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Marine imaging is transforming into a sensor technology applied for high throughput

sampling. In the context of habitat mapping, imaging establishes thereby an important

bridge technology regarding the spatial resolution and information content between

physical sampling gear (e.g., box corer, multi corer) on the one end and hydro-acoustic

sensors on the other end of the spectrum of sampling methods. In contrast to other

scientific imaging domains, such as digital pathology, there are no protocols and reports

available that guide users (often referred to as observers) in the non-trivial process of

assigning semantic categories to whole images, regions, or objects of interest (OOI),

which is referred to as annotation. These protocols are crucial to facilitate image analysis

as a robust scientific method. In this article we will review the past observations in

manual Marine Image Annotations (MIA) and provide (a) a guideline for collecting manual

annotations, (b) definitions for annotation quality, and (c) a statistical framework to analyze

the performance of human expert annotations and to compare those to computational

approaches.

Keywords: mega fauna, marine image annotation, marine image informatics, environmental informatics, marine

imaging, environmental sciences, environmental monitoring, habitat mapping

1. INTRODUCTION

Optical imaging has a long tradition in marine sciences regarding its application to capture and
visualize features of underwater environments such as fauna, flora, geological structures, litter, or
infrastructure (Kocak and Caimi, 2005). Due to the technological advances and the increasing
necessity to explore, map, and monitor the marine environment for anthropogenic impacts and
new resources on a larger spatial scale, marine imaging applications have changed regarding
scale and function. A variety of underwater observation platforms, such as Remotely Operating
Vehicles, Baited Remote Underwater Video Systems, Autonomous Underwater Vehicles, Ocean
Floor Observation Systems, Fixed long term Underwater Observatories are equipped with high
resolution cameras to collect Gigabytes to Terabytes of image data, ranging from still images,
over video recordings to high-dimensional hyper-spectral image data. Optical imaging represents
a bridge technology between hydro-acoustic data (low spatial resolution and large scale mapping)
and physical data (e.g., BoxCorer, MultiCorer - high spatial resolution and low sampling rate). As
a consequence, large image and video collections are nowadays accumulated during cruises. The
content of the images needs to be extracted and integrated with other data to be considered in
scientific analysis or integrated in decision making processes. This extraction step is the non-trivial
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procedure of mapping images/video frames to nominal,
qualitative, or quantitative data and is the main challenge in
image analysis. Following to this extraction the image/video
content can be represented in tables or spreadsheets. That
way it can be subject to a statistical analysis and related to
other dimensions such as time, space, or other sensor data.
But the sheer volume of the image data, the high costs for the
manual data extraction by trained human observers (e.g., marine
biologists), the limited availability of expert taxonomists results
in a serious bottleneck. This bottleneck in underwater image
analysis gets more serious due to the continuous increase in
spatial and temporal resolution. Just 10 years ago, benthic images
of the sea floor showed a visual footprint of∼ 3m2 and nowadays
visual footprints of more than 400 m2 can be recorded. Hence an
observer has to spend more time to visually explore the whole
image. The marine image analysis community faces the fact that
the traditional approach with one observer, manually viewing
and annotating all the image data collected in one session is not
applicable any more in a growing number of projects.

To solve the bottleneck problem, computational support is
needed. Actions have been taken very early to support long-
term data safety and storage, leaving the semantic annotation
issue more or less untouched. This has changed in the last
5–10 years and marine image analysis has been identified
as a new field of research for application-oriented computer
science. The entire field could be referred to as marine image
informatics, and includes concepts of database engineering,
data mining, signal/image processing, pattern recognition, and
machine learning. Marine image informatics is thus similar to
bioinformatics/computational biology.

One distinct branch in marine image informatics research is
the development of tools to support the manual data extraction
process in marine images with new image annotation software
tools. These tools improve the availability of data and streamline
the data extraction process. To increase the data throughput and
the annotation quality data sharing and collaboration via the web
is supported by some of these tools. This is motivated by two
trends. First, research in the natural sciences is carried out more
andmore in interdisciplinary collaborations to address themulti-
dimensional aspects of scientific questions (Lakhani et al., 2006;
Wuchty et al., 2007; Shneiderman, 2008; Rylance, 2015). Second,
nowadays web technology allows interdisciplinary collaboration
between different groups on a new level regarding the sharing of
data and knowledge which is sometimes referred to as Science 2.0
(Waldrop, 2008).

Some of the proposed marine image annotation tools like
NICAMS (NIWA Image Capture and Management System)1,
VARS (Video Annotation and Reference System)2, and VIDLIB
(Marcon et al., 2015) are desktop applications and support
the observers in marking regions or points in images and
linking those to semantic/taxonomic categories. Another very
popular example is the Coral Point Count software, that is
frequently used to assess the abundance of different corals

1NICAMS.NIWA Image Capture Analysis &Management System. Available online

at: https://nzoss.org.nz/projects/nicams.
2VARS.Video Annotation and Reference System (VARS).Available online at: http://

www.mbari.org/vars/.

in images by manual classification of random point seeds
(Kohler and Gill, 2006). Other and more recent approaches
[e.g., CATAMI (Collaborative and Automated Tools for Analysis
of Marine Imagery)3, SQUIDLE4, CoralNet (Beijbom et al.,
2015), or BIIGLE (BioImage Indexing, Graphical Labeling and
Exploration) (Ontrup et al., 2009; Schoening et al., 2009)],
are web-based systems, making use of today’s broad internet
bandwidth and software technology to address Science 2.0
driven specifications. In summary, marine scientists now are
equipped with different software and web tools to support saving,
managing, exploring, sharing image data, and annotating marine
imagery. Usually, the tools are used by human expert observers to
extract nominal, qualitative, or quantitative data from the images.
The observers inspect the image/video data on a screen, visually
detect objects of interest (OOI, e.g., biota) or regions of interest
(ROI, e.g., resource occurrences, coral structures, or bacterial
mats) and (in many cases) mark the position (i.e., a set of pixels)
of those objects/regions with an input device (e.g., a computer
mouse or a draw pad). Finally, a semantic category has to be
assigned to the OOI/ROI. In some cases, the spatial level of detail
in the data extraction process is rather low, so entire images are
assigned to semantic categories, e.g., the dominant substrate type.

For the sake of compactness we will omit the term OOI and
concentrate on ROI without any restriction. Additionally, we
will omit the term “video” in the following. Please note that
the observations, guidelines and considerations in the paper can
be applied to video annotation in a straightforward way if the
video is analyzed as a series of extracted video frames that can
be interpreted the same way as still images [as it was done for
instance in Purser et al. (2009)]. Annotation of video data in the
original video mode, i.e., inspecting and annotating it as a movie
has some additional aspects (e.g., tracking of a ROI over multiple
frames) which will not be addressed here. But we are confident,
that with the growing number of video recordings under water
and the increasing resolution, software support for video data
management and annotation will become an issue of growing
importance in the next years.

A novel strategy to widen the bottleneck in marine image
analysis is the involvement of voluntary non-scientists for the
annotation of publicly available data. These so called citizen
scientists have helped analyzing multiple kinds of image data sets
(Franzoni and Sauermann, 2014) also in marine science (Delaney
et al., 2008). So far, their involvement is still scarce and protocols
to streamline their effort as well as means for quality assurance
and quality control of the provided data have yet to be developed.

To support the process of interpreting images, different
kinds of algorithmic approaches and software can be applied
to enhance the visual quality of the data. Image recording
underwater is quite different from imaging in air due to the
different physical properties. In this medium the attenuation is
wavelength dependent resulting in a color-shift and scattering
reduces the contrast and sharpness of the images. Furthermore,
the in-optical properties change dynamically e.g., as the amount

3CATAMI. Collaborative and Automated Tools for Analysis of Marine Imagery

CATAMI. Available online at: http://catami.org.
4SQUIDLE. Available online at: http://squidle.acfr.usyd.edu.au/.
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of dissolved organic matter changes, again influencing color,
contrast, and sharpness of the images. Another influence factor
is the illumination cone induced by the flash light source of an
imaging platform. In Schoening et al. (2012a) it was for instance
shown, how the object distance to the centroid of the illumination
cone influences the observers decision. A variety of algorithms
have been developed to enhance underwater images by (a) de-
hazing the image(Trucco andOlmos-Antillon, 2006; Ancuti et al.,
2012; Chiang and Chen, 2012), (b) compensating non-uniform
illumination (Eustice et al., 2002; Singh et al., 2007; Schoening
et al., 2012b; Bryson et al., 2015) and (c) increasing the image
contrast and correcting the color shift (Zuiderveld, 1994; Eustice
et al., 2002; Chambah et al., 2003; Trucco and Olmos-Antillon,
2006; Singh et al., 2007; Petit et al., 2009; Iqbal et al., 2010; Ancuti
et al., 2012; Chiang and Chen, 2012; Schoening et al., 2012b;
Abdul Ghani and Mat Isa, 2014; Bryson et al., 2015). Although
in the last years new methods have been proposed to compare
and rank the quality of different algorithms (Osterloff et al., 2014;
Panetta et al., 2015; Yang and Sowmya, 2015), the selection of the
best algorithm can be challenging. Reviews of underwater image
enhancement algorithms can be found in (Schettini and Corchs,
2010; Wang et al., 2015). A different but important category of
image processing is computation of mosaics from still images
(Gracias and Santos-Victor, 2000) so the observer can identify
larger structures, covering a series of images, or to enable them to
include large scale spatial context.

However, despite the aforementioned technological aspect of
the image interpretation there is also another aspect that may
have been not addressed yet sufficiently or maybe sometimes
even in the wrong direction and this is the motivation for this
paper. It is a common phenomenon, that the error rate of
observers (even for those on the expert-level), who annotate
images or ROI in images shows to be considerably higher than
expected. This phenomenon has been studied since the early
days of radar interpretation and electronic signal detection (as
reviewed in Metz, 1986), followed by visual classification in
pep smear analysis (Lusted, 1984b) and other medical image
analysis contexts (Lusted, 1971, 1984a) until today in the context
of bioimaging applications (Nattkemper et al., 2003) or studies
on the interpretability of compressed data in modern digital
pathology (Krupinski et al., 2012) usually by evaluating Receiver
Operator Characteristics (ROC) (Lusted, 1984b; Zweig and
Campbell, 1993; Orfao et al., 1999; Greiner et al., 2000) (see
Section 3 below for a short introduction). In marine sciences,
problems in manual annotation have also been reported in the
context of object/species classification in different kinds of image
data as well (Culverhouse et al., 2003; Schoening et al., 2012b;
Schoening et al., under review).

Sometimes, the observation of manual annotation to be
error-prone and time-consuming is used as a motivation for
automating the annotation process (MacLeod Benfield and
Culverhouse, 2010) in an attempt to find a technical solution
to the data extraction problem. This call has been answered
by promising achievements in algorithmic annotation, such as
automated classification of seabeds and habitats (Pican et al.,
1998; Pizarro et al., 2009), coral segmentation (Purser et al., 2009;
Tusa et al., 2014), and classification (Beijbom et al., 2012, 2015),
detection, and spatial analysis of shrimp populations (Purser

et al., 2013; Osterloff et al., 2016), detection and classification of
mega fauna in benthic images (Schoening et al., 2012b; Schoening
et al., under review) or the computation of image footprint size
with automatically detected laser points (Schoening et al., 2015).

But there is no doubt, that visual inspection by experts and
manual annotation will always be a substantial part in any
image data analysis. One may consider the case of image data
sets recorded in an area with a low species density but high
biodiversity. In such data, it will be impossible to represent all
categories (i.e., morphotypes or taxa) with a sufficient number
of examples that account the variability in the category’s visual
apprearance. This prevents to obtain an abstract model for this
category in a feature space, which is a prerequisite for pattern
recognition algorithms. Even if there are enough examples in the
data, a ground truth data set of annotated examples needs to be
collected to train the algorithmic approaches and to assess their
detection and classification quality. So either way, a collection of
manual annotations will always be a substantial part of any image
data interpretation step. As a consequence, the development of
software based approaches for automatic annotation is only one
part of the solution to the bottleneck problem in marine image
data interpretation. The other part of the solution is to improve
the manual annotation process itself by (a) software tools such as
those listed above and (b) defining protocols and guidelines for
the annotation process. This work is considered a contribution
to (b) and although our guidelines are based on many years of
research in marine image analysis we do not intend to provide a
solution to all annotation scenarios and problems. We think that
sharing our experiences with the community can be a first step
to overcome the interpretation bottleneck and establish image
analysis as a robust scientific tool in marine science.

The manuscript is organized as follows. In the next section,
the different kinds of manual annotation tasks will be defined
and individual aspects will be discussed. In Section 3.1 we will
motivate and summarize different strategies to obtain a reference
result of good annotation, referred to as gold standard. Using
such gold standard the quality of the annotation results can be
assessed by different means as explained in Section 3. In the next
Section 4 the full list of recommendations is given and finally
discussed in the last Section 5.

2. A TAXONOMY FOR LABELING TASKS

In the following section, we want to give more formal
description of the annotation process and its results to avoid
misunderstandings in the following description of the three
different annotation tasks. Let us consider an arbitrary image
collection I = {It}t=1,...,nt (collected for instance in one AUV
dive) that is subject to a manual annotation process. Each single
annotation result for one ROI Ai consists of the ROI description
ri and one set of classifications ci, i.e., assignments of the the ROI’s
content to pre-defined semantic categories by different observers:

Ai = (ri, ci) (1)

The ROI’s region description ri represents a parametric
description of the location (and shape) of the i-th ROI in an image
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It (see Figure 1 for examples). For the sake of compactness we
omit an image index t for the single annotations.

The classifications ci = (ci,1, ..., ci,J) list all J classifications
done in J inspections or sessions. Of course, in the majority of
annotation projects, the index J is rather low and (J = 1) holds
for most of the annotations. Each classification is described by
two parameters

ci,j = (ω, k)

which are (a) one category5 ω from the set of possible categories�

(ω ∈ �) assigned to the ROI ri, (b) one observer (i.e., annotating
expert) Ok from a group of observers Ok ∈ {O1, ...,OK}. Based
on these definitions we describe three types of image annotation
tasks that are also illustrated in Figure 2.

• FIA: Full image annotation task
In FIA the whole content of an image is classified to one
category (e.g., habitat type), i.e., the classifications ci,j are
assigned to the entire image It (ri = ∅) and no individual ROI
is to be described inside the image.

This kind of an image annotation task is usually performed
very quickly because it does not require a mouse interaction
to specify the ROI. The most common application scenario
for FIA is when time for annotation is limited and a rapid
annotation process is necessary (e.g., in live video feed

5In the field of machine learning or pattern recognition the term class is more

frequently used than category. However, since the term class usually refers to a

level in biological taxonomy we choose to use the term category in this paper but

will use classification as the term for assigning a category to an ROI.

annotation). FIA is also useful to flag entire images as empty
(i.e., no ROI of any category ω visible), as not interpretable
(e.g., artifacts, sediment cloud) or not of interest for further
analysis (e.g., test images acquired on deck of an RV). This
flagging process can be conducted prior or alongside a Whole
Image Screening annotation (see next task description). Tools
that implement FIA often feature pre-defined buttons for
each ω (see for instance A.-E. in Figure 2) that only need to
be selected to assign a time-coded annotation of category ω

regarding the image visible at the time t.

• Whole image screening (WIS)
In a WIS task, the observer has to search for all ROI in an
image, which are of relevance. This type of annotation task
is the most common in marine image annotation and carried
out, when the number (and classifications) of all ROI in an
image is to be determined. In many cases, observers need to
mark the positions and the contour of the ROI as well, when
for instance biomass information is to be estimated for each
ROI. Considering the time an observer is spending for one
annotation, WIS is on average the most time-consuming task
in image annotation since each time spent for one annotation
is the sum of the time for search and selection of the pixel
group ri and the time for the classification step to select ω.

The way how to select the ROI is a crucial part of the
WIS and needs thorough consideration by the complete
group of observers. The final scientific question or the
driving hypothesis behind the study is the most important
discriminant here: in case abundances of categories ω are

FIGURE 1 | One ROI can be labeled in different ways. We show two example taxa, a starfish and a holothuria, both with five different ways to describe a ROI for

them, explained from left to right. The simplest way is to place a point label (far left) which needs only the selection of m = 1 (with m = |ri |) point (for instance using a

mouse, touchpad or a draw pad) to determine ri . If the size of the ROI is relevant (e.g., to estimate the biomass), the observer can apply different ways to determine ri
with m = 2 or 3 positions (depending on the GUI implementation) using for instance lines, circles, frames, ellipsoids. In some cases, the number of vertices to describe

a shape is rather low and constant, so in this case a polygon can be applied for a more detailed size / shape description (see m = 5 for the star fish). If a more detailed

size description is need, one may consider to draw a polygon with an arbitrary number of nodes (examples on the far right) which usually causes a much higher work.
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FIGURE 2 | The three different kinds of annotation tasks are illustrated. The full image annotation (FIA) task asks the observer to label an image with one

category (for instance A, ..., E) based on the content of the complete image. The whole image screening task (WIS) includes searching one image for all instances of

one or more taxonomic or morphologic categories and to label this graphically. The categories can for instance be displayed in a hierarchical browser (see right side of

the WIS screen). The observer uses different kinds of labels like points (green), lines (blue), frames (pink), or poligons (red). In the rapidly performed sigle patch

classification (SPC) single pre-selected individuals are displayed with high resolution and detail and the observer decides to accept the existing label, reject the label or

to reset the label (see upper left in the SPC screen). The rest of the screen space can be used to display the entire source image (with the individual highlighted in a

black frame, see lower left) and to display other helpful annotation information (gray box).

targeted, simple point labels [i.e., the ROI description consists
of a pixel coordinate ri = (xi, yi)] that do not provide
a shape/site description are sufficient; in cases where the
extent of individual ri matters (e.g., for biomass estimates),
annotation shapes like lines, rectangles, ellipses, or polygons
are required. Apart from the definition of annotation shapes,
further consideration is required regarding the placement of
the shapes in the images (see Section 4 below for the list of
recommendations).

• Single patch classification (SPC)
In a SPC session, a set of ROI from prior collected annotations
{Ai} is investigated and classified by the observerOk who needs
to make a decision regarding the acceptance/rejection of ω.
This annotation task is much faster than WIS regarding the
number of investigated ROI per time. From a methodological
perspective SPC could be considered as a “small scale FIA.”
The image patches are anyhow by orders of magnitude smaller
than the entire images in FIA and a subset of them can be
displayed on a screen in a rapid serial visual presentation
(i.e., showing one patch at a time and with dynamic updates
like in a slideshow) or in a rich gridded visual presentation
(i.e., several patches in parallel and static) (see Figure 2 on
the right). SPC has seen rare applications in marine image
annotation yet [except in case of posterior inspections of
annotations obtained by a computer vision system (Schoening
et al., 2012b; Osterloff et al., 2016; Schoening et al., under
review)] since it needs a sophisticated data base model to
represent the annotations ROIs and classifications.

Annotation projects carried out with the so called random
points approach can be considered a SPC task, since the
observer inspects a given number of randomly set points in an
image and classifies the image content at those image points
to one category. So the observer can concentrate totally on the
classification step.

No matter what kind of annotation task is performed, the whole
process can be considered as one signal detector or sensor with

the annotations {ri} as sensor outputs. And like each other sensor,
the outputs need to be evaluated regarding the quality of the
results which is the subject of Section 3. First, we need to address
the problem of collecting a gold standard for a correct annotation
of a chosen subset of images that can be used in the quality
assessment as a reference.

3. QUALITY ASSESSMENT

In any visual inspection and annotation task, the results should
be of a quality, that it allows to include them in a scientific
study or in a decision process. In marine image annotation,
the concept for a high or low annotation quality is often not
clearly defined. To close this gap, this section will describe
quality measures for image annotation as well as ways to create
reference data sets for comparison, also referred to as gold
standards.

3.1. The Gold Standard Issue
In each scenario of annotation quality assessment (see next
section) a test set of images with a gold standard annotation
result is required. The test set must represent the diversity
of input signals and structures monitored which means that
each category considered in the study shall be represented with
an appropriate number of examples. The gold standard must
be accepted by the scientific community to be an acceptable
approximation of the ground truth. To acquire a gold standard
for a test set of images three different strategies have been applied
in the past:

3.1.1. Single Expert
One expert observer visually inspects the test set and performs
the annotation task (FIA, WIS, or SPC) and the result is
considered the gold standard for this data. This strategy requires
an observer with extra ordinary skills and expertise and an
evaluation of this experts’ intra-observer agreement (see Section
3.2 for details).
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3.1.2. Consensus Expert
A number of K observers inspects a test set of images and
perform the annotation task. So the number of inspections
equals the number of experts, J = K. All the expert
observers use the same annotation software, use the same
categories and follow the same annotation protocol. It is
important that all K observers need to perform independently
from each other so none of their classifications is affected
by the classification of the other observers. The result lists
of annotations ci from all K observers are compared for
each annotation Ai to construct a meta-expert annotation
result. To this end, spatially and semantically corresponding
annotations from different observers need to be matched and
fused to one. This is done algorithmically by searching for
annotations that have very close and/or have overlapping region
descriptions ri and have the same category ω assigned. As
a result, for each ROI that has been detected and classified
by at least one observer a consensus factor γi ∈ {1, ...,K}
is computed, representing the number of observers that have
detected and classified this ROI to be from one and the
same particular category. The list of all ROI with a consensus
factor 1 ≤ γi ≤ K above a given threshold is used
as the gold standard G. This strategy has been applied
for instance in (Nattkemper et al., 2003; Schoening et al.,
2012b). The quality of the gold standard can be assessed by
evaluating the observers’ inter- and intra-observer agreement
(see Section 3.2). The latter is of course condition to performing
a repetitive experiment of each observer for a subset of the
test set.

3.1.3. Ground Truth Data
In the ideal case, a ground truth is available generated with data
from other sources. One example from the field of underwater
mining is for instance box corer data, i.e., physical sampling
from the ground. This procedure is time consuming and has the
drawback that it is destructive to some extend. However, on the
other hand, the result delivers a very good reference to be applied
as gold standard.

3.2. Quality Measures
Many researchers use different terms like accuracy or precision
to denote the quality of an annotation process, sometimes even
using them in a wrong way or without a concise definition.
In this section we will give an overview for quality assessment
definitions and methods which are relevant to the marine image
annotation problem. To outline the description of the quality
measures in a clear way we focus on so called two class problems
here. This means that |�| = 2 and two categories ω1 and
ω0 are considered. Extending the quality measures to multi-
category problems requires some further considerations. An
excellent overview of multi-category quality assessment is given
in Sokolova and Lapalme (2009).

As test sets one might consider large collections of image
patches like in the SPC scenario (see Section 2 above) or an
image set from the sea floor {It}, each image showing a different
number of instances from this category. The categories could be
for instance

a. ω1 = is_a_sponge and ω0 = is_no_sponge, or
b. ω1 = is_starfish_morphotype_A and

ω0 = is_starfish_morphotype_B, or
c. ω1 = coral and ω0 = stressed_coral

We also assume here, that for the test set, a gold standard G
is available (see section before) so the decision of an observer
Ok can be evaluated to be correct or not. We propose to use
and distinguish the following terms to assess the quality of the
annotation results obtained for the image collection.

3.2.1. Accuracy
The accuracy describes the ability of an observer to make
decisions or classifications that can be considered as correct
condition to an available gold standard representing the state-of-
the-art knowledge. To assess the accuracy of an annotation, a test
set of image data must be provided together with a gold standard
(see Section 3.1 before) and the accuracy is usually described by
ROC statistics. In ROC the focus is usually put on one particular
category and the observer Ok classifies a ROI to be positive (ω1)
or negative (ω0), i.e., the object belongs to the category or not
(see for example a. above). Comparing the results of the observer
obtained for a test set with those from a test set’s gold standard
classification allows to classify each observer result to be a true
positive (TP), true negative (TN), false positive (FP), or false
negative (FN). The TP for example represent the number of ROIs
that were classified to be positive by the observer and in the gold
standard. The FP are those ROI that were classified to be positive
by the observer but negative in the gold standard.

In the accuracy assessment, the observer’s classifications for all
ROI / image patches are compared to those in the gold standard
reference. The most frequently used ROC parameters computed
from these four variables are

recall =
TP

TP + FN
, precision =

TP

TP + FP
,

specificity =
TN

TN + FP
. (2)

Sometimes, the first two terms are referred to as sensitivity
(=recall) and positive predictive value (=precision) since in
some image processing communities these are more popular
from their application in medical imaging.

SPC: In SPC, recall and specificity are usually evaluated and
sometimes classic ROC plots are drawn, relating recall
to (1-specificity). To express the overall performance, the
accuracy is computed by

ACC =
TP + TN

TP + FP + FN + TN
. (3)

Other values proposed to represent a singe measure for the
observer’s accuracy are the harmonic mean (also referred
to as F1-measure):

F1 = 2 ·
precision · recall

precision+ recall
(4)
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or the geometric mean (referred to as G-measure):

G =
√

precision · recall (5)

In many applications a separate display and analysis of the
recall and precision should maybe be preferred. The kind
of losses and costs caused by the different kind of errors
[like too many missed objects (i.e., TN) in case of a low
recall value or too many FP in case of a low precision] can
have rather different impact. Thus, a separate analysis of
these two often makes sense. The single valued measures
(Equations 3–5) can be rather useful to tune the parameters
of software system or to compare the performance in a
compact way.

WIS: In a WIS task, the observer’s performance is assessed
by computing the precision and the recall and relating
those to each other. The specificity is usually neglected
since the TN, i.e., the number of pixels in the image that
have correctly not been labeled as a ROI is by orders
of magnitude larger than the FP. Thus, the specificity is
usually close to 1.0, i.e., perfect which does not reflect the
performance of the observers correctly.

3.2.2. Reproducibility
The ability to reproduce results from an experiment is one corner
stone in good scientific practice and must be considered in the
development and application of new scientific methods. In the
context ofmarine image annotation this term describes the ability
of one observer to either reproduce her/his results or the results
of a second observer for the same data set. The reproducibility
should be discussed separately from the accuracy, since the
significance of an accuracy assessment depends on the availability
of an accepted gold standard. But even if such a gold standard is
missing, the ability of one observer to reproduce her/his results
or the results of a second observer must be shown to demonstrate
the potential of an imaging based approach to produce significant
results. In fact, if the classification task is very complicated and
difficult to perform by the observers due to the image quality, a
reproducibility analysis should be carried out before collecting
gold standard annotations or should be an integrated part of this
procedure.

The reproducibility of an annotation process can be assessed
by computing the inter-observer agreement between two
observers Oj and Ok, for instance with κ-statistics (Cohen, 1960;
Landis and Koch, 1977; Viera andGarrett, 2005). Please note, that
the inter-observer agreement between two observersOk andOj, is
sometimes also referred to as “precision” in other scientific fields
such as medicine and clinical research. However, since we use the
term “precision” to describe the relation of true positives TP to
all positives (TP + FP) (see Equation 2), we propose to use the
term “reproducibility” here, since it refers very well to the task of
the observer, to reproduce one list of annotations, pre-produced
by another observer. Obviously Oj can represent a second result
obtained by the same and first observer Ok (i.e., j = k) for the
same data set but with some time delay. In this case, such an
inter-observer agreement would be referred to as intra-observer
agreement.

In κ-statistics, the expected agreement Ae of two observers is
estimated and related to the observed agreement Ao. To quantify
Ae and Ao an experiment is carried out, where two observers
have to classify N samples (e.g., ROI / image patches) to show
instances from one chosen category or not or from another
category, respectively (see a.–c. above). In Table 1 we show an
example for N = 200 of two observers, with n1k (n1j) as the
number of items classified by the observer Ok (Oj) as ω1 and
n0k (n0j) as the number of items classified as ω0 by the two
observers, respectively. The variable n11 represents the number of
items both observers have classified as ω1 and n00 is the number
both have classified as ω0.

The expected agreement Ae and the observed agreement Ao

are computed by

Ae =
n1k

N
·
n1j

N
+

n0k

N
·
n0j

N
and Ao =

n11 + n00

N
. (6)

From the numbers in our example in Table 1 we compute Ae =

0.65 and Ao = 0.85.
Please note, that if we replace one observer Oj by a gold

standard G, the observed agreement AO is identical to the
accuracy value (see Equation 3). The κ statistic is computed by

κ =
Ao − Ae

1− Ae
, κ ∈ [−1; 1].

A large value of κ = 1 indicates a perfect agreement, a value
of κ = 0 indicates no agreement and κ = −1 a systematic
disagreement or contradiction. In the example we get κ = 0.57
which is usually interpreted as a moderate agreement according
to the agreement scale proposed in Landis and Koch (1977) and
shown in Table 2.

However, in particular situations two problems can occur in κ

statistics. First, the expected agreement Ae might just be based on
small empirical measurements and the significance of the result
can not be estimated without further expensive experiments to
measure the variance for κ and a z statistic etc. Second, one can
reach a high expected agreement and high observed agreement
but a low κ value in the special case, when the abundances
for observations of the two categories (like ω1 and ω0 in our
example) are very unbalanced in the test set. To solve this issue,

TABLE 1 | The table shows the abundances of classifications for 200

inputs into two categories ω1 and ω0.

Observer Oj

ω1 ω0

Observer Ok
ω1 140 (=n11)

10 150 (=n1k )

ω0 20 30 (=n00)
50 (=n0k )

160 (=n1j )
40 (=n0j )

200 (=N) (total)

In 170 cases, the two observers Ok and Oj agreed in their decision. In 30 cases, the two

observers disagreed. The parameters from Equation (6) are indicated. See text for details.
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TABLE 2 | A scale for six levels of agreement assigned to six intervals of κ .

Agreement Poor Slight Fair Moderate Substantial (Almost) Perfect

κ 0.0 0.01–0.2 0.21–0.4 0.41–0.6 0.61–0.8 0.81–1.0

one has to apply the methods proposed in Feinstein and Cicchetti
(1990); Cicchetti and Feinstein (1990).

We propose to distinguish the two terms accuracy and
reproducibility in marine image annotation quality assessment,
since a high accuracy value must not necessarily point to an
excellent observer performance. Consider for instance a test set
with non-balanced category distributions and a high a priori
probability for one category, so a naive biased observer can
reach high accuracy values just by chance. But since the observer
would not be able to reproduce the result (since it was based on
guessing) the reproducibility is low! The other way round, an
observer can make a systematic mistake due to false instructions
but the result would be reproducible. So the observer would have
a high reproducibility but a low accuracy. Distinguishing these
two terms reflect the phenomenon, that decisions of observers
are influenced by training (i.e., non-randomness) and experience
(i.e., the ability to explain a decision and to reproduce it).

3.2.3. Quantitative Data
In some marine mapping or exploration projects, the aim is to
extract quantitative information from the marine images. For
large continuous complex shaped structures (like corals, sponges,
bacterial mats, etc.) this can be done using grid cells, random
point clouds or counting of instances without marking their
positions. In this case, the quality of the result is assessed by
comparing the extracted quantities with a reference result, also
referred to as gold standard or ground truth (see section before).
If for instance the quantities are extracted for each image It from
an image collection acquired in one or more dives {It}(t=1,...,nt)

the labeling process represents a mapping It 7→ F(t) with F(t)
being the quantity or abundance of item from one category in the
image It . Since the image collection is collected with a moving
platform (ROV, AUV, OFOS) or with a stationary camera the
values F(t) can be treated as a time series and the correlation
coefficient is used to compare the result with the gold standard
G(t) (see for instance (Purser et al., 2009)). If each image is
considered as one experimental run, statistical methods such as
ANOVA can be applied (see for instance Morrison et al., 2012).

4. RecoMIA: RECOMMENDATIONS FOR
MARINE IMAGE ANNOTATION

We separate the entire annotation project into four phases
of preparation, annotation, quality assessment, and workshops.
The recommendations for carrying out the study are organized
accordingly.

Phase I: Preparation
R1: Discuss who will label the data (i.e. {Ok}). It should be clear,

who will work on the annotation project, who can invest
how much time.

R2: Discuss and decide what you want to annotate (i.e., the
image collection {It} and the categories�). Do not think that
existing ontologies and definitions will help too much. Most
ontologies/categories for biological subjects were developed
by scientists who collected samples/cut the samples and
inspected them under the microscope. Many morphological
criteria can not be applied in image analysis. It is important
to limit the number of categories in � = {ω} in a
meaningful way because each further ω slows down the
mental decision process to pick a category for an annotation
Ai and thus the whole annotation process. Because most
marine image annotation is conducted on unseen data, �

usually changes over time to incorporate new categories
or by discarding others that do not occur in the images.
In case further � shall be considered (e.g., to discriminate
live and dead specimen of the same category ω), all
annotations of this category need to be assessed again
(ideally with an SPC or, much slower, by a WIS). Also
discuss which version of an image you annotate. This could
be the original image, a lens-distortion corrected image, or
a color-corrected image. Make sure that all observers use
the same image data. If artifacts, as shadows or scientific
gear, prevent annotation in parts of the images, make sure
that each observer knows which region within images to
annotate.

R3: Discuss and decide how you want to label (FIA, WIS, SPC).
Because most marine image annotation is conducted on
unseen data, � usually changes over time. But changing
the annotation type (FIA, WIS, SPC), the parametric ROI
description ri (for example changing from a circle shape
to an ellipsoid shape or to a line) or � after the image
annotation finished can also become very time consuming.
Consider for instance the case of a finished abundance
assessment, using FIA or point marker basedWIS, a biomass
estimate is targeted: this would require to specify the ROI
description ri for each Ai by screening all images again.
Define how to place the annotation markers for WIS tasks
explicitely. Markers could be set at the head of individuals or
in the center of mass. This point is crucial to be able to assess
annotation quality (see Figure 1).

R4: Organize a focus group workshop in advance. The
term focus group is used in social sciences and project
management to refer to the addressed user (here observer)
group in the context of a tool development. The entire group
defined in R1. shall meet in front of a screen and annotate a
set of test images together. This is very important since it is
the only chance to harmonize the different visual models of
the fauna/objects/events of interest. This step is essential and
can be combined with R1-R3.

R5: Create a set of gold standard annotations during or
following the focus group.
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R6: Discuss if it is appropriate to keep zoom, i.e., the pixel
scale of the image display on the same level when screening
images. In many cases a resolution of 1:1 should be selected
(1 pixel in the image is displayed by 1 pixel of the monitor).
In some cases observer agreement will increase when all
observers use the same resolution when screening the
images. However, in other cases, the observers need to
change the zoomwhile inspecting the images since they need
to intergrate large scale information in the decision process.
Nevertheless, this shall be discussed.

R7: Circulate a summary of the discussion and decisions around
as a reference to consult during the annotation session. The
summary should include a set of example images of each
known category to be annotated in the data set. Of course
in many exploration studies only a limited number of those
are known beforehand.

Phase II: Annotation session
R8: Try to apply chunking, i.e., to divide the annotation

task in sub tasks by dividing the categories into groups
of similar appearance or similar morphology to increase
efficiency and effectiveness. For one observer, chunking can
be implemented in the taxonomical domain by annotating
each morphological group after the other. This means that
for instance in a first chunk you label all star fishes and all
sponges in the next chunk. This will have the effect that you
sharpen your eyes for the little differences between similar
looking star fishes (i.e., items from one chunk) and that the
classification accuracy and reproducibility increases. The
drawback is that you have to label the same image several
times, each time for different chunks, i.e., groups of ω with
similar visual features.

Regarding all observers O, a different way of chunking
can also be implemented by letting the group of observers
on the beginners level annotate at a low level of taxonomic
detail (e.g., using crowd sourcing to simply define ROI
without classification). Afterwards the observers on the
expert level refine the classifications to a more detailed
taxonomic level (for instance using SPC).

R9: If possible have example images of the category ω visible
while annotating this category (see recommendation 5.
above).

R10: Try to limit the visual / auditory distractions to a minimum
so it is easier to focus. Dim the lights and adjust your
monitor brightness to keep your eyes from getting tired.
Also, not doing anything else is the best. Switch off your
email notifications and mobile phone. If you want to listen
to music go for something that puts you in a good mood
and does not capture your attention (e.g., by listening to
lyrics).

R11: Take breaks after 60 min of annotating (latest). Human
cognition performance goes down in a monitoring task
after 60 min.
Remember: Humans are not suited for image annotation
tasks. The visual system developed by evolution (not by
design) so inspecting still images from almost unknown

environments with physical conditions different to humans
every-day environment is very difficult.

Phase III: Quality Assessment
R12: Use SPC to check your own annotations as well as your

colleagues’ annotations.
R13: Inter-observer agreement: Subsets of the data should be

annotated by at least two observers. This is one of two
factors to show reproducibility and provide annotation
data suitable for high impact publications.

R14: Intra-observer agreement: Parts of the data should be
annotated by each observer two times (with a delay of at
least 48 h) to study the observer’s reproducibility.
Note: It is a common observation, that the inter-/intra
observer agreement is very similar. If the intra-observer
agreement is much better, often the observers have different
degrees of experience. Sometimes the two observers just
had a misunderstanding regarding the decisions made
following recommendations R2 and R3. above and just
annotated different categories or the same category but in a
different way.

Phase IV: Workshop
R15: Repeat the focus group meetings regularly to discuss

observations made during the annotation sessions as well
as the annotation quality of the observers. Eventually
updateO, I, and�, and note the updates and the discussion
protocol in a further reference document.

5. DISCUSSION

In this paper we have given a review on available methods to
analyze the annotation performance of different observers when
manually annotating images from underwater environments.
Of course, these methods can be applied to compare the
performance of a group of observers, to compare the
performance of one observer for the same image data with
different pre-processings or to compare the performance of a
computer vision system with human observer’s performance.

One option to enhance the process of visual interpretation
could be to extend parametric description of an annotation
(Equation 1) with a confidence value p (p ∈ [0, 1]) that represents
the observer’s degree of belief in her/his classification of this
ROI to the category ω. In case of an algorithmic classification,
such a confidence value can be computed from the classifier
output. In the more usual case of an annotation done by human
observer, this p-value must be entered by the observer, which
would of course increase the work load considering situations
with a large number of ROIs per image. Another problem would
be the fact, that different observers shall have different scaling
routines for setting p. Consequently, an additional workshop
for the discussion of standards in this regard and the collection
of reference ROI examples for different p intervals would be
required. This might be one reason, why in the majority of
studies, such a confidence value of human observers is not
recorded, i.e., is set to a constant p = 1. However, in some
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projects it may be important to represent this degree of belief
since a broader spectrum of observers my be integrated in the
annotation process (for instance in citizen science projects).

Accurately defined annotation schemes will allow to assess
limits and prospects of marine imaging as a robust sensor. The
multitude of camera platforms allows to acquire image data
from varying altitudes and in varying view angles. Variations
in the recorded visual signal due to attenuation and scattering
are the consequence. While images with a large field of view
can be acquired from high altitudes, annotation of objects in
such images may be aggravated due to limited color information,
limited contrast, and limited resolution. To find a trade-off
between a large visual footprint and a good annotation quality,
at sufficient level of category detail, is a challenge for the near
future.

From our point of view the most important contribution
of this manuscript is the list of recommendations. In the last
years we have experienced, that the quality of the annotations
(assessed with inter-/intra-observer agreements and different
kind of gold standards) was not so much dependent on the level
of scientific experience but more on the way the annotation

study has been carried out. This is of course not surprising
when looking at the highly standardized way pathologists
evaluate their tissue slides for instance. Maybe some of our
15 recommendations may not be applicable in some scenarios,
however it may be helpful for some observers to even recognize
that these factors have an effect on the performance as well
and this may guide them in identifying other factors in their
study.
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