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1. Cruise summary / Zusammenfassung 
1.1 German / Deutsch 

Die Reise SO244-2 des FS SONNE fand vom 27. November bis 13. 

Dezember 2015 vor der Küste Nordchiles statt. Ziel der Ausfahrt war es, das 

geodätische Meeresbodennetzwerk GeoSEA (Geodetic Earthquake Observatory on 

the SEAfloor) auf dem Kontinentalhang und der ozeanischen Platte im Bereich der 

südamerikanischen Plattengrenze um 21°S zu installieren. Dieses Segment der 

Subduktionszone zwischen der Nazca-Platte und Südamerika ist zuletzt im Jahre 

1877 während eines Erdbebens gebrochen und wurde vor dem Iquique/Pisagua-

Erdbeben im Jahr 2014 (Mw=8.1) als seismische Lücke identifiziert. Der südliche 

Abschnitt ist bisher nicht in einem rezenten Erdbeben gebrochen und befindet sich 

somit in der letzten Phase der interseismischen Periode des seismischen Zyklus. Die 

Methode der Meeresbodengeodäsie bietet eine Möglichkeit, Krustendeformationen 

in hoher Auflösung zu erfassen, was im marinen Bereich quasi das Analogon zu der 

an Land genutzten satellitengestützten GPS-Technologie darstellt. Das GeoSEA 

Netzwerk besteht aus autonomen Meeresboden-Transpondern, die auf etwa 4 m 

hohen Stahltripoden mit Hilfe des Geodrahtes des FS SONNE auf den Meeresboden 

abgefiert werden und mittels akustischer Signale für einen Zeitraum von bis zu 3.5 

Jahren miteinander kommunizieren. Ein weitere Komponente des Netzwerkes ist 

GeoSURF: mit Hilfe dieses Wellengleiters kann sowohl die Funktionalität des 

Netzwerkes in der Tiefe überprüft werden, als auch die Daten zur Oberfläche 

transferiert werden, von wo aus sie per Satellitenverbindung weitergeleitet werden. 

Für die Installationen wurden drei Gebiete am mittleren und unteren Kontinentalhang 

sowie seewärts des Tiefseegrabens identifiziert, die während des ersten 

Fahrtabschnittes Leg I von SO244 mit einem autonomen Unterwasserfahrzeug 

(AUV) mit einer Auflösung von 2 m kartiert wurden. Das Netzwerk in Gebiet 1 (Area 

1) auf dem mittleren Hang besteht aus 8 Transponderstationen, die paarweise auf 

vier topographischen Rücken stehen, die den Verlauf von Verwerfungen markieren. 

In Gebiet 2 (Area 2) auf der ozeanischen Platte seewärts der Deformationsfront 

(‚outer rise’) messen fünf Transponder die Öffnung von Extensionsbrüchen. Das 

dritte Messgebiet (Area 3) befindet sich in Wassertiefen von über 5000 m auf dem 

unteren Kontinentalhang, wo insgesamt 10 Stationen den diffusen tektonischen 

Spannungsaufbau verfolgen. Daten aller drei Netzwerke und aller Stationen konnten 

erfolgreich von GeoSURF bzw.  von einem  HPT Modem, das vom FS SONNE zu 
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Wasser gelassen wurde, geladen und gesichert werden. Die Netzwerkinstallation 

bestehend aus insgesamt 23 Meeresbodenstationen wurde am 7. Dezember 

erfolgreich abgeschlossen. Anschließend wurden 14 Ozeanbodenseismometer 

(OBS) in der Region ausgebracht, um die seismische Aktivität aufzuzeichnen. Diese 

Geräte sollen im Frühjahr/Sommer 2016 von Bord des U.S.-amerikanischen 

Forschungsschiffes RV LANGSETH geborgen werden.  

1.2 English / Englisch 
RV SONNE cruise SO244-2 sailed offshore northern Chile from Nov. 27 to 

Dec. 13, 2015 to install the seafloor geodetic network GeoSEA (Geodetic 

Earthquake Observatory on the SEAfloor) on the marine forearc and outer rise of the 

South American subduction system around 21°S. This segment of the Nazca-South 

American plate boundary has last ruptured in an earthquake in 1877 and was 

identified as a seismic gap prior to the 2014 Iquique/Pisagua earthquake (Mw=8.1). 

The southern portion of the segment remains unbroken by a recent earthquake and  

is currently in the latest stage of the interseismic phase of the seismic cycle. Seafloor 

geodetic measurements provide a way to monitor crustal deformation at high 

resolution comparable to the satellite-based GPS technique upon which terrestrial 

geodesy is largely based. The GeoSEA Network consists of autonomous seafloor 

transponders installed on 4 m high tripods, which were lowered to the seabed on the 

deep-sea cable of RV SONNE. The transponders within an array intercommunicate 

via acoustic signals for a period of up to 3.5 years. An additional component of the 

network is GeoSURF, a self-steering autonomous surface vehicle (Wave Glider), 

which monitors system health and is capable to upload the seafloor data to the sea 

surface and to transfer it via satellite. We have chosen three areas on the middle and 

lower slope and the outer rise for the set-up of three sub-arrays. The array in Area 1 

on the middle continental slope consists of 8 transponders located in pairs on four 

topographic ridges, which are surface expressions of faults at depth. Area 2 is 

located on the outer rise seaward of the trench where 5 stations monitor extension 

across plate-bending related normal faults. The third area is located at water depth 

>5000 m on the lower continental slope where an array of 10 stations measures 

diffuse strain build-up. Data from all networks and all stations were successfully 

uploaded to GeoSURF and/or a HPT modem lowered into the water from RV 

SONNE. The seabed installation of a total of 23 transponders was completed by 
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December 07, when we proceeded to deploy a total of 14 ocean bottom 

seismometers (OBS) on the forearc between 19.2°-21.6°S. These instruments will be 

recovered by RV LANGSETH in Spring/Summer 2016.  

 

2. Participants / Teilnehmer 
2.1 Principal investigators / Leitende Wissenschaftler 

Name  Institution 

Prof. Dr. Heidrun Kopp Chief Scientist GEOMAR 
Dr. Dietrich Lange Co-Chief Scientist GEOMAR 
 
2.2 Scientific party / wissenschaftliche Fahrtteilnehmer 

Name  Institution 
Katrin Hannemann Geodesy GEOMAR 
Florian Petersen Geodesy CAU 
Dr. Anne Krabbenhöft Geodesy Array, OBS GEOMAR 
Darren Murphy Telemetry Sonardyne Ltd. 
Henning Schröder OBS GEOMAR 
Klaus-Peter Steffen Transducer Deployment GEOMAR 
Torge Matthiesen Transducer Deployment GEOMAR 
Patrick Schröder Telemetry GEOMAR 
Lina Buchmann Technician GEOMAR 
Margit Wieprich OBS GEOMAR 
Ann-Marie Völsch Watch keeper GEOMAR 
Florian Gausepohl Watch keeper GEOMAR 
Manuel Moser Watch keeper CAU  
Eduardo Contreras-Reyes Seismology Universidad de Chile 
Jose Mieres Seismology Universidad de Chile 
Prof. Dr. Jan Behrmann 
Tanja-Anina Timmermann 

Bathymetry 
Watch keeper 

GEOMAR 
CAU 

Jan Steffen Watch keeper & PR GEOMAR 
Frank Benitsch Watch keeper GEOMAR 
Jasna Haro Gomez Observer SHOA 
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2.3 Crew / Mannschaft  

Name  
Lutz Mallon Master 
Nils Aden Chiefmate 
Jens Göbel 2. Mate 
Ulrich Büchele 2. Mate 
Dr. Sabine Heuser Surgeon 
Achim Schüler Chief Engineer 
Tim Stegmann 2nd Engineer 
Steffen Genschow 2nd Engineer 
Jörg Leppin Chief Electrician 
Hermann Pregler System Operator 
Matthias Grossmann System Operator 
Thomas Beyer Electrician 
Henning De Buhr Electrician 
Volker Blohm Fitter 
Lothar Münch Motorman 
Matyas Talpay Motorman 
Sebastian Thimm Motorman 
Andreas Schrapel Bosum 
Arnold Ernst Ship Mechanic 
Benjamin Brüdigam Ship Mechanic. 
Ingo Fricke Ship Mechanic 
Oliver Eidam Ship Mechanic 
Sascha Fischer Ship Mechanic 
Stefan Burzlaff Ship Mechanic 
Torsten Kruszona Ship Mechanic 
Frank Tiemann Chief Cook 
Andre Garnitz Cook 
Andreas Pohl Chief Steward 
Maik Steep Steward 
Rene Lemm Steward 
Sylvia Kluge Stewardess 
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Figure 2.1: Group photo of the SO244-2 scientific crew. 

3. Narrative of the cruise / Ablauf der Forschungsfahrt 
Cruise SO244-2 commenced in Antofagasta, Chile, on November 27, 2015, 

where 24 scientists from Chile, Germany and Great Britain embarked on RV 

SONNE. The vessel left port at 09:30 h local time to start on the transit north to 

21°S/71°W. The previous days in port as well as the transit were used to prepare our 

gear, in particular to set up the first eight 4 m high steel tripods on the aft working 

deck and to synthetically model the GeoSEA array layout and geometry for working 

area 1 based on the AUV seafloor bathymetry maps acquired during Leg I of SO244. 

We arrived at the first deployment site on Nov. 28, 2015 at 05:30 h to map a 2 nm 

short profile across the planned deployment sites with the EM122 multibeam system 

set to a beam width of 90°. This was followed by a CTD deployment to a water depth 

of 2500 m to compare the variations in time of the sound speed profile to the AUV-

based CTD measurements conducted during Leg I. At 10:00h and 

20°47,943’S/70°48,910’W, station A 301 was veered from the aft deck with the deep-

sea cable to an initial water depth of 200 m when the cable was put on hold to 

deploy a HPT dunker modem over the starboard side of RV SONNE. While on hold, 
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tension on the deep-sea cable suddenly decreased, indicating that the tripod was in 

a free-fall mode towards the seafloor at 2733 m water depth. Due to the quick 

response of the deck’s crew and the scientific crew the hook of the heavy weight 

releaser to which the tripod is attached could be released and the instrument as well 

as the floats were rescued. With the dunker modem we could monitor the decent (~1 

m/s with float vs. 2 m/s without) and touch down of the tripod on the seafloor. As the 

barycenter of the tripod is located at its base, the instrument landed upright and 

could be pinged immediately. It was released approximately 60 m away from its 

planned position and could later be included in the network as a full-scale node. After 

some modifications to the suspension bracket we continued with the deployment of 

station A102 at 16:00 h at 20°47,677’S/70°48,460’W in a water depth of 2603 m. At 

19:30h we received confirmation that both beacons respond and communicate 

properly with each other. 

On November 29 we deployed stations A103, A104, and A105 to water depths 

ranging from 2620 m to 2865 m. All five stations respond properly to the acoustic 

interrogation sent via dunker modem from RV SONNE. The line-of-sight between all 

instruments is clear. We left the first working area to return towards the end of the 

cruise for the deployment of the remaining three stations. On the transit to Area 2 on 

the outer rise seaward of the trench we conducted an EM122 survey to increase the 

data quality of the existing map acquired during Leg I.  

We arrived in working area 2 on November 30 and started to deploy station A201 at 

06:00h at 21°03,370’S/71°43,846’W at a water depth of 4105 m. After sending the 

release command when the station had reached the seafloor, we did not receive an 

answer from the release unit and hence heaved the tripod by 30 m off the seafloor. 

After repeatedly sending release commands from the ship’s Posidonia system as 

well as from IXSEA’s release box and hydrophone, the station released and was 

safely installed on the seafloor. After swopping the IXSEA release unit for the 

following station A202, it was lowered into the water at 12:00h and reached the 

seafloor at 13:45h. We only succeeded to release it after several hours at 16:00h 

after conducting an acoustic reset of the release unit. We still did not receive a reply, 

but could see from the Posidonia tracker that the station had released. Both stations 

communicate with the dunker modem as well as with each other. We continued to 
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deploy station A203, which was veered into the water column at 18:15h. However, 

we could not establish communication with this station once it was on the seafloor 

and hence heaved it back onto the working deck of RV SONNE where it was safely 

recovered on… 

…December 1, 2015 at 04:00h. We exchanged the releaser for a heavy weight 

IXSEA RT8 unit and again lowered station A203. While veering, we deployed the 

wave glider GeoSURF at 07:30h and commanded it to sail above station A202 to 

establish a data connection with the station. Station A203 was released at a water 

depth of 4065 m at 10:20h, however, we only could confirm the release after heaving 

the cable by 30 m and confirming that the station remained on the seafloor. After the 

gear was safely recovered, we could see that the release unit was covered by 

sediment and hence must have fallen to the seafloor. This led us to test the capacity 

of the float, which turned out to be too low to keep the release unit floating in the 

water column. We added a second Benthos sphere to the system. At 13:10h we 

prepared the deployment of station A204, which however slipped from the heavy 

weight release and hence was deployed in free-fall mode to a water depth of 4034 m 

where it landed upright with a tilt of 2°. We continued with the deployment of station 

A205, which was lowered to the seafloor at 15:20h and released two hours later 

using the ship’s Posidonia system. Communication to all stations and within the 

network was confirmed. GeoSURF successfully uploaded data from stations A201, 

A202 and A204 before we had to recover it using the rescue boat of RV SONNE 

before night fell. 

Over night we started our transit to working area 3, again mapping the transit path 

using the EM122 system. We arrived in our last working area in the morning of 

December 2, and started to deploy station A301 at 20°47,034’S/71°04.011’W at a 

depth of 5243 m. Due to the great water depth of >5000 m in this area, we could only 

achieve two deployments and installed station A302 at 20°47,561’S/71°04,945’W at 

a water depth of 5367 m in the afternoon. 

Deployment continued the next day, December 3, 2015, with stations A303 in the 

morning at 20°46,853’S/71°03,520’W at a depth of 5200 m and station A304 in the 

afternoon at 20°46,565’S/71°04,635’W at a depth of 5336 m in the afternoon. 
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Deployment of both stations went smoothly; both were released by Posidonia after 

confirming their line-of-sights to the neighboring stations. Each deployment lasts 

approximately 5 hours, which led us to deploy three stations on… 

…December 4, 2015 after using the night hours to acquire additional bathymetry 

data in the deep-sea trench. Installation of stations A305 through A307 went without 

any problems from 06:00h to 20:30h. Communication between stations and with the 

dunker modem on board RV SONNE was trouble-free and the stations have free 

line-of-sight and a maximum tilt of 5°.  

Deployment of the last stations in area 3 (A308 – A310) in water depth of 

5095 m to 5220 m was successfully completed on December 5 at 21:00 h. During 

recovery of the releaser of station A310 the connecting line ripped apart above the 

Benthos spheres. Both floatation spheres as well as the heavy weight release unit 

got entangled in the portside propeller of RV SONNE, as could be verified by video. 

RV SONNE turned off the propellers as night fell and drifted slowly northwards 

carried by the Humboldt current.  

On the morning of December 6 in the daylight we tried to free the propeller 

from the entangled material, however we did not succeed. We commenced our 12 

nm long transit back to working area 1 to install the first of the remaining three 

stations (A106). This station immediately responded to the pings from the five 

stations already deployed in the network as well as to RV SONNE. This success was 

a vague consolation for the fact that one or both of the Benthos spheres must have 

imploded during transit. Fortunately the heavy-weight release unit pulled both 

spheres as well as the remaining line to depth, setting the portside propeller free so 

that it could be utilized unconditionally. In the afternoon of December 6 we deployed 

station A107 before heading to shallower water depth for a high-resolution mapping 

survey in the area between 20°40’S/70°32’W and 21°01’S/70°39’W using 

Kongsberg’s multibeam EM710 system, which is permanently installed on RV 

SONNE. 

We returned to working area 1 on December 7 to deploy the last GeoSEA 

station A108 at 08:00h. At 14:30h we deployed the first of a total of 14 ocean bottom 

seismometers (OBS), which will record the seismic activity on the northern Chilean 
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forearc until spring/summer 2016, when they will be recovered from RV LANGSETH. 

OBS deployment for stations OBS02-OBS13 continued until 08:45h the next day.  

On December 8 we returned to working area 1 to deploy GeoSURF here, 

which traveled autonomously until the next day. After deployment of GeoSURF we 

continued to working area 3 where we deployed OBS01. In addition, we retrieved 

data from the GeoSEA stations using the HPT dunker modem and re-configured the 

logging settings for the sub array. 

We recovered GeoSURF in the morning of December 9 after it successfully 

uploaded data from the GeoSEA stations in working area 1. At 13.00h we returned to 

working area 3 to verify that the re-configuration of the array has executed properly. 

We left here at 16:30 to begin our transit west to working area 2, where we arrived at 

20.30h to again deploy GeoSURF for the night while RV SONNE mapped previously 

uncharted seafloor west of the trench. 

By 09:00h on December 10, GeoSURF was safely back on deck and all data 

were uploaded and secured. We now headed on our final bathymetry grid south of 

working area 2. Mapping continued until 24:00h on Dec. 11, covering a total of 

8814 km2 in this area. RV SONNE then headed south to commence our transit 

towards the port of Antofagasta. During transit, we deployed our final OBS south of 

the Iquique/Pisagua earthquake aftershock region. RV SONNE safely reached the 

pilot station at Antofagasta harbor on Dec. 13 at 08:00h and berthed at 08:30h, 

terminating cruise SO244-2. Throughout the cruise weather conditions were optimal, 

always calm seas and no rain.  

Figure 3.1 shows a track plot of SO244-2.  
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Figure 3.1: Ship track of RV SONNE cruise SO244 Leg II. 
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4. Aims of the Cruise / Zielsetzung der Forschungsfahrt 
The primary aim of cruise SO244-2 was to install an autonomous seafloor 

geodetic array to record deformation on the northern Chilean continental margin. The 

motivation for seafloor geodetic measurements lies in the fact that our understanding 

of earthquake processes in the framework of classic elasticity theory is well 

developed (e.g. Kanamori and Brodsky, 2005), while the evolution of strain through 

the interseismic and co-seismic phases remains poorly understood. The ability of 

terrestrial geodetic networks to precisely measure crustal deformation with millimeter 

accuracy in the form of lateral movement and/or vertical displacement has 

enormously advanced our knowledge of fault slip and earthquake rupture 

propagation over the past decade (e.g. Hsu et al., 2006; Briggs et al., 2006; Liu et 

al., 2010; Lay et al., 2012). They have documented the active accumulation of 

interseismic strain, and subsequent strain release associated with devastating 

earthquakes (Heki, 2011). Much of the elastic strain build-up and release associated 

with large subduction zone earthquakes, however, occurs offshore (Kopp, 2013). 

The satellite-based GPS technique upon which terrestrial geodesy is largely based is 

not applicable in oceanic areas due to the opacity of seawater to electromagnetic 

radiation. As a result, our knowledge of the real-time crustal deformation has so far 

ended at the global shorelines, imposing severe limitations on the effectiveness of 

present-day models. Seafloor geodetic measurements provide perhaps the only way 

to successfully deal with these problems (Newman, 2011), allowing us to directly 

measure deformation in some of the most active (and potentially destructive) places 

on Earth. The seafloor represents the critical interface between the ocean and the 

geosphere where processes occurring at depth are transferred and manifested in 

seafloor deformation. The ability to observe and monitor seafloor deformation using 

newly developed marine technology and vastly improved resolution will advance our 

understanding of subduction zone seismicity and will improve spatial and temporal 

hazard assessment. The technological developments in the past ~10 years have led 

to a new generation of submarine transducers, which are now capable of rendering 

an improved resolution that makes seafloor geodetic measurements feasible for 

tectonic investigations.  

Seafloor displacement occurs in the horizontal (x,y) and vertical direction (z) 

as a function of time (t). The vertical displacement is measured by monitoring 
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pressure variations at the seafloor. Horizontal seafloor displacement can be 

measured either using an acoustic/GPS combination to provide absolute positioning 

or by long-term acoustic telemetry between different beacons fixed on the seafloor to 

determine relative distances by using the travel time observations to each other, 

which is the technique used in the current GeoSEA array set-up (Figure 4.1). The 

scientific target is to measure seafloor deformation as a function of elastic strain 

above the submerged up-dip region of the seismogenic locked zone off northern 

Chile. In this approach the overarching goal is to identify the extent of the locked 

zone. Elastic strain is a function of convergence rate, fault geometry and locked 

zone. Elastic strain on the continent is observed with land-based geodetics, 

convergence rate is obtained from far-field GPS, thrust-fault geometry is known from 

deep-sounding seismics and seismology and seafloor geodesy is needed to solve for 

the locked zone (deformation measurement of up-dip region). 

 

Figure 4.1: Sketch of the GeoSEA array and GeoSURF (C. Kersten, GEOMAR). 
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In addition to the installation of the GeoSEA array and the set up of 

communication with GeoSURF, monitoring of seismic activity in the survey region 

was defined as a secondary goal in order to later merge the geodetic and 

seismological data. To this end, a total of 14 OBS were installed on the forearc 

between 19°-22°S in November 2014 from the Chilean navy vessel OPV 

Comandante TORO (Armada de Chile) and recovered during Leg I of SO244.  

These instruments were re-deployed during Leg II in the aftershock region of the 

April 1, 2014 Iquique/Pisagua earthquake to be recovered in 2016 by the RV 

LANGSETH.  

5. Setting of the working area / Beschreibung des Arbeitsgebiets 
The Chilean convergent margin forms part of the global subduction zone 

system where the majority of global earthquakes occur. During great earthquakes 

(M>8) along these convergent plate boundaries the shallow interface between the 

plates ruptures and rupture propagates down to depths of ~50 km. The Chilean 

deep-sea trench marks the onset of subduction underneath the South American 

continent and the seismogenic zone where large ruptures occur is almost exclusively 

located beneath the marine forearc. The Nazca-South American plate boundary 

system which includes our working area has been the site of a number of recent 

large earthquakes, including the April 1, 2014 Iquique/Pisagua event with a 

magnitude of Mw=8.1 (e.g. Lay et al., 2014). This earthquake ruptured a portion of 

the Iquique segment. Segments sometimes fail in numerous smaller events over a 

time period of decades and at other times in large events that span the entire 

segment. Plate convergence between the Nazca and South America plates occurs at 

a rate of 65 mm/yr (Béjar-Pizarro et al., 2010) and approximately 8.5 m of slip has 

accumulated over the last ~130 years. Although the northern Chile subduction zone 

failed in "moderate" Mw 7.7 and 8.3 events in 2007 and 2014 (Figure 5.1 A), these 

have not fully released the strain accumulated due to plate convergence since 1877 

(e.g. Schurr et al., 2014). The temporal and spatial history of the Iquique earthquake 

sequence and its correlation to the pre-earthquake locking pattern as recorded by 

geodetic and seismological instrumentation onshore has recently been described in 

detail by Ruiz et al. (2014), Lay et al. (2014), and Schurr et al. (2014).  
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Figure 5.1: Top left (A): Map of the northern Chilean subduction zone and adjacent 
Nazca plate showing the seismic gap and the location of the 2014 Iquique earthquake and 
the rupture areas of the 1995 Antofagasta (red, ~24°S), 2001 Peru and 2007 Tocopilla (grey, 
22.5°S) earthquakes (from Schurr et al., 2014). Top right (B): Fore- and aftershock 
seismicity of the Iquique event (Schurr et al., 2014). Lower panel (C): Time/space history of 
precursory activity (from Ruiz et al., 2014, supplementary material; labels and largest 
aftershock were added). 

Seismicity in the region started increasing around 2008, with several clusters 

of small (M>4) earthquakes on the plate boundary in this region, including a cluster 

near the April 1, 2014 hypocentre. The current sequence started with two Mw 5.7 

events in January 2014 near the southern boundary of the April 1 rupture zone 

(Figure 5.1 C). A major foreshock with Mw 6.7 occurred on March 16 (Figure 5.1 B) 

followed a week later by two Mw 6.2 foreshocks on a patch distinctly north of the 

March 16 sequence and near the epicentre of the April 1 earthquake. Both patches 

of foreshock activity were near the up-dip edge of the eventual rupture plane. The 

fault plane for the first foreshock was oriented ~70° to the NW relative to the plate 

motion direction and to the fault planes of the other foreshocks, the main shock, and 
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several of the large aftershocks (Ruiz et al., 2014). Subsequent events showed 

mechanisms consistent with the plate motion. This suggests the rupture of a 

structural heterogeneity that rotated the axes of the stress field for the first foreshock. 

There is also geodetic evidence that the March 16 event might have initiated slow 

slip on the portion of the fault that ruptured on April 1 (Ruiz et al., 2014) and a 

gradual unlocking of the plate boundary before the 2014 Iquique/Pisagua earthquake 

(Schurr et al., 2014).  

For the installation of the GeoSEA array, we chose the forearc area around 

21°S (south of the Iquique/Pisagua earthquake rupture zone). The GeoSEA array 

was installed on the lower and middle slope of the marine forearc, because it is here 

above the updip limit of the seismogenic zone that we expect the largest deformation 

(Wang et al., 2012) due to the episodic loading at the trench. The high-resolution 

bathymetry data acquired during Leg I of cruise SO244 using the ship-based EM122 

multibeam system covered the area between 70.5°W-71.5°W, which includes the 

continental slope down to the deep sea trench (compare Cruise Report FS SONNE 

cruise SO244 Leg I). Landward to the trench and the deformation front, a small 

active frontal prism of 5-10 km width lies adjacent to the lower slope. Subducting 

seafloor-spreading fabric modulates the morphology of the frontal prism and the 

lower slope. Normal faulting is widely observed on the middle slope and has been 

attributed to subduction erosion. The deployment areas for the GeoSEA sub-arrays 

were chosen based on the following criteria: (1) water depth between 2000 m and 

6000 m, (2) little to no sediment cover and no turbidite channels or evidence for 

mass wasting events, (3) fault scarps not exceeding 100 m height, (4) evidence for 

active deformation. Furthermore, the sub-arrays should be spread on the middle and 

lower slope as well as on the outer rise. 
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Figure 5.2: Bathymetry map with Areas 1-3. The three areas are described in detail 
below. 
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The installation of the GeoSEA seafloor geodetic array is complemented by 

onshore observations so that we are able to fully cover and record deformation 

affecting the forearc above the seismogenic zone in its entirety – regardless of 

whether it is offshore or onshore. This is possible because the Iquique segment is 

also the location of the onshore Integrated Plate Boundary Observatory Chile 

(IPOC), which is a distributed system of instrument networks run by a European-

South American cluster of institutions dedicated to the study of earthquakes and 

deformation of the continental margin of Chile. IPOC is composed of a suite of 

onshore instrument arrays, including GPS, seismometers and tiltmeters (Figure 5.3). 

Offshore seismicity, however, is not well constrained due to a lack of offshore 

stations. The position of the megathrust is inferred from onshore stations and 

existing refraction data in its vicinity (e.g. Contreras-Reyes et al., 2012, Béjar-Pizarro 

et al., 2010). 

 

Figure 5.3: Location map of the IPOC observatory showing station distribution 
onshore in northern Chile (http://www.ipoc-network.org). The seafloor geodetic array extends 
the observations to the offshore domain around 21°S.  

Working Area 1 (Figure 5.4) is located on the middle slope of the continental 

margin in water depth of approximately 2500 m. An area of approximately 35 km2 

was mapped during Leg I of SO244 using the AUV ABYSS of GEOMAR focusing on 

a westward dipping normal fault. Several adjacent faults can also be identified in the 
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map, some of which terminate in an undisturbed sediment pond and show little 

evidence for recent activity. The main targeted fault is characterized by abundant 

mass wasting features generally not exceeding lengths of ~80 m across. Baselines 

across these faults will yield information on compressive trench perpendicular motion 

as well as any possible strike-slip component resulting from slip partitioning.  

 

Figure 5.4: Working Area 1. 

Area 2 is located on the outer rise of the Nazca plate about 100 km west of 

Area 1 and encompasses approximately 17 km2 (Figure 5.5). Two eastward dipping 
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scarps are the dominant features in the area, which are interpreted to be normal 

faults that disturb the inherited volcanic features. The overall appearance of Area 2 is 

generally much smoother compared to Area 1, suggesting a drape of little disturbed 

sediment. This area was chosen because it offers the opportunity to measure the 

extension across bending-related trench-parallel normal faults, requiring only a 

minimal number of stations.  

 

Figure 5.5: Working Area 2. 

Area 3 is positioned on the lower continental plate at water depth exceeding 

5000 m (Figure 5.6). The areal extent of the mapped region is approximately 35 km2, 

located approximately 10 km east of the trench. The region is characterized by 

numerous ridges trending in a NW-SE direction of 140° with heights of up to 500 m 

and slopes exceeding 15°.  A number of flat terraces and peaks are identified in the 

area, which are suitable for the installation of a GeoSEA tripod. The main target in 

this complex area is to measure diffuse strain over long baselines. The bathymetry 

and Parasound data collected during Leg I yield no indication for larger sediment 

accumulations.  
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Figure 5.6: Working Area 3. 

 

6. Work details and first results / Beschreibung der Arbeiten im 
Detail einschließlich erster Ergebnisse 
6.1 Seafloor Geodesy 
6.1.1 Method 

The key problem in seafloor geodesy experiments is to minimize the errors in 

the distance measurements to be able to detect, over a reasonable time period, the 

relatively small seafloor displacements which are occurring. Seafloor acoustic 

ranging methods provide relative positioning by using precision acoustic 

transponders (Autonomous Monitoring Transponder, AMT) that include: high-

precision pressure sensors (to monitor possible vertical movements as well as the 

tide effect (e.g., Ballu et al., 2009a, b)); tiltmeters in order to measure their inclination 
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as well as any change in the seafloor; and sound velocity (SV) sensors to correct 

sound speed variations.  Acoustic signals (~13-18 kHz) are transmitted between 

seafloor reference points to provide two-way travel times in repeated interrogations 

over months to years to determine displacements (e.g., Chadwell and Sweeney, 

2010) and, hence, deformation. This method is routinely used in industry, for oil field 

or pipeline monitoring for example. However, these studies target a much lower 

spatial resolution of baselines in the cm range and deployment times of much shorter 

time spans. As to gradiodynamic studies, results obtained by Osada et al., (2008) 

and Chadwell and Spiess (2008) proved satisfactory, with a repeatability of 2 mm 

over a baseline of 750 m. This method is the only one capable to continuously 

monitor horizontal and vertical ground displacement rates in the submarine 

environment and to characterize fault behavior (locked or aseismically creeping), as 

it is now routinely done on land along active deformation zones using InSAR 

technique and DGPS continuous monitoring (e.g., Michel and Avouac, 2002; 

Delacourt et al., 2009; Dzurisin, 2003). Vertical deformation using pressure sensors 

was documented at Axial Seamount at 15 cm/yr due to inflation/deflation using 

pressure gauges (Chadwick et al., 2012). Furthermore, Philips et al. (2008) reported 

an uplifting of Kilauea’s south flank at ~9 cm/yr and offshore Sumatra, pressure 

gauges recorded fluctuations of 8 mbar concurrent with the Mw=7.7 2006 Java 

earthquake (Boebel et al, 2010). 

The important measurement to be made is the change in the position of a set 

of points as a function of time, such as interseismic creep or the displacement due to 

an earthquake. The objective of cruise SO244-2 was to install a network which is 

designed to measure distance changes with a repeatability in the mm range for 

distances in the km range (strain~1E6). Prior to the installation, high-resolution 

bathymetric maps of the seafloor are generated using the shipborne multibeam 

system, and, more importantly, an AUV, to allow the modeling of the line-of-sight 

within the array. These maps are instrumental in characterizing tectonically active 

fault scarps at the seafloor, and will help to interpret the results of the seafloor 

geodetic survey, as well as allowing inferences regarding the active tectonics of a 

much larger area. Bathymetric mapping also serves as a "base-line" characterization 

of the whole area, and is used as a reference data set for subsequent re-surveying 
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either to measure areal deformation based on interferometry or for precise ground 

movement studies following an earthquake.  

The measurements take the form of two complementary components to allow 

errors between the different methods to be determined and corrected: 

1. The relative positions of the benchmarks are determined by acoustic 

triangulation methods using transponders/transmitters mounted on each 

benchmark. This is essentially an inverted form of long-baseline navigation. 

These measurements involve only the propagation of acoustic signals in the 

lowermost portions of the water column and along a ray path, they 

consequently profit from the fact that the expected temporal variability in the 

sound speed structure is minimal at great water depth and any effects can be 

minimized using signal processing techniques. The time of flight of acoustic 

signals between the transponders is combined with the depth information 

received form the pressure data and the AUV mapping and the speed of 

sound in water in the local area to determine the distance between the 

transponders.  

2. Measuring absolute height changes by acoustic methods is substantially more 

difficult because of the variable deep ocean sound velocity structure. 

Measuring relative vertical displacements is also somewhat more complicated 

as variations in water pressure related to tides, ocean currents etc. introduce 

systematic errors. By measuring hydrostatic pressure, height changes such 

as uplift or subsidence might be resolved. 

6.1.2 Instrumentation: GeoSEA Array and GeoSURF Wave Glider 
In 2012 GEOMAR purchased the GeoSEA array consisting of 35 autonomous 

acoustic monitoring transponder (AMT) platforms and the autonomous surface 

vehicle GeoSURF (BMBF project 03F0658I). AMT Type 3505-6315 is manufactured 

by Sonardyne International Ltd., UK; the GeoSURF wave glider is manufactured by 

LiquidRobotics, USA. The AMTs include acoustic transponders/transmitters, acoustic 

modems, tiltmeters, and pressure gauges rated for 6000 m water depth (Figure 

6.1.2). 
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Figure 6.1.2.1: Autonomous 
Monitoring Transponder (AMT) installed in 
tripod frame (J. Steffen). 

 

 

For horizontal direct path measurements, the system utilizes acoustic ranging 

techniques with a ranging precision better than 15 mm (Sensor specifications for 

Sonardyne AMT Type 8305-6315) and long term stability over 3 km distances. 

Vertical motion is obtained from pressure gauges (Sensor specifications: PreSens 

pressure sensor, precision: ±0.0001%). Integrated inclinometers to monitor station 

settlement have an accuracy of ±1°. Data are acquired and recorded autonomously 

subsea without system or human intervention at sample rates between 90 and 180 

minutes. These data can then be recovered via the integrated high-speed acoustic 

telemetry link without recovering the AMTs. When requested to do so, the stored 

data will be transmitted wirelessly up to GeoSURF for onward transmission via a 

satellite link to the shore for near-real time assessment. Alternatively, the data can 

be downloaded using a HPT dunker modem lowered to ~80 m from a vessel. 

Transponders can be pre-configured with the chosen log regime prior to 

deployment using a laptop with a serial test cable set up. Once programmed, the 

transponders are deployed in frames and lowered to the seabed. The frames are 4 

m high galvanized steel tripods (Figure 6.1.2.2) with a low barycenter and spikes 

attached to the base ‘arms’ (weight in water: approximately 300 kg). The AMT unit is 

installed at the top and may be retrieved using a ROV without recovering the frame. 

This would allow changing AMT transponders for longer recording periods exceeding 

6 years. Alternatively, the entire frame may be recovered.  
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Figure 6.1.2.2: Galvanized steel tripod frames on the working deck of RV SONNE   
(J.  Steffen).  

Deployment of the frames is achieved using the deep-sea cable of RV 

SONNE and lowering the instrument through the A-frame (Figure 6.1.2.4).  

 

 

 

Figure 6.1.2.4: The tripod on the deep-sea 
cable above and below the water (J. Steffen).  
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 During deployment, a number of quality assessment checks are run from the 

vessel to ensure that the unit is operating successfully. Precision pressure, 

temperature, sound velocity and dual-axis inclinometer sensors are integrated and 

are powered up at the requested time and sampling period, providing a low power 

platform for long-term surveys. Lithium battery packs provide sufficient power for the 

estimated 3.5 years duration of the project. The data is time stamped and logged 

internally for recovery via integrated high-speed acoustic telemetry, allowing 

measurements to be made over a period of more than 3 years without requiring a 

surface vessel or ROV to be present to command the process. Each AMT is fitted 

with a 1 GB SD memory card that can store up to 2 Mio 512 byte pages in total. In 

addition, the telemetry transceiver integrated in GeoSURF provides an acoustic 

gateway capability to enable it to communicate with, and extract data acoustically 

from, the seafloor array and to forward this data via the iridium satellite 

communications system (Figure 4.1). This approach obviates the requirement of a 

surface vessel to upload the acoustic data once GeoSURF is installed. Acoustic data 

upload is supported at a maximum of 900 bits per second to the WaveGlider 

transceiver (i.e. ~15 pages / minute). If GeoSURF is not available (e.g. in case of 

loss), internal data capacity in the AMTs is sufficient to store all acquired data over 

any possible deployment time, but can then only be retrieved after recovery of the 

AMT or alternatively be uploaded to a vessel via the HPT transceiver (dunker 

modem; Figure 6.1.2.5) (9000 

bits/sec equivalent to 100 

pages/minute).  

 

Figure 6.1.2.5: The HPT 
dunker modem deployed over the 
starboard side of RV SONNE             
(J. Steffen). 

 

 

GeoSURF is an autonomous, environmentally powered ocean-going platform 

by Liquid Robotics that uses renewable energy sources to keep station and provides 
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a communications gateway between the benchmarks (communicating with the 

benchmarks via acoustic modem) and the home lab (via a satellite link) (Figure 

6.1.2.6). This allows us, for example, to have regular information from the sensors 

mounted on the benchmarks and so rapidly respond to changes in the deformation 

pattern, to monitor the health of the system and, in the event of a major earthquake 

rupture, rapidly acquire information on the processes that occurred. At all other 

times, GeoSURF is not required to hold a continuous communication with the 

seafloor array. The integrated solar panels provide sufficient energy for this 

procedure and are designed to recharge the integrated Li-batteries. GeoSURF may 

be programmed for autonomous operation or it may alternatively be controlled by a 

pilot over the internet using a web interface. 

 

 

Figure 6.1.2.6: The GeoSURF wave glider ready for deployment on the deck and 
during recovery using RV SONNE’s rescue boat (J. Steffen). 

GeoSURF is composed of two parts (see Figure 6.1.2.6): the float containing 

all sensors and communication units and the sub hanging 6 meters below the float. 

The design of the separation allows the float to experience more wave motion than 

the sub. This difference allows wave energy to be harvested to produce forward 

thrust without requiring further energy for propulsion. 
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6.1.3 Working Area 1: Middle Continental Slope 
Working area 1 is located on the middle continental slope where a network of 

eight transponders was deployed in water depths ranging from 2603 m to 2863 m. In 

order to accurately estimate the positions of the Posidonia transponders during 

installation of the geodetic stations we estimated the water sound velocity with a 

CTD. The vessel’s CTD rosette was lowered to a water depth of 2500 m at 1 m/s to 

continuously measure sound speed in-situ at 20°47.98’S/70°48.93W  (Figure 

6.1.3.1). 

 

Figure 6.1.3.1: CTD sound velocity profile acquired in working area 1 prior to 
installation of the first geodetic station.    

The eight transponders (A101-A108) were lowered to rest on topographic 

ridges (Figure 6.1.3.2) in pairs of two in order to have optimal lines-of-sight between 

the instruments (Figure 6.1.3.3). The line-of-sight was modeled prior to deployment 

(Figure 6.1.3.4) by comparing the AUV bathymetry with to the curved path (using the 

sound speed from the CTD measurement) between instruments installed on 3.5 m 

high tripods (instead of the 4.3 m high stands of the GeoSEA stations). Positions 

where the direct path was too close to or even interfered with the seafloor were 
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avoided during deployment. The target sites that allow visibility to all neighboring 

transponders is approx. 50 m X 50 m for most of the stations. 

Figure 6.1.3.5 shows the relative location of the deployment sites from the 

initially planned site for stations A101-A108. Deployment sites for instruments 

lowered on the deep-sea cable in water depths between 2500 m - 3000 m deviated 

by up to 20 m from the originally planned positions. The position of station A101 

deviates by more than 60 m from the planned site. This is due to the fact that A101 

was deployed in ‘free-fall’ mode and not on the cable. In addition, the position for 

A101 shown here and in the station protocol is the position of the ship’s GPS station 

at the time A101 reached the seafloor. RV SONNE’s GPS station is located midship, 

approximately 60 m away from the aft working deck where the station was deployed. 

 

Figure 6.1.3.2: Location map of GeoSEA sub array 1 lcoated on the middle continental 
slope of northern Chile. The stations are deployed in pairs (A101-A103; A102-A104; A105-
A106; A107-A108) on four topographic ridges, which are surface expressions of faults at 
depth. Scale at the top of the image is in km. 

−70˚49'48" −70˚49'12" −70˚48'36" −70˚48'00"

−20˚48'36"

−20˚48'00"

−20˚47'24"

−20˚46'48"

A101

A102

A104

A103

A107
A106

A105

A108

−3000 −2900 −2800 −2700 −2600 −2500 −2400

depth (m)

0 1



SO244-2 – GeoSEA Cruise Report  32 
  

 

Station A102 landed approximately 20 m off (water depth: 2603 m), station A104 

through A106 are within the 10 m range from their planned positions (water depths of 

2615 m, 2863 m, and 2836 m, respectively). A103, A107 and A108 are between 12m 

and 17 m off (water depth: 2744 m, 2860 m, and 2852 m, respectively).  

 

Figure 6.1.3.3: Slope map of GeoSEA sub array 1 showing the inclination of the study 
area. Steep slopes of more than 15° pose a challenge to the deployment on the deep-sea 
cable as the stations were required to the placed on the ridge crests to insure clear line-of-
sight. Scale at the top of the image is in km. 
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Figure 6.1.3.4: Modeled baselines. Example shown for station pairs A101-A106, A101-
A108; A101-A105, A102-A104. Red line: direct path between stations, green line: seafloor. 
Heightdiff indicates the relative difference in elevation between the stations. The expected 
slope between the stations are indicated. 

Baselines are measured with a logging rate of 160 minutes between each pair of 

stations and forward and backward direction. Accustic visibility was achieved for all 

pair except between the westernmost and easternmost pair (Table 6.1.3.1).  As is 

evident from the overview of baselines provided in the table below, the longest 

baseline in the network is 2455 m. For stations placed further apart (A107 to A102 

and A104) line-of-sight is limited due to the high topographic elevations between the 

stations. Station A108, however, has a clear line-of-sight to the easternmost pair 

A102/A104 and baselines are measured in both directions over a distance of       

2455 m. 

 
Figure 6.1.3.5: Deployment 
precision plot for GeoSEA sub 
array 1. The red triangle 
represents the planned 
location for each station. 
Circles are spaced at 10 m, 
indicating the discrepancy 
between the final deployment 
site (from Posidonia 
transponders) and the 
originally planned location. 
Station A101 was not lowered 
on the deep-sea cable, but 
was deployed in ‘free-fall’ 
mode. See text for details 
regarding positioning of A101. 
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Table 6.1.3.1: Overview of expected (green, distances from planned coordinates) and 
measured (black) baselines.     

All stations in this network log with a logging period of 160 minutes, beside of 

2708, which was configured to log every 80 minutes. At these intervals, baselines,  

hydrostatic pressure, sound speed and high-resolution temperature measurements 

are conducted. Instrument inclination and battery status are only measured at a rate 

of 100 of the logging period (i.e. every 11.1 days). 

Figure 6.1.3.6 shows all visible baselines between stations projected on the 

seafloor in a plain view (top panel) and perspective view (bottom panel). The central 

stations successfully send as well as receive baseline interrogations from all stations 

in the network; the outer stations were configured not to answer for incoming long 

baseline signals (e.g. baselines longer than 2500 m).  
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Figure 6.1.3.6: Seafloor view for GeoSEA sub array 1 on the middle continental slope. 
A total of 8 stations were placed on four N-S trending ridges. Green lines show all the 
measured baselines between the stations. Bottom image shows the array in a perspective 
view. North is located to the top right. 

After the installation of the entire array was completed, we returned to area 1 

to deploy GeoSURF for data upload. In addition, the data were also secured via the 

HPT dunker modem. Figure 6.1.3.7 shows a screenshot of Liquid’s piloting 

webinterface for GeoSURF with the waypoints for navigation above the stations in 

area 1. Figure 6.1.3.8 shows the sound velocity, temperature and pressure loggings 

of station A101 and A108 for the time period between Dec. 6 and Dec. 9, after the 

station had mechanically settled into the seafloor. 
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Figure 6.1.3.7: Upper part of the Liquid robotics piloting webinterface showing the 
command panels and the map-view for the vehicle GEOMAR1 (GeoSURF). Position reports 
of GeoSURF (5 minute repeat rate) are shown with blue pins. The waveglider holds position 
above the AMT’s by cycling clockwise around waypoints (shown with red pins) distributed in 
pentagons with 300 m radius.  The position of RV Sonne from AIS is shown with a grey 
upright square. GeoSURF is equipped with an redundant satellite tracker, which is indicated 
by white pins (two hours repeat time). The left panel shows the command options; the 
uppermost line indicates the vehicle health. In the central part the Piloting Panel and Map 
Utility Panel are shown. The lower part shows the incoming communication from the 
waveglider (upper panel) and the commands sent from the user to the waveglider (lower 
panel). 

Sound velocity was measured as well as computed from pressure and 

temperature assuming constant salinity for comparison. Variations in sound velocity 

for area 1 are greater than for areas 2 or 3, likely related to the shallower position on 

the continental margin where active upwelling of water masses is occurring. 

Dominating low-frequency variations in pressure data are due to tides.  
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Figure 6.1.3.8: Logging data plotted against time for stations A101 (2701, upper 
panels) and A108 (2708, lower panels). The uppermost panel shows the sound velocity 
derived from direct measurements, the panel below shows sound velocity retrieved from 
pressure and temperature data assuming a constant salinity.  
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A baseline example is provided in Figure 6.1.3.9, showing the distance 

between stations A101 (2701) and A102 (2702), which are located 882.7 m apart. 

The baseline is computed from the travel times of the acoustic ping between the 

instruments, taking into account the measured sound velocities from the instruments 

at both sides. This preliminary baseline suggests a repeatability of 4 mm. 

 

Figure 6.1.3.9: Baseline computation between stations A101 (2701) and              
A102 (2702). Red line represent baseline from A101 à A102; green line shows raypath 
length between A102 and A101. Note: these data have not been fully processed yet and are 
only allow preliminary estimates about precision.  
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6.1.4 Working Area 2: Outer Rise 
A total number of five GeoSEA stations (A201-A205) was deployed in area 2 

on the outer rise in water depths ranging from 4034 m – 4104 m (Figure 6.1.4.1). 

Even though water depth is significantly larger compared to area 1, the network 

configuration is comparatively simpler because of the limited variation in water depth 

of only 70 m between the five stations. Changes in the inclination are strongly 

focused on a N-S trending normal fault at around 71°44’10’’W (Figure 6.1.4.2). The 

stations are positioned on both sides of this extensional fault and all possible 

baselines between the stations are achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1.4.1: Location map of GeoSEA sub array 2 on the outer rise of the 
downbending oceanic Nazca plate seaward of the trench. The stations are deployed on both 
sides of an extensional normal fault originating from the plate’s bending close to the trench. 
Scale at the top of the image is in km. 
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All stations lowered on the deep-sea cable were deployed within 20 m of their 

originally planned positions (Figure 6.1.4.3). The stations all drifted in a northwest 

direction, however, as the topography variations in the working area are trending N-

S, this drift was not corrected during deployment by repositioning the vessel. Only a 

distinct E-W drift would have affected the array, as some stations may then not have 

been installed on the correct side of the fault zone. Station A204 slipped off the hook 

of the deep-sea cable and hence fell down to the seafloor uncontrolled. It is 

positioned approximately 60 m away from the planned site. It needs to be noticed, 

however, that the relative position shown here is based on the position of RV 

SONNE’s GPS station (compare station A101 in 6.1.3.1), so the discrepancy likely is 

far less than indicated here. 

 

Figure 6.1.4.2: Slope map of GeoSEA sub array 2 showing the inclination of the study 
area. Slopes are evident on the western throw of a plate bending related normal fault, which 
runs in a N-S direction parallel to the deep-sea trench located to the east of the study area.  
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Figure 6.1.4.3: Deployment precision 
plot for GeoSEA array 2. The red 
triangle represents the planned 
location for each station, respectively. 
Circles are spaced at 10 m, indicating 
the discrepancy between the 
deployment site and the originally 
planned location. Station A204 was 
not lowered on the deep-sea cable, 
but was deployed in ‘free-fall’ mode. 

 

 

Table 6.1.4.1 shows the measured baselines immediately after the 

deployment. As expected, modeled baselines (indicated by green numbers in Table 

6.1.4.1) deviate highest from measured baselines (black numbers) for station A204.  

 
 
 

Table 6.1.4.1: Overview of expected (green) and measured (black) baselines.   
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All stations log sound velocity, pressure, baselines and high-resolution 

temperature with a logging period of 90 minutes. Inclination is logged at a rate of 10; 

battery status is logged at a rate of 100.  

Figure 6.1.4.4. shows examples of logged physical parameters from stations 

A201 (upper panels) and A204 (lower panel). Sound velocity in m/s, temperature in 

°C and pressure in dbar are shown for each stations, respectively. The expected 

close correlations between the sound velocity and the temperature loggings is 

documented, as is the tidal signal on the pressure data. 

Baselines for  stations A201, A202, A203 and A205 are presented in Figure 

6.1.4.5. Based on these unprocessed and uncorrected data, a precision 

(repeatability) of <4 mm  is documented. 
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Figure 6.1.4.4: Logging data plotted against time for stations A201 (2201, upper 
panels) and A204 (2204, lower panels). Sound velocity is in m/s, temperature in °C and 
pressure data in dbar. 
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Figure 6.1.4.5: Baselines between stations A201 (2201) and A202 (2202) (upper 
panel) and between stations A203 (2203) and A205 (2205) (lower panel). See Figure 6.1.3.9 
caption for additional display information. 
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6.1.5 Working Area 3: Lower continental slope 
Working area 3 on the lower continental slope approximately 10 km east of 

the deformation front is located in water depth >5000 m and thus is the deepest 

location of any GeoSEA sub array. The region is characterized by complex tectonics, 

which pose a significant challenge to the deployment as ridges and troughs 

separated by steep slopes are ubiquitous throughout the area.  

Prior to instrument deployment, we conducted a CTD measurement to a depth 

of 4500 m (Figure 6.1.5.1). The CTD rosette was lowered at 20°47.05S/71°04.00W.  

A comparison between the CTD in area 1 (Figure 6.1.3.1) and in area 3 is provided 

in the appendix (Appendix C).  

 

Figure 6.1.5.1: CTD sound velocity profile acquired in working area 3.  
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An array consisting of ten stations (A301-A310) was deployed in a 

configuration centered around two stations (A301 and A310), which are located on a 

topographic elevation in the center of the network (Figure 6.1.5.2).  

 

Figure 6.1.5.2: Location map of GeoSEA sub array 3 on the lower continental slope of 
northern Chile. The stations are deployed surrounding two central stations (A301 and A310). 
These two stations receive and send baseline interrogations to all surrounding stations as 
well as to each other. Scale at the top of the image is in km. 

The steep slopes and a rough terrain required a precise positioning of the 
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all positioned on large plateaus with less than 5° inclination, requiring less precision 

during deployment compared to stations which are deployed close to a scarp or cliff,  

 

Figure 6.1.5.3: Slope map of GeoSEA sub array 3 showing the inclination of the study 
area. Steep slopes are present throughout the deployment area with inclinations commonly 
exceeding 10°.  
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planned sites (< 10 m) (Figure 6.1.5.4). All expected baselines, which were modeled 

beforehand, could be achieved (Table 6.1.5.1).  
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Figure 6.1.5.4: Deployment 
precision plot for GeoSEA array 3. 
The red triangle represents the 
planned location for each station, 
respectively. Circles are spaced at 
10 m, indicating the discrepancy 
between the deployment site and 
the originally planned location. 
Discrepancy is lower than 15 m for 7 
out of 10 stations. See text for 
further explanations on locations of 
stations A302, A305 and A306.  

 

 

 

 

 

 

Table 6.1.5.1: Overview of expected (green) and measured (black) baselines for area 
3.   
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In addition, some long baselines exceeding 2000 m are also measured (e.g. 

A306-A309: 2538 m). The only baseline shorter than 2000 m that cannot 

successfully be logged is between stations A307 and A309. This is likely due to a 

steep slope at the site of A308, which limits the line-of-sight here. 

Figure 6.1.5.5 shows the network layout on the seafloor bathymetry. The 

green lines represent all interrogated baselines between the stations.  

 

 
 

Figure 6.1.5.5: Seafloor view for GeoSEA sub array 3 on the lower continental slope. A 
total of 8 stations were placed surrounding 2 central stations. Green lines show all the 
measured baselines between the stations. Bottom image shows the array in a perspective 
view.  
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The two central stations A301 and A310 receive baselines from all 

surrounding stations and hence are characterized by the highest energy 

consumption. All stations have been assigned a logging period of 160 minutes, when 

they measure sound velocity, travel times between transponder stations, pressure 

and high-resolution temperature. Inclination values are logged at a rate of 100; 

battery status is logged at a rate of 101. The central stations A301 and A310 

alternately log the sound velocity (i.e. baseline) at a rate of 2. 

Figure 6.1.5.6 displays the measured physical parameters for station A304 

and A308, respectively. Striking here is the correlation between the pressure 

variations and the sound velocity, which is less expected than a correlation between 

sound velocity and temperature (compare Figure 6.1.4.4). It must be noted, however, 

that the temperature variations are very small in comparison to the values measured 

in areas 1 and 2.  In area 1, the temperature varies by 0.02-0.04°C, in area 2 by 

0.02°C and in area 3 only by 0.005°C.  

Computed baselines for between stations A305 à A306 and A302 à A307 

are shown in Figure 6.1.5.7. Baseline variations of these yet unprocessed data are 

lower than 4 mm on average, documenting the high precision of the network. The 

shown baselines are between two pairs of transponders, which are 1870 m and 1728 

m apart, respectively. Due to the fact that temperature variations and hence 

variations in the sound velocity are not as distinct as in areas located in shallower 

water, we expect that this deep-water network will render a higher resolution than 

e.g. the network in area 1, which is located in water depth of ~2500 m.  
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Figure 6.1.5.6: Logging data of area 2 plotted against time for stations A304 (2304, 

upper panels) and A308 (2308, lower panels). Sound velocity is in m/s, temperature in °C 
and pressure data in dbar.  
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Figure 6.1.5.7: Baselines between stations A305 (2305) and A306 (2306) (upper 

panel) and between stations A302 (2302) and A307 (2307) (lower panel). See Figure 6.1.3.9 
caption for additional display information.  

Date
Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[m
]

1870.994

1870.996

1870.998

1871

1871.002

1871.004

1871.006

1871.008

1871.01

1871.012
Baseline 2305 -> 2306

2305 -> 2306
2306 -> 2305

Date
Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[m
]

1728.543

1728.544

1728.545

1728.546

1728.547

1728.548

1728.549

1728.55

1728.551

1728.552
Baseline 2302 -> 2307

2302 -> 2307
2307 -> 2302



SO244-2 – GeoSEA Cruise Report  53 
  

 

6.2 Seismology 
6.2.1 Instrumentation 

A total of 15 OBS instruments were recovered during Leg I of SO244 after a 

12 months deployment on the Chilean forearc.  All instruments are provided by the 

GEOMAR pool and were re-deployed during Leg II of SO244.  

The GEOMAR OBS-2002 

The GEOMAR Ocean Bottom Seismometer 2002 (OBS-2002) is a design 

based on experience gained with the GEOMAR Ocean Bottom Hydrophone (OBH; 

Flueh and Bialas 1996) and the GEOMAR Ocean Bottom Seismometer (OBS, Bialas 

and Flueh, 1999). The basic system is constructed to carry a hydrophone and a 

small seismometer for higher frequency active-seismic profiling. However, due to the 

modular design of the front end it can be adapted to different seismometers and 

hydrophones or pressure sensors. The sensors are OAS and HTI-01-PCA 

hydrophones from High Tech Inc. The sensitive seismometer is deployed between 

the anchor and the OBS frame (Figure 6.2.1.1), which allows for optimal coupling 

with the sea floor. The three-component seismometer (KUM), usually used for active 

seismic profiling, is housed in a titanium tube, modified from a package built by Tim 

Owen (Cambridge) earlier. Geophones of 4.5 Hz natural frequency were used during 

SO244-2. The recording device is a MLS recorder of SEND GmbH, which is 

contained in its own pressure tube and mounted next to the buoyant body opposite 

the release transponder (see Figure 6.2.1.1). The floatation is made of syntactic 

foam and is rated, as are all other components of the system, for a water depth of 

6000 m. 

While deployed to the seafloor the entire system rests horizontally on the 

anchor frame. The instrument is attached to the anchor with a release transponder. 

The release transponder is the K/MT562 made by KUM GmbH. Communication with 

the instrument for release and range is possible through a transducer hydrophone, 

which is lowered ~20 m into the water. Over ranges of 4 to 5 miles release and range 

commands are successful. After releasing its anchor weight of approximately 60 kg 

the instrument turns 90° into the vertical and ascends to the surface with the 

floatation on top. This ensures a maximally reduced system height and water current 

sensibility at the ground (during measurement). On the other hand the sensors are 
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well protected against damage during recovery and the transponder is kept under 

water, allowing permanent ranging, while the instrument floats to the surface.  

 

Figure 6.2.1.1: GEOMAR OBS (Design 2002). 

6.2.2 Deployment 
Fourteen instruments were re-deployed to cover the aftershock region of the 

April 1, 2014 Iquique/Pisagua earthquake (Figure 6.2.2.1). In addition, one 

instrument was deployed to the south of the rupture zone (Figures 6.2.2.1 and 

6.2.2.2).  

The deployment sites are slightly shifted from the locations of the previous 

deployment of November 2014 from OPV Comandante Toro (Figure 6.2.2.2). The 

reason for this is that the currently deployed stations shall be integrated into a 3D-

seismic grid for an active seismic experiment using RV Langseth as platform in 

2016.  The previous and current layouts of OBS also serve as the offshore extension 

of the numerous networks installed onshore (Figure 6.2.2.2).  
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Figure 6.2.2.1: Distribution of OBS stations and aftershock seismicity (CSN 
catalogue, 1 April 2014 until 29 November 2015). The yellow squares indicate the 14 OBS 
stations installed during SO244, leg2 and are labelled with their station names. The purple 
squares show the location of the OBS installed during December 2014 with OVP Toro and 
de-installed during SO244, leg1. 389 events occurring since the deployment of the OBS 
stations (1 December 2014 until 29 November 2015 December) are shown in red.   
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 Figure 6.2.2.2: Location map of the seismological stations installed along the north 
Chilean forearc.  The yellow squares indicate the 14 OBS stations installed during SO244, 
leg2 and are labelled with their station names. The purple squares show the location of the 
OBS installed during December 2014 with OVP Toro and de-installed during SO244, 
leg1. Black solid lines correspond to the seismic reflection profiles acquired by GEOMAR in 
1995. Black dashed lines indicate MCS profiles acquired by BGR 1995. 
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Figure 6.2.2.3 shows the location map of OBS stations OBS01-OBS14 

deployed during Leg II of SO244. The stations will be recovered by RV Langseth in 

2016 and contain Li-batteries as well as alkali batteries as an energy source.  

 

Figure 6.2.2.3: Location map of OBS stations deployed during SO244-2.  
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6.2.3 First Results of OBS Deployment Nov. 2014 – Nov. 2015 
Of the 15 deployed instruments, four stations recorded data throughout the 

entire deployment. Unfortunately, two instruments died right at the beginning of the 

deployment and on nine stations recording stopped or is incomplete due to battery 

failure or leakage of geophone connections during the measurement.  

Figure 6.2.3.1 shows the OBS distribution of the TORO network recovered 

during SO244-1 along with the seismicity recorded by the Centro Sismológico 

Nacional de la Universidad de Chile (CSN). Several clusters of earthquakes occur in 

this part of the Chilean Margin. 

 

Figure 6.2.3.1: Distribution of the TORO OBS network (yellow squares) along with 
earthquakes, which are available from the CSN catalogue. See Figure 6.2.2.1 caption for 
display information. 
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The GEOMAR OBS recorded a large number of earthquakes. We chose one 

day of recording on January 9th 2015, where the CSN catalogue recorded five 

earthquakes of different magnitudes, ranging from 2.5 to 5.2 (Figure 6.2.3.2).  

 

Figure 6.2.3.2: Vertical component of the 13 OBS geophones for January 9th 2015. 
The earthquakes, which are available from the CSN catalogue are indicated by arrows. 

On January 9th 2015 our offshore OBS data show at least 100 earthquakes of 

which 52 occur in the central area of OBS stations OBS06-OBS08 (C1-C3 TORO 

network). Figure 6.2.3.4 shows three of these characteristic local earthquakes in the 

central area. Depending on their magnitude, these local earthquakes are partly only 

seen on stations OBS06-OBS08 (C1-C3 TORO network), whereas some of these 

local earthquakes are recorded on all 13 offshore stations, like the 04:58 UTC 

Iquique event in Figure 6.2.3.3. The difference in the onset of P and S waves of the 

local earthquakes gives us a depth estimate of 15 to 20 km for these events. Since 

the detection rate of the OBS network is more then tenfold above the landnetwork 

the whole number of detectable events is estimated with ~3500 and a magnitude of 

completeness unit below the CSN catalogue. 
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Figure 6.2.3.4: Detail of the vertical component of the 13 OBS geophones for January 
9th 2015 showing six minutes. Three earthquakes occurred within ~4 minutes. They all arrive 
simultaneously at stations OBS06-OBS08 and are visible also at their neighboring stations. 
These local events locate in the central area between OBS stations OBS06-OBS08 (C1-C3). 

 

6.3 Multibeam Bathymetry 
6.3.1 The Kongsberg EM122 and EM710 systems 

Two multibeam echosounder systems are available onboard RV SONNE for 

bathymetric mapping of the seafloor: A KONGSBERG EM122 for deep-water 

operations and a KONGSBERG EM710 for shallow water. Both systems were used 

during RV SONNE cruise 244-2. During stationary works, the Kongsberg multibeam 

system did not record data. 

The Kongsberg Maritime EM122 multibeam echosounder operates at 12 kHz 

in water depths from 20 meters up to full ocean depth. The Kongsberg EM710 full 

performance version multibeam echosounder operates at frequency ranges of 70 to 

100 kHz. The minimum operation depth is 3 m below its transducers, and the 

maximum acquisition depth is ~2000 m.  

For both, the Kongsberg Maritime EM122 and EM710, two different 

transmission pulses can be selected: a CW (Continuous Wave) or FM (Frequency 
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Modulated) chirp. The sounding mode can be either equidistant or equiangle, 

depending on operation preferences and requirements. The systems can be 

operated in single-ping or dual-ping mode, where one beam is slightly tilted forward 

and the second ping slightly tilted towards the aft of the vessel. The whole beam can 

also be inclined towards the front or the back, and the pitch of the vessel can be 

compensated dynamically. The EM122 system produces 432 beams. The EM710 

system generates 256 beams. Both systems produce a beam with a maximum width 

of 150° across the ship and 0.5° along and 1° across the ship. 

Considering that the outermost beams are noisy when using the maximum 

transmit width of 150°, this was reduced to a fixed value of 140° for the whole cruise 

for both, the EM122 and EM710 systems. This means that in general the swath 

covered was a function of depth only: w=2´d´tan(140°/2) or roughly 5.5´d, where w is 

the swath width and d is the water depth. The number of soundings acquired in 

every ping cycle is 432. This implies that the spacing between soundings for one 

swath is equal to 5.5d / (432-1) = 0.01275d. As an example at 1,000m water depth 

spacing between adjacent soundings is 12,7m and at 6,000m water depth spacing is 

76.5m. This is the resolution across the track. On the other hand, the ping rate 

depends on the water depth and is greater or equal to TWT=2´d/C, where C is the 

sound speed in the water column. The distance between one ping and the next one 

depends on the ping rate and on the ship’s speed (V), and is equal to TWT´V. This is 

the resolution along the track. 

The echo signals detected from the seafloor go through a transceiver unit 

(Kongsberg Seapath) into the data acquisition computer or operator station. In turn, 

the software that handles the whole data acquisition procedure is called Seafloor 

Information System (SIS). In order to correctly determine the point on the seafloor, 

where the acoustic echo is coming from, information abouth the ship's position, 

movement and heading, as well as the sound velocity profile in the water column are 

required. 

Positioning is implemented onboard RV SONNE with conventional 

GPS/GLONASS plus differential GPS (DGPS) by using either DGPS satellites or 

DGPS land stations, resulting in quasi-permanent DGPS positioning of the vessel. 
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These signals also go through the transceiver unit (Seapath) to the operator station. 

Ship's motion and heading are compensated within the Seapath and SIS by using a 

Kongsberg MRU 5+ motion sensor. Beamforming also requires sound speed data at 

the transducer head, which is available from a Valeport MODUS SVS sound velocity 

probe. This signal goes directly into the SIS operator station. Finally, the sound 

velocity profiles for the entire water column were used from the CTD measurements 

described in chapters 6.1.3 and 6.1.5. 

6.3.2 Multibeam bathymetry data 
Throughout most of RV SONNE cruise 244-2 the Kongsberg EM122 system 

was used, mapping the seafloor in water depths >2000 m. The map in Figure 3.1 

shows the data coverage achieved during cruise SO244 Leg I and II. 

One shallow-water region was mapped with the Kongsberg EM710 system. 

The data, as well as a comparison of bathymetric data acquired with the EM122 in 

the same area, are displayed in Figure 6.3.2.2. The higher resolution of the EM710 

data enhances small-scale bathymetric structures in the shallow-water area. This is 

even more evident when comparing detailed sub-sets of the data. Figure 6.3.2.3 

compares two regions of the survey. The ~10 m resolution data of the EM710 

system returns far more structural detail than the ~75 m resolution grid of the EM122 

system. Scarps that are vainly visible in the EM122 stand out clear and crisp in the 

higher resolution data. Even though the EM710 data still has about 5 times less 

resolution than AUV-based bathymetry, it poses a reliable alternative to deep-water 

instruments when working in water depth <2000 m. The data set acquired here will 

be used as a priori information by Dr. Jeff McGuire, Woods Hole Oceanographic 

Institution, USA for deployment of their seafloor geodesy instruments.  

The deep water mapping using the EM122 system focused on the outer rise 

area south of GeoSEA working area 2, as this region was previously uncharted 

(Figure 6.3.2.4). The negligible sediment cover of the outer rise is insufficient to 

drape the distinct original spreading-related seafloor fabric trending NW-SE. 

Numerous volcanic edifices of different sizes overprint these structures. Towards the 

trench, plate- 

bending related normal faults dominate the seafloor morphology. 
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Figure 6.3.2.2: Bathymetric map recorded with the EM710 (left). Note the very high 

resolution compared with the data recorded with the EM122 (right) in the shallow-water area. 
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Figure 6.3.2.3: Detailed comparison between data acquired by the EM710 and 

EM122 systems. EM710 is rated for water depth shallower than ~2000 m, where it returns 
data with a resolution of ~10 m. EM122 has a resolution of ~75 m.  
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Figure 6.3.2.4: Swath bathymetric survey of the outer rise region mapped with 
EM122 during SO244 Leg II. These data will be merged with previously acquired data from 
Leg I to achieve full coverage of the trench.  
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GeoSURF --  Geodetic Earthquake Observatory Surface Vehicle 
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Appendix A: Participating Institutions / Liste der teilnehmenden 
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GEOMAR  
Helmholtz-Zentrum für Ozeanforschung Kiel 
Wischhofstr .1-3 
24148 Kiel, Germany 
www.geomar.de 

 

Universidad de Chile  
Departamento de Geofísica 
Santiago de Chile, Chile 
www.uchile.cl 

 

Servicio Hidrográfico y Oceanográfico de la Armada de Chile (SHOA) 
Errázuriz 254, Playa Ancha 
Valparaíso, Chile 
www.shoa.mil.cl 

 

Sonardyne International Ltd. 
Blackbushe Business Park 
Yateley, Hampshire 
GU46 6GD United Kingdom  
www.sonardyne.com 

 

Christian-Albrechts-Universität zu Kiel (CAU) 
Christian-Albrechts-Platz 4 
24188 Kiel, Germany 
www.uni-kiel.de 
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Appendix B: CTD Profiles CTD01 (Area 1) and CTD02 (Area 3) 
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Appendix E: OBS Deployment

INST. LAT (S) LON (W) DEPTH RELEASE RELEASE ENABLE REC. SYNC CYLIND. ANT. SENSORS REMARKS
D:M D:M (m) CODE DISABLE NO. TIME NO. CH.

OBS 01 20° 44.49' 71° 03.75' 5350 133664 120015/120036 MLS 000709 5.12.15/21:42 65 D OAS 44 (negative) + Owen 0205-027
OBS 02 20° 46.11' 70° 47.87' 2501 427524 410310/410333 MLS 000712 6.12.15/21:33 66 A Owen 0708-101 no hydrophone
OBS 03 20° 28.18' 70° 52.57' 2898 143272 141117/141134 MLS 061202 6.12.15/19:33 3 D OAS 27 (negative) + Owen 1205-125
OBS 04  20° 22.01' 71° 03.96' 5071 444674 461737/461754 MLS 040807 6.12.15/20:19 58 D HTI 80 (negative) + Owen 1001-114
OBS 05  20° 06.03' 71° 07.13' 4819 427430 410051/410072 MLS 100901 7.12.15/12:30 75 B OAS 03 (positive) + Owen 1205-129
OBS 06  19° 53.40' 71° 12.65' 5346 427737 411005/411026 MLS 991249 7.12.15/15:45 74 C HTI 91 (positive) + Owen 0807-098
OBS 07  19° 36.14' 71° 16.65' 4887 430424 412470/412501 MLS 991240 7.12.15/16:22 59 A OAS 26 (negative) + Owen 0509-075
OBS 08  19° 20.75' 71° 01.30' 1735 131415 113424/113441 MLS 991248 7.12.15/19:05 60 C HTI 39 (negative) no geophone
OBS 09 19° 34.79' 70° 49.81' 1729 133525 117432/117457 MLS 040304 7.12.15/20:33 62 HTI 108 (negative) + Owen 0403-055 no sender 
OBS 10  19° 48.93' 70° 43.65' 1432 134037 120410/120433 MLS 081002 7.12.15/22:07 71 C HTI 109 (negative) + Owen 0205-031
OBS 11 19° 56.43' 70° 55.91' 2736 435610 440126/440143 MLS 020601 8.12.15/04:03 61 B HTI 12 (negative) + Owen 0807-094
OBS 12 20° 12.09' 70° 54.02' 2998 430135 411537/411552 MLS 991255 8.12.15/05:49 73 D HTI 73 (negative) + Owen 1001-121
OBS 13 20° 17.72' 70° 43.85' 2100 430274 412104/412127 MLS 991247 8.12.15/07:37 72 A HTI 67 (positive) + Owen 0509-072
OBS 15 21° 32.991' 70° 45.003' 2787 646673 663540/663565 MLS 010409 11.12.15/19:40 64 B HTI 113 (positive) + Owen 0310-048

SO
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Appendix D: GeoSEA Transponder Station List

Date / UTC Time LAT (S) LON (W) DEPTH 
(dd.mm.yy / hh:mm) D:M D:M (m)

A101 2701 00372A 284790-002 28.11.15 / 15:48 20°47,943 S 70°48,910 W 2733 Freefall; from Posidonia release position ~1200m
A102 2702 0043D4 284790-003 28.11.15 / 23:16 20°47,677 S 70°48,460 W 2603
A103 2703 0037A7 284790-004 29.11.15 / __:__ 20°47,577 S 70°48,995 W 2744,7
A104 2615 003905 284790-005 29.11.15 / 13:19 20°47,373 S 70°48,521 W 2615
A105 2705 0030B6 284790-008 29.11.15 / 21:41 20°48,118 S 70°49,381 W 2863
A106 2706 003A56 284792-009 06.12.15 / 16:44 20°47,792 S 70°49,444 W 2836
A107 2707 002FAF 284792-010 06.12.15 / 20:03 20°47,884 S 70°49,825 W 2860

A108 2708 00374B 284790-001 07.12.15 / 12:46 20°47,611 S 70°49,994 W 2852,3 set offset from start time to 55min to avoid time clash with A104

A201 2201 0036DB 284791-006 30.11.15 / 11:41 21°03,370 S 71°43,846 W 4105,7
A202 2202 003732 284791-008 30.11.15 / 17:21 21°03,089 S 71°43,923 W 4104,9
A203 2203 003793 284791-009 01.12.15 / 13:20 21°03,439 S 71°44,135 W 4065,9
A204 2204 003111 284792-006 01.12.15 / 17:01 21°03,127 S 71°44,256 W 4034
A205 2205 003328 284791-005 01.12.15 / 20:19 21°03,330 S 71°44,134 W 4059,3 approx. 22m more northern than planned; release 20:20
A301 2301 003787 284790-006 02.12.15 / 12:35 20°47,035 S 71°4,011 W 5243
A302 2302 0036FE 284790-007 02.12.15 / 18:48 20°47,561 S 71°4,945W 5367,8
A303 2303 003584 284790-008 03.12.15 / 13:38 20°46,853 S 71°3,520 W 5200,1
A304 2304 00353F 284789-005 03.12.15 / __:__ 20°46,565 S 71°4635 W ____ planned depth: 5336,1m; time tripod in wather: 16:17
A305 2305 00377F 284790-010 04.12.15 / 12:40 20°46,955 S 71°5,068 W 5357

A306 2306 00311D 284789-001 04.12.15 / 17:20 20°46,584 S 71°4,051 W 5295 Turned off "log when woken" for SV sensor for testing the 
battery consumption of SV

A307 2307 003911 284789-002 04.12.15 / 21:46 20°48,037 S 71°4,088 W 5233,6 Receiver wait increased from 3600ms to 4400ms on 
8th.december 2015 in order to get 2305

A308 2308 003739 284789-003 05.12.15 / 11:15 20°47,897 S 71°3,595 W 5133

A309 2309 003723 284789-004 05.12.15 / 16:07 20°47,682 S 71°3,186 W 5098 Turned the baseline 2709-2707 on 2709 off; upload the new 
configuration

A310 2310 0036FB 284791-002 05.12.15 / 20:44 20°47,237 S 71°3,846 W 5223
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Appendix C: Station List / Stationsliste

Start Date St. No. Start Sci. End Sci. Duration Latitude Longitude Latitude Longitude Water Recovery Supervisor
2015 SO244-2 Instrument Begin Program Program End hh:mm S W S W depth (m) Remarks

28.11.15 244/2_1-1 CTD 09:13:08 09:16:18 11:24:27 11:25:09 02:12  20° 47,938' S  70° 48,932' W  20° 47,977' S  70° 48,936' W 2738,9 maxSL: 2723m WTD
28.11.15 244/2_2-1 Acoustic Geodetic Seafloor Station 12:00:42 15:48:11 16:50:34 17:36:05 05:35  20° 47,977' S  70° 48,931' W  20° 47,862' S  70° 48,722' W 2738 A101 H.Kopp
28.11.15 244/2_2-2 Acoustic Geodetic Seafloor Station 19:37:32 19:48:24 22:52:02 00:51:04 05:13  20° 47,682' S  70° 48,461' W  20° 47,717' S  70° 48,466' W 2602,9 A102 H.Kopp
29.11.15 244/2_2-3 Acoustic Geodetic Seafloor Station 09:12:02 09:49:40 13:12:19 14:38:31 05:26  20° 47,403' S  70° 48,544' W  20° 47,416' S  70° 48,535' W 2626,3 A104 H.Kopp
29.11.15 244/2_2-4 Acoustic Geodetic Seafloor Station 15:15:45 15:18:04 17:31:18 19:05:31 03:49  20° 47,608' S  70° 49,001' W  20° 47,618' S  70° 49,019' W A103 H.Kopp
29.11.15 244/2_2-5 Acoustic Geodetic Seafloor Station 19:25:12 19:30:25 21:25:53 23:45:42 04:20  20° 48,132' S  70° 49,388' W  20° 48,152' S  70° 49,402' W 2873,2 A105 H.Kopp
29.11.15 244/2_3-1 KONGSBERG EM122 23:52:53 23:54:31 08:35:43 08:36:00 08:43  20° 48,192' S  70° 49,568' W  21°  4,019' S  71° 44,080' W 2910,8 F.Petersen
30.11.15 244/2_4-1 Acoustic Geodetic Seafloor Station 09:00:42 09:22:32 12:54:13 14:27:24 05:26  21°  3,349' S  71° 43,830' W  21°  3,417' S  71° 43,848' W 4117,2 A201 H.Kopp
30.11.15 244/2_4-2 Acoustic Geodetic Seafloor Station 15:00:18 15:04:16 17:22:47 20:37:28 05:37  21°  3,122' S  71° 43,932' W  21°  3,133' S  71° 43,934' W 4111,7 A202 H.Kopp
30.11.15 244/2_4-3 Acoustic Geodetic Seafloor Station 20:56:02 21:09:21 12:36:49 15:19:27 18:23  21°  3,480' S  71° 44,141' W  21°  3,485' S  71° 44,133' W A203 H.Kopp
01.12.15 244/2_4-4 Wave Glider 10:43:55 10:45:10 22:54:02 23:00:00 12:16  21°  3,484' S  71° 44,138' W  21°  3,065' S  71° 43,831' W D.Lange
01.12.15 244/2_4-5 Acoustic Geodetic Seafloor Station 15:42:01 16:11:56 16:42:29 17:53:57 02:11  21°  3,128' S  71° 44,238' W  21°  3,123' S  71° 44,261' W A204 H.Kopp
01.12.15 244/2_4-6 Acoustic Geodetic Seafloor Station 18:12:03 18:17:38 20:20:07 22:03:56 03:51  21°  3,365' S  71° 44,145' W  21°  3,376' S  71° 44,136' W A205 H.Kopp
02.12.15 244/2_5-1 CTD 03:50:23 03:53:09 07:17:33 07:18:23 03:28  20° 47,052' S  71°  4,001' W  20° 47,048' S  71°  4,006' W 5246,6 SLmax: 4500m WTD
02.12.15 244/2_6-1 Acoustic Geodetic Seafloor Station 09:00:23 09:57:12 12:35:35 14:35:01 05:34  20° 47,052' S  71°  3,998' W  20° 47,083' S  71°  4,017' W A301 H.Kopp
02.12.15 244/2_6-2 Acoustic Geodetic Seafloor Station 16:12:05 16:14:00 18:47:12 20:55:24 04:43  20° 47,597' S  71°  4,934' W  20° 47,597' S  71°  4,936' W A302 H.Kopp
03.12.15 244/2_6-3 Acoustic Geodetic Seafloor Station 11:00:09 11:11:51 13:25:55 15:37:29 04:37  20° 46,887' S  71°  3,522' W  20° 46,887' S  71°  3,524' W A303 H.Kopp
03.12.15 244/2_6-4 Acoustic Geodetic Seafloor Station 16:10:26 16:11:55 18:52:22 21:00:21 04:49  20° 46,577' S  71°  4,636' W  20° 46,597' S  71°  4,646' W 5339,2 A304 H.Kopp
03.12.15 244/2_7-1 KONGSBERG EM122 21:05:27 21:06:26 08:47:50 08:48:09 11:42  20° 46,625' S  71°  4,687' W  20° 46,819' S  71°  5,093' W 5367,5 F.Petersen
04.12.15 244/2_6-5 Acoustic Geodetic Seafloor Station 09:00:29 09:11:51 11:40:47 13:43:05 04:42  20° 46,955' S  71°  5,082' W  20° 46,988' S  71°  5,070' W 5357 A305 H.Kopp
04.12.15 244/2_6-6 Acoustic Geodetic Seafloor Station 14:20:58 14:27:16 16:41:43 19:10:01 04:49  20° 46,649' S  71°  4,054' W  20° 46,625' S  71°  4,066' W A306 H.Kopp
04.12.15 244/2_6-7 Acoustic Geodetic Seafloor Station 19:32:17 19:34:47 21:40:28 23:46:38 04:14  20° 48,069' S  71°  4,063' W  20° 48,074' S  71°  4,089' W A307 H.Kopp
05.12.15 244/2_6-8 Acoustic Geodetic Seafloor Station 09:00:03 09:09:24 11:15:38 13:19:29 04:19  20° 47,929' S  71°  3,605' W  20° 47,930' S  71°  3,608' W A308 H.Kopp
05.12.15 244/2_6-9 Acoustic Geodetic Seafloor Station 13:45:00 13:51:05 16:05:06 18:07:24 04:22  20° 47,716' S  71°  3,197' W  20° 47,716' S  71°  3,194' W A309 H.Kopp
05.12.15 244/2_6-10 Acoustic Geodetic Seafloor Station 18:37:29 18:39:06 20:50:53 01:42:06 07:04  20° 47,269' S  71°  3,858' W  20° 47,254' S  71°  3,383' W A310 H.Kopp
06.12.15 244/2_2-6 Acoustic Geodetic Seafloor Station 15:12:17 15:14:01 16:45:44 17:57:26 02:45  20° 47,817' S  70° 49,441' W  20° 47,824' S  70° 49,464' W A106 H.Kopp
06.12.15 244/2_2-7 Acoustic Geodetic Seafloor Station 18:19:41 18:24:22 19:57:56 21:09:36 02:49  20° 47,916' S  70° 49,832' W  20° 47,921' S  70° 49,831' W A107 H.Kopp
06.12.15 244/2_8-1 KONGSBERG EM710 23:24:21 23:27:12 09:22:12 09:23:01 09:58  20° 58,004' S  70° 31,249' W  20° 51,223' S  70° 34,043' W 762,1 F.Petersen
07.12.15 244/2_2-8 Acoustic Geodetic Seafloor Station 11:00:01 11:16:54 12:51:56 16:58:47 05:58  20° 47,627' S  70° 49,986' W  20° 47,670' S  70° 49,014' W A108 H.Kopp
07.12.15 244/2_9-1 Seismic Ocean Bottom Receiver 17:50:42 14:21:19 20:30  20° 46,114' S  70° 47,871' W  21° 33,006' S  70° 45,009' W 2596,3 A.Krabbenhoeft
07.12.15 244/2_9-1 Seismic Ocean Bottom Receiver 17:51:17  20° 46,108' S  70° 47,871' W 2501,4 OBS02 A.Krabbenhoeft
07.12.15 244/2_9-1 Seismic Ocean Bottom Receiver 19:39:57  20° 28,192' S  70° 52,567' W 2898,5 OBS03 A.Krabbenhoeft
07.12.15 244/2_9-1 Seismic Ocean Bottom Receiver 20:52:58  20° 22,010' S  71° 3,961' W 5011,9 OBS04 A.Krabbenhoeft
07.12.15 244/2_9-1 Seismic Ocean Bottom Receiver 22:28:20  20° 6,026' S  71° 7,133' W 4819,3 OBS05 A.Krabbenhoeft
07.12.15 244/2_9-1 Seismic Ocean Bottom Receiver 23:50:38  19° 53,399' S  71° 12,653' W 5345,9 OBS06 A.Krabbenhoeft
08.12.15 244/2_9-1 Seismic Ocean Bottom Receiver 01:37:55  19° 36,126' S  71° 16,650' W 4881,2 OBS07 A.Krabbenhoeft
08.12.15 244/2_9-1 Seismic Ocean Bottom Receiver 03:40:22  19° 20,743' S  71° 1,293' W 1736,1 OBS08 A.Krabbenhoeft
08.12.15 244/2_9-1 Seismic Ocean Bottom Receiver 05:35:45  19° 34,789' S  70° 49,802' W 1728,9 OBS09 A.Krabbenhoeft
08.12.15 244/2_9-1 Seismic Ocean Bottom Receiver 07:19:02  19° 48,932' S  70° 43,646' W 1432,8 OBS10 A.Krabbenhoeft
08.12.15 244/2_9-1 Seismic Ocean Bottom Receiver 08:49:37  19° 56,435' S  70° 55,912' W 2735,6 OBS11 A.Krabbenhoeft
08.12.15 244/2_9-1 Seismic Ocean Bottom Receiver 10:30:00  20° 12,095' S  70° 54,017' W 2999,2 OBS12 A.Krabbenhoeft
08.12.15 244/2_9-1 Seismic Ocean Bottom Receiver 11:44:36  20° 17,717' S  70° 43,848' W 2100,4 OBS13 A.Krabbenhoeft

SO244-2 Station list
Time (UTC) Begin / on seafloor End / off seafloor



Appendix C: Station List / Stationsliste

Start Date St. No. Start Sci. End Sci. Duration Latitude Longitude Latitude Longitude Water Recovery Supervisor
2015 SO244-2 Instrument Begin Program Program End hh:mm S W S W depth (m) Remarks

08.12.15 244/2_9-1 Seismic Ocean Bottom Receiver 18:17:29  20° 44,494' S  70° 3,756' W 5349,6 OBS01 A.Krabbenhoeft
12.12.15 244/2_9-1 Seismic Ocean Bottom Receiver 14:19:54  21° 32,993' S  70° 45,003' W 2787,4 OBS14 A.Krabbenhoeft
08.12.15 244/2_10-1 Wave Glider 14:52:33 15:06:44 11:25:00 11:45:00 20:52  20° 47,838' S  70° 49,022' W  20° 47,296' S  70° 48,492' W 2764,8 D.Lange
08.12.15 244/2_11-1 Acoustic Geodetic Seafloor Station 18:52:05 18:53:05 23:58:23 00:00:07 05:08  20° 47,275' S  71°  3,867' W  20° 47,279' S  71°  3,862' W 5233,4 Modem H.Kopp
09.12.15 244/2_12-1 Acoustic Geodetic Seafloor Station 12:00:00 18:53:05 15:57:17 15:58:12 03:58  20° 47,302' S  70° 48,478' W  20° 47,624' S  70° 49,993' W Modem H.Kopp
09.12.15 244/2_13-1 Acoustic Geodetic Seafloor Station 17:33:18 17:35:28 19:41:52 19:43:36 02:10  20° 47,114' S  71°  3,948' W  20° 47,110' S  71°  3,962' W Modem H.Kopp
09.12.15 244/2_14-1 Wave Glider 23:43:26 23:49:13 42:17,0 11:53:58 12:10  21°  3,272' S  71° 44,084' W  21°  3,351' S  71° 44,043' W D.Lange
10.12.15 244/2_15-1 KONGSBERG EM122 01:07:22 01:08:54 10:56:35 10:57:48 09:50  21°  2,194' S  71° 44,410' W  21°  2,805' S  71° 44,530' W 4085,6 F.Petersen
10.12.15 244/2_16-1 Wave Glider 11:20:50 11:22:12 11:42:17 11:53:58 00:33  21°  3,040' S  71° 43,952' W  21°  3,351' S  71° 44,043' W WG recovery D.Lange
10.12.15 244/2_17-1 KONGSBERG EM122 14:30:48 14:33:20 02:09:32 02:10:10 11:39  21° 25,148' S  71° 34,760' W  22°  16,215' S  72° 10,046' W 4600 F.Petersen

End of SO244-2

SO244-2 Station list

Time (UTC) Begin / on seafloor End / off seafloor
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Appendix F: Logging Data / Daten  

 

Date
Dec 06 Dec 07 Dec 08 Dec 09

[m
/s

]

1500

1500.1

1500.2

1500.3

1500.4
Sound Velocity 2702

Date
Dec 06 Dec 07 Dec 08 Dec 09

[°C
]

1.73
1.74
1.75
1.76
1.77
1.78

Temperature 2702

Date
Dec 06 Dec 07 Dec 08 Dec 09

[d
ba

r]

2631

2631.5

2632

2632.5
Pressure 2702

Date
Dec 06 Dec 07 Dec 08 Dec 09

[m
/s

]

1502.3

1502.35

1502.4

1502.45
Sound Velocity 2703

Date
Dec 06 Dec 07 Dec 08 Dec 09

[°C
]

1.72

1.73

1.74

1.75

1.76
Temperature 2703

Date
Dec 06 Dec 07 Dec 08 Dec 09

[d
ba

r]

2774.8
2775

2775.2
2775.4
2775.6
2775.8

Pressure 2703
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Date
Dec 06 Dec 07 Dec 08 Dec 09

[m
/s

]

1500.1

1500.2

1500.3

1500.4

1500.5
Sound Velocity 2704

Date
Dec 06 Dec 07 Dec 08 Dec 09

[°C
]

1.74
1.75
1.76
1.77
1.78
1.79

Temperature 2704

Date
Dec 06 Dec 07 Dec 08 Dec 09

[d
ba

r]

2643

2643.5

2644

2644.5
Pressure 2704

Date
Dec 06 Dec 07 Dec 08 Dec 09

[m
/s

]

1504.32
1504.34
1504.36
1504.38

1504.4
1504.42

Sound Velocity 2705

Date
Dec 06 Dec 07 Dec 08 Dec 09

[°C
]

1.67

1.675

1.68

1.685

1.69
Temperature 2705

Date
Dec 06 Dec 07 Dec 08 Dec 09

[d
ba

r]

2895.5

2896

2896.5

2897
Pressure 2705
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Date
Dec 07 Dec 08 Dec 09

[m
/s

]

1503.65

1503.7

1503.75

1503.8

1503.85
Sound Velocity 2706

Date
Dec 07 Dec 08 Dec 09

[°C
]

1.71

1.72

1.73

1.74

1.75
Temperature 2706

Date
Dec 07 Dec 08 Dec 09

[d
ba

r]

2869.4
2869.6
2869.8

2870
2870.2
2870.4

Pressure 2706

Date
Dec 07 Dec 08 Dec 09

[m
/s

]

1504.38

1504.4

1504.42

1504.44

1504.46
Sound Velocity 2707

Date
Dec 07 Dec 08 Dec 09

[°C
]

1.7

1.75

1.8

1.85
Temperature 2707

Date
Dec 07 Dec 08 Dec 09

[d
ba

r]

2894.2
2894.4
2894.6
2894.8

2895
2895.2

Pressure 2707
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Date
Dec 01 Dec 02 Dec 03 Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[m
/s

]

1526.18
1526.2

1526.22
1526.24
1526.26
1526.28

Sound Velocity 2202

Date
Dec 02 Dec 03 Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[°C
]

1.65
1.655

1.66
1.665

1.67
1.675

Temperature 2202

Date
Dec 02 Dec 03 Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[d
ba

r]

4165.5

4166

4166.5

4167
Pressure 2202

Date
Dec 02 Dec 03 Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[m
/s

]

1525.56

1525.58

1525.6

1525.62

1525.64
Sound Velocity 2203

Date
Dec 02 Dec 03 Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[°C
]

1.77

1.775

1.78

1.785

1.79
Temperature 2203

Date
Dec 02 Dec 03 Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[d
ba

r]

4119.5

4120

4120.5

4121
Pressure 2203
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Date
Dec 02 Dec 03 Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[m
/s

]

1525.06
1525.08

1525.1
1525.12
1525.14
1525.16

Sound Velocity 2205

Date
Dec 02 Dec 03 Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[°C
]

1.68

1.7

1.72

1.74
Temperature 2205

Date
Dec 02 Dec 03 Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[d
ba

r]

4119.5

4120

4120.5

4121
Pressure 2205

Date
Dec 03 Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[m
/s

]

1547.06

1547.08

1547.1

1547.12

1547.14
Sound Velocity 2301

Date
Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[°C
]

1.76

1.762

1.764

1.766

1.768
Temperature 2301

Date
Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[d
ba

r]

5338.6
5338.8

5339
5339.2
5339.4
5339.6

Pressure 2301
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Date
Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[m
/s

]

1549.08

1549.1

1549.12

1549.14

1549.16
Sound Velocity 2302

Date
Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[°C
]

1.76
1.762
1.764
1.766
1.768

1.77
Temperature 2302

Date
Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[d
ba

r]

5463.5

5464

5464.5

5465

5465.5
Pressure 2302

Date
Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[m
/s

]

1545.96

1545.98

1546

1546.02

1546.04
Sound Velocity 2303

Date
Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[°C
]

1.68

1.681

1.682

1.683

1.684
Temperature 2303

Date
Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[d
ba

r]

5289.5

5290

5290.5

5291

5291.5
Pressure 2303
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Date
Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[m
/s

]

1549.18

1549.19

1549.2

1549.21
Sound Velocity 2305

Date
Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[°C
]

1.764
1.765
1.766
1.767
1.768
1.769

Temperature 2305

Date
Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[d
ba

r]

5454

5454.5

5455

5455.5
Pressure 2305

Date
Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[m
/s

]

1548.11

1548.12

1548.13

1548.14

1548.15
Sound Velocity 2306

Date
Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[°C
]

1.738

1.74

1.742

1.744

1.746
Temperature 2306

Date
Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[d
ba

r]

5389

5389.5

5390

5390.5
Pressure 2306
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Date
Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[m
/s

]

1546.91

1546.92

1546.93

1546.94
Sound Velocity 2307

Date
Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[°C
]

1.765

1.77

1.775

1.78

1.785
Temperature 2307

Date
Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[d
ba

r]

5323.5

5324

5324.5

5325

5325.5
Pressure 2307

Date
Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[m
/s

]

1544.38

1544.39

1544.4

1544.41

1544.42
Sound Velocity 2309

Date
Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[°C
]

1.728

1.73

1.732

1.734

1.736
Temperature 2309

Date
Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[d
ba

r]

5185.5

5186

5186.5

5187

5187.5
Pressure 2309
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Note: Logging data for stations A101, A108, A201, A204, A304, and A308 are shown 

in Chapters 6.1.3-6.1.5. 

  

Date
Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[m
/s

]

1546.72

1546.73

1546.74

1546.75

1546.76
Sound Velocity 2310

Date
Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[°C
]

1.755
1.756
1.757
1.758
1.759

1.76
Temperature 2310

Date
Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[d
ba

r]

5315

5315.5

5316

5316.5
Pressure 2310
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Appendix G: Baselines / Baselines 

 

Date
Nov 30 Dec 01 Dec 02 Dec 03 Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09

[m
]

657.305

657.31

657.315

657.32

657.325

657.33

657.335

657.34

657.345

657.35

657.355
Baseline 2701 -> 2703

2701 -> 2703
2703 -> 2701

Date
Dec 07 Dec 08 Dec 09

[m
]

2409.4

2409.42

2409.44

2409.46

2409.48

2409.5

2409.52
Baseline 2704 -> 2707

2704 -> 2707
2707 -> 2704
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Date
Dec 07, 16:00 Dec 08, 02:00 Dec 08, 12:00 Dec 08, 22:00 Dec 09, 08:00

[m
]

580.87

580.875

580.88

580.885

580.89

580.895
Baseline 2707 -> 2308

2707 -> 2708
2708 -> 2707

Date
Dec 07, 16:00 Dec 08, 02:00 Dec 08, 12:00 Dec 08, 22:00 Dec 09, 08:00

[m
]

580.87

580.875

580.88

580.885

580.89

580.895
Baseline 2707 -> 2708

2707 -> 2708
2708 -> 2707
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Date
Dec 02 Dec 03 Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[m
]

200.926

200.928

200.93

200.932

200.934

200.936

200.938

200.94

200.942
Baseline 2202 -> 2203

2202 -> 2203
2203 -> 2202

Date
Dec 02 Dec 03 Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[m
]

816.225

816.23

816.235

816.24

816.245
Baseline 2201 -> 2204

2201 -> 2204
2204 -> 2201
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Date
Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[m
]

821.73

821.735

821.74

821.745

821.75

821.755
Baseline 2308 -> 2309

2308 -> 2309
2309 -> 2308

Date
Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10

[m
]

1050.76

1050.765

1050.77

1050.775

1050.78

1050.785
Baseline 2303 -> 2306

2303 -> 2306
2306 -> 2303
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