. [2009a] identified two SW-dipping faults: the FA (fault identified by 

ARGNANI et al. [2009a]) (Fig. MI-1a) and the Southern Calabria Fault (SCF in Fig. MI-1a). The FA is 

located near the Calabrian side and connected to the fault system onshore near Reggio Calabria 

[ARGNANI et al. 2009a]. The SCF is situated offshore near the southwestern tip of Calabria [ARGNANI et 

al. 2009a].  

The existence of the Taormina Fault offshore the northeast coastline of Sicily between Taormina and 

Briga (TF in Fig. MI-1a) has been proposed by many authors [BONFIGLIO 1981; GHISETTI and VEZZANI 

1982; SCANDONE et al. 1991; FIRTH et al. 1996; STEWART et al. 1997a; RUST and KERSHAW 2000; 

ANTONIOLI et al. 2003; CATALANO and DE GUIDI 2003; ANTONIOLI et al. 2006a; ANTONIOLI et al. 2006b]. 

Based on coastal geomorphology, the TF has been inferred to be a NNE-SSW-trending, E-facing, active 

extensional fault [GHISETTI and VEZZANI 1982; SCANDONE et al. 1991; RUST and KERSHAW 2000].  

The inferred TF is part of the Siculo-Calabrian Rift Zone (SCRZ) (Fig. MI-1a), a high-level seismicity 

belt with active seismo-tectonic deformation [BONFIGLIO 1981; FIRTH et al. 1996; STEWART et al. 1997a; 

RUST and KERSHAW 2000; ANTONIOLI et al. 2003; CATALANO and DE GUIDI 2003; ANTONIOLI et al. 2006a; 
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ANTONIOLI et al. 2006b].Therefore, the TF is regarded as a structure which is responsible for the 

formation of the Holocene paleo-shorelines, the coastal uplift, the abrupt coastal coseismic 

displacements, and the steps/flights of the upper Pleistocene marine terraces along the Taormina coast. 

The TF is considered as an important connecting fault in the SCRZ, linking the southern Calabria rifting 

branch to the southeastern Sicily rifting branch [STEWART et al. 1997b; MONACO and TORTORICI 2000b; 

CATALANO and DE GUIDI 2003; CATALANO et al. 2008]. This connection would let the TF be one of the 

most hazardous and largest seismic gaps in Italy, a potential site for a large future earthquake, [STEWART 

et al. 1997b; NERI et al. 2004]. A very low-level of seismicity (Mw ≤ 3.5) [AZZARO and BARBANO 2006] 

and some stronger events (e.g. the March 28th, 1780 event, Io = VII–VIII MCS, Mw = 5.6) [AZZARO et 

al. 2007] might be evidences for this characteristic.  

However, the existence and the exact location of TF has not been documented by means of geological 

or geophysical work, so far. ARGNANI et al. [2009a] was not able to image the TF by means of marine 

multi-channel seismic data as well.  

ARGNANI et al. [2009a] obtained the first high-resolution seismic grid in the Messina Strait and have 

identified some neo-tectonic features, like FA and SCF [ARGNANI et al. 2009a] (Fig. MI-1a), but they 

did not construct the tectonic pattern of the Messina Strait. To make further progress on the tectonic 

pattern of the Messina Strait, we launched the RV Meteor Cruise M86/2 in Southern Italy and collected 

new data. In this study, we constructed and analysed the near-surface fault pattern of the inner Messina 

Strait (see the range of the red box in Fig. MI-1a) based on the new high-resolution 2D seismic data. 

The specific objectives are i) characterization of tectonic features and their structural relevance for the 

tectonic framework of the Messina Strait, ii) assessing the graben structure of the Messina Strait, and 

iii) verification/falsification of the proposed submarine Taormina Fault. 
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2 Tectonic Setting 
 

The Messina Strait crosscuts the southern part of the inner Calabrian Arc (CA) and is situated in the 

Siculo-Calabrian Rift Zone (SCRZ) (Fig. MI-1a).  

The CA (Fig. MI-1a), connecting the Apennines to the northeast with the Sicilian-Maghrebian chains 

to the southwest developed during the Neogene-Quaternary Africa-Europe collision [BARBERI et al. 

1973; MALINVERNO and RYAN 1986; BOCCALETTI et al. 1990; PATACCA et al. 1990]. The African Plate 

subducts northwestward (~N20°W, 1-2 cm/yr following the MORVEL plate model) [DEMETS et al. 

2010] underneath the Eurasia Plate. Since the Pliocene, compressional structures of the inner arc were 

superseded by extensional faults, both longitudinal and transversal with respect to the arc, causing 

structural highs and marine sedimentary basins [GHISETTI and VEZZANI 1982]. The CA moved (5 - 6 

cm/yr) toward the east or southeast due to the roll-back of the subducting Ionian slab and the 

corresponding back-arc extension of the Tyrrhenian Basin [MALINVERNO and RYAN 1986; GUEGUEN et 

al. 1998; FACCENNA et al. 2004]. The slab roll-back velocities decreased (1-2 cm/yr) during the Middle-

Late Pleistocene as a result of tectonic reorganization [FACCENNA et al. 2001]. 

The SCRZ  is a ~370 km long normal fault system, which roughly runs N-S along the inner side of the 

inner Calabrian Arc, through the Messina Strait and along the Ionian coast of Sicily [TORTORICI et al. 

1995; MONACO and TORTORICI 2000b; CATALANO et al. 2008] (Fig. MI-1a). Focal mechanisms of crustal 

earthquakes [PONDRELLI et al. 2006; SCARFI et al. 2009; D'AMICO et al. 2010; D'AMICO et al. 2011], 

structural analyses [TORTORICI et al. 1995; MONACO et al. 1997; MONACO and TORTORICI 2000b; 

JACQUES et al. 2001; FERRANTI et al. 2007; FERRANTI et al. 2008], and geodetic data (levelling data and 

GPS velocity data) [D'AGOSTINO and SELVAGGI 2004; GOES et al. 2004; MATTIA et al. 2009; D'AGOSTINO 

et al. 2011; PALANO et al. 2012] have documented a ~N115°E extension of the SCRZ (Fig. MI-1a), 

with rates of 3.6 ± 0.6 mm/yr. This extension is still ongoing and the normal faults have developed in 

southern Calabria and northeastern Sicily in response to this extension [BIANCA et al. 1999; MONACO 

and TORTORICI 2000b].  

Since the Middle Pleistocene, this extension has been accompanied by an intense regional uplift.  The 

uplift is almost uniform (1.0 mm/yr) on the Calabrian and the Sicilian sides of the Strait [BIANCA et al. 

1999; MONACO and TORTORICI 2004; CATALANO et al. 2008] and developed a series of marine terraces , 

as well as widespread raised Holocene shorelines [VALENSISE and PANTOSTI 1992; STEWART et al. 1997b; 

FERRANTI et al. 2007]. Moreover, local uplift may also occur at the footwalls of major faults, [CATALANO 
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and DE GUIDI 2003]. In southern Calabria, ~1.7 mm/yr of post-Middle Pleistocene uplift was 

partitioned into ~1 mm/yr due to regional processes and the residual due to displacements on the 

footwalls of major faults [WESTAWAY 1993; FERRANTI et al. 2007]. 

Various tectonic hypotheses of mechanisms, often contrasting, have been invoked to explain the 

extension and the uplift including : i) the back-arc stretching in the Tyrrhenian Sea; ii) the counter-

clockwise rotation of the Adriatic microplate, which has generated a compressive stress field at its 

western margin [D'AGOSTINO and SELVAGGI 2004; D'AGOSTINO et al. 2008]; iii) the Hellenic slab 

dragging eastward the entire Ionian-Calabrian domain; or iv) a dynamic balancing regional, deep-

induced uplift [GOES et al. 2004].  

The uplift is suggested to be an isostatic response to the detachment of the Ionian slab [WESTAWAY 1993; 

WORTEL and SPAKMAN 2000], or the decoupling of the upper crust from the underlying slab and the 

convective flow in the mantle wedge [DOGLIONI et al. 2001; GVIRTZMAN and NUR 2001]. Alternatively, 

the uplift may be caused by the asthenospheric flow occurring at the lateral edge of the roll-back of the 

Ionian slab [FACCENNA et al. 2011]. 

Meanwhile, geodetic measurements show that a subsidence occurs in the inner Messina Strait with a 

rate of ~1 mm/yr. GPS data implied that Sicily and Calabria move toward the northwest and northeast 

(Fig. MI-1a) with respect to the Eurasian plate, respectively, and Sicily moves northward with respect 

to Calabria [GOES et al. 2004; DEVOTI et al. 2011]. 

Therefore, the compressional, extensional and transcurrent processes coexist in the vicinity of the Strait 

[FACCENNA et al. 2003; GOES et al. 2004; PONDRELLI et al. 2006], which has been widely thought to 

account for diffuse, strongly time-dependent and sometimes devastating disasters in Southern Italy. 
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3 Data and Method 
 

From December 27th, 2011 to January 17th, 2012, a new high-resolution 2D seismic and hydro-acoustic 

dataset was acquired during RV Meteor Cruise M86/2 [KRASTEL et al. 2014]. The Messina Strait was 

one of the main targets during the cruise. Data were collected by means of a bathymetric multi-beam 

echo sounder, a sediment echo sounder, and a high-resolution 2D reflection seismic system. Additional 

high-resolution bathymetric data collected in the frame of the MaGIC project (Marine Geohazards 

along the Italian Coasts, CHIOCCI and RIDENTE [2011]) were assessed for this study as well. As the 

complex morphology of the inner Messina Strait restricted the use of sediment echo sounder data, this 

study is exclusively focused on bathymetric and 2D reflection seismic data.  

RV Meteor’s hull-mounted Kongsberg-Simrad EM122 deep-water bathymetric multi-beam echo 

sounder was used to acquire new bathymetric data. Frequencies of 12 kHz and up to 864 soundings per 

ping (2 swathes with up to 432 soundings) can be transmitted by the Mills cross-configured transducer 

array. An angular coverage sector of up to 150° results from this configuration, with a focal length 

equal to six times the water depth (assuming a flat seafloor). Bathymetric data were processed with the 

open source software package Multi-Beam System® (version 5.2) and displayed by the Generic 

Mapping Tool® and Global Mapper (Blue marble geographics). 

High-resolution 2D reflection seismic data were collected by using a 162.5 m-long, 104-channel digital 

Geometrics GeoEeL streamer. The seismic signal was generated by a 1.7 l GI gun, operated in harmonic 

mode. A sub-bottom penetration of up to 1 s TWT (Two-Way-Travel-Time) was achieved. This 

configuration enables the collection of high-resolution data in both shallow and deep water. Data 

processing was carried out by using the commercial software Gedco Vista Seismic Processing® 

(Schlumberger, version 11). The data processing includes geometry setup, binning, band-pass filtering 

(10/20/600/1000 Hz, assumed for low truncation frequency, low cut frequency, high cut frequency, and 

high truncation frequency, respectively), Normal Move-Out (NMO) corrections, despiking, stacking 

and time-migration. The lateral bin size was set to 2 m, which results in an average fold of 14. Due to 

the relative short length of streamer system, the system is not capable for a dedicated velocity analysis. 

Therefore, a constant sound velocity of 1500 m/s was applied during NMO corrections and data 

migration. 90 two-dimensional seismic profiles were acquired in the Messina Strait. IHS Kingdom 

Suite® (version 8.6) was used for data processing and interpretation. 
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Fault interpretations were based on the following criteria: i) abrupt offset of steeply dipping strata 

reflections; ii) tracking of fault plane reflections; iii) sudden vertical changes of the number and shape 

of the reflectors. We divided faults into major faults and minor faults. Major faults are those that could 

be traced on at least two parallel or subparallel profiles, while those usually only recognized on one 

single profile are minor faults. Major faults were subdivided into surface faults (marked as ‘SFxx’), 

intersecting the surface of the seafloor, and basement faults (marked as ‘BFxx’), cutting into the deeper 

strata and sedimentary structures close to the acoustic basement. Some of the faults cut both the seafloor 

and the strata directly above the acoustic basement.  

Seismic profile P207, P219, P231 and P1101 were selected as representative profiles (Fig. MI-2) 

covering most major faults as well as abundant minor faults. 
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4 Results 
 

4.1 Multi-beam swath bathymetry 
 

 
Figure MI- 2 Bathymetry (slope gradient) of the inner Messina Strait. MC, Messina Canyon [COLANTONI 1987]; SCC, 
South Calabria Canyon [RIDENTE et al. 2014]. Orange and yellow lines show the location of the seismic profiles. The profiles 
shown in this manuscript are marked in yellow. The red boxes show the ranges of Fig. MI-7b and Fig. MI-7c, respectively. 

     

The inner Messina Strait is a fan-shaped narrow passage, broadening towards the south; the narrowest 

part of Messina bends to the northeast (Fig. MI-2). The Strait is ~40 km long, and ~3 km and ~16 km 

wide in the north and south, correspondingly. From north to south, its depth gradually increases. The 

seafloor of the Strait gradually tilts (~3°) from north to south (Fig. MI-2). The seafloor shows a 

pronounced relief throughout the Strait area. 
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The most prominent morphological feature is the Messina/South Calabria Canyon (MC and SCC in Fig. 

MI-2) in the centre of the inner Messina Strait [COLANTONI 1987; RIDENTE et al. 2014]. The northern 

part of this canyon (MC) runs roughly N-S. It is ~1500 m wide and ~50 m deep. The canyon bends to 

the southeast between Taormina and Anna and is called SCC from there on. The SCC is ~1700 m wide 

and ~110 m deep. This master canyon system is fed by several narrow gullies running across a very 

narrow continental shelf and slope [RIDENTE et al. 2014] (Fig. MI-2). These gullies/canyons stretch in 

the Strait like leaf veins.  
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4.2 High-resolution 2D multi-channel seismic data 
 

4.2.1 Sedimentary architecture of the inner Messina Strait 

 

 
Figure MI- 3 (a) Seismic Profile P207 and (b) line drawing. Pink and black solid lines mark major surface faults and 
basement faults, respectively. Brown sold lines mark minor faults. Dashed lines show inferred continuations of faults. 
Vertical exaggeration is 8. See Fig. MI-2 and small inset map for location of profile. nfs_wMC, negative flower structure 
west of the Messina Canyon; nfs_uMC, negative flower structure under the Messina Canyon. 
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Figure MI- 4 (a) Seismic Profile P219 and (b) line drawing. Pink and black solid lines mark major surface faults and 
basement faults, respectively. Brown sold lines mark minor faults. Dashed lines show inferred continuations of faults. 
Vertical exaggeration is 8. See Fig. MI-2 and small inset map for location of profile. 
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Figure MI- 5 (a) Seismic Profile P1101 and (b) line drawing. Pink and black solid lines mark major surface faults and 
basement faults, respectively. Brown sold lines mark minor faults. Dashed lines show inferred continuations of faults. 
Vertical exaggeration is 8. See Fig. MI-2 and small inset map for location of profile. 
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Figure MI- 6 (a) Seismic Profile P231 and (b) line drawing. Pink and black solid lines mark major surface faults and 
basement faults, respectively. Brown sold lines mark minor faults. Dashed lines show inferred continuations of faults. 
Vertical exaggeration is 8. See Fig. MI-2 and small inset map for location of profile. 
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In general, the sediment of the research area shows a complex architecture (Figs. MI-3, MI-4, MI-5, 

MI-6). The complexity of the sedimentary architecture increases from south to north in the inner 

Messina Strait.  

The acoustic basement is imaged in relatively shallow sub-surface depth (Figs. MI-3, MI-4, MI-5, MI-

6). The total thickness (in s TWT) of the overlying strata varies between 0 s TWT and 0.4 s TWT 

(corresponding to 0 – 320 m, assuming a sediment velocity of 1500 m/s). Some parts of the acoustic 

basement directly outcrop at the seafloor (Figs. MI-4, MI-5, MI-6). From north to south, the depth of 

the acoustic basement increases (Figs. MI-3, MI-4, MI-5, MI-6). The acoustic basement shows similar 

characteristics as the seafloor surface. 

The sediments overlying the acoustic basement are heavily disturbed. Numerous faults are observed, 

which are described in the next chapter. Continuity of individual reflectors is poor. Several 

unconformities are observed on all profiles. The seismic facies of the southern inner Strait (the Strait 

area south of Briga and San Gregorio, Figs. MI-2, MI-5, MI-6) exhibits less disturbance than in the 

northern inner Strait (the Strait area north of Briga and San Gregorio, Figs. MI-2, MI-3, MI-4). 

Furthermore, slope fills and a channel fills have been recognized on the Sicilian side and in the Messina 

Canyon (Figs. MI-3, MI-4, MI-5, MI-6), respectively. The slope fill may extend offshore along the 

entire coast of northeast Sicily (Figs. MI-2, MI-3, MI-4, MI-5, MI-6). Other sedimentary structures 

such as small slumps and contourites are widespread (Figs. MI-3, MI-4, MI-5, MI-6), but not described 

in detail, as this study focuses on the tectonics of the inner Messina Strait. 
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4.2.2 Distribution of faults in the inner Messina Strait 

 

 
Figure MI- 7 (a) Newly-discovered near-surface faults (pink solid lines) in the tectonic framework of the inner Messina 
Strait. The location of faults previously described (in chapter 1.2.2) are shown in black: TL, Taormina Line; TF, Taormina 
Fault; RCF, Reggio Calabria Fault; ARF, Armo Fault; SF, Scilla Faults; SEF, S. Eufemia Fault; CF, Cittanova Fault; SCF, 
Southern Calabria Fault; MSF, Messina Straits Fault. Gray lines are seismic profiles. (b) Horizontal distributions of the 
newly-discovered near-surface faults (pink solid lines). (c) Horizontal distribution of the newly-discovered basement faults. 
See Fig. MI-2 for locations of maps shown on Fig. MI-7a and MI-7b. 
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Surface faults (SF01-20) can be traced across the entire Strait (Fig. MI-7b). Two general strike 

directions, N-S and E-W, can be identified. The N-S-trending faults are mainly located along the 

Messina Canyon (MC) (SF01-05) and in the southern inner Strait offshore Calabria (SF06-10), while 

the E-W-trending faults are situated in the northern inner Strait offshore Calabria (SF11-20). Basement 

faults (BF01-10) are clustered in the northern inner Strait. They mainly strike N-S (Fig. MI-7b). Table 

MI-1 summarizes the fault geometries of all major faults identified in the survey area. 
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Table MI- 1 Fault geometries in the inner Messina Strait. See locations in Fig. MI-7b. na, north azimuth; rhr, right hand 
rule; aada, average apparent dip angle; dd, dip direction; E. S. P., Equal-area stereo-graphic plots of the fault planes (strike, 
dip (rhr)). 

Fault name Length (m) Striking (°)(na) (rhr) aada (°), dd (quad) E. S. P. 

northern inner Messina Strait 

SF01 6000 45 37 E 
 

SF02 3300 18 22 E 
 

SF04 5400 211 26 W 
 

SF11 2300 284 36 N 
 

SF12 1600 279 36 N 
 

SF13 3300 80 32 S 
 

SF14 1600 230 31 N 
 

SF15 1700 50 22 S 
 

SF16 (reverse fault) 900 243 21N 
 

SF17 1400 85 51 S 
 

SF18 700 65 17 S 
 

SF19 900 72 46 S 
 

SF20 2900 279 22 N 
 

BF01 4400 30 13 E 
 

BF02 7200 30 47 E 
 

BF03 4400 223 15 W 
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Table MI-1 Continued 

Fault name Length (m) Striking (°)(na) (rhr) aada (°), dd (quad) E. S. P. 

BF04 9300 45 24 E 
 

BF05 3000 45 54 E 
 

BF06 3200 230 29 W 
 

BF07 1400 105 28 S 
 

BF08 1300 65 47 S 
 

BF09 2000 230 20 W 
 

BF10 3100 230 20 W 
 

nouthern inner Messina Strait 

SF03 4700 13 40 E 
 

SF05 12600 202 32 W 
 

SF06 12400 165 20 W 
 

SF07 11200 158 22 W 
 

SF08 10300 158 23 W 
 

SF09 6400 158 27 W 
 

SF10 5700 158 30 W 
 

 

In the northern inner Strait (Figs. MI-2, MI-7a), fourteen major surface faults (SF01, SF02, SF04 and 

SF11 to SF20) were identified (Fig. MI-7b; Table MI-1). SF01, SF02, and SF04 strike along the 

Messina Canyon in N-S direction and are characterized as channel boundary faults (Figs. MI-3b, MI-
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4b, MI-7b). They dip toward the canyon at low to intermediate angles (Table MI-1). SF01 and SF04 

are the longest faults in this northern inner Strait. Both can be traced for more than 5 km (Figs. MI-3b, 

MI-4b, MI-7b; Table MI-1) in the horizontal direction. Faults SF11-20 run offshore Calabria and reveal 

an E-W trend (Figs. MI-3b, MI-4b, MI-7b). These faults show the same strike direction as onshore 

mapped faults in southern Calabria. Most of them dip toward the south and host apparent dip angles of 

~30° (Table MI-1). SF17 is the steepest fault (apparent dip angle ≈ 50°) in the inner Strait (Table MI-

1). SF13 and SF14, as well as SF19 and SF20, exist in pairs as antithetic faults. Graben structure forms 

in-between the antithetic faults, with lengths of ~1 km, widths of ~500 m, and depths of ~50 m (Fig. 

MI-7b). SF16 is the only reverse fault in the research area (Fig. MI-7b).  

Basement faults in the inner Messina Strait are only identified in the northern inner Strait (Fig. MI-7c). 

BF02, BF05, and BF08 reveal a higher dip angle (apparent dip angle >45°) than the other basement 

faults (Figs. MI-3b, MI-4b, MI-7c; Table MI-1). Most of these faults dip toward the west. The most 

prominent basement fault is BF04 (Figs. MI-3b, MI-4b, MI-7c). It reveals the largest apparent 

displacement (~310 m) and its fault plane can be traced for ~9300 m (Table MI-1). 

Two negative flower structures have been identified in the inner Messina Strait (Fig. MI-3b). The 

negative flower structure under the Messina Canyon (nfs_uMC) is mainly composed of SF01, SF04, 

BF05, and BF06 (Fig. MI-3b). SF01 and SF04 are two channel boundary faults (Fig. MI-3b). Their 

fault planes are slightly concave upwards with a dip decreasing with depth. Their hanging walls are 

thicker than the footwalls. A series of roll-over or reverse drag anticlines and normal drag anticlines 

appear in the hanging wall of SF01 and SF04, respectively. Particularly, SF01 and BF04 are so close 

to each other (Fig. MI-3b) that the lower fault plane of SF01 superimposes on the upper fault plane of 

BF04 in the central-northern segments of these two faults, where the structural high west of these two 

faults becomes lower and wider from north to south along its strike direction (Figs. MI-3b, MI-7b). 

SF02 and BF04 seems to be the same fault. The northern segment of BF04, however, has no surface 

expression, while its southern segment, SF02, crops out at the sea floor (Fig. MI-4b). The negative 

flower structure west of the Messina Canyon (nfs_wMC) is composed by BF01-03 (Fig. MI-3b). 

In the southern inner Strait (Figs. MI-2, MI-7a), seven major surface faults (SF03 and SF05-10) were 

identified (Figs. MI-5b, MI-6b, MI-7a; Table MI-1). These faults strike N-S. SF03 and SF05 bound and 

dip toward the Messina Canyon at intermediate angles (Figs. MI-6b, MI-7b; Table MI-1). SF05 is the 

longest (~12.6 km) (Fig. MI-6b; Table MI-1) surface fault in the southern inner Strait. SF06-10 is a 

group of distributive/multiple/step faults, located on the slope offshore Calabria (Figs. MI-6b, MI-7b). 

They are arranged as stairs with subparallel westward dipping fault planes. The apparent dip angles 
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increase from SF06 to SF10 from 20 to 30 degree (Table MI-1; Figs. MI-5b, MI-6b). A series of normal 

drag anticlines appear in the hanging wall of SF06 (Fig. MI-6b). 

Due to intensive erosion in the inner Messina Strait [RIDENTE et al. 2014], the tectonic contributions to 

the apparent displacements of these faults are difficult to judge. Therefore, no apparent displacements 

are analysed in this study. 
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5 Discussion 
 

5.1 General seafloor morphology of the Messina Strait 
 

5.1.1 The formation of the canyons 

 

The bathymetric data show a feather-like submarine canyon system in the inner Messina Strait (Fig. 

MI-2). It incises the seafloor nearly along the axis of the entire inner Strait.  

In general, a canyon may form (among others) due to steep slope gradients, faulting structures, mass 

failures, and turbidity currents. In the inner Messina Strait, the seafloor shows a slope gradient of ~3°, 

which is steep enough for the generations of turbidity currents and mass failures. Turbidites have been 

identified in some cores in the Messina Strait [RYAN and HEEZEN 1965]. Frequent earthquakes in the 

Messina region are the most likely trigger for frequent turbidity currents. A large amount of sediments 

is transported to the Messina Strait by several streams and rivers onshore (Sicily and Calabria). Due to 

the absence of a shelf, canyons directly connect with onshore rivers in glacial and interglacial times. 

Hence, we expect the canyons to be active, i.e. sediment transport is ongoing through the canyons. This 

is supported by a single box corer taken during Cruise M86/2 in the axis of the Messina Canyon (MC), 

which contained major plastic pieces of waste products of civilization.  

The seismic data suggest that the geomorphology of some canyons is controlled by normal faulting 

structures, e.g. MC is bounded by SF01-05; the canyon bounded by SF13-14 and the canyon between 

SF19 and SF20 (Fig. MI-7b) are located on the Calabrian side in the northern inner Strait. As these 

boundary faults are transtensional faults, these canyons can be judged as graben structures. These 

grabens may be preferred pathways for turbidity currents and prone for canyon erosion, as the boundary 

surface faults are potential zones of weakness. These faults could partly explain the recent locations of 

these canyons. 

It is worth noting that the N-S-trending MC suddenly turns toward the southeast when it runs into the 

west Ionian Sea at the southern mouth of the inner Strait (Fig. MI-2). The seismic data, however, do 

not show any pronounced faulting structures close to this turn, which means that this sudden course 

change is not caused or coherent with major fault activity. We assume that MC might be forced to 

change its course by some joint canyons at the southern mouth of the inner Strait. These joint canyons 
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are located offshore northeast of Taormina (Fig. MI-2) and as wide as the MC. At their terminations, 

these canyons and the MC continue to extend southeastward as South Calabria Canyon (SCC) (Fig. 

MI-2).  

 

5.1.2 Sedimentation in the Strait 

 

In general, the thickness of the sediments on top of the acoustic basement in the inner Strait is thin (0 - 

300 m) and decreases from the axis of the Strait toward the Calabrian and the Sicilian sides of the Strait. 

On one hand, strong tidal currents [BRANDT et al. 1997] and internal waves [ARTALE et al. 1990] have 

been observed in the inner Strait area. They may prevent sediment from depositing [CACCHIONE et al. 

2002] on the slopes in the inner Strait. This may lead to insufficient sediment supply. On the other hand, 

turbidity currents [RYAN and HEEZEN 1965; SELLI et al. 1979] could contribute to the erosion of seafloor 

sediments. Deposition centres of these turbidity currents would be in the outer Messina Strait.  

Along the Ionian coast off Sicily, a continuous, E-dipping slope-front-fill has been identified (Figs. MI-

3, MI-4, MI-5, MI-6). The sediments of this slope-front-fill were probably brought from land by streams 

and rivers, which deposit their sediment freight along and perpendicular to the Ionian coast off Sicily 

(Fig. MI-2).  

 

5.2 Characterization of tectonic features and their structural relevance to the 

tectonic framework of the Messina Strait 
 

The negative flower structure has been identified in the inner Messina Strait (Fig. MI-3b), which may 

reflect that the inner Messina Strait is controlled by a transtensional regime. Faults in the Messina Strait 

are transtensional faults. The motions of these faults have both dip- and strike-slip components.  

A transtensional regime fits well to the tectonic framework of the Messina Strait (Fig. MI-7a). It has 

been widely acknowledged that the Messina Strait is undergoing a relative uniform NW-SE extension 

[RIUSCETTI and SCHICK 1975; TORTORICI et al. 1995; MONTONE et al. 1997; D'AGOSTINO and SELVAGGI 

2004; GOES et al. 2004; NERI et al. 2004; SERPELLONI et al. 2005; SERPELLONI et al. 2007; SERPELLONI 

et al. 2010]; the rates are ~3 mm/yr or ~65 nanostrains/yr [SERPELLONI et al. 2010]. This extension is 

controlled by an active stress regime: a minimum compressional stress (σ3), horizontally trending ca. 
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N115°E, and a maximum compressional stress (σ1), oriented subvertically [MONTONE et al. 2004; NERI 

et al. 2004]. This stress regime makes it possible to generate N-S- and E-W-trending transtensional 

faults. Subvertical σ1 could contribute to the strike-slip components of the motions of these faults. 

The relative motion between Sicily and Calabria may contribute to the formation and motion of these 

transtensional faults as well. GPS data [NERI et al. 2004; SERPELLONI et al. 2010] recorded that Sicily 

moves fast northward with respect to Calabria. Such motions may cause a regional right-lateral 

differential motion between Sicily and Calabria. Therefore, faults trending N-S are most likely right-

lateral transtensional faults, while their E-W-striking conjugate faults may be left-lateral transtensional 

faults. Our data, however, do not allow distinguishing between right- and left-lateral fault displacements. 

These interpretations, however, are consistent with the fault models (Fig. A2 in appendix) proposed by 

D'AGOSTINO and SELVAGGI [2004] based on the GPS data. 

In the southern inner Strait, a set of distributive/multiple/step faults are imaged offshore southern 

Calabria (Figs. MI-6b, MI-7a&b). We assume that the development of these faults may be a response 

to the extension and subsidence of the Strait area and the southeastward bending of the inner Calabrian 

Arc. 

Since the 1908 Messina earthquake and tsunami, macroseismic, seismological, and geodetic data 

[BARATTA 1910; BOSCHI et al. 1989b] show that the Strait area close to the narrowest section of the 

Messina Strait (close to Messina, Fig. 1a) is beyond doubt the most suitable location for the causative 

fault of the 1908 Messina earthquake [BILLI et al. 2008]. Based on our new seismic data, several newly-

discovered faults (Fig. MI-7) nicely fit to the suggested focal mechanisms of the 1908 Messina 

earthquake (Fig. 1a), but it is unlikely that one of them was really the master fault of this quake, as all 

faults are relatively small (<15 km). According to an empirical formula proposed by WELLS and 

COPPERSMITH [1994] (ܯ = 5.08 + 1.16 ∗ log	(ܴܵܮ) . With M, moment magnitude; SRL, surface 

rupture length), the surface rupture length of the seismogenic fault should be at least 40 km for 

generating an earthquake of 7 Mw similar to the 1908 Messina earthquake. Therefore, our newly-

discovered faults are too small to generate such a large earthquake.  
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5.3 The graben structure of the Messina Strait 
 

When comprehensively considering our new data and previous models, we support the hypothesis that 

the inner Messina Strait is an angular graben [MULARGIA et al. 1984a].  

The inner Messina Strait gradually broadens toward the south, showing a fan or triangular shape (Figs. 

MI-1a, MI-2, MI-7). The Messina Strait graben is bounded by two antithetic normal faulting systems: 

the northeastern Sicily normal faulting system and the southwestern Calabria normal faulting system 

(Fig. MI-7a). Both of the fault systems strike NE-SW and dip toward the Strait area [SELLI et al. 1979; 

GHISETTI 1992a; TORTORICI et al. 1995; BOTTARI et al. 2005]. This jigsaw-like boundary faulting 

systems give way to a downdropped graben-like basin. In the Strait, the newly-discovered N-S-trending 

near-surface faults contribute to the development of the master graben and form some secondary 

grabens, such as Messina Canyon (Figs. MI-3, MI-4, MI-5, MI-6, MI-7b). 

According to the tectonic evolution of the central-western Mediterranean Sea [GOES et al. 2004], the 

Messina Strait was already opened before the inner Calabrian Arc (CA) docked at its present location 

( Fig. A1 in appendix). Therefore, it is difficult to infer how and when the Messina Strait originally 

formed. Nevertheless, the graben structure proves that the Messina Strait have experienced NW-SE 

extension (Chapter 4 2, Fig. MI-7a).  

The angular shape of the Messina Strait graben is probably caused by the bending of the inner CA (Fig. 

MI-1a). The central part of the inner CA bends to the southeast with respect to its other part (Fig. MI-

1a). Along this concave belt, a series of “horst and graben” structures have been recognized. All grabens 

are angular grabens [MULARGIA et al. 1984a]; the Messina Strait is largest one of them (Fig. MI-1a). 

This horst-graben structures may be an upper crustal response to a regime of different vertical 

movements between the uplifting thrusted chain and the stretching Tyrrhenian Sea [GHISETTI 1984b] 

and to the extensional deformations both parallel and perpendicular to the inner CA [SELVAGGI 1998; 

FREPOLI and AMATO 2000]. 

 

5.4 The Taormina Fault 
 

As previously mentioned, the Taormina Fault (TF) has not been directly documented so far [ARGNANI 

et al. 2009a]. The TF could not be identified on our new seismic data as well (Figs. MI-3, MI-4, MI-5, 
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MI-6), though we collected several profiles across or near the proposed area for the TF. There may be 

three possibilities: i) The TF does not exist; ii) The TF is buried too deep to be imaged by our new high-

resolution seismic data; iii) The TF is mainly located in the data gap area between our new seismic 

profiles and the onshore Ionian coastal areas of Sicily.  

We cannot exclude possibility ii but we consider it as unlikely that an active fault does not show any 

expression in the depth range of our seismic data. As for the third postulation, several faults have already 

been discovered onshore along the Ionian coastal area of Sicily (Figs. MI-1a, MI-7a), which implies 

that the data gap is as small as the distance between the coastline and our new data. If the dip angle of 

the TF is very high, it may be impossible to identify the TF on our new seismic data; the TF may be 

located in the data gap area between the seismic profiles and the Ionian coastline of Sicily. However, 

we consider it as unlikely that a fault is exactly located in the small data gap between the coastline and 

our profiles, as this gap is only ~2 km wide. Hence, we prefer the interpretation that the TF does not 

exist. 
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6 Conclusions 
 

We constructed the fault pattern of the inner Messina Strait based on a dense net of new high-resolution 

2D reflection seismic data. Our new data supports the hypothesis that the inner Messina Strait is an 

angular graben structure, which may have been shaped by the bending of the inner Calabrian Arc and 

the extension across the Messina Strait. In this graben, surface faults mainly strike N-S and W-E. N-S-

trending faults distribute along the Messina Canyon and the coastline off southern Calabria, respectively. 

These faults dip toward the Messina Canyon at apparent dip angles of 20 to 40 degree. E-W-trending 

faults are situated in the northern inner Messina Strait off Calabria. The apparent dip angles of them 

vary between 20 and 50 degrees. Most of them dip toward the south. The appearance of the negative 

flower structure indicates that the newly-discovered surface faults are transtensional faults. We interpret 

the N-S- and the E-W- trending surface faults as right- and left- lateral transtensional faults, respectively.  

The fault pattern of the inner Messina Strait fits well to the active stress field: a ca. N115°E horizontal 

trending minimum compressional stress (σ3) and a subvertical maximum compressional stress (σ1), 

which controls the Messina Strait area. The fault pattern also fits to the subsidence of the Strait area, 

the tectonic motions of Sicily and Calabria with respect to Eurasian plate, and the relative motion 

between Sicily and Calabria.  

Despite the fact that several newly-discovered surface faults fit well to the suggested focal mechanisms 

of the 1908 Messina earthquake, we were not able to identify the master fault of this event. The lengths 

of the fault planes (< 15 km) are too small to generate an earthquake of 7 Mw. However, it may well 

be that the faults are only surface expressions of deeper and longer faults, which were not imaged due 

to the limited penetration of our new seismic data. 

The inferred Taormina Fault (TF) was considered as one of the most hazardous and largest seismic gaps 

in Italy. However, this fault has not been imaged on any exist seismic data set, even not in our new 

seismic data. We consider it as unlikely that an active fault does not show any expression in the depth 

range of our seismic data and that a fault is exactly located in a ~2 km gap between the coastline and 

our profile. Hence, we doubt the existence of the TF. 
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Abstract 
 

New seismic data collected across a dominant scarp-like structure (DSS) in the outer Messina Strait led 

to the discovery of a prominent fault zone, which we named the Fiumefreddo - Melito di Porto Salvo 

Fault Zone (F-MPS_FZ). In this manuscript, we present a detailed analysis of this newly-discovered 

fault zone. It is located in the source area proposed for the 1908 Messina tsunami. The F-MPS_FZ is 

an E-W-trending left-lateral transtensional fault zone, which shows ongoing tectonic activity and 

supports a transtensional regime in the outer Messina Strait. Most of the faults in this zone dip toward 

the south at apparent dip angles around 60 degrees. The dominant scarp-like structure (DSS) represents 

the surface expression of the master fault of the F-MPS_FZ. The F-MPS_FZ may be a STEP-Connector 

Fault, linking the two postulated Subduction-Transform Edge Propagator (STEP) faults: the Ionian 

Fault and the Alfeo-Etna Fault. This STEP-Connector Fault may have formed in two ways: in a pull-

apart basin style or in a fault-termination basin style. Based on our data, we prefer the pull-apart basin 

style model for this new fault zone. 

 

  



Page | 84  
 

1 Introduction 
 

The 1908 Messina earthquake and tsunami was the deadliest event in Europe since then, causing 80,000 

to 100,000 causalities. Since the tsunami was assumed to have been triggered by the earthquake, several 

numerical models were built up based on available field data (e.g., seismological data and tsunami run-

up heights), but none of them could explain both the earthquake and the tsunami [TINTI et al. 1999b; 

GERARDI et al. 2008].  
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Figure MII- 1 (a) Overall tectonic framework of Southern Italy. Modified from GOVERS and WORTEL [2005]; ARGNANI and 
BONAZZI [2005]; GUARNIERI [2006]; CATALANO et al. [2008]; ARGNANI et al. [2009a]; POLONIA et al. [2011b]; POLONIA et 
al. [2014]; VITI et al. [2011b]; DOGLIONI et al. [2012]; GALLAIS et al. [2013]. The green and blue lines show the location of 
Subduction-Transform Edge Propagator (STEP) faults. Dashed lines are inferred fault locations. MS, Messina Strait. SL, 
Sangineto line; TL, Taormina Line. RIF, Rosolini–Ispica faults; AF, Avola fault; WF, Western Ionian Fault; EF, Eastern 
Ionian Fault; ASF, Acireale–S. Alfio faults; PF, Piedimonte fault; TF, Taormina fault; RCF, Reggio Calabria fault; ARF, 
Armo fault; SF, Scilla faults; SEF, S. Eufemia fault; CF, Cittanova fault; SRF, Serre fault; VF, Vibo fault; CVF, Capo 
Vaticano fault; SCF, Southern Calabria fault; FA, fault identified by ARGNANI et al. [2009a]; MSF, Messina Straits fault. 
(b) General map of central Mediterranean Sea. 
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Hence, BILLI et al. [2008] postulated that the 1908 Messina tsunami might be caused by a submarine 

landslide.  The most likely source area is in the outer Messina Strait offshore southwest of the 

southwestern tip of Calabria and east of Giardini Naxos city (Sicily) (see suggested tsunami source area 

(orange dashed lines) in Fig. MII-1a). A landslide in this region, however, was strongly doubted by 

several authors, because new high-resolution seismic and bathymetric data did not image a young 

landslide in this area [ARGNANI et al. 2009b; GROSS et al. 2014]. Instead, an almost 15 km-long 

dominant scarp-like structure (DSS) of unknown origin was imaged by bathymetric data. This feature 

is just located in the source area proposed by BILLI et al. [2008] (Fig. MII-1a) and between two 

postulated Subduction-Transform Edge Propagator (STEP) faults: the Ionian Fault and the Alfeo-Etna 

Fault (Fig. MII-1a). Hence, we collected a dense grid of seismic lines mainly across the DSS. The main 

objectives of this manuscript are to i) characterize the internal architecture of the DSS and its 

surroundings and ii) to analyse the relationship between the DSS and the regional tectonic framework 

of the outer Messina Strait.  
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2 Tectonic settings 
 

2.1 The inner Calabrian Arc and the Siculo-Calabrian Rift Zone 
 

The Messina Strait crosscuts the southern part of the inner Calabrian Arc (CA) and is situated in the 

Siculo-Calabrian Rift Zone (SCRZ) (Fig. MII-1a).  

The inner CA (Fig. MII-1a) connects the Apennines with the Sicilian-Maghrebian chains. It developed 

during the Neogene-Quaternary Africa-Europe collision, when the African Plate subducted 

northwestward beneath the Eurasian Plate [BARBERI et al. 1973; MALINVERNO and RYAN 1986; 

BOCCALETTI et al. 1990; PATACCA et al. 1990; DEMETS et al. 2010]. Since the Pliocene, the inner CA 

was dominated by extension, both longitudinal and transversal, causing the development of structural 

highs and marine sedimentary basins [GHISETTI and VEZZANI 1982]. Due to the roll-back of the 

subducting Ionian slab and the corresponding back-arc extension of the Tyrrhenian Basin, the CA 

moved (5 - 6 cm/yr) toward the east or southeast [MALINVERNO and RYAN 1986; GUEGUEN et al. 1998; 

FACCENNA et al. 2004]. During the Middle-Late Pleistocene, a tectonic reorganization [FACCENNA et al. 

2001] slowed down (1 - 2 cm/yr) the slab roll-back. 

The SCRZ (Fig. MII-1a) is a ~370 km long, N-S trending normal fault zone. It runs along the inner side 

of the inner CA, through the Messina Strait, and along the Ionian coast of Sicily [TORTORICI et al. 1995; 

MONACO and TORTORICI 2000b; CATALANO et al. 2008] (Fig. MII-1b). A variety of data suggest a 

~N115°E extension for the SCRZ (Fig. MII-1a), with rates of 3.6 ± 0.6 mm/yr [D'AGOSTINO and 

SELVAGGI 2004; CATALANO et al. 2008]. This extension is still ongoing, and normal faults developed in 

southern Calabria and northeastern Sicily are in response to this extension [BIANCA et al. 1999; MONACO 

and TORTORICI 2000b]. The extension may be caused by one or more of the following tectonic motions: 

(1) the back-arc stretching in the Tyrrhenian Sea; (2) the counter clockwise rotation of the Adriatic 

microplate which has generated an intensive stress field at its western margin [D'AGOSTINO and 

SELVAGGI 2004; D'AGOSTINO et al. 2008]; (3) the Hellenic slab dragging eastward the entire Ionian-

Calabrian domain [GOES et al. 2004].  
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2.2 The STEP faults 
 

Continual tearing of the lithosphere occurs near most of the horizontal terminations of subduction 

trenches. This tearing transform fragment is called “Subduction-Transform Edge Propagator (STEP)” 

fault [GOVERS and WORTEL 2005]. Two main STEP faults, the Ionian Fault [POLONIA et al. 2014] and 

the Alfeo-Etna Fault [GALLAIS et al. 2013; POLONIA et al. 2014], have been inferred in the outer Messina 

Strait (Fig. MII-1a). 

 

2.2.1 The Alfeo-Etna Fault 

 

The Alfeo-Etna Fault (Fig. MII-1a) is located at the southwest edge of the Ionian Basin, ~50 km east 

of the Malta Escarpment (ME) [GALLAIS et al. 2013] (Fig. MII-1a). It is a ~N150° trending fault, cutting 

more than 200 km into the Ionian Basin [GALLAIS et al. 2013]. The southernmost termination of this 

fault cannot be traced further south than latitude 36.4°N [GALLAIS et al. 2013]. Its vertical throw 

decreases toward the south [GALLAIS et al. 2013]. A set of data obtained from geodetic, tomographic, 

geochemical, structural, and seismic studies support that the vertical movement observed along this 

fault is the surface expression of a STEP fault [GALLAIS et al. 2013].  

The Alfeo-Etna Fault accompanies (a) the advance of the inner CA toward the southeast and (b) the 

southeastward roll-back of the Ionian slab [GALLAIS et al. 2013] (Fig. MII-1a) with (1) crustal dextral 

strike-slip movement in northeast Sicily between Hyblean Plateau and the Peloritan–Calabria block, as 

confirmed by earthquake focal mechanisms [GALLAIS et al. 2013] and (2) lithospheric vertical 

movement beneath western Ionian Sea, which propagates upward through a ~N150° trending crustal 

scale fault [GALLAIS et al. 2013], respectively. GALLAIS et al. [2013] further suggest that the Alfeo-Etna 

Fault propagates in the Ionian Basin during the late Neogene through the inherited Continent–Ocean 

Boundary which was acquired during the formation of the Mesozoic passive margin of the basin.  

ARGNANI [2014] pointed out that the Tindari-Lipari and/or Taormina lines (Fig. MII-1a) may represent 

possible extending of the Alfeo-Etna Fault into the Tyrrhenian Sea. Although quite popular in the 

literature [GALLAIS et al. 2013], none of these faults has a clear surface expression. No convincing data, 

supporting active structures along the trend of the Tindari-Lipari and the Taormina lines, have been 

presented onshore and are lacking offshore. Instead, active deformation in this sector appears to be 

located between Capo Milazzo and the central Aeolian Islands [ARGNANI et al. 2007] (Fig. MII-1a). 
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2.2.2 The Ionian Fault 

 

The Ionian Fault is located ~70 km east of the toe of the Malta Escarpment (ME) [POLONIA et al. 2011b; 

POLONIA et al. 2014] (Fig. MII-1a). It strikes MW-SE and connects the plate boundary of northern 

Sicily to the subduction thrust of the Ionian Sea. 

The Ionian Fault is a major lithospheric structure with a shallow expression of a STEP fault [POLONIA 

et al. 2011b]. It segments the Calabrian accretionary wedge and accommodats different rates of the slab 

roll-back [POLONIA et al. 2011b]. This differential motion may result in substantial deformation, 

rotation, and the formation of sedimentary basins [POLONIA et al. 2011b]. According to ARGNANI [2014], 

the Ionian Fault is a right-lateral transtensional fault, younger than the Alfeo-Etna Fault, and therefore 

very recent. Its present activity is documented by sedimentary basins and seafloor displacements 

imaged by shallow subsurface CHIRP data [POLONIA et al. 2011b]. 

The Ionian Fault plays an important role in controlling subduction processes and margin segmentation, 

and may represent a seismogenic feature likely to have generated major earthquakes in the past, such 

as the 1908 Messina earthquake and 1963 Catania earthquake [POLONIA et al. 2011b]. 

The structural features observed by ARGNANI and BONAZZI [2005] support the occurrence of a 

lithospheric tear between the Ionian Basin and the Hyblean Plateau [POLONIA et al. 2011b]. ARGNANI 

[2014], however, pointed out that the structures in the two areas separated by the southern segment of 

the Ionian Fault, are post Messinian but likely much older than Quaternary. This casts some doubt on 

the occurrence of two STEP faults (the Ionian Fault and the Alfeo-Etna Fault) cutting through the Ionian 

lithosphere, also considering that the Ionian Fault has not been completely documented. 
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3 Data and Method 
 

From December 27th, 2011 to January 17th, 2012, a new dataset was collected during RV Meteor Cruise 

M86/2 off Southern Italy, by means of a bathymetric multi-beam echo sounder, a parametric sediment 

echo sounder, and a high-resolution 2D reflection seismic system. Additional high-resolution 

bathymetric data collected in the frame of the MAGIC project (Marine Geohazards along the Italian 

Coasts, CHIOCCI and RIDENTE [2011]) were assessed for this study as well.  

A Kongsberg-Simrad EM122 deep-water bathymetric multi-beam echo sounder was used to acquire 

new bathymetric data. Bathymetric data were processed with Multi-Beam System® (version 5.2) and 

displayed by Generic Mapping Tool® (version 4.9) and Global Mapper (version 12).  

A parametric Atlas PARASOUND P70 system was used for collecting sediment echo sounder data. 

The system was operated with 4 kHz. Kingdom Suite® (version 8.6) was used to display and interpret 

the data. 

High-resolution 2D reflection seismic data were collected using a 162.5 m-long, 104-channel digital 

Geometrics GeoEeL streamer. The seismic signal was generated using a 1.7 l GI gun, operated in 

harmonic mode and a shot interval of 4 s. Sub-bottom penetration was up to 1 s TWT (Two-Way-

Travel-Time). The processing steps include geometry setup, binning, band-pass filtering 

(10/20/600/1000 Hz, assumed for low truncation frequency, low cut frequency, high cut frequency, and 

high truncation frequency, respectively), Normal Move-Out (NMO) corrections, despiking, stacking 

and time-migration. The lateral bin size was set to 2 m, which results in an average fold of 14. Due to 

the relative short length of streamer system, no velocity analysis was carried out; a constant sound 

velocity of 1500 m/s was applied during NMO corrections and data migration. Gedco Vista Seismic 

Processing® (Schlumberger, version 11) and IHS Kingdom Suite® (version 8.6) were used for 

processing and interpretation. 

Fault interpretations were based on the following criteria: i) abrupt offset of steeply dipping strata 

reflections; ii) tracking of fault plane reflections; iii) sudden vertical changes of the number and shape 

of the reflectors. Identified surface faults (fault planes intersect with the seafloor) were divided into 

major faults and minor faults. Major faults are those that could be traced on at least two parallel or 

subparallel profiles, while those usually only recognized on one single profile are minor faults. Major 

surface faults have been marked as ‘SFxx’. 
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4 Results 
 

4.1 Seafloor morphology 
 

 
Figure MII- 2 (a) Bathymetry of the outer Messina Strait with 2D seismic profiles. Location of map is shown on Fig. MII-
1. DSS, dominant scarp-like structure; NSS_N, northern N-S trending scarp-like structure; NSS_S, southern N-S trending 
scarp-like structure; SCC, South Calabria Canyon [RIDENTE et al. 2014]; SC, South Canyon; LM: large meander. Orange 
and yellow solid lines are 2D seismic survey lines. (b) Fault pattern of the outer Messina Strait reconstructed based on the 
selected seismic profiles. The DSS is the surface expression of fault SF21. Light blue dashed curves circle out the source 
area proposed by BILLI et al. [2008] for the 1908 Messina tsunami. See text for details. 
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The most remarkable features observable at the seafloor in the outer Messina Strait are canyons, which 

are incised up to 160 m into their surrounding material (Fig. MII-2a). The South Calabria Canyon (SCC) 

[RIDENTE et al. 2014] (Depth:Width ≈ 90m:1950m), and the canyon which we refer to as South Canyon 

(SC) (Depth:Width ≈ 90m:1700m) are two major canyons in this area. Both extend toward the southeast.  

Another most eye-catching feature is a scarp-like structure which we named as dominant scarp-like 

structure (DSS) (Fig. MII-2a). It is located in the centre of the outer Messina Strait, corresponding to 

the source area proposed by BILLI et al. [2008] for the 1908 Messina tsunami. The DSS strikes E-W, 

terminating to the east at the SCC and cutting across the SC with its western segment. The DSS is ~13 

km long and on average ~60 m height. An N-S trending scarp-like structure (NSS) runs across the DSS. 

This NSS is cut into two segments, NSS_N and NSS_S. The NSS_N is located further west with respect 

to the NSS_S. 
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4.2 Fault pattern in the outer Messina Strait 
 

 
Figure MII- 3 (a) Sediment echo sounder data interpretation of profile P234. Red arrows indicate the surface expressions 
of major faults. Vertical exaggeration is 6. (b) Uninterpreted and (c) interpreted seismic sections of P234. Faults in pink are 
major surface faults. Faults in brown are minor surface faults. The dashed lines show the uncertain lower parts of the major 
surface faults. Colored solid lines show the picked horizons. TWT, Two-Way-Travel-Time. Vertical exaggeration is 6. See 
Fig. MII-2 for location of profile. 
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Figure MII- 4 (a) Sediment echo sounder data interpretation of profile P807. Red arrows indicate the surface expressions 
of major faults. Vertical exaggeration is 6. (b) Uninterpreted and (c) interpreted seismic sections of P807. Faults in pink are 
major surface faults. Faults in brown are minor surface faults. The dashed lines show the uncertain lower parts of the major 
surface faults. Colored solid lines show the picked horizons. TWT, Two-Way-Travel-Time. Vertical exaggeration is 6. See 
Fig. MII-2 for location of profile. 
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Figure MII- 5 (a) Sediment echo sounder data interpretation of profile P242. Red arrows indicate the surface expressions 
of major faults. Vertical exaggeration is 6. (b) Uninterpreted and (c) interpreted seismic sections of P242. Faults in pink are 
major surface faults. Faults in brown are minor surface faults. The dashed lines show the uncertain lower parts of the major 
surface faults. Colored solid lines show the picked horizons. TWT, Two-Way-Travel-Time. Vertical exaggeration is 6. See 
Fig. MII-2 for location of profile. 



Page | 96  
 

Seismic profiles P234, P807 and P242 were selected as representative sections in the working area (Figs. 

MII-3, MII-4, MII-5). In general, the subsurface of the outer Messina Strait shows well stratified 

sedimentary formations (Horizon 2 to Horizon 9) above the acoustic basement (Horizon 1) (Figs. MII-

3, MII-4, MII-5). The average thickness of the sediment above the acoustic basement is ~0.6 s TWT 

(~450 m). A series of sediment waves is imaged between seafloor and Horizon 9. These sediment waves 

only appear in the northeastern part of the outer Messina Strait (Figs. MII-2, MII-3b&c, MII-4b&c). 

All profiles (Figs. MII-3, MII-4, MII-5) show several major surface faults, which can be traced between 

the profiles (the distance between the profiles is about 1 to 5 km). In addition, abundant minor faults 

are imaged on the profiles as well. Profile P234 (Fig. MII-3) is located east of the DSS (Fig. MII-2), 

while profiles P807 (Fig. MII-4) and P242 (Fig. MII-5) cross the DSS (Fig. MII-2). As Fig. MII-4 and 

MII-5 show, the DSS is the surface expression of a fault (SF21).  

 

Table MII- 1 Fault geometries in the outer Messina Strait. 
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In total, we identified eight major surface faults, SF21-28 (Figs. MII-2, MII-3, MII-4, MII-5). They are 

located east of Riposto Ridge, southwest of the SCC, and in the source area proposed by BILLI et al. 

[2008] for the 1908 Messina tsunami (Fig. MII-2). These newly-discovered faults in fact form a fault 

zone which we refer to as Fiumefreddo - Melito di Porto Salvo Fault Zone (F-MPS_FZ). 

The F-MPS_FZ is made out of two major sets of faults. SF21-23 builds the first set which is in the core 

part of area. The surface expression of SF21 is exactly the DSS (Figs. MII-2, MII-4, MII-5). All the 

other faults are situated to south of SF21 (Fig. MII-2). SF24-28 builds the second main set of faults, 

extending further west in comparison to the first set of faults. Parameters for all faults are given in Table 

MII-1. 

In general, these major surface faults strike E-W (Fig. MII-2). SF24 bends toward the southeast in its 

eastern segment. SF27-28 are parallel to the bending eastern segment of SF24 and trend NW-SE. SF24 

with ~16 km is the longest fault observable in the working area (Table MII-1). The second longest fault 

is SF21 (~13.2 km), whereas SF22 (~2.1 km) is the shortest fault in the research area. 

Most of the observable faults are dipping toward south (Figs. MII-3c, MII-4c, MII-5c). Only two faults 

(SF23 and SF26) (Fig. MII-4c) are dipping towards north. The apparent dip angles of all faults are ~60° 

(Table MII-1). The seismic sections (Figs. MII-3, MII-4, MII-5) clearly show dominant normal 

components for all faults. Two well-developed negative flower structures have been recognized on the 

central Profile P807 (Fig. MII-4c). The northern negative flower structure is mainly made up of the first 

set of faults (SF21-23, Fig. MII-4c) and located in the core part of the tsunamigenic source area 

proposed by BILLI et al. [2008] (Fig. MII-2). The horizontal width across the northern negative flower 

structure is ~2 km. The southern negative flower structure mainly involves in SF24 and SF26 (Fig. MII-

4c). The horizontal width across the southern negative flower structure is ~1 km. SF21 and SF24 are 

master faults of the northern and the southern negative flower structures, respectively. Moreover, in the 

southeastern part of the research area, SF24, SF27-28, and some minor faults form a tilted structure 

(Fig. MII-3). The horizontal width across this structure is ~1.5 km. Faults in the F-MPS_FZ arrange in 

a right-stepping style (Fig. MII-2b). 

  



Page | 98  
 

5 Discussion 
 

5.1 The characteristics of the Fiumefreddo - Melito di Porto Salvo Fault Zone (F-

MPS_FZ) in the outer Messina Strait 
 

A new fault system – the Fiumefreddo - Melito di Porto Salvo Fault Zone (F-MPS_FZ) – was identified 

by means of high-resolution bathymetry and seismic sections in the outer Messina Strait. This fault 

zone can be considered as an active fault system, as most of the observed fault planes show clear surface 

expressions at the seafloor. The largest vertical displacement (~60 m) at the seafloor is found at SF21 

(Fig. MII-2). This implies a high grade of tectonic activity in the outer Messina Strait. We consider the 

F-MPS_FZ as the shallow expression of a deeply rooted transtensional fault zone. It is expressed by a 

prominent negative flower structure within the upper 750 m of the sedimentary strata (Fig. MII-3). It 

has both normal-slip and strike-slip components.  

The morphology and the regional tectonic setting suggest that the F-MPS_FZ is a left-lateral 

transtensional fault zone. The morphology shows that the DSS cut the NSS into NSS_N and NSS_S 

(Fig. MII-2a). The NSS_N is located further west with respect to the NSS_S (Fig. MII-2a), suggesting 

a left-lateral strike-slip component for the F-MPS_FZ. However, we cannot exclude that erosive 

processes might form both parts of the NSS as this area is shaped by a complex pattern of canyons. 

Hence, we can only speculate that we have a left lateral strike-slip component.  

A left-lateral transtensional fault system, however, would fit to the regional tectonic framework. The 

Messina Strait has undergone a ~N115°E extension (chapter 5 2.1) and a clockwise rotation (Fig. A3 

in appendix). Such a setting would likely result in left-lateral strike-slip components for faults in the 

survey area. Moreover, the E-W-trending faults which have been identified in the inner Messina Strait 

also have left-lateral strike-slip components. This results would support the left-lateral strike-slip of the 

F-MPS_FZ. 
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5.2 How do the newly-discovered Fiumefreddo - Melito di Porto Salvo Fault Zone 

(F-MPS_FZ) in the outer Messina Strait fit to the regional tectonic framework? 
 

 

Figure MII- 6 Fiumefreddo - Melito di Porto Salvo Fault Zone (F-MPS_FZ) in the regional tectonic framework of the outer 
Messina Strait. See figure 1a for location of map. Modified from GOVERS and WORTEL [2005]; ARGNANI and BONAZZI 
[2005]; GUARNIERI [2006]; CATALANO et al. [2008]; ARGNANI et al. [2009a]; [POLONIA et al. 2011b; POLONIA et al. 2014]; 
VITI et al. [2011b]; DOGLIONI et al. [2012]; GALLAIS et al. [2013]. TL, Taormina Line; WF, Western Ionian Fault; EF, 
Eastern Ionian Fault; TF, Taormina fault; RCF, Reggio Calabria fault; SF, Scilla faults; SEF, S. Eufemia fault; ARF, Armo 
fault; SCF, Southern Calabria fault; FA, fault identified by Argnani; MSF, Messina Straits fault; ME, Malta Escarpment. 
The green and blue lines show the location of Subduction-Transform Edge Propagator (STEP) faults. Dashed lines are 
inferred fault locations. (b) Pull-apart basin and (c) fault-termination basin style models for the patterns of the “H” faulting 
system in the outer Messina Strait. PDZ, principle displacement zone. See text for details. 
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The F-MPS_FZ in the outer Messina Strait is located between the Ionian Fault and the Alfeo-Etna Fault 

(Fig. MII-6). The Ionian Fault and the Alfeo-Etna Fault are described as Subduction-Transform Edge 

Propagation (STEP) Faults [POLONIA et al. 2011b; GALLAIS et al. 2013; POLONIA et al. 2014]. The 

Ionian Fault terminates northwestward at an area pretty near the easternmost of the F-MPS_FZ. It may 

transfer to the Alfeo-Etna Fault through the F-MPS_FZ. Therefore, the F-MPS_FZ may work as a 

connector, linking the two STEP faults (Fig. MII-6). Thus, the F-MPS_FZ, the Ionian Fault, and the 

Alfeo-Etna Fault constitute a faulting system. We call this system “H” faulting system. As the direction 

of the movement of the Ionian Fault is still unclear (left lateral or right lateral), we suggest two possible 

models for the pattern of this “H” faulting system: the pull-apart basin style model (Fig. MII-6b) and 

the fault-termination basin style model (Fig. MII-6c). 

 

5.2.1 The pull-apart basin style model 

 

The Alfeo-Etna Fault is described as a right-lateral fault [GALLAIS et al. 2013]. If the Ionian Fault is a 

right-lateral fault, the “H” faulting system may be a pull-apart basin style system (Fig. MII-6b). In this 

system, the Ionian Fault and the Alfeo-Etna Fault are the principle displacement zones (PDZs). The F-

MPS_FZ is the en echelon fault zone generated by the relative motions between the PDZs -- the Ionian 

Fault and the Alfeo-Etna Fault. The right-lateral motions of the Ionian Fault and the Alfeo-Etna Fault 

could generate a left-lateral F-MPS_FZ. Our suggested left-lateral movement of the F-MPS_FZ fits 

well to this model. 

There are some additional implications supporting such a model. i) According to ARGNANI [2014], the 

occurrence of the lithospheric tear at the Ionian Fault is based on the identifications of two lobes with 

a different structural style in the frontal part of the Calabrian accretionary prism. This lithospheric tear 

may be caused by differential roll-back of the Ionian slab located under central Calabria. This part of 

the Ionian slab has been interpreted as continuous and recently decoupled from the remainder of the 

Ionian slab that is instead broken off. From this point of view, the Ionian Fault would be a right-lateral 

fault. ii) The clockwise rotation in the outer Messina Strait (Fig. MII-6b, Fig. A3 in appendix) supports 

a right-lateral Ionian Fault. iii) The regional tectonic setting (Fig. MII-1a) shows that in Southern Italy, 

almost all the MW-SE trending faults with strike-slip components are right-lateral faults. This 

observation supports a right-lateral motion of the Ionian Fault. 
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However, there are also facts, doubting the pull-apart basin style model. i) In literature [ATMAOUI et al. 

2006], a pull-apart basin style faulting system is a product of Riedel shear mechanism. If the PDZs are 

right-lateral faults, the en echelon faults in-between would be arranged in a left-stepping style, but the 

faults in the F-MPS_FZ are in a right-stepping style. ii) There is a step-over area between the Ionian 

Fault and the Alfeo-Etna Fault (Fig. MII-1a). The slip rates of both STEP faults are still unknown. If 

the Ionian Fault is more active, this step-over area would be controlled by a compressional regime; if 

the Alfeo-Etna Fault is faster, we have an extensional regime.  

According to the discussed issues, it seems that the pull-apart basin style model could explain major 

parts of the “H” faulting system. 

 

5.2.2 The fault-termination basin style model 

 

Transtensional stress domains, if a part of a crustal block undergoes translation within the block, will 

result in shortening/uplift at one end and extension/subsidence at the other [MIALL 2000; UMHOEFER et 

al. 2007]. Basins formed by such extension/subsidence are referred to as fault-termination basins or 

transtensional fault-termination basins. Normally, fault-termination basins are developed at the ends of 

strike-slip faults where normal or oblique slip faults diffuse or splay off to terminate the deformation 

field.  

In our case, the transtensional F-MPS_FZ indicates that the outer Messina Strait is an area controlled 

by a transtensional regime. The Ionian Fault terminates in the north at the F-MPS_FZ. If the Ionian 

Fault is a left-lateral fault, the Ionian Fault and the F-MPS_FZ constitute a fault-termination basin style 

faulting system (Fig. MII-6c). In this system, the Ionian Fault is the master strike-slip fault. The F-

MPS_FZ is the transtensional fault zone diffusing or splaying off to terminate the deformation field. 

The southward bending of the eastern segments of SF24 and SF27-28 (Fig. MII-2b) is an indication for 

this effect. It is worth noting that the Alfeo-Etna Fault does not terminate at the F-MPS_FZ but extends 

far north of it. This would suggest that the Alfeo-Etna Fault is not a member of this fault-termination 

basin style faulting system. As most of the faults in the F-MPS_FZ dip toward the south which 

indicating that the working area may be dominated by a southeastward extension, the right-lateral 

Alfeo-Etna Fault may be a contributor to this extension.  
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However, we see some serious problems for such a model. i) If the Ionian Fault is suggested to be likely 

a left-lateral fault, faults in the F-MPS_FZ should be right-lateral faults. We suggest that the F-MPS_FZ 

contains left-lateral faults but we do not have a final proof for this statement. Hence, we cannot exclude 

that we have a right-lateral movement. ii) The clockwise rotation of the outer Messina Strait (see 

“geodetic strain rate field” in Fig. A3 in appendix) and the existences of the other right-lateral faults in 

Southern Italy (Fig. MII-1a) would be in conflict to a left-lateral Ionian Fault.  

 

5.2.3 The pull-apart basin style model versus the fault-termination basin style model: some additional 

thoughts 

 

There are several facts which are worth to be considered. Both models assume that two STEP faults are 

present in the working area. However, the northern segments of the Ionian Fault and the Alfeo-Etna 

Fault are inferred segments of these two faults. They are not clearly imaged on any seismic data 

including our data. Our new seismic data are of high resolution but very limited penetration. The STEP 

faults and their fault planes are buried too deeply to be identified on our new data and most likely on 

other existing seismic data [ARGNANI et al. 2009a]. In addition, according to Argnani et al., 2014, the 

Ionian Fault is relatively recent and younger than the Alfeo-Etna Fault. However, the structures in the 

two areas separated by the Ionian Fault are post Messinian, and likely much older than Quaternary 

[ARGNANI 2014]. This casts some doubt on the occurrence of two STEP faults cutting through the Ionian 

lithosphere, also considering that the Ionian Fault has not been completely documented [ARGNANI 2014]. 

Moreover, the distribution of the geodetic strain rates and rotations in the marine area off Southern Italy 

is the interpolated data based on the GPS data acquired on land. There may be deviations between the 

interpolated results and true motions.  

However, assuming that both STEP faults do exist, the F-MPS_FZ may be classified as a new type of 

fault – a STEP-Connector Fault. We consider the pull-apart basin style model as more plausible for the 

pattern of the “H” faulting system in the outer Messina Strait, although many questions remain open. 

More surveys including deep reaching seismic data are need for further investigations of this area.  
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6 Conclusions 
 

In this manuscript, we present a detailed analysis of the newly-discovered, E-W-trending Fiumefreddo 

- Melito di Porto Salvo Fault Zone (F-MPS_FZ) in the outer Messina Strait.  

The F-MPS_FZ is a left-lateral transtensional fault zone, which shows ongoing tectonic activity. This 

is indicated by the appearance of the negative flower structure. A prominent dominant scarp-like 

structure (DSS) with heights of up to 60 m represents the surface expression of the master fault of the 

F-MPS_FZ.  

The transtensional F-MPS_FZ supports a transtensional regime in the outer Messina Strait. Such a 

regime fits well to the observed northwest and southeast movements of Calabria and Sicily with respect 

to the Eurasian plate, respectively.  

The F-MPS_FZ builds an “H” faulting system with two postulated STEP faults: the Ionian Fault and 

the Alfeo-Etna Fault. The F-MPS_FZ may be a STEP-Connector Fault, linking the Ionian Fault and the 

Alfeo-Etna Fault. Two possible models have been put forward for this system: the pull-apart basin style 

model and the fault-termination basin style model. The pull-apart basin style model is more reasonable 

based on all available data. 
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Abstract 
 

The 1908 Messina tsunami was the most catastrophic tsunami hitting the coastlines of Southern Italy 

in the younger past. The source of this tsunami, however, is still heavily debated, and both, rupture 

along a fault and a slope failure, have been postulated as origin for the tsunami. The newly-discovered 

Fiumefreddo - Melito di Porto Salvo Fault Zone (F-MPS_FZ) in the outer Messina Strait is located in 

an area which was suggested to be the source area of the 1908 Messina tsunami. In this manuscript, we 

reconstructed the activity of the F-MPS_FZ and ran tsunami models based on fault parameters of this 

fault zone derived from seismic data. The F-MPS_FZ is an E-W-trending fault zone reaching down to 

the acoustic basement. It has been active during the entire regional tectonic evolution of the outer 

Messina Strait. During its evolution, the fault activity alternated between tranpressional and 

transtensional with varying apparent displacements. Currently, the F-MPS_FZ is an active 

transtensional fault zone. Based on the results of the tsunami modelling, the F-MPS_FZ could generate 

tsunamis, and an assumed slip of up to 15 m could generate a tsunami comparable to the 1908 Messina 

tsunami, but we do not consider the F-MPS_FZ as a source for the 1908 Messina tsunami, because an 

E-W-trending fault is not in agreement with seismological data of the 1908 Messina earthquake, and a 

15 m slip event is highly unlikely. However, we still consider this fault as a highly potential hazard 

source in Southern Italy, because it shows the most obvious vertical displacement in the entire Messina 

Strait and seems to be active. 
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1 Introduction 
 

 

Figure MIII- 1 (a) Bathymetry of the Messina Strait and proposed source models for the 1908 Messina earthquake and 
tsunami. Modified after BILLI et al. [2008]; FAVALLI et al. [2009a]; PINO et al. [2009b]; POLONIA et al. [2011b]; GALLAIS 
et al. [2013]. The coloured straight lines together with the black rectangles show the possible seismogenic faults of the 1908 
Messina earthquake. The coloured straight lines indicate the intersections of the proposed fault planes and the earth surface 
(cut-off lines). The black rectangular represent the surface projections of the fault planes. The dashed segments of the fault 
planes show the uncertain parts of those faults. The straight lines connected to the ellipses indicate the moving directions of 
landslides. The blue bars perpendicular to the frame of the figure represent the observed run-up heights of the 1908 Messina 
tsunami in some cities. The numbers beside these bars are the values of the run-up heights in metres. The red box marks the 
research area of this study and the range of Fig. MIII-2. DSS, dominate scarp-like structure. (b) Overall tectonic evolution 
of the central Mediterranean Sea (Southern Italy). Modified after NERI et al. [2009]. (c) Present tectonic setting of Southern 
Italy. Please see the LEGEND to know the meanings of the symbols used in the figure.  
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The 1908 Messina tsunami was the most destructive tsunami in Europe since then, in terms of run-up 

height (>10 m) [PLATANIA 1909] (Fig. MIII-1a) and impacted area [SOLOVʹEV et al. 2000]. It hits the 

entire coasts of the Messina Strait (Fig. MIII-1a). The southern inner Messina Strait was hit by higher 

tsunami run-ups (5 - 10 m) than the northern part (1 - 3 m) (Fig. MIII-1a). The highest run-up heights 

were reported south of Galati and Reggio Calabria (up to 12 m) (Fig. MIII-1a). 

As the tsunami was assumed to be triggered by the coseismic seafloor displacement during the 

earthquake [TINTI and ARMIGLIATO 2003b], several tsunami models have been built up based on some 

most common fault solutions [TINTI and ARMIGLIATO 2003b; FAVALLI et al. 2009b] (Fig. MIII-1a). 

However, no one meets all observations [TINTI et al. 1999b; GERARDI et al. 2008]. Hence, BILLI et al. 

[2008] postulated that the 1908 Messina tsunami may have been triggered by submarine landslide that 

was caused by the earthquake. The source area is located in the outer Messina Strait off Giardini Naxos 

and Lazzaro (Fig. MIII-1a). It was constructed based on observed arrival times of the tsunami and 

identified morphological features in this area, which were interpreted as landslide by the authors. This 

scenario, however, was strongly doubted by some authors [ARGNANI et al. 2009b; GROSS et al. 2014] 

as new high-resolution bathymetric and seismic data do not show indications for a recent landslide in 

this area. In addition, modelling results presented by GERARDI et al. [2008] shows that the tsunami 

characteristics is compatible with a seismic dislocation source, because landslide sources concentrate 

large run-ups over relatively limited stretches of coastline, whereas seismic dislocations can affect much 

longer stretches of the coast. 

As the location of BILLI et al. [2008]’s newly proposed source area was calculated based on the travel 

times of the 1908 tsunami, it is to some extent reliable that this area might be a potential source area 

for tsunamis. Therefore, new high-resolution hydro-acoustic and 2D seismic data were collected in this 

area and show a prominent fault zone (Fu et al., this thesis, chapter 5). The objectives of this study are 

to reconstruct the activities of this fault zone and to run tsunami models based on derived fault 

parameters, in order i) to assess the activity of the fault zone over time, especially in modern times and 

ii) to assess the potential of this fault zone for generating tsunamis. 
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2 Tectonic settings 
 

The outer Messina Strait is a highly complex tectonic area [FACCENNA et al. 2003; GOES et al. 2004; 

PONDRELLI et al. 2006], as is situated both in the Siculo-Calabrian Rift Zone (SCRZ) (Fig. MIII-1c) 

and the inner Calabrian Arc (Fig. MIII-1b). This complex tectonic framework is the result of the long-

term evolution of the converging African- and Eurasian plate boundary zone (Fig. MIII-1b).  

Between ~80 and ~30 Ma, the African and the Eurasian plates converged slowly [FACCENNA et al. 2001; 

FACCENNA et al. 2003]. The African plate subducted underneath the Eurasian plate. Since ~30 Ma (Fig. 

MIII-1b), a trench retreat had occurred leading to a progressively opening and southeast extension of 

the western Mediterranean Sea [GUEGUEN et al. 1998; GOES et al. 2004]. 0.8 – 0.5 My ago (Fig. MIII-

1b&c), when the Calabro-Peloritani block docked between Apulia and Sicily, the trench retreat seemed 

to have slowed down to a minimum. The accompanying Tyrrhenian back-arc extension has almost 

ceased as well [D'AGOSTINO and SELVAGGI 2004; GOES et al. 2004]. The Ionian section of the African 

plate moved northeastward away from the remaining plate, controlling the current eastward motion of 

Calabria and Apulia with respect to Africa. As plate boundaries have been readjusted, very strong 

deformations have been recorded at the area between Europe, Africa, and Calabria (Fig. MIII-1c). These 

young tectonics may be associated with strong and sometimes devastating seismicity. 
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3 Data and Method 
 

From December 27th, 2011 to January 17th, 2012, a new high-resolution seismo- and hydro-acoustic 

dataset was acquired during RV Meteor Cruise M86/2 off Southern Italy. Data were collected by means 

of a bathymetric multi-beam echo sounder, a sediment echo sounder, and a high-resolution 2D 

reflection seismic system. Additional high-resolution bathymetric data collected in the frame of the 

MAGIC project (Marine Geohazards along the Italian Coasts, CHIOCCI and RIDENTE [2011]) were 

assessed for this study as well.  

High-resolution 2D reflection seismic data were collected using a 162.5 m-long, 104-channel digital 

Geometrics GeoEeL streamer. The seismic signal was generated by means of a 1.7 l GI gun, operated 

in harmonic mode and a shot interval of 4 s. A Sub-bottom penetration of up to 1 s TWT (Two-Way-

Travel-Time) was achieved. The processing steps include geometry setup, binning, band-pass filtering 

(10/20/600/1000 Hz, assumed for low truncation frequency, low cut frequency, high cut frequency, and 

high truncation frequency, respectively), Normal Move-Out (NMO) corrections, despiking, stacking 

and time-migration. The lateral bin size was set to 2 m. A constant sound velocity of 1500 m/s was 

applied during NMO corrections and data migration because the short length of the streamer does not 

allow a reliable velocity analysis. Gedco Vista Seismic Processing® (Schlumberger, version 11) and 

IHS Kingdom Suite® (version 8.6) were used for processing and interpretation. 

Fault activity reconstructions have been done by the software Move 2014.2 ®, in order to investigate 

the activity of the newly-discovered fault zone in the outer Messina Strait. Seismic profiles P807 and 

P242 (Figs. MIII-2, MIII-3, MIII-4) were selected as representative examples. These profiles run across 

the central and the western parts of the newly-discovered fault zone, respectively. Prominent reflectors, 

which can be securely traced across the entire working area, were picked. Unfortunately, no age control 

is available for any of the picked reflectors. The selected horizons were converted to depth sections 

using a constant sound velocity of 1500 m/s.  

The restoring steps include backstripping and decompacting sedimentary layers (decompaction), 

restoring faults (move on fault), and unfolding. “Decompaction” is to remove the loading effect of the 

top sequence. For different lithology, the amount of decompaction depends on the relationship between 

solidity (solidity = 1 - porosity) and depth. Here, we used the default parameters (50% shale, 50% sand, 

porosity = 0.56 fraction, depth coefficient = 0.39/km, sound velocity = 2200 m/s, density = 2680 kg/m3, 

Young Modulus = 23750 MPa, Poisson Ratio = 0.3) as there are no valid rock properties for horizons 
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within the model due to the lack of the core data in the outer Messina Strait. “Move on fault” is to 

restore the paleo-topography or depositional surface to be a continuous layer with topography. In this 

step, a simple-shear algorithm was used, assuming that the hanging wall deforms by simple shear and 

the footwall remained undeformed through the extension [WHITE et al. 1986]. Then, a flexural-slip 

“unfolding” algorithm was used to merge the top surface and the paleo-depositional surface, assuming 

concentric folds with constant bed thickness [KEETLEY and HILL 2000]. Afterwards, a new top 

sedimentary layer was decompacted. Then, the same procedure was repeated, until only the deepest 

sediment layer is left. 

Tsunami modelling was performed using the nonlinear shallow water code TUNAMI-N2, developed at 

the Tohoku University, Japan [GOTO et al. 1997]. TUNAMI-N2, which solves governing equations of 

water motions using the leap-frog scheme of Finite Differences on a Cartesian Coordinate system, has 

been validated using experimental and field data [SYNOLAKIS and BERNARD 2006] and has been applied 

to several tsunamigenic zones worldwide [YALÇINER et al. 2004; HEIDARZADEH et al. 2009; SUPPASRI et 

al. 2011]. We applied a 30 m bathymetric grid, which was generated by us based on available multi-

beam data. Simulations were conducted using a time step of 2 s and for a total simulation time of 12 h 

to account for possible reflected waves as the region is geographically narrow and several reflections 

are expected. Coseismic seafloor deformation were calculated by using the analytical formula by 

OKADA [1985], which solves the dislocation problem on a half space. Fault parameters used for 

coseismic seafloor calculations are: Strike, dip, rake angles, top depth of the fault, length and width of 

the fault as well as the slip amount (Table MIII-1). Parts of these parameters were taken from the seismic 

data (e.g. fault length, strike and dip); several test were run for the parameters, which could not be 

determined by the seismic data (e.g., slip amount). 

  



Page | 111  
 

4 Results  
 

4.1 Fault pattern in the outer Messina Strait 
 

Seismic profiles P807 and P242 were selected as representative sections (Figs. MIII-2, MIII-3, MIII-

4). These profiles show clear subsurface expressions and cover the major surface faults and abundant 

minor faults (Figs. MIII-3, MIII-4). 

 

 

Figure MIII- 2 Horizontal distributions of the newly-discovered Fiumefreddo - Melito di Porto Salvo Fault Zone in the 
outer Messina Strait. SCC, South Calabria Canyon [RIDENTE et al. 2014]; SC, South Canyon. Pink lines show the faults. 
Light blue dashed closed curves show the source area proposed by BILLI et al. [2008] for the 1908 Messina tsunami. Yellow 
lines mark the locations of the selected seismic profiles, P807 and P242. See Fig. MIII-1a for location of map. 
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Figure MIII- 3 (a) Uninterpreted and (b) interpreted seismic sections of profile P807. Faults in brown are minor surface 
faults; faults in other colours are the major surface faults. The dashed lines show the uncertain lower parts of the faults. 
Solid coloured horizontal lines show the picked horizons. TWT, Two-Way Travel Time. The vertical exaggeration is 6. See 
Fig. MIII-2 for location of the profile. 
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Figure MIII- 4 (a) Uninterpreted and (b) interpreted seismic sections of profile P242. Faults in brown are minor surface 
faults; faults in other colours are the major surface faults. The dashed lines show the uncertain lower parts of the faults. 
Solid coloured horizontal lines show the picked horizons. TWT, Two-Way Travel Time. The vertical exaggeration is 6. See 
Fig. MIII-2 for location of the profile. 
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Table MIII- 1 Fault geometries of the major surface faults in the newly-discovered Fiumefreddo - Melito di Porto Salvo 
Fault Zone in the outer Messina Strait. Details are given in Fu et al. (this thesis) (chapter 5 4.2). 

 

 

Eight major surface faults, SF21-28, and some minor faults have been identified in the outer Messina 

Strait (Fig. MIII-2). Major faults can be traced on at least two profiles, while minor faults are only 

imaged on one single profile. They constitute a fault zone, the Fiumefreddo - Melito di Porto Salvo 

Fault Zone (F-MPS_FZ), which is located exactly in the source area proposed by BILLI et al. [2008] for 

the 1908 Messina tsunami. SF21-23, especially SF21, are in the core part of this area. The surface 

expression of SF21 is exactly the dominant scarp-like structure (DSS) (Figs. MIII-2, MIII-3, MIII-4). 

All other major surface faults are located south of SF21 (Fig. MIII-2).  

In general, all major surface faults strike E-W (Fig. MIII-2) and show apparent dip angles of ~60°. All 

faults, except for SF23 and SF26 dip toward south. The length of individual fault is up to ~16 km. 

Important fault parameters are summarized in Table MIII-1. A detailed description of the fault zone is 

given in chapter 5 4.2. 
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4.2 Reconstructions of fault activities in the outer Messina Strait 
 

 
Figure MIII- 5 Reconstructions of fault activities of the F-MPS_FZ, based on profile P807 that runs across the central part 
of the F-MPS_FZ. Stage 1. See Fig. MIII-2 for the location of the profile. F807-1, F807-2, and F807-3 are minor surface 
faults on the section P807. From the acoustic basement to sequence 9, no water column is included, as the water column has 
already been decompacted when reconstructing the sequence 9 from the present phase. We set the depth to 0, as we do not 
have any evidences for the paleo-water depths at the time of the sequences’ deposition. 
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Fig. MIII-5 Continued: Reconstructions of fault activities of the F-MPS_FZ, based on profile P807 that runs across the 
central part of the F-MPS_FZ. Stage 2. 
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Fig. MIII-5 Continued: Reconstructions of fault activities of the F-MPS_FZ, based on profile P807 that runs across the 
central part of the F-MPS_FZ. Stage 3. 
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Figure MIII- 6 Reconstructions of fault activities of the F-MPS_FZ, based on profile P242 that runs across the western part 
of the F-MPS_FZ. Stage 1. See Fig. MIII-2 for the location of the profile. F242-1 and F242-2 are minor surface faults on 
the section P242. From the acoustic basement to sequence 9, no water column is included, as the water column has already 
been decompacted when reconstructing the sequence 9 from the present phase. We set the depth to 0, as do not have any 
evidence for the paleo-water depths at the time of the sequences’ deposition. 
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Fig. MIII-6 Continued: Reconstructions of fault activities of the F-MPS_FZ, based on profile P242 that runs across the 
western part of the F-MPS_FZ. Stage 2. 
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Fig. MIII-6 Continued: Reconstructions of fault activities of the F-MPS_FZ, based on profile P242 that runs across the 
western part of the F-MPS_FZ. Stage 3. 

 

Table MIII- 2 Reconstructed amounts of the apparent displacements of the faults in the outer Messina Strait at the end of 
the formation of each sequence. Negative and positive signs indicate the normal and the reverse slip components, 
respectively. 

 

 

The seismic sections P807 (~4600 m long) and P242 (~ 6200 m long) traverse the central and the 

western parts of the Fiumefreddo - Melito di Porto Salvo Fault Zone (F-MPS_FZ), respectively (Fig. 

MIII-2). The nine picked horizons separate each section into ten sequences (Figs. MIII-3b, MIII-4b). 

According to the results of the reconstructions of the fault activities (Figs. MIII-5, MIII-6; Table MIII-

2), the evolution of the F-MPS_FZ can be divided into three stages (Stage 1 to 3). SF21 showing the 

F242-1 SF21 F242-2 SF24 SF25 SF21 SF22 F807-1 F807-2 SF23 F807-3
2A. BASEMENT 0 0 0 0 0 0 0
SEQUENCE 1 -5 9 14 CONTRACTION 0,1 52 31 1 12 CONTRACTION 0,8
SEQUENCE 2 45 -1 24 CONTRACTION 0,4 43 -29 4 -5 CONTRACTION 0,3
SEQUENCE 3 0 6 -18 EXTENSION -0,1 -65 9 0 0 -15 10 EXTENSION -0,6
SEQUENCE 4 67 -9 -13 CONTRACTION 0,2 18 12 1 3 3 6 CONTRACTION 0,2
SEQUENCE 5 6 6 6 CONTRACTION 0,1 -3 -15 4 -2 0 -2 EXTENSION -0,1
SEQUENCE 6 0 -27 0 3 -7 EXTENSION -0,2 18 18 2 -5 6 -3 CONTRACTION 0,2
SEQUENCE 7 -116 78 -27 -11 3 CONTRACTION 0,6 3 -13 -2 3 -3 -2 EXTENSION -0,1
SEQUENCE 8 -33 24 2 7 -10 EXTENSION 0,0 -4 18 0 0 -3 1 CONTRACTION 0,0
SEQUENCE 9 -5 -187 25 -16 -3 EXTENSION -1,2 -57 -40 -16 -10 -12 -11 EXTENSION -0,7
PRESENT -34 -18 -87 -3 -1 EXTENSION -0,2 -16 0 0 0 0 0 EXTENSION -0,1
1FT & AD, Fault Type & Apparent Displacement (m)
2A. BASEMENT, Acoustic Basement

Stratigraphic 
Sequences

Centre (P807)
Tectonic 

Activities
Tectonic 

Activities %%

West (P242)
1FT & AD 1FT & AD
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most prominent surface expression on the seafloor (Fig. MIII-2) is the most important fault and will be 

described in detail in the following section. 

4.2.1 Stage 1 

 

Stage 1 includes the deposition of the sequences 1 - 4 (Figs. MIII-5I–V, MIII-6I–V). The dominant 

tectonic process during this stage was contraction, though the entire area experienced some extension 

during the deposition of sequence 3 (Figs. MIII-5, MIII-6). During the formation of sequence 1, the 

central part of the area underwent stronger contraction than the western part (Figs. MIII-5II, MIII-6II). 

The amounts of contraction were similar for the remaining periods, except for period 3, where the 

behaviour changed to extension. This overall behaviour is well documented by the activity along fault 

SF 21(Table MIII-2). During the deposition of sequence 1, SF21 formed as major reverse fault in the 

central part of the section (Figs. MIII-5, MIII-6; Table MIII-2). This behaviour continued during the 

deposition of sequence 2 but changed to reverse slip during the deposition of sequence 3 before it 

changed again to normal slip during the deposition of sequence 4. The amounts of the apparent 

displacements of SF21 in the central area are larger than those in the western area (Table MIII-2). 

Overall, SF21 and SF22 have accommodated the largest extension and contraction throughout this stage.  

 

4.2.2 Stage 2 

 

Stage 2 spans the period of deposition of sequence 5 to sequence 8 (Figs. MIII-5VI-IX, MIII-6VI-IX). 

During this stage, extension and contraction occurred alternately in the entire area but the amounts were 

less than 0.2% (~15 m) and therefore very minor. The only exception is the sequence 7 where a 

relatively larger contraction (0.6%, ~40 m) occurred in the western part of the area (Fig. MIII-6; Table 

MIII-2). The fault behaviour of SF21 changed as well. The apparent displacements of SF21 in the 

central area are smaller than those in the western area (Table MIII-2). SF21 and SF22 show larger 

apparent displacements than the other faults in the entire working area, but the amount of displacement 

is small compared to the first and third stage (Table MIII-2). 

 

4.2.3 Stage 3 
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The recent stage, Stage 3, includes sequence 9 and the present (Figs. MIII-5X-XI, MIII-6X-XI). The 

entire area has experienced significant amounts of continuous extension. The western area (e.g. ~1.2%, 

~70 m) has extended more than the central area (e.g. ~0.7%, ~30 m) (Table MIII-2). During the 

deposition of sequence 9 (Figs. MIII-5X, MIII-6X), the western region (Fig. MIII-5X) shows an 

extension of 1.2% (~80 m), which is larger than the total amount of extension during the entire 

remaining period of fault activity (Figs. MIII-5, MIII-6). Throughout this period, extension continued, 

though mild, when compared with the previous phases (Figs. MIII-5X–XI, MIII-6X-XI). The respective 

faults had normal slip components at this stage (Figs. MIII-5X-XI, MIII-6X-XI; Table MIII-2); SF21, 

SF22, and F242-2 show the largest apparent displacements. 

 

4.2.4 Interim Summary 

 

The tectonic activity of the outer Messina Strait can be subdivided into three stages. During Stage 1 and 

Stage 3, the area mainly underwent contraction and extension, respectively. In Stage 2, both extension 

and contraction occurred at low rates. We consider this stage as a period with minor tectonic activity. 

SF21 has been the most active fault and shows the largest apparent displacements.  

 

4.3 Numerical modelling of tsunami 
 

We modelled possible tsunamis from the newly-discovered faults in the outer Messina Strait and 

compared the simulated coastal wave heights and arrival times with those observed during the 1908 

Messina tsunami. 

The fault parameters and extensions outlined in Table MIII-2 and Fig. MIII-2 were used as input 

parameters for tsunami sources. Four tsunamis scenarios have been modelled, using the following fault 

parameters: Strike: 83o, dip: 58o, rake: -90o (=270o), length: 30 km, width: 15 km, top depth 

(corresponding to water depth): 1.5 km, and slip: 2, 5, 10, and 15 m. Among these parameters, the dip 

and the top depth were taken from seismic data. The strike, the length, and the width of the fault zone 

were estimated by combining seismic and bathymetric data (Fig. MIII-2). The slip is varied, based on 

a “trial-and-error method”. 
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Normal fault (rake = -90°) mechanisms were considered for all scenarios as the fault reconstruction 

(Figs. MIII-5, MIII-6) suggest dominant normal faulting mechanisms in recent times. In our scenarios, 

the slip amount is ranging from 2 to 15 m (Fig. MIII-7). According to empirical relationships between 

fault length and slip [WELLS and COPPERSMITH 1994], the maximum predicated slip from a fault with 

length of 30 km is only ~2 m. However, large overall slips of up to 60 m (Table MIII-2) are indicated 

by the seismic profiles although it is unlikely that such large slips occurred during one or only a few 

events. However, the seismic profiles (Fig. MIII-3, MIII-4) may suggest that the F-MPS_FZ is 

susceptible to large slips. This may justify applications of slip values of up to 15 m for fault parameters 

(Fig. MIII-7c&d). 

 

 

Figure MIII- 7 Results of tsunami simulations for four scenarios with slips of 2 m (a), 5 m (b), 10 m (c) and 15 m (d) and 
comparisons with observed wave heights. The red and blue contours represent the uplift and subsidence due to the tectonic 
source, respectively. The colour maps show the distribution of maximum tsunami amplitudes due to each source scenario. 
The parameter K shows the quality of fit between observations and simulations according to Equ. (1). 
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Figure MIII- 8 Tsunami travel times in minutes for scenario (d) shown in Fig. MIII-7. The contours are in minutes and 
show the arrivals of first tsunami waves. The side plots compare the observed arrival times with the first noticeable peak 
(with amplitude > 0.5 m) in simulations. The right panel shows some of the simulated waveforms. The parameter K shows 
the quality of fit between observations and simulations according to Equ. (1). 

 

Figs. MIII-7 and MIII-8 present the results of tsunami simulations, which are compared with both 

coastal run-up data (Fig. MIII-7) and tsunami arrival times (Fig. MIII-8) observed during the 1908 

Messina tsunami as reported by BARATTA [1910]. Fig. MIII-7 shows that a fault with a slip of < 5 m 

would not cause a significant tsunami. According to Figs. MIII-7d and MIII-8, a fault with a slip of 15 

m is able to fairly reproduce the run-up heights and arrival times observed during the 1908 Messina 

tsunami. 
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5 Discussion 
 

5.1 Quality of the fault reconstruction 
 

Independent reconstructions of the fault activities show comparable results for both profiles presented 

in this study, i.e. contraction during stage 1, only minor activity during stage 2, and extension during 

stage 3. Details, however, vary significantly between the profiles. We would like to point out that the 

reconstruction includes several uncertainties. Depth conversion were done with a constant velocity, and 

standard parameters were used for the decompaction. Better velocity models and core data would help 

to overcome these uncertainties.  

The calculated amounts of extension/contraction are relatively small. Hence, picking errors will have a 

significant effect on the calculated amounts. The high-quality seismic data allow tracing reflectors 

across the faults with high reliability. We picked the same phase for all reflectors but small picking 

errors will remain. Hence, we consider the small amount of extension/contraction during stage 2 as not 

relevant. Stage 2 was most likely a transitional period between contraction during stage 1 and extension 

during stage 3. 

 

5.2 Evolution of the newly-discovered Fiumefreddo - Melito di Porto Salvo Fault 

Zone in the outer Messina Strait 
 

Unfortunately, no age control is available for any of the picked reflectors. Hence, we cannot link the 

reconstructed fault history to the overall tectonic evolution of the Messina region. However, in the 

following we briefly discuss the temporal evolution of the Fiumefreddo - Melito di Porto Salvo Fault 

Zone (F-MPS_FZ). 

The activity of the F-MPS_FZ started latest with formation of the acoustic basement. The fault zone 

may have been active even longer but older sediments are not imaged by our seismic system. During 

stage 1, the outer Messina Strait was mainly affected by contraction. Correspondingly, faults in the F-

MPS_FZ showed reverse-slip components most of the time. The local tectonic activity in the central 

part of the outer Strait might be stronger than that in the western part, because SF21 showed larger 

apparent displacements in its central segment than in its western segment. The relatively steep apparent 
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dip angles (>55°) may indicate that faults in the F-MPS_FZ also had strike-slip components. Hence, 

the F-MPS_FZ was a transpressional fault zone, indicating that the outer Messina Strait was locally 

controlled by a transpressional regime during the first stage. We consider stage 2 as a transitional or an 

adjusting period between early contraction stage and later extension stage. The amounts of the 

reconstructed contraction or extension are too small to be relevant (see chapter 6 5.1). During stage 3, 

the outer Messina Strait has been continuously extending. Correspondingly, nearly all faults in the F-

MPS_FZ showed normal slip components. SF21 exhibits larger apparent displacements than all other 

faults.  

During the entire reconstruction period, the variations of the fault types and apparent displacements of 

SF21 were generally consistent with the overall result of the reconstruction. This consistency 

demonstrates that the activity of SF21 reflects the activity of the F-MPS_FZ. SF21 is the primary fault 

of and the most important contributor to the F-MPS_FZ in the outer Messina Strait.  

 

5.3 Implications from tsunami modelling 
 

The newly-discovered Fiumefreddo - Melito di Porto Salvo Fault Zone (F-MPS_FZ) was active and 

characterized by ongoing transtension in recent time. The vertical movements (most of them >10 m, 

Table MIII-1) of the faults in the F-MPS_FZ seem to be large enough for generating tsunamis. 

The largest unknowns are the slip rate of individual faults and how many earthquakes had contributed 

to the slips of faults. To test different slip values, we applied a trial-and-error method. We examined 

whether these slip values could generate tsunamis or not. The observed run-up heights and arrival times 

of the 1908 Messina tsunami were taken as references to test the simulated results. In each case, the slip 

is assumed to occur in one event. 

To examine how much our simulated data fit to the observed data, we applied the parameter ܭ 

according to the following equation [SATAKE and TANIOKA 2003]: 

 logܭ = ଵ
ே
∑ log ቀை௦

ௌ
ቁ 									（1）ே

ୀଵ   

in which, ܰ  is the total number of data, ܱܾݏ  and ܵ݅݉  are the observed and simulated values, 

respectively. If the observed and simulated values are the same, ܭ will be 1. If ܭ is less than 1, the 

simulations are understating the observations and vice versa. 
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The ܭ parameters for the scenario d (Fig. MIII-7d, MIII-8) are 1.18 and 0.85 for the run-up heights and 

arrival times, respectively, which are closer to 1 when compared with the K values of other scenarios, 

indicating that the scenario d is more acceptable than other scenarios. One of the main difficulties of 

other source models proposed for the 1908 Messina tsunami was the lack of match between 

observations and simulations along the coast of Sicily (coast A in Fig. 7) [PIATANESI et al. 1999]. Our 

scenario gives acceptable results along the coast of Sicily (coast A in Fig. MIII-7d).   

Despite the fact that our tsunami models match well with the observed data of the 1908 Messina tsunami 

and that the location corresponds well with the source area suggested by BILLI et al. [2008], we doubt 

that the F-MPS_FZ was the source of the 1908 Messina tsunami, because the strike of the fault zone 

contradicts all seismological observations which suggest a N-S-striking fault in the inner Messina Strait 

[AMORUSO et al. 2002b; TINTI and ARMIGLIATO 2003b; ARGNANI et al. 2009a]. A slip of 15 m along a 

relatively short fault (<16 km) is also highly unlikely.  

However, we still consider the F-MPS_FZ as a potential hazard, because it is the most obvious tectonic 

feature in the entire Messina Strait with an escarpment height at the seafloor of up to 60 m. The tsunami 

modelling suggests that a slip rate of ~2 m would not trigger a significant tsunami but slip rates of ~5 

m would result in local run-up heights of more than 2 m. An even higher slip rate increases the estimated 

tsunami height significantly. The newly-discovered F-MPS_FZ adds a new source candidate for 

tsunamis in the Messina Strait in Southern Italy.  

 

5.4 Do submarine landslides tsunami triggers exist in the outer Messina Strait? 
  

Since the 1908 Messina earthquake and tsunami, the northern inner Messina Strait was considered to 

be an area in which the epicentre and the causative fault of the earthquake may be located [TINTI and 

ARMIGLIATO 2003b]. The run-up heights of the tsunami, however, can be better explained by a source 

south of this area [BOSCHI et al. 1989b]. [OMORI 1911] and TINTI and ARMIGLIATO [2003b] pointed out 

that the earthquake caused the surface depression but not necessarily the tsunami. Hence, by using the 

simple backward ray-tracing method, BILLI et al. [2008] located the source area of the 1908 Messina 

tsunami in the outer Messina Strait (Fig. MIII-1a) where we identified the F-MPS_FZ, and postulated 

that the trigger candidate for the tsunami is a submarine landslide located off Giardini (Fig. MIII-1a). 
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However, based on our new seismic data, no evidence of slide scarps or slide deposits support the 

existences of such a large potentially tsunamigenic landslides in this area. The undulations of the 

uppermost sediment layers of some parts of the area are interpreted as sediment waves/bedforms (Figs. 

MIII-3b, MIII-4b). The slide crown and body identified by BILLI et al. [2008] is a landscape typical for 

long-term erosion within a canyon environment rather than a very recent and large failure event 

[ARGNANI et al. 2009b] (Figs. MIII-1, MIII-2). Therefore, landslide source for the 1908 tsunami is 

highly unlikely. 
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6 Conclusions 
 

Tsunamis are a major threat for the coastlines of Southern Italy as demonstrated by the devastating 

tsunami following the 1908 Messina earthquake.  

In this study, we discovered an E-W-trending fault zone, the Fiumefreddo - Melito di Porto Salvo Fault 

Zone (F-MPS_FZ), in the outer Messina Strait. It is located in an area proposed as a source area for the 

1908 Messina tsunami by Billi et al. (2008) and shows an up to 60 m-high escarpment as prominent 

surface expression.  

Fault activity reconstructions for the F-MPS_FZ suggest an initial tranpressional stage followed by an 

adjusting period. The recent stage is characterized by ongoing transtension.  

The F-MPS_FZ may be a candidate for generating tsunamis. Tsunami modelling results show that a 

slip rate around 5 m would already generate tsunamis with local run-up heights exceeding 2 m. A fault 

with a slip of up to 15 m could even generate a tsunami comparable to the 1908 Messina tsunami, 

though such a scenario is highly unlikely, due to the unrealistically high slip.  

We did not find any indications for a tsunamigenic landslide, as suggested by Billi et al. (2008). 

Although an E-W-trending fault zone contradicts all suggested focal mechanisms for the 1908 Messina 

tsunami, we still consider the F-MPS_FZ as a potential source for tsunamis in the Messina Strait, 

Southern Italy, as it is the most obvious tectonic feature in the entire Messina Strait.  
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7 FINAL CONCLUSIONS AND OUTLOOK 
 

7.1 Conclusions 
 

The analysis of new seismic and hydro-acoustic data allowed i) to characterize the near-surface fault 

pattern of the inner Messina Strait and to link this fault pattern to the overall geodynamic framework, 

and ii) to assess the graben structure of the inner Messina Strait, iii) to falsify the proposed submarine 

Taormina Fault, iv) to analyze the type of faulting and activity of the newly-discovered Fiumefreddo - 

Melito di Porto Salvo Fault Zone (F-MPS_FZ) in the outer Messina Strait, and v) to assess the tsunami 

potential of the F-MPS_FZ based on modelled scenarios. The main conclusions of this thesis can be 

summarized as follows: 

i) Near-surface fault pattern of the Messina Strait and its link to the overall geodynamic 

framework 

Several near-surface faults have been identified in the inner Messina Strait. They mainly strike N-S and 

E-W. N-S-trending near-surface faults are right-lateral transtensional faults distributed along the 

Messina Canyon and the coastline off southern Calabria. E-W-trending near-surface faults are left-

lateral transtensional faults situated in the northern inner Messina Strait off Calabria. This fault pattern 

fits well to the active stress field: a ca. N115°E horizontal trending minimum compressional stress (σ3) 

and a subvertical maximum compressional stress (σ1), which controls the extension across the Messina 

Strait, mainly caused by northwestward and northeastward movements of Sicily and Calabria with 

respect to the Eurasian plate, respectively. The N-S-trending near-surface faults that are located along 

the coastline off southern Calabria form a group of distributive faults, which could reflect the 

subsidence of the Strait area. 

The N-S trending right-lateral transtensional faults in the central part of the inner Messina Strait fit well 

to the suggested focal mechanisms of the 1908 Messina earthquake. However, all of these faults show 

relatively small fault offsets and relatively short/small fault planes (< 15 km in length). Hence, it is 

unlikely that one of these faults was the master fault of the 1908 Messina Earthquake but they may 

represent shallow subsurface expressions of deeper and longer faults, which were not imaged due to 

the limited penetration of the new seismic data 

ii) Graben structure of the inner Messina Strait 
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The new seismic data support the hypothesis that the inner Messina Strait is an angular graben structure 

as proposed by [MULARGIA et al. 1984a]. The Messina Strait graben is bounded by two antithetic normal 

faulting systems: the northeastern Sicily normal faulting system and the southwestern Calabria normal 

faulting system. In the graben, the newly-discovered N-S-trending near-surface faults contribute to the 

development of the master graben and form some secondary grabens, such as Messina Canyon. The 

formation of the graben structure of the Strait supports that the Messina Strait has experienced extension, 

which was directly caused by northwestward and northeastward movements of Sicily and Calabria with 

respect to the Eurasian plate, respectively. The angular shape of the graben is probably generated by 

the southeastward bending of the inner Calabrian Arc. 

iii) Existence of the inferred Taormina Fault 

The inferred Taormina Fault (TF) was considered as one of the most hazardous and largest seismic gaps 

in Italy. However, it has not been imaged on any exist seismic data set, even not in our new seismic 

data. Hence, the TF may not exist or could not be imaged by means of the new data because i) it is 

deeply buried without a surface expression on the seafloor or ii) it steeply dips in the area between 

offshore seismic profiles coverage and the Ionian coastal area of Sicily, which is not covered by the 

new data. We consider it as unlikely that an active fault does not show any expression in the depth 

range of our seismic data and that a fault is exactly located in a ~2000 m gap between the coastline and 

our profile. Hence, we doubt the existence of the TF. 

iv) Activity of the newly-discovered Fiumefreddo - Melito di Porto Salvo Fault Zone (F-MPS_FZ) 

in the outer Messina Strait 

A newly-discovered E-W-trending fault zone in the outer Messina Strait is named Fiumefreddo - Melito 

di Porto Salvo Fault Zone (F-MPS_FZ). It is located in an area identified by BILLI et al. [2008] as most 

likely source area for the 1908 Messina tsunami based on analysing arrival times of the tsunami.  

The F-MPS_FZ is interpreted as left-lateral transtensional fault zone. A prominent dominant scarp-like 

structure (DSS) with heights of up to 60 m represents the surface expression of the master fault of the 

F-MPS_FZ. The DSS documents the ongoing activity of this fault zone. Based on the reconstruction of 

the fault activity, the F-MPS_FZ is currently in an extensional phase. The F-MPS_FZ builds an “H” 

faulting system with two postulated Subduction-Transform Edge Propagator (STEP) faults: the Ionian 

Fault and the Alfeo-Etna Fault. It may work as a STEP-Connector Fault between the Ionian Fault and 

the Alfeo-Etna Fault. Two possible models have been put forward for this “H” faulting system: the pull-
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apart basin style model and the fault-termination basin style model. The pull-apart basin style model is 

more reasonable based on all available data. 

v) Tsunami potential of the F-MPS_FZ  

The F-MPS_FZ in the outer Messina Strait might be a candidate for generating tsunamis. Slip rates 

around 5 m would generate tsunamis with local run-up heights exceeding 2 m. A slip of up to 15 m 

could even generate a tsunami comparable to the 1908 Messina tsunami in terms of run-up heights and 

arrival times. Despite the fact, that such high slip rates are not reasonable, the 60m-high DSS clearly 

indicates strong vertical movements. It is, however, unlikely that this fault generated the 1908 tsunami 

because it contradicts all seismological observations, which suggest an N-S-trending fault.   

Furthermore, a tsunamigenic submarine landslide proposed by BILLI et al. [2008] in the area of the F-

MPS_FZ is not imaged on the new seismic data. Tsunamis originating in the outer Messina Strait might 

be caused by faulting structures such as the F-MPS_FZ, and the F-MPS_FZ needs to be considered as 

a potential source for tsunamis hitting the coastlines of the Messina Strait. 
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7.2 Outlook 
 

This thesis contributes to many heavily debated questions related to the tectonics of the Messina Strait. 

The near surface fault pattern of the Messina Strait was mapped in detail for the first time. The most 

exciting result of this thesis is probably the discovery and the analysis of the F-MPS_FZ, which shows 

the most obvious surface expression of any fault in the Messina Strait; it may represent the most active 

fault zone in the working area. The location of this fault between two STEP faults makes this fault even 

more interesting as it is interpreted to be a connector between the STEP faults. The new seismic data, 

however, only allow to scratch the upper most parts of the lithosphere. Many secrets are still hidden in 

deeper layers, which are not imaged by the new seismic data. Hence, deep penetrating reflection seismic 

data in combination with the analyzed high-resolution seismic data would allow to characterize the 

tectonic setting and the exact location and character of deep reaching faults much better. Most 

interesting features to be discovered include the still unknown location of the seismogenic fault of the 

1908 earthquake and the exact structure of the two STEP faults. However, such deep-penetrating 

reflection data are very complicated to collect in the working area. The small width of the Messina 

Strait makes it almost impossible to collect long-streamer data crossing major N-S-striking fault. Heavy 

ship traffic would further complicate data acquisition. In addition, deep penetration is very difficult to 

access even with large sources. The acoustic basement of the analyzed seismic data is in a pretty shallow 

depth and characterized by a diffuse zone with no coherent reflections. This zone may be described as 

substrate, which is very difficult to image due to energy scattering and attenuation. Hence, it may be 

difficult to image the deeper structure even with large sources. 

Another critical knowledge gap is the missing age information of key horizons on the seismic section. 

Fault reconstruction was done in this thesis, but it is difficult to link the constructed fault behaviour to 

the overall tectonics due to the missing age information. 
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APPENDIXES 
 

 
Figure A1 Sketch of the tectonic evolution of the central-western Mediterranean, based on GOES et al. [2004], with the reconstruction of 
subducted plate geometry. Bold lines mark the reconstructed paleogeography from 35 Ma to present, relative to a fixed Europe. For 
reference, dotted lines show present-day geography in all panels. The dipping part of the slab is shaded in dark gray, the part that lies flat 
above 660 km in light gray. A gap (in white) develops in this slab after 15–10 Ma, starting just south of Sardinia. The bold gray line 
indicates the approximate location of the trench axis (not the deformation front). Extension in the Sicily Channel started around 5–6 Ma. 
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Figure A2 [Left] Principal axes of the horizontal strain rate tensor (in blue) and associated 1 sigma errors (red bars). [Right] The 
orientation of uniform faulting that can accommodate the strain rate field shown in the left figure. Red lines are faults with a left-lateral 
component; blue lines are faults with a right-lateral component. Line lengths are equal to the magnitude of the difference between the 
principal strain rates. Taken from D'AGOSTINO and SELVAGGI [2004]. 

 

 
Figure A3 Geodetic strain rate field of Southern Italy computed over a regular 0.2°×0.2° grid. Taken from SERPELLONI et al. [2010]. 
[Left] Red and blue arrows show extensional and compressional strain rates, respectively. Grey crosses display 1σ uncertainties. [Right] 
Rotation rates and 1σ uncertainties (grey wedges). Red wedges show clockwise rotations, whereas blue wedges show counter-clockwise 
rotations. Grey arrows in both panels show GPS velocities with respect to the Nubian plate. 
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