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1. Introduction 

Research on the impacts of global change on the oceans are of prime interest as 

marine ecosystems are threatened by ongoing changes such as increasing sea 

temperatures, ocean acidification and changing salinity levels ((IPCC), 2013, Levin, 

2003, Przeslawski, 2015, Meier, 2006, Foo & Byrne, 2016). Sea temperature 

increases are caused by the emission of CO2 and other greenhouse gases which 

enhanced the greenhouse gas effect ((IPCC), 2013). As the oceans directly dissolute 

nearly 40% of CO2 emissions, the mean pH of the surface water decreased (Rhein, 

2013, (IPCC), 2013). The salinity of the ocean surface is also decreasing, largely due 

to the addition of freshwater caused by increasing precipitation (minus evaporation) 

and sea-ice melting (Lee, Tong, Millero et al., 2006, Wong, Bindoff & Church, 1999). 

These global changes are for instance shifting distribution of marine fish and are 

affecting marine species’ physiology (Perry, Low, Ellis et al., 2005, Somero, 2010, 

Reusch, 2013). Acting as an evolutionary force, these environmental changes will 

also affect the composition of marine communities and ecosystems through selection 

(Hoffmann & Merila, 1999). Climate change is therefore threatening biodiversity, as 

species might not be able to adapt to the changes occurring in their environment 

(Visser, 2008). 

An environment that represents a suitable model for studies on the consequences of 

climate change on the adaptive potential of marine species is the Baltic Sea region. 

As it has already changed from oligotrophic to eutrophic systems due to 

anthropogenic environmental change, it exhibits features of an environment where 

predicted changes are already occurring (Meier, Muller-Karulis, Andersson et al., 

2012). For the Baltic Sea there are more drastic changes predicted like a significant 

salinity decrease up to 50% by 2070 (Meier, 2006). This decrease in salinity will be 

primarily due to the negative interaction of the limited water exchange with the world 

oceans and the increase in freshwater run-off from the watershed of the Baltic Proper 

(Vuorinen, Hanninen, Viitasalo et al., 1998, Meier, Kjellstrom & Graham, 2006). 

Another cause for this decrease will be the warmer climate which will induce an 

increase in precipitation in most areas of the Baltic Sea (Kjellstrom & Ruosteenoja, 

2007).  

Consequently, the decrease in salinity in the Baltic Sea will affect marine species 

considerably. In particular, salinity and osmoregulatory performance limits play an 
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important role in species distribution as salinity gradients and species distribution 

patterns often overlap (Larsen, Nielsen, Williams et al., 2008). Since salinity affects 

osmoregulation, the decrease will affect the survival of marine species. The main 

challenge of osmoregulation is ionregulation. It needs to be constantly active to avoid 

apoptosis due to depolarized cells, and is in this way very energetically costly (Rolfe 

& Brown, 1997, Kroemer, Petit, Zamzami et al., 1995). As both survival and 

distribution of marine species are dependent on salinity, it represents one important 

abiotic driver for marine evolution. 

In a changing ocean like the Baltic Sea, populations need to be able to adapt rapidly 

enough to avoid extinction (Visser, 2008). In order to make predictions about the 

biological impacts of climate change, it is critical to understand the adaptive potential 

of species (Donelson, Munday, McCormick et al., 2012). The adaptive potential of a 

species can be defined as a capacity to react to an environmental change by altering 

its genetic composition and/or its phenotypic expression (Lamy J-B.). In particular, 

the alteration of genetic variation takes place over selection processes and over 

several generations (adaption), but an adjustment to environmental changes without 

a change in the genes (acclimation) can occur rather quickly even within a generation 

(Foo et al., 2016, Whitman, 2009). For the latter, acclimation could involve 

phenotypic changes that occur based on a single genotype expressing a range of 

phenotypes, called phenotypic plasticity (Nicotra, Atkin, Bonser et al., 2010). 

Plasticity can occur as reversible, developmental and transgenerational plasticity 

(Sunday, Calosi, Dupont et al., 2014). Reversible plasticity takes place over a certain 

time span, often within a life stage (Angilletta, 2009). By contrast, developmental 

plasticity occurs when the performance in a later environment is improved by the 

exposure to a changed environment at early life stages (Scott & Johnston, 2012). 

Finally, transgenerational plasticity includes non-genetic inheritance implying that 

offspring reaction norms are mainly a result of the environmental cues experienced 

by their parents prior to fertilization (Shama & Wegner, 2014b, Salinas & Munch, 

2014). This type of plasticity occurs mainly through somatic, cytoplasmic, nutritional, 

or epigenetic transfer between generations (Bonduriansky, Crean & Day, 2011). In 

the case of global change, the advantage of transgenerational plasticity is that it can 

establish time to catch up to genetic adaption by priming offspring for an enhanced 

performance in a changed environment (Shama et al., 2014b, Sunday et al., 2014). 

An outcome of transgenerational plasticity can be transgenerational effects (TGEs) 
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(Foo et al., 2016), which have the potential to defend populations from rapid 

environmental change by leading to environmental acclimatization between 

generations (Donelson et al., 2012, Shama et al., 2014b). One possible result of 

transgenerational effects could be pre-acclimated offspring which show traits 

correlated with enhanced fitness in environmental conditions similar to those 

experienced by their parents (Foo et al., 2016). In contrast, TGEs can also act 

non-adaptive (Schade, Clemmesen & Wegner, 2014). In the case of negative TGEs 

the fitness of a generation is reduced due to environmental stress experienced by 

previous generations  (Mousseau & Fox, 1998). Although TGEs have the potential to 

change evolutionary predictions, they could be energetically costly which could affect 

the fitness of the parents and their offspring (Angilletta, Wilson, Navas et al., 2003). 

Several examples in the literature on transgenerational effects prove that there are 

non-genetic parental effects that can improve the response of marine species to 

increasing CO2 or temperature. However, a limited understanding exists regarding 

whether marine species are able to alter their phenotype over multiple generations in 

response to changing salinity in order to facilitate population persistence (Donelson 

et al., 2012, Shama et al., 2014b). 

The three-spined stickleback (Gasterosteus aculeatus) is known for its high level of 

phenotypic plasticity and potential to adapt to environmental stress as it occurs in a 

wide range of habitats (Schade et al., 2014). This can be underlined by being the 

three-spined stickleback’s ability to be highly tolerant to changes in temperature and 

water chemistry (Östlund-Nilsson S., 2006, Schade et al., 2014). Studying highly 

phenotypical plastic species like the three-spined stickleback is advantageous for 

identifying transgenerational plasticity. Considering that this study on non-genetic 

inheritance mechanisms involves the analysis of phenotypic responses of early life 

stages which are considered to be especially vulnerable to environmental stress 

(Przeslawski, 2015), it emphasizes the importance of focusing on a highly 

phenotypical plastic model species. Since species with low levels of phenotypic 

plasticity might show high mortality rates at early life stages, it might be more difficult 

to distinguish effects of transgenerational plasticity from selection effects. Therefore, 

the three-spined stickleback represents a suitable model organism for this study, 

which focuses on identifying non-genetic inheritance mechanisms. As the three-

spined stickleback is a euryhaline species, it is able to experience fluctuations in 

salinity over its lifetime (Fryxell, 2012). It has often been a model species in 
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evolutionary contexts, being known as an example of convergent evolution (Bell, 

1994). This comprised the independent colonization of freshwater habitats of the 

northern hemispheres which, among other changes resulted in parallel adaption of 

their spines and plates (Bell, 1994). Moreover, the three-spined stickleback will be 

directly affected by the predicted decrease in salinity as it resides in the Baltic Sea.  

In this study, it was tested whether simulated salinity changes lead to 

transgenerational effects across two generations of a brackish population of three-

spined sticklebacks. Salinity was measured in unit of Practical Salinity Unit (PSU), 

which describes the ionic salt concentration in sea water. In particular, parental (G1) 

and offspring (G2) sticklebacks originating from Kiel (20 PSU) were acclimated to 

ambient (20 PSU), higher (33 PSU) and lower (6 PSU) salinity levels. These levels 

were selected based on three possible future scenarios for marine sticklebacks 

located in the Baltic Sea: firstly, staying at the same location which would imply a 

salinity decrease (6 PSU); secondly, migrating with the same level of salinity (20 

PSU); and finally, migrating out of the Baltic Sea because areas of 20 PSU will 

become narrow (33 PSU). In the study, parents were exposed to the different levels 

of salinity during reproductive conditioning and offspring was exposed to the different 

treatments from fertilization on. Having parents and offspring acclimated to the 

respective levels of salinity (Figure 2.1), enabled the analysis whether the fitness of 

the offspring in a changing environment is influenced by transgenerational effects 

when their parents experienced a similar environment. The phenotypic response of 

the offspring was assessed by considering fitness proxy. 

2. Methods 

2.1 Experimental design and crossings 

The model organism for this study was the marine three-spined stickleback 

Gasterosteus aculeatus that belongs to the family of Gasterosteidae and is in the 

order of Gasterosteiformes. 

The three-spined sticklebacks used in this study were provided by the project 

“BONUS BAMBI” which was funded by the EU and BMBF. Grandparental adult 

marine three-spined sticklebacks (G0) were caught close to Kiel (Stickenhörn, 

54°22’60” N, 10°10’0” E). These sticklebacks, which originated from a region with a 
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salinity level of approximately 20 PSU, were brought to the laboratory and held for 7 

months.  

The parental three-spined sticklebacks (G1) were obtained by crossing 10 pairs of 

wild grandparental sticklebacks, resulting in 10 different families of G1. When G1 

hatched in February 2015, 30 individuals of each of the 10 families were divided into 

three groups of 10 individuals. Every group of 10 fish was kept in 20-L aquaria 

connected to a filter tank of either 120-L or 280-L, which contained an oxygen stone 

and water with a salinity of 20 PSU. Three climate chambers ensured the same 

climatic conditions were maintained. These climate chambers contained three filter 

tanks each, which were connected to the aquaria. G1 was reared in 20 PSU until 

they reached adulthood in October 2015. After this non-treatment period of 9 months, 

which ensured synchronism in growth at their developing age, the three groups per 

family were introduced into one treatment, each respectively containing one of three 

levels of salinity: 6, 20 and 33 PSU. This design ensured that each family of G1 was 

treated with all of the three different levels of salinity (Figure 1) which provided the 

same genetic background in each treatment. Acclimation from 20 PSU to their 

respective treatment was conducted within 10 days by changing +/- 3 PSU every 

second day. G1 was treated for 5 months until mid-April 2016.  

 

Figure 1 Breeding design and treatment design of wild caught (G0) and lab bred (G1&G2) three-spined 
sticklebacks from Kiel (20 PSU). The first generation (G0) is not treated, the second generation (G1) is treated 
from the adult stage on and the third generation (G2) is introduced to a respective salinity upon fertilization. © 
2016 Melanie Heckwolf 

To achieve the exact level of salinity for each treatment, water from the north-sea 

was mixed with freshwater or blended salt water respectively and measured with a 
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salinometer. Henceforward each of the three utilized climate chambers contained one 

filter tank per treatment. 

During the non-treatment period of 9 months, G1 was held in summer conditions of 

18°C and a light period of 7 A.M. to 9 P.M. and at the beginning of the treatment 

period of 5 months G1 was held in autumn conditions of 12°C and a light period from 

8 A.M. to 7 P.M for two weeks. After these two weeks G1 was held in winter 

conditions of a temperature of 6 °C and daily light from 9 A.M to 5 P.M. To guarantee 

synchronism of the ripeness of males and females of G1 for further crossings we 

changed to spring conditions with a temperature of 12 °C and a light period of 8 A.M. 

to 7 P.M. at the beginning of March 2016. After two weeks of spring conditions we 

changed to summer conditions of 18°C and a light period of 7 A.M. to 9 P.M. 

Pure crosses of G1 were performed within acclimation salinities over a ten day period 

in mid-April 2016 to produce three groups of G2 by crossing the following: 6 PSU 

male x 6 PSU female, 20 PSU male x 20 PSU female, 33 PSU male x 33 PSU 

female (Figure 2). To ensure the same conditions among all groups of parental 

salinity we conducted in vitro fertilization. Producing these crosses of parents 

acclimated to the same salinity, allowed the identification of the impact of the parental 

environment on the offspring.  Since there were had 10 families of G1, it was initially 

planned to get 5 crossings of one individual from one family. Presented with the 

opportunity of having space for more than 5 crosses in the climate chambers, we 

decided to take 6 crossings to increase the sample size. The sixth crossing was 

performed with two individuals of a family used for a previous crossing, but in a new 

combination of families (Figure 2).  

Offspring sticklebacks (G2) were separated into different treatments according to the 

saline environment of their parents (Figure 1): if G1 was from an environment of 6 

PSU, G2 was divided into treatments of 6 and 20 PSU; if the parents were from 20 

PSU, G2 was divided into treatments of 6, 20 and 33 PSU; and if the parents were 

from 33 PSU, G2 was divided into 20 and 33 PSU. Offspring of parents from 6 PSU 

and 33 PSU were brought to the respective salinity of their parents and into 20 PSU 

each to obtain control groups. Offspring of parents exposed to 20 PSU were brought 

to the salinity of their parents and to 06 and 33 PSU to get control groups for 

offspring of parents from 06 and 33 PSU. By exposing the offspring to different saline 

treatments according to the saline environment of their parents, it was possible to 
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investigate interaction effects between the parental and offspring salinity. No full 

factorial design was needed since this design ensured the analysis of the interaction 

of the parental and offspring treatment. Having three groups of parental salinity 

multiplied by six crossings resulted in 18 families of G2 (Figure 2).  

 

Figure 2 crossing scheme of G2. Crossings 1 to 9 of G2 were performed with one individual of G1 per treatment 
per family. Crossings 13 to 18 were performed with one individual of a family which was used twice but in 
combination with another family. The crossings resulted in 18 families of G2. 

After conducting in vitro fertilization, each treatment group per family was held in a 

glass bowl containing an oxygen stone and water based on their respective saline 

treatment. These glass bowls containing the eggs of G2 were collocated in a room 

with a temperature of approximately 18°C and water was exchanged every day (80% 

of the total volume). After hatching at 8 days post fertilization (dpf), each treatment 

group per family was transferred into a 20-L aquarium connected to a filter tank of 

either 120-L or 280-L, which each contained an oxygen stone and water with the 

salinity of their respective treatment. At 12 days post hatch (dph) the amount of 

individuals per aquarium was randomly reduced to 16. At 30 dph the amount of 

individuals per aquarium was reduced to 10. Since G2 was transferred to the three 

climate chambers it was held in summer conditions. The study was completed after 3 

months post hatch (mph). 

Throughout the study, sticklebacks younger than 20 dph were fed twice a day with 

Artemia sp. larvae ad libitum, afterwards they were fed daily with red plankton and 
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copepods ad libitum until they were 90 days old. Later they were fed with bloodworm 

ad libitum. 

2.2 In vitro fertilization 

Prior to fertilization, a male and a female were chosen for fertilization according to the 

crossing scheme and their ripeness. Ripe males were assessed by their red colored 

throat which is considered to be nuptial coloration (Rowland, 1989). Ripe females 

were initially assessed by a swollen round abdomen containing their eggs. 

In vitro fertilization was carried out by strip-spawning eggs of ripe females into a 

sloped Petri dish, which was subsequently covered with a cap. Females ready to 

spawn were assessed by squeezing them carefully until they easily released eggs. In 

detail, the fish was held carefully on the dorsal side and light pressure was applied 

with one finger on one ventral side of the female moving towards the pelvic fins. This 

led to a release of the eggs through the genital opening.  After releasing the eggs, 

the females were placed into a small tank in the laboratory. To estimate the weight of 

the gonads, females were weighed before and after releasing the eggs. Females 

were handled first to ensure that they had ripe eggs prepared for fertilization prior to 

euthanizing a male.  

After killing the males by immersing them in a solution of tricaine methanesulphonate 

(MS-222, 1g/L using water of their respective treatment), we removed the testes by 

dissection. Both testes were crushed with a pestle in a cell strainer over a small Petri 

dish containing 500 µL Hanks balanced salt solution (HBSS). To avoid squashing the 

sperm, the cell strainer was held over the small Petri dish without touching it. 

Afterwards the sperm in the cell strainer were rinsed with 500 µl HBSS in the small 

Petri dish. The isotonic solution HBSS was used to maintain the sperm by 

maintaining the level of pH and the osmotic balance. The solution of sperm and 

HBSS was immediately applied to the eggs and incubated for 20 minutes in the 

sloped Petri dish. This ensured that all eggs were covered with the solution. The 

eggs of each crossing were then divided into three parts and transferred to separate 

glass bowls containing the water of their respective treatment. If only two treatment 

groups were needed according to the breeding design, one part of the eggs of each 

crossing was discarded. These glass bowls containing the eggs were then handled 

as described in 2.1. After fertilization the female was also killed in MS-222 and the 

life-history traits of both fish were measured according to 2.3.1. 
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2.3 Measurements of life-history traits 

To get a better understanding of how the parental environment can induce TGEs in 

the offspring, the impacts of salinity increase or decrease on selected life-history 

traits of the parents (G1) and especially on early-life history traits of their offspring 

(G2) were investigated at different points in time. 

2.3.1 Parents body size, mortality and reproductive condition at 14 months post 

hatch 

All fish of G1 were sacrificed in MS-222 prior to taking measurements. Firstly, the 

weight of each euthanized fish (N=313) was taken to get an estimate for the body 

size of the parents. Reproductive condition was measured by weight of the gonads, 

which was taken from one female per treatment, per family (N=29). This included all 

female fish used for in vitro fertilization plus randomly chosen fish from the respective 

treatment. The weight of the gonads of the females used for fertilization was 

estimated by subtracting the weight of the female prior to and after the removal of the 

gonads. Gonad weight of females not used for fertilization was taken by dissecting 

the gonads of a euthanized female under a stereomicroscope and weighing them. 

Having the weight of the gonads, the gonadosomatic index was calculated, which is 

often used as an indicator of the reproductive condition. The gonadosomatic index 

(GI) was calculated by using the following equation:   

GI = (Gonad weight / whole body weight) *100 

Additionally, the gender of every measured fish was taken. Males were assessed by 

the red coloration on their throats and females were assessed by a swollen round 

abdomen. Since we assessed the gender according to these criteria, the gender of a 

few fish was unidentifiable. 

2.3.2 Early life survival of the offspring 

2.3.2.1 Eggs 5 days post fertilization 

After being reared for 5 days in the described glass bowls (2.1) the eggs reached the 

21st stage of the embryonic development of the stickleback, which is the stage in 

which the pigment of the growing eye cups covers most of the lens and the heart is 

further developed and connected to the developed yolk sac (Swarup, 1958). During 

this stage, in which the eggs are more robust to being handled, we photographed 

each split clutch (treatment group per family) under a stereomicroscope (Leica MZ 
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9.5) for digital analysis of egg size and fertilization success. This measurement was 

taken as a trait of the reproductive condition of G1. The eggs were carefully placed in 

a small glass Petri dish containing their respective treatment water and were put back 

into the glass bowl directly after being photographed. The pictures were taken by 

using Image-Pro Insight software (Version 8.0, Copyright 2011 Media Cybernetics, 

Inc.). All eggs of a split clutch were photographed with a magnification of 1.6 and 1.0. 

Fertilization success was estimated by the proportion of fertilized eggs in each split 

clutch (amount of fertilized eggs/total amount of eggs). Inspecting the pictures of 

each split clutch, fertilized eggs were identified and the total number of eggs was 

counted. Unfertilized eggs were assessed by no indication of polarity and by 

containing multiple oil globules (Swarup, 1958). Egg size was estimated as the 

diameter of 15 randomly chosen eggs from each split clutch (N=629) measured by 

using the point to point tool of the mentioned imaging software. 

2.3.2.2 Larvae 8 days post fertilization  

The offspring hatched at 8 dpf and was also photographed under the 

stereomicroscope by using the imaging software for digital analysis of the yolk sac 

size and the body size. 15 larvae per split clutch (N=613) were randomly chosen and 

placed in a small Petri dish containing the water of their respective treatment. All 

pictures were taken from the lateral site of the whole larvae with a magnification of 

1.6. Body size was measured as standard length by using a polyline tool of the 

imaging software. Size of the yolk sac was estimated by measuring the area of the 

whole yolk sac with a polygon tool. At this point, all larvae were transferred from the 

glass bowls into the aquaria as mentioned in 2.2. 

To get an estimate of the size of the yolk sac in relation to the size of the larvae, the 

ratio of the yolk sac size and the length of the larvae (yolk sac size/length) was taken.  

2.3.3 Offspring body size, mortality and maturity 

2.3.3.1 Larvae 12 days post hatch 

At 12 dph, 10 larvae from each split clutch were randomly chosen (N=376) and 

euthanized in MS-222. Body size was measured by taking the weight of each larva.  

Additionally, all larvae in the aquaria were counted to determine hatching success 

and density of fish in each aquarium. Hatching success was estimated by using the 
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number of larvae at 12 dph from each split clutch in relation to the number of eggs 

per split clutch (amount of larvae at 12 dph/ amount off eggs).  

2.3.3.2 30 days post hatch 

At the age of 30 dph offspring body size was again determined by taking body weight 

of 6 randomly selected fish per split clutch (N=224). All fish used for measurements 

were previously killed in MS-222 and 10 individuals were left in each aquarium 

containing one treatment group per family (one split clutch).  

2.3.3.3 3 months post hatch  

Total body size was again measured at 3 mph as body weight. Moreover, all fish (N= 

416) were dissected under a stereomicroscope to determine gender and stage of 

development of sexual organs. The stage of the development of the sexual organs 

was considered as undeveloped when the sexual organs were unidentifiable or too 

small to state the gender with certainty. The study was completed at this stage, so all 

fish were used for these measurements.  

2.4 Data analysis 

Both data of the parents (G1) and the offspring (G2) were analyzed by using 

generalized linear mixed effect models (GLMMs) and linear mixed effect models 

(LMEs). If the data was significantly different from a normal distribution, which was 

tested by using a Shapiro-Wilk Test, GLMMs were used. If the data was normal 

distributed, LMEs were used. All analyses were conducted with the statistical 

environment R (R Development Core Team, 2011, Version 3.2.2).  GLMMs were 

conducted by using the glmer function from the package ‘lme4’. LMEs were 

conducted by using the lmer function (model with multiple random factors) from the 

same package or by using the lme function (model with one random factor) from the 

package ‘nlme’. We reported p-values of GLMMs by using Wald Statistics and p-

values of LMEs by performing an ANOVA of the respective model. 

GLMMs and LMEs were used to quantify the effect of the salinity treatment of the 

parents (G1) on their physical condition (weight) and on traits related to their 

reproductive output like gonadosomatic index (GI), egg size, fertilization success and 

hatching success. Weight and GI were modeled with salinity treatment as fixed effect 

and climate chamber and family as separate random effects. Additionally, mortality of 

G1 was modeled using the same effects. Egg size, fertilization success and hatching 
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success were modeled using crossing as the only random effect, which includes 

information about the families of the parents used for each crossing. In most cases all 

models were fitted using the data from individual fish, except for using individual eggs 

for analyses of hatching success and using individual larvae and eggs for analyses of 

fertilization success. 

Prior to setting up models for analyzing the data of the offspring (G2), plots were 

used to graphically visualize the effects of offspring, parental salinity and their 

interaction on all measured traits of the offspring. All plots were assessed by using 

the ‘ggplot’ function of the R package ‘ggplot2’. When all plots were considered, a 

general tendency became visible: offspring in 6 PSU with parental salinities of 6 and 

20 PSU show positive effects while offspring in 33 PSU with parents from 20 and 33 

PSU environments show negative effects on all of the measured traits of the 

offspring. Based on the prerequisite of having opposite effects in one dataset, it was 

decided to split up each dataset of one measured trait at one point in time into two 

subsets which function as new datasets (Figure 3). The first subset contained the 

parental salinity (pPSU) of 6 and 20 PSU, including each the offspring salinities 

(oPSU) of 6 and 20 PSU, which was called subset 6 pPSU vs. 20 pPSU (Figure 3). 

The second subset, subset 20 pPSU vs. 33 pPSU, contained pPSU 33 and pPSU 20 

including each oPSU 33 and 20 (Figure 3). The offspring salinity 20 PSU belonging 

to pPSU 20 was used in both subsets to provide a comparison of offspring salinities 

of 20 PSU between parental salinities to function as a control group (Figure 3). As the 

complete breeding design was not full factorial, a split up of the dataset enhanced a 

better statistical analysis of distinct effects. 

 

Figure 3 split up of the dataset of all measured traits into two different subsets. Subset pPSU 20 vs. 33 contains 
the parental groups (G1) of 33 and 20 PSU which include each the offspring groups 20 and 33 PSU. Subset 
pPSU 6 vs. pPSU 20 contains the parental groups of 20 and 6 PSU including each of the offspring groups of 6 
and 20 PSU. 
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GLMMs and LMEs were used to test for an effect of parental salinity, offspring salinity 

and an interaction effect. These effects were analyzed on traits related to the physical 

condition of the offspring like the ratio of the yolk sac size and the length of the larvae 

at 8 dpf, the weight of the offspring at 12 dph, 30 dph and 3 mph and the 

development of the sexual organs of the offspring at 3 mph. Each of these traits was 

split up into two subsets as described before, and was therefore handled as two 

independent datasets. In all models of G2, parental salinity and offspring salinity were 

included as two separate fixed effects with an additional interaction effect. The two 

datasets of the ratio of the yolk sac size and the length of the larvae were modeled 

by adding crossing as a random effect. Weight of G2 at 12 dph, 30 dph and 3 mph 

and development of the sexual organs of the offspring at 3 mph was modeled by 

including crossing as a random effect nested in the random effect climate chamber of 

the offspring. Climate chamber was not included into the model of the yolk sac 

size/length ratio as larvae at 8 dpf were reared in glass bowls located in the same 

room.  

If possible, the models of G2 were standardized for the factors density and age, 

which both could be limiting factors of the response variable. Weight modeled at 12 

dph was standardized for density, which was included in the model as a fixed effect. 

Density was not significantly influencing offspring body weight in both subsets and 

was therefore dropped during model selection. Moreover, the models were 

standardized for the age of every individual fish at 3 mph due to differences in age of 

a few days and included it as a fixed effect into the models of all traits at 3 mph. The 

factor age of each individual fish was significantly influencing the development of the 

sexual organs and was therefore kept in the model. In contrast, age was not 

significantly influencing offspring weight and was consequently dropped during model 

selection. 

3. Results 

3.1 Parents body size, mortality and reproductive condition 

No significant differences (t = -0.435, p = 0.664) in weight were found amongst 

parents (G1) that were acclimated to the three levels of salinity during reproductive 

conditioning. The saline treatment also did not influence the mortality of the parents 

significantly (t = -0.804, p = 0.422). 
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The reproductive condition of the parents was determined as the gonadosomatic 

index (GI) and the size of their eggs. The GI of ripe females was significantly affected 

by the levels of salinity (t = -0.341, p = 0.02649), being the highest at a salinity of 33 

PSU and with no significant differences between salinities of 6 and 20 PSU (Figure 

4). 

 

Figure 4 The weight of the gonads of ripe females (G1) in relation to their length (gonadosomatic index) 
according to the salinity (PSU level) they were introduced to. 

In both subsets egg size was significantly influenced by parental treatment (subset 

pPSU 6 vs. pPSU 20: t = 11.681, p < 0.0001; subset pPSU 20 vs. pPSU 33: t = -

7.327, p < 0.0001; Table 1). Offspring groups associated with the parental treatment 

of either 6 or 33 PSU showed smaller eggs compared to all offspring groups with 

parents from 20 PSU (Figure 5). Regarding subset subset pPSU 6 vs. pPSU 20, an 

interaction effect of parental and offspring treatment was identified (t = -2.194, p = 

0.0282; Table 1). 

Table 1 Generalized linear mixed effect models for egg size of Gasterosteus aculeatus offspring displaying the 
influence of offspring saline treatment (offspring PSU), parental saline treatment (parental PSU) and an 
interaction of both (pPSU x oPSU). All influences were tested on both subsets. Std. Error indicates standard error. 
Significant terms are highlighted in bold. 

Response 
variable 

Data used 
(subset) 

Fixed effects Estimate Std. Error t value Pr(>|z|) 

Egg size 6 pPSU vs. 20 
pPSU 

(Intercept) 0.484414 0.021291 22.753 < 2e-16 *** 
Offspring PSU 0.001460 0.003191 0.458 0.6472 
Parental PSU 0.04131 0.003564 11.681 < 2e-16 *** 
pPSU x oPSU -0.009899 0.004512 -2.194 0.0282 

 20 pPSU vs. 
33 pPSU 

(Intercept) 0.05274031 0.0243526 21.657 < 2e-16 *** 
Offspring PSU -0.0004037 0.0038360 -0.105 0.916 
Parental PSU -0.0314361 0.0042904 -7.327 2.35e-13*** 
oPSU x pPSU 0.0019647 0.0054327 0.362 0.718 
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Figure 5 Means of the egg size in diameter in mm of Gasterosteus aculeatus offspring in response to offspring 
and parental salinity. Points depict means (+- SE) for crossing groups which differ in offspring and parental saline 
treatments. 

3.2 Early life survival of the offspring 

3.2.1 Fertilization success 

3.2.1.1 Subset pPSU 6 vs. pPSU 20 

In subset pPSU 6 vs. pPSU 20, fertilization success was highly influenced by both 

parental (t = 3.2, p = 0.00155; Table 2) and offspring salinity (t = -6.5, p < 0.0001; 

Table 2). Moreover, parental x offspring salinity interaction was highly significant (t = 

8.0, p < 0.0001; Table 2). In this case, the control group of offspring reared in 20 PSU 

with parents from the same salinity had the highest mean fertilization success while 

offspring reared in 20 PSU with parents from 6 PSU had the lowest mean fertilization 

success (Figure 6). Regarding offspring salinity 6 PSU, offspring acclimated to 6 PSU 

with parents from 6 or 20 PSU had nearly the same fertilization success (Figure 6).  

3.2.1.2 Subset pPSU 20 vs. pPSU 33 

Subset pPSU 20 vs. pPSU 33 showed a significantly high influence of parental 

salinity on the fertilization success (t = -5.72, p < 0.0001; Table 2). The parental 

salinity of 33 PSU negatively influenced fertilization success of both associated 

offspring groups (Figure 6). Even though the offspring salinity was not significant, a 

significant parental x offspring salinity interaction effect was estimated (t = 2.13, p = 

0.0328; Table 2).  Fertilization success of eggs put in 33 PSU from parents 
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developed in the same salinity was lower than 33 PSU offspring from parents 

developed in 20 PSU (Figure 6). In general, the control group of eggs which reared in 

20 PSU from parents of the same environment showed the highest fertilization 

success (Figure 6). 

Table 2 Generalized linear mixed effect models for fertilization success of Gasterosteus aculeatus offspring 
displaying the influence of offspring saline treatment (offspring PSU), parental saline treatment (parental PSU) 
and an interaction of both (pPSU x oPSU). All influences were tested on both subsets. Std. Error indicates 
standard error. Significant terms are highlighted in bold. 

Response 
variable 

Data used 
(subset) 

Fixed effects Estimate Std. Error t value Pr(>|z|) 

Fertilization 
success 

6 pPSU vs. 20 
pPSU 

(Intercept) 4.596187 0.007402 620.9 < 2e-16 *** 
Offspring PSU -0.013254 0.002052 -6.5 1.05e-10 *** 
Parental PSU 0.007230 0.002284 3.2 0.00155 ** 
pPSU x oPSU 0.023241 0.002901 8.0 1.15e-15 *** 

 
 
 
 

20 pPSU vs. 
33 pPSU 

(Intercept) 4.59002 0.03606 127.30 < 2e-16 *** 
Offspring PSU -0.02318 0.01603 -1.45 0.1481 
Parental PSU -0.10318 0.01803 -5.72 1.05e-08 *** 

 

  

Figure 6 Means of the fertilization success of Gasterosteus aculeatus offspring in response to offspring and 
parental salinity. Points depict means (+- SE) for crossing groups which differ in offspring and parental saline 
treatments.  

3.2.2 Hatching success 

3.2.2.1 Subset pPSU 6 vs. pPSU 20 

In subset pPSU 6 vs. pPSU 20 hatching success was significantly influenced by both 

parental (t = -2.580, p = 0.009868; Table 3) treatment and offspring treatment (t = 

3.544, p = 0.000394; Table 3). Offspring groups belonging to the offspring treatment 

of 6 PSU did not differ between parental salinities of 20 and 6 PSU, which was also a 



17 
 

result for fertilization success (Figure 7). As was also seen in the case of fertilization 

success, the control group of offspring reared in 20 PSU with parents from the same 

treatment had the highest hatching success (Figure 7). However, parental x offspring 

treatment interaction effects did not influence hatching success significantly (t = 

1.561, p = 0.118581; Table 3). 

3.2.2.2 Subset pPSU 20 vs. pPSU 33 

Both parental (t = -4.820, p < 0.0001) and offspring (t = -4.256, p < 0.0001) treatment 

influenced the hatching success in subset pPSU 20 vs. pPSU 33 significantly (Table 

3). Both offspring groups with a parental environment of 33 PSU had a lower 

hatching success than offspring groups associated with parental PSU 20 (Figure 7). 

However, the 20 PSU offspring group belonging to the parental environment of 33 

reached a significantly higher hatching success than their siblings (oPSU 33 – pPSU 

33). Additionally, the interaction effect of parental x offspring salinity was significantly 

influencing the hatching success (t = -4.696, p < 0.0001; Table 3).  

Table 3 Generalized linear mixed effect models for hatching success of Gasterosteus aculeatus offspring 
displaying the influence of offspring saline treatment (offspring PSU), parental saline treatment (parental PSU) 
and an interaction of both (pPSU x oPSU). All influences were tested on both subsets. Std. Error indicates 
standard error. Significant terms are highlighted in bold. 

Response 
variable 

Data used 
(subset) 

Fixed effects Estimate Std. Error t value Pr(>|z|) 

Hatching 
success 

6 pPSU vs. 20 
pPSU 

(Intercept) 1.99140 0.28210 7.059 1.68e-12 *** 
Offspring PSU 0.25981 0.07331 3.544 0.000394 *** 
Parental PSU -0.28128 0.10901 -2.580 0.009868 ** 
pPSU x oPSU 0.19986 0.12805 1.561 0.118581 

 20 pPSU vs. 
33 pPSU 

(Intercept) 2.3356 0.1952 11.968 < 2e-16 *** 
Offspring PSU -0.4590 0.1079 -4.256 2.08e-05 *** 
Parental PSU -0.5230 0.1085 -4.820 1.43e-06 *** 
oPSU x pPSU -0.6017 0.1281 -4.696 2.65e-06 *** 
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Figure 7 Means of the hatching success of Gasterosteus aculeatus offspring in response to offspring and 
parental salinity. Points depict means (+- SE) for crossing groups which differ in offspring and parental saline 
treatments.  

3.2.3 Ratio yolk sac size/length of larvae at 8 dpf 

3.2.3.1 Subset pPSU 6 vs. pPSU 20 

In subset pPSU 6 vs. pPSU 20, the yolk sac/length ratio of the larvae was only 

determined by the offspring environment (t = 3.30, p = 0.000976; Table 4). Offspring 

reared in their parental environment of 6 PSU had the highest yolk sac/length ratio 

and their siblings that were reared in 20 PSU had the lowest (Figure 8).  

3.2.3.2 Subset pPSU 20 vs. pPSU 33 

In turn, only the parental environment influenced the yolk sac/length ratio of the 

larvae in subset pPSU 20 vs. pPSU 33 (t = -6.622, p < 0.0001; Table 4). This effect 

was noticeable since the ratio of offspring from parents from 33 PSU was lower than 

from offspring having parents from 20 PSU (Figure 8).  

Table 4 Generalized linear mixed effect models for the yolk sac/length ratio of Gasterosteus aculeatus offspring 
displaying the influence of offspring saline treatment (offspring PSU), parental saline treatment (parental PSU) 
and an interaction of both (pPSU x oPSU). All influences were tested on both subsets. Std. Error indicates 
standard error. Significant terms are highlighted in bold. 

Response 
variable 

Data used 
(subset) 

Fixed effects Estimate Std. Error t value Pr(>|z|) 

Ratio yolk sac 
size/ length 8 
dph 

6 pPSU vs. 20 
pPSU 

(Intercept) -1.42110 0.04386 -32.40 < 2e-16 *** 
Offspring PSU -0.06752 0.02048 -3.30 0.000976 *** 
Parental PSU 0.01566 0.02264 0.69 0.489175 
pPSU x oPSU 0.05174 0.02885 1.75 0.072911 

 20 pPSU vs. 
33 pPSU 

(Intercept) -1.357e+00 6.418e-02 -21.137 < 2e-16 *** 
Offspring PSU -7.492e-05 2.475e-02 -0.003 0.998 
Parental PSU -1.898e-01 2.866e-02 -6.622 3.55e-11 *** 
pPSU x oPSU 2.705e-02 3.584e-02 0.755 0.450 
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Figure 8 Means of the yolk sac size/length ratio of Gasterosteus aculeatus offspring  at 8 days post fertilization in 
response to offspring and parental salinity. Points depict means (+- SE) for crossing groups which differ in 
offspring and parental saline treatments.  

3.3 Offspring body size and maturity 

3.3.1 Weight 

3.3.1.1 Subset pPSU 6 vs. pPSU 20 

In subset pPSU 6 vs. pPSU 20, the weight of the offspring was highly influenced by 

the parental salinity at all measured points in time (Table 5). The offspring salinity 

also significantly affected the offspring weight at 12 and 30 dph, but not anymore at 3 

mph (Table 5). This underlines the general trend of the offspring treatment affecting 

offspring weight less over time while the parental treatment remains highly significant. 

However, no significant interaction effect of parental x offspring treatment was 

identified at all measured points in time (Table 5). The parental treatment of 6 PSU 

showed positive effects on the offspring weight. In detail, offspring of 6 PSU parents 

were heavier than those from 20 PSU parents at 30 days and 3 months post hatch 

(Figure 9b+c).  

3.3.1.2 Subset pPSU 20 vs. pPSU 33 

Across all measured points, there were significant interaction effects of parental x 

offspring salinity affecting the weight of the offspring in subset pPSU 20 vs. pPSU 33 

(Table 5). Moreover, both parental and offspring treatments significantly influenced 
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the weight of the offspring at all points, except for in the case of 30 dph, where 

offspring salinity was not significant at 30 dph (Table 5).  

In general, the parental treatment of 33 PSU showed a negative effect on offspring 

weight when offspring reared in their matching environment, which was for instance 

visible at 12 dph (Figure 9a). In turn, a positive effect on offspring weight was 

identified when offspring of 33 PSU parents reared in their non-parental environment 

of 20 PSU. In particular, the weight of this offspring group (oPSU 20 – pPSU 33) was 

at both points later in time (30 dph and 3 mph) higher than of the offspring from 33 

PSU with parents from the same treatment and even higher than the control group 

(oPSU 20 – pPSU 20) (Figure 9b+c).  

Table 5 Linear mixed effect models for weight of Gasterosteus aculeatus offspring at 12 dph, 30 dph and 3 mph 
displaying the influence of offspring saline treatment (offspring PSU), parental saline treatment (parental PSU) 
and an interaction of both (pPSU x oPSU). All influences were tested on both subsets. Numerator degrees of 
freedom were 1 in all cases. DenDF stands for denominator degrees of freedom. Significant terms are highlighted 
in bold. 

 Weight 12 dph
  

Weight 30 dph
  

Weight 3 mph
  

Data 

used  

Fixed effects denDF F P denDF F P denDF F P 

6 

pPSU 

vs. 20 

pPSU 

(Intercept) 208 5989.30 < 0.0001 *** 120 599.768 < 0.0001 *** 228 626.00 < 0.0001 *** 

Offspring PSU 208 41.929 < 0.0001 *** 120 3.9699 0.0486 228 2.6638 0.1040 

Parental PSU 208 6.928 0.0091 ** 120 21.9648 < 0.0001 *** 228 20.092 < 0.0001 *** 

oPSU x pPSU 208 0.067 0.7957 120 0.0224 0.8812 228 1.6234 0.2039 

20 

pPSU 

vs. 33 

pPSU 

(Intercept) 192 935.278 < 0.0001 *** 110 362.826 < 0.0001 *** 225 768.24 < 0.0001 *** 

Offspring PSU 192 20.0976 < 0.0001 *** 110 2.5199 0.1153 225 5.0755 0.0252 * 

Parental PSU 192 20.6881 < 0.0001 *** 110 5.4151 0.0218 * 225 4.5191 0.0346 * 

oPSU x pPSU 192 13.5254 3e-04 *** 110 4.0694 0.0461 * 225 7.7141 0.0059 ** 
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Figure 9 Means of the body weight of Gasterosteus aculeatus offspring at 12 dph, 30 dph and 3 mph in response 
to offspring and parental salinity. Points depict means (+- SE) for crossing groups which differ in offspring and 
parental saline treatments.  

 



22 
 

3.3.2 Development of the sexual organs  

The development of the sexual organs of the offspring at 3 months was significantly 

determined by the parental treatment only (Subset pPSU 6 vs. pPSU 20: t = -2.835, p 

= 0.00485; Subset pPSU 20 vs. pPSU 33: t = 2.685, p = 0.00725; Table 6). 

Regarding Figure 10, more offspring with developed sexual organs were identified 

which belonged to parental treatments of 6 and 33 PSU 6 than offspring associated 

with parents from control conditions (20 PSU).  

Table 6 Linear mixed effect models for the development of the sexual organs of Gasterosteus aculeatus offspring 
at 3 mph displaying the influence of offspring saline treatment (offspring PSU), parental saline treatment (parental 
PSU), Age and an interaction of both (pPSU x oPSU). All influences were tested on both subsets. Numerator 
degrees of freedom were 1 in all cases. DenDF stands for denominator degrees of freedom. Significant terms are 
highlighted in bold. 

Response 
variable 

Data used 
(subset) 

Fixed effects Estimate Std. Error t value Pr(>|z|) 

Development 
of the sexual 
organs of the 
offspring 

6 pPSU vs. 20 
pPSU 

(Intercept) 92.4952 34.1904 2.705 0.00682 ** 
Offspring PSU 0.1495 0.5454 0.274 0.78406 
Parental PSU -2.0955 0.7392 -2.835 0.00485** 
Age -0.9899 0.3723 -2.959 0.00784** 

pPSU x oPSU 0.0948 0.6922 0.137 0.089107 
 20 pPSU vs. 

33 pPSU 
(Intercept) 58.03237 37.84933 1.533 0.12521 
Offspring PSU -0.55753 0.44703 -1.247 0.21233 
Parental PSU 1.87586 0.69861 2.685 0.00725 ** 
Age -0.62887 0.41927 -1.500 0.133364 
pPSU x oPSU 0.05267 0.70979 0.074 0.94085 

 

 

Figure 10 Development of the sexual organs of Gasterosteus aculeatus offspring at 3 mph in response to 
offspring and parental salinity.   
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4. Discussion 

In general, this study demonstrates environment-specific TGEs on offspring 

performance. Due to the complexity of different processes that were involved in the 

observed effects, they will be discussed consecutively. 

4.1 Parents body size and mortality 

Given that the body size and mortality of parents did not vary between the saline 

treatments, no selection was detected. Since the offspring groups are equipped with 

the same genetic background, further discussion is needed to determine whether the 

early life survival of the offspring differed depending on the parental treatments in 

order to reveal TGEs. 

4.2 Parental effects on early life survival of the offspring: fertilization and 

hatching success  

As Wootton (Wootton, 1973) revealed, variations in fecundity of three-spined 

sticklebacks are mainly based on the variation of the size of the parents. Based on 

this fact no differences in fertilization and hatching success between parental 

treatments should be expected. However, here we show that early life survival of the 

offspring was significantly influenced by the parental saline treatments. These results 

suggest TGEs as resources were apportioned differently to the eggs according to the 

experienced saline environment of the parents, which was already shown when 

three-spined sticklebacks were exposed to different temperature environments 

(Shama et al., 2014b).  

With regard to the results of the fertilization and hatching success for the foreign 

parental environment of 6 PSU, transgenerational effects were detected. Eggs from a 

parental environment of 6 PSU showed a high fertilization and hatching success 

regardless if they were introduced to their parental environment. This indicates that 

the parental environment of 6 PSU influenced both offspring groups positively to the 

nearly same extent and led therefore to a positive TGE.  In comparison, eggs of the 

control group that reared in their parental environment of 20 PSU showed a slightly 

higher fertilization and hatching success.  

Offspring from the foreign parental environment of 33 PSU showed a decrease in 

fertilization and hatching success. The negative effects of the high salinity were 

cumulative over generations, resulting in an especially low hatching success for 

offspring reared in their parental environment of 33 PSU. In this case interaction 
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effects of offspring and parental salinity on early life survival were revealed, indicating 

negative TGEs. Fertilization success was low for both offspring treatments belonging 

to the parental treatment of 33 PSU, but hatching success for 20 PSU offspring 

belonging again to the parental treatment of 33 PSU was significantly higher than of 

their siblings. The positive performance of the hatching success of eggs that were 

reared for 8 days in 20 PSU with parents of 33 PSU could be attributed to parental 

effects. This group performed better because of a high influence of the parental 

environment interacting with the offspring environment of 20 PSU as it represents 

their native environment and also acts as a less stressful environment in the case of 

osmoregulatory stress (Schade et al., 2014) .  

In summary, differences in early life survival of the offspring depending on the 

parental environment were identified and proved TGEs. In particular, parents that 

neither differed in size nor in mortality between treatments led to a completely 

different survival of early life survival of the offspring, indicating epigenetic inheritance 

mechanisms. The possible underlying strategy of these observed TGEs and how 

these effects developed over time will be further examined in section 4.3 and 4.4. 

4.2.1 Within-generational effects on offspring early life survival 

As offspring treatment was also significantly influencing fertilization success, it can be 

argued that fertilization was not fully completed after the solution of sperm and HBSS 

were incubated for 20 minutes. This can be assured by considering previous studies 

that determined an unusual pattern for the externally fertilizing three-spined 

stickleback: while the sperm of most of the externally fertilizing fish has a short life 

span of only a few minutes, the sperm of sticklebacks moved for several hours 

(Elofsson, Mcallister, Kime et al., 2003). The spermatozoon motility is a substantial 

key component of fertilization, which is affected by extracellular ionic changes 

(Morisawa, 1994). Therefore, a change in the osmolality may impede their motility 

(Billard, 1978). In essence, not only the parental treatment influenced fertilization 

success as sperm were still motile when transferred to treatment water and were 

then also affected by its salinity level.  

The result of previous studies on sperm motility of sticklebacks which found that 

sperm had the longest sperm motility period of up to 270 min in brackish water (5.5 

PSU) also supports the observed positive effect on fertilization success (Elofsson et 

al., 2003). In contrast, high salinity regimes showed a reduced sperm motility of 
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sticklebacks, which also supports the observed negative effect at 33 PSU (Elofsson 

et al., 2003). Since most populations of sticklebacks that occur in high saline 

environments migrate to low saline environments for breeding, a high performance of 

fertilization success, hatching success and early development is expected in low 

saline environments (Munzing, 1963). The positive effect of a low salinity on hatching 

success can be further promoted by a high performance of juvenile survival of 

sticklebacks exposed to low salinity levels in previous studies (DeFaveri & Merila, 

2013). Moreover, this positive effect of 6 PSU on sticklebacks could be based 

besides parental treatment effects on the fact that this level is the closest to their 

approximate isoosmotic level of 9 to 10 PSU (Garside, Heinze & Barbour, 1977, 

Frisch & Anderson, 2005). Because carbohydrate metabolism plays the key role for 

the energy supply for osmoregulation, less energy from carbohydrate metabolism is 

needed when sticklebacks develop close to their isoosmotic level (Tseng & Hwang, 

2008). Therefore, the energy budget of sticklebacks allows them to reach larger sizes 

and causes higher survival rates in low saline treatments (DeFaveri et al., 2013). In 

comparison, the negative effects on fertilization and hatching success at 33 PSU 

could be due to high-energy demands for osmoregulation caused by the strongly 

hyperosmotic environment. Therefore, the opposing TGEs identified on early life 

survival of the offspring were also influenced by the opposing effect of the different 

saline levels of the offspring treatment.  

4.3 Reproductive condition of the parents – parental provisioning against 

expected stress 

Referring to parents that were introduced to a foreign environment of either 6 or 33 

PSU, they produced significantly smaller eggs. Shown on the Atlantic salmon, the 

amount of eggs correlates negatively with egg size – the more eggs are produced, 

the smaller the eggs are (Thorpe, Miles & Keay, 1984). Consequently, both parental 

groups of the foreign treatments also produced significantly more eggs. This can be 

as well underlined by the result that parents from 33 PSU showed a higher weight of 

the gonads relative to their body weight (GI). 

Considering these results of the reproductive condition of the parents, it can be 

suggested that females that were introduced to a foreign saline environment changed 

their reproductive strategy: females of 6 and 33 PSU developed more eggs to 

maximize their own fitness by maximizing fertilization and hatching success in a 



26 
 

stressful environment and to counteract selection (Shama et al., 2014b). This effect 

was also observed for studies on temperature, when sticklebacks produced more 

eggs at elevated (stressful) temperature regimes (Shama et al., 2014b). 

Producing more and smaller eggs to reduce mortality could have lead to a trade-off 

causing lower investment per offspring (section 4.3.1). Therefore, it needs to be 

further analyzed whether the production of more eggs occurred at a cost of the 

quality of the offspring or if it caused TGEs (section 4.4). 

4.3.1 Yolk sac size/length ratio of the larvae 

For making predictions about whether and how the parental and offspring treatments 

influence the post-hatching lifespan (Chambers, Leggett & Brown, 1989), yolk sac 

size in relation to the length of the larvae is important. As the yolk sac contains oil 

globule which are composed of energy-rich triaglycerol (TAG), the volume of the oil 

globule (which affects the size of the yolk sac) correlates positively with subsequent 

growth and survival (Berkeley, Chapman & Sogard, 2004). Consequently, the higher 

the yolk sac/length ratio, the better will be the subsequent survival of the larvae. 

The yolk sac/length ratio also becomes important for evaluating whether the 

previously mentioned reproductive strategy of producing more but smaller eggs in a 

changed environment led to a lower parental investment. A lower parental investment 

could be reflected in a smaller yolk sac containing less TAG and resulting in a lower 

yolk sac/length ratio. 

By contrast to the hatching success, the yolk sac/length ratio was only determined by 

the offspring treatment in subset pPSU 6 vs. pPSU 20, indicating no TGEs. The 

expected lower yolk sac/length ratio of both offspring groups associated with parents 

from 6 PSU due to lower parental investment was not fully supported. The lower yolk 

sac/length ratio was only observed for offspring reared at 20 PSU. However, offspring 

reared at 6 PSU had a generally higher yolk sac/length ratio, which indicates that the 

expected effect might have been biased by within-generational effects of the 

offspring treatment of 6 PSU. This includes the fact that the experienced 6 PSU 

environment during the stages after fertilization might have led to lower energy 

consumption during the stages after fertilization, as 6 PSU was considered to be a 

low stress environment.  

Alternatively, the yolk sac/length ratio was only determined by the parental 

environment of 33 PSU in the subset pPSU 20 vs. pPSU 33, also indicating TGEs. 
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Both offspring groups showed a relatively small yolk sac in relation to their length. As 

a lower yolk sac/length ratio demonstrates a lower parental investment, this result 

fully reveals the expected effect of investing less per offspring when parents 

produced more and smaller eggs at a changed environment of 33 PSU. Since the 

investment per offspring was low for offspring of 33 parents and partly for offspring of 

6 PSU parents due to a high reproductive output of the parents, it is of further interest 

whether the lower investment per offspring resulted in a lower quality of the offspring 

(section 4.4).  

4.4 Parental effects on offspring quality 

Since it is known that larger fish have generally decreased mortality through 

predation and a higher feeding success, body size influences the survival positively 

(Meekan, Carleton, McKinnon et al., 2003, Bergenius, Meekan, Robertson et al., 

2002, Schade et al., 2014). Moreover, increased growth is advantageous for 

reproduction since larger fish have a higher reproductive potential by maturing 

sexually earlier and showing improved fecundity (Portner, Langenbuch & 

Reipschlager, 2004, Schade et al., 2014, Wootton, 1973). Growth rates of larvae are 

considered to be one of the most important drivers for recruitment success of marine 

fish (Bergenius et al., 2002). In summary, body size can determine the quality of the 

offspring. 

Relating to offspring reared in their parental environment of 6 PSU, offspring weight 

was high at all points in time compared to control groups. Interestingly, the weight of 

their siblings which reared in 20 PSU increased over time. This offspring group 

caught up with their siblings which reared in their parental environment of 6 PSU over 

time. At first, both offspring groups showed different body sizes, but after 3 months 

they showed both the highest body size compared to the offspring control group 

reared in the parental treatment of 20 PSU. 

This effect could be due to several factors. First, the offspring developmentally 

acclimated to 20 PSU over time. However, as the control group (oPSU 20 – pPSU 

20) showed the smallest fish at 3 mph, offspring treatment of 20 PSU alone did not 

lead to a higher weight. Second, since the influence of the offspring environment 

became less important over time, the parental environment of 6 PSU led to this high 

body weight. Considering that parents from a foreign environment of 6 PSU produced 

more and smaller eggs, the lower investment per offspring did not occur at a cost of 
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the offspring quality. Indeed it was quite the opposite: the offspring quality was higher 

when parents which were from the foreign environment of 6 PSU performed this 

reproductive strategy. In essence, positive TGEs were identified since cues 

experienced by the parental environment of 6 PSU influenced offspring performance 

positively. 

With regard to offspring weight of parents of 33 PSU, the interplay of offspring and 

parental environment of 33 PSU caused the lowest weight at 12 dph, but this weight 

increased over time relative to the control group (oPSU 20 – pPSU 20). However, the 

weight of offspring reared in their parental environment of 33 PSU remained 

significantly lower in relation to their siblings. In turn, their siblings which developed in 

20 PSU showed a more pronounced increase in weight over time – reaching higher 

weight than the control group (oPSU 20 – pPSU 20) at both points later in time. 

Hence, offspring from parents of 33 PSU showed a different performance in body 

weight. Offspring reared in 20 PSU grew to a larger size faster than their siblings that 

reared in the parental salinity (33 PSU). First of all, these effects again show that less 

investment per offspring – proven by a smaller yolk sac/length ratio – did not lead to 

lower quality of the offspring. The high reproductive output of 33 PSU parents again 

led to an increased offspring growth, proving TGEs. Compared to the control group, 

both offspring groups grew to large body sizes, but one to a higher extent.  

This could also underlie the previously mentioned reproductive strategy. Offspring of 

the Atlantic salmon which hatched from small eggs showed also a faster 

development (Thorpe et al., 1984, Heath, Fox & Heath, 1999). This trigger of faster 

growth could be therefore successfully implemented for offspring from 6 PSU parents 

but not entirely for offspring of 33 PSU parents. The expected faster growth was seen 

for 20 PSU offspring with 33 PSU parents but not to the same high extent for their 

siblings, which developed in their parental environment of 33 PSU. However, at 

3mph, 33 PSU offspring showed the same weight and condition as the control group 

(oPSU 20 – pPSU 20), indicating that their performance was not poor. As 33 PSU 

acts as a more stressful environment than 20 PSU (regarding osmoregulation), traits 

aiming for faster growth – which were hypothetically transferred by the parents – 

could not have been implemented due to high trade-offs between growth and 

osmoregulation. In summary, TGEs were slightly traded-off by within-generational 

effects including the costly osmoregulatory activity at 33 PSU but were still 

successfully developed over time.  
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Considering that increased growth is advantageous for reproduction (Portner et al., 

2004, Schade et al., 2014, Wootton, 1973), fish that develop faster could become 

sexually mature earlier. This was proven by the results of the development of the 

sexual organs: offspring of 6 and 33 PSU parents matured earlier than offspring of 20 

PSU parents. Besides producing smaller eggs and enhancing growth, these two 

parental groups also influenced a faster sexual development of the offspring. This 

could imply that earlier sexually mature offspring could cause an earlier start of 

reproduction cycles during the seasonal breeding season of three-spined 

sticklebacks and could consequently allow faster transgenerational acclimation over 

generations due to more breeding cycles during one season. Therefore, the 

experienced foreign environment could buffer the offspring from environmental 

change by causing them to developing faster.  

4.5 Switch in reproductive strategy causing transgenerational effects 

Overall, parents that experienced a foreign environment switched their reproductive 

strategy in order to buffer the offspring from environmental stress. Firstly, this switch 

included a higher reproductive output by producing more and smaller eggs to 

counteract high mortality rates at early life stages of the offspring. Although producing 

more eggs proved a lower parental investment per offspring, offspring quality was still 

higher when the parents experienced a foreign environment – again emphasizing 

TGEs. In general, these TGEs led to faster growth of the offspring which could 

enhance offspring survival. The advantages of fast growth include that larvae could 

get faster through the most vulnerable life stages (Fuiman & Cowan, 2003, Berkeley 

et al., 2004). It could also include the faster development of physiological and 

physical abilities that enhance escape from predations and capture of prey (Fuiman 

et al., 2003, Berkeley et al., 2004). Additionally, a foreign environment of the parents 

promoted earlier sexually mature offspring that could cause earlier and more frequent 

breeding cycles during the breeding season which could allow faster 

transgenerational acclimation.  

The switch in the reproductive strategy was irreversible since the trigger of enhanced 

growth and development persisted when offspring with parents that experienced a 

foreign environment reared in the native environment. Furthermore, the level of the 

implementation of TGEs seem to also depend on direct within-generational effects of 

the environment (Schade et al., 2014). Within-generational effects could therefore 
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influence among other effects whether a TGE becomes adaptive or non-adaptive. 

Based on this, transgenerational acclimation could react to selection formed by the 

pattern of environmental selection gradients (Schade et al., 2014). Finally, the 

adaptive potential of sticklebacks to changes in salinity, which involves 

transgenerational acclimation will depend on their susceptibility to changes in salinity 

(Donelson et al., 2012).  

Considering the possible scenario of sticklebacks native to 20 PSU, staying at the 

same location and experiencing the predicted decrease in salinity of the Baltic Sea, 

the performance of their offspring in a lower saline environment could be enhanced 

because their parents already experienced the changed environment of 6 PSU. This 

possible scenario could indicate – at least for this population – the potential to prime 

offspring for an enhanced performance in an altered environment through 

transgenerational plasticity. As a result, the observed transgenerational plasticity 

could establish time to catch up to genetic adaption (Shama et al., 2014b, Sunday et 

al., 2014).  

As was already mentioned, the observed transgenerational effects might underlie an 

environment specific modification transferred from parents to their offspring. This 

adjustment could be due to epigenetic inheritance mechanisms or selection. 

However, studying its specific mechanism was beyond the scope of my current study. 

Therefore, it can be proposed to monitor gene expression of osmoregulatory related 

genes and to analyze further epigenetic reprogramming that could have occurred for 

instance in their zygotes.  

5. Conclusion  

Early life stages of marine organisms are more vulnerable than adults and should be 

therefore considered when studying climate change (Przeslawski, 2015). In this 

context, transgenerational effects have the potential to buffer early life stages from 

environmental stress and to consequently enhance population persistence in a 

changing environment.  

In regard to this study, a switch in the reproductive strategy of the parents that 

experienced a changed and a therefore stressful saline environment led to 

acclimation of the offspring, proving transgenerational effects. Three-spined 

stickleback parents that experienced a foreign saline environment showed a higher 
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reproductive output by producing more and smaller eggs to counteract high mortality 

rates at early life stages of the offspring. These effects persisted into later 

development of the offspring, resulting in better quality of offspring groups with 

parents that were introduced to a foreign saline environment. The observed effects 

were also irreversible as the trigger of faster development was still implemented 

when offspring of parents of a foreign saline environment did experience the native 

saline environment. Still, the extent of the TGE was dependent on whether the 

offspring environment was beneficial or non-beneficial.  

Taken together, the results of this study suggest that transgenerational plasticity in 

three-spined sticklebacks can buffer against environmental stress caused by salinity 

change. Moreover, it could provide more time for genetic adaptation to catch up 

which could enhance the evolutionary potential (Shama, Strobel, Mark et al., 2014a) 

of three-spined sticklebacks under climate change. Overall, this study contributes to 

research pertaining to the question whether marine species are able to alter their 

phenotype over multiple generations in response to changing salinity and in order to 

facilitate population persistence (Donelson et al., 2012, Shama et al., 2014b).  
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