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Abstract.  Characteristics of atmospheric equatorial Kelvin waves and mixed Rossby-Gravity 

(MRG) waves as well as their relationship with tropical convective activity associated with El 

Niño-Southern Oscillation (ENSO) were analyzed. Kelvin waves and MRG waves were 

identified by using a Space-Time Spectral Analysis (STSA) technique, where the differences in 

the strength of both waves were quantified by taking the wave spectrum differences for each 

ENSO phase. Our result showed that Kelvin wave activity is stronger during an El Nino years, 

whereas the MRG wave activity is stronger during the La Nina years. Seasonal variations of 

Kelvin wave activity occurs predominantly in MAM over the central to the east Pacific in the 

El Nino years, while the strongest seasonal variation of MRG wave activity occus in MAM and 

SON over the northern and southern Pacific during La Nina years. The local variation of 

Kelvin wave and MRG wave activities are found to be controlled by variation in lower level 

atmospheric convection induced by sea surface temperature in the tropical Pacific Ocean. 

 

1. Introduction 

Equatorial planetary waves (EPW) are one of the dominant modes of synoptic-to-subseasonal 

variability in the tropics. They are generated by diabatic heating due to organized tropical large-scale 

convective heating in the equatorial belt [1][2][3]. The amplitude is captured clearly in the equatorial 

belt between 20°N and 20°S [1]. EPW causes predominant disturbances in the equatorial atmosphere 

such as inducing mean-meridional circulation that is important for the heat balance of the equatorial 

belt [4][5], affecting the patterns of low level moisture convergence, and controling the distribution of 

tropical convective heating and storms in large longitudinal distances [4]. In addition, EPW also plays 

an important role in modulating rainfall in the tropics [3], circulation Walker [6], Madden and Julian 

oscillation (MJO) [7] and El Nino-Southern Oscillation (ENSO) [5].  Two dominant atmospheric 

equatorial waves has an important role in the region is equatorial Kelvin waves and Mixed Rossby-

Gravity (MRG) waves. In this study our analysis will focus on understanding the nature of Kelvin 

waves and MRG waves during ENSO events.  

El Niño Southern Oscillation (ENSO) is a coupled atmosphere-ocean phenomenon characterized 

by anomalous ocean warming over the eastern equatorial Pacific ocean [8]. ENSO can be classified 

into normal, El Niño and La Niña phases. The term El Niño refers to a large-scale  periodic warming 

in sea surface temperatures across the central and east-central Equatorial Pacific. On the other hand, 

La Niña represent periods of below-average sea surface temperatures across the east-central Equatorial 
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Pacific. This phenomenon affects the climate over sizable portions of the globe, including some 

regions far removed from the tropical Pacific Ocean [9]. 

Warming in the tropical ocean (i.e., increased sea surface temperature – SST) will increase the 

evaporation and hence, the formation of large scale convective clouds. The process causes latent 

heating in the upper atmosphere which is very important ingredient to generate more EPW activity 

[10]. Kelvin waves and MRG waves are well observed within the anomalies of SST, precipitation, and 

outgoing longwave radiation (OLR) in the tropics [3].  Therefore, in this study we used both SST and 

OLR datasets as a proxy to isolate the Kelvin wave and MRG wave activity. The goal of the current 

study is to investigate the impact of ENSO on seasonal variation of Kelvin wave and MRG waves and 

the involved mechanisms.  

 

2. Methods 

ENSO phases were identified by using Running 3-month ONI Mean Values data. Sea surface 

temperature profile data is displayed using the NCEP Optimum Interpolation Sea Surface Temperature 

(OISST) in the period from 1982 to 2013 and a spatial resolution of 1° x 1°. In addition, OLR profile 

displayed using daily interpolated of outgoing longwave radiation (OLR) data in the period from 1974 

to 2013 from National Oceanic and Atmospheric Administration (NOAA) Global CPC (except 1978). 

Details interpolation technique can be seen in the OLR data [11]. Horizontal wind datasets (u,v) at an 

altitude of 1000 hPa and 850 hPa and vertical velocity (ω) in the troposphere (1000 hPa-100 hPa) from 

National Centre for Environmental Prediction (NCEP/NCAR reanalysis 1: Pressure) each at 20°N-

20°S in the equatorial bands with a spatial resolution of 2.5o x 2.5o. 

 

2.1.  Composite Analysis 

Composite analysis is a method used to determine the field distribution of certain atmospheric 

conditions. In this study, composite analysis is used to analyze the distribution of sea surface 

temperature, outgoing longwave radiation and vertical velocity for each phase of ENSO. Composite 

technique is nothing but the ensemble average, the average value is calculated from a set of data, but 

in the same condition. 

 

2.2. Space-Time Spectral Analysis (STSA) 

STSA is one of the methodology that been used in this study. STSA is a method used to analyze the 

wave propagation in the zonal field. This method decomposing the physical data field in the domain of 

space and time into a data field in the domain of wavenumber and frequency of the waves that 

propagate to westward and eastward [12]. In principle, this decomposition process is the Fourier 

transform of the data in space and time domain into data in frequency () and wavenumber (k) 

domain. STSA procedure contained in NCL software (NCAR Command Language) with SpaceTime 

function. The output of this method is the contours of the power spectrum that contained in the 

dispersion curve as a function of frequency and zonal wavenumber that classified into symmetric and 

asymmetric components. 

 

3. Result 
 

3.1. Identification Phase of ENSO 

ENSO occurrences in this study were identified using Nino 3.4 index. The index is an index based on 

the average of sea surface temperature anomalies (SST) in 5oS-5oN, 120o-170oW. Nino 3.4 index 3-

month running average of the period 1974 to 2013 (figure 1). The number of events each ENSO phase 

are listed in Table 1. 

2

LISAT                                                                                                                                                  IOP Publishing
IOP Conf. Series: Earth and Environmental Science 54 (2017) 012035         doi:10.1088/1755-1315/54/1/012035



 

 

Figure 1. Average of 3-month run of sea surface temperature anomalies (SST,oC) Nino 

3.4 index from 1974 to 2013. 

 

Table 1. Season Number of events  at each phase of ENSO (1974-2013) 

Condition DJF MAM JJA SON 

Normal 12 25 25 15 

El Nino 13 8 8 13 

La Nina 15 7 7 12 

 

3.2.  Seasonal Variations of Kelvin Wave and Mixed Rossby-Gravity (MRG) Wave at each Phase of 

ENSO 

Identification of the equatorial planetary wave activity (EPW) were calculated using STSA [12]. The 

data used is the average of the daily OLR anomalies for ~ 40 years (1974-2013) on 15oLU-15oLS. 

Previously, the data is grouped into seasons for each phase of ENSO. Results of STSA OLR with an 

effective depth of 12-50 m are selected is shown in figure 2 (Symetric Component) and figure 3 

(Antisymetric Component). The black box shows the waves become the focus of study in this 

research. 
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Figure 2. Symmetric STSA of outgoing longwave radiation in the normal phase (DJF (a), MAM (b), 

JJA (c), SON (d)), El Nino phase (DJF (e), MAM (f), JJA (g), SON (h)), La Nina phase (DJF (i), 

MAM (j), JJA (k), SON (l)). 
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Figure 3. Anti-Symmetric STSA of outgoing longwave radiation in the normal phase (DJF (a), MAM 

(b), JJA (c), SON (d)), El Nino phase (DJF (e), MAM (f), JJA (g), SON (h)), La Nina phase (DJF (i), 

MAM (j), JJA (k), SON (l)). 
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Based on figure 2 and figure 3, shows that there are many waves associated with ENSO 

phenomenon. This wave is the result of the classification of basic types of interference waves around 

the equator by n integer associated with the number called nodal meridional wave mode [13]. For n = -

1, commonly known as the Kelvin wave, only affects the zonal oscillations [14][4]. For n = 0, there 

are two groups of waves have propagation to the east and the west. The wave that moves to the east 

known as Inertio-waves or Gravity-wave. While the wave that spreading to the west is called Mixed 

Rossby-Gravity waves. This wave modes associated with antisimetry perturbation of meridional wind 

and equatorial relatively perturbation of meridional wind [13]. In general, for n ≥ 1 there are three 

groups, namely the Rossby for the wave that move to the west and Gravity waves for the wave that 

move to the east and to the west [13]. 

Overall for each phase of ENSO, at a equivalent depth of 12-50 m to a Kelvin wave signal (n = -1) 

was detected in symmetrical components. Results STSA OLR at latitude 15°N-15°S shows that the 

Kelvin wave is detected at a frequency of approximately 0.3125 to 0.0625 cycles per day or a period 

of about 3.2 to 16 days by the zonal wave number  1-10 and speed phase from 10.8 to 22.1 m s-1. 

These results are consistent with research conducted by [12][10][15]. In figure 2 symmetrical 

components, looks a Kelvin wave rose during ENSO phenomenon. With Kelvin wave activity in El 

Nino conditions are stronger than La Nina. 

Kelvin waves are detected in symmetrical components for each season and for all conditions 

(shown in figure 2). Strong signal the presence of Kelvin wave activity occurred during DJF to MAM, 

were MAM as the peak. It describes the results of research conducted by [12] using the same data 

(OLR, years 1979-1996). Wheeler and Kiladis (1999) [12] identify EPW wave of cases in the southern 

hemisphere summer (November-April) and the Northern Hemisphere summer (May to October). The 

results showed that the Kelvin wave activity more powerful in the summer in the southern hemisphere. 

In that case, the results of the study of the influence of ENSO phenomenon is often stronger in the 

summer in the southern hemisphere (SON, DJF), at specific intervals followed by the increasing of 

Kelvin wave activity in the DJF to MAM period were  MAM is the the strongest period of wave 

activity to every condition. The results according to research conducted by Huang and Huang (2011), 

Lubis and Jacobi (2015) 15][3], which states that the strongest Kelvin wave activity occurs during 

MAM period. The results further showed that compared with normal conditions, the strongest Kelvin 

wave activity occurs in El Nino conditions. 

On the other hand, Mixed Rossby-Gravity wave (MRG, n = 0) was detected in antisymmetric 

components for each phase of ENSO on the selected depth equivalent 12-50 m (figure 3). Results of 

STSA OLR at latitude 15°N-15°S shows that the MRG wave detected at a frequency of approximately 

from 0.3125 to 0.1875 cycles per day, or about 3.2 to 5.3 daily periods by zonal wave numbers is 1-5 

and phase speed of 10.8 to 22.1 m s-1. These results are consistent with research conducted 

[16][12][3]. In figure 3 antisymmetric component, MRG visible wavelength obtained during La Nina. 

Overall, MRG waves detected at antisymmetric component for each season and for all conditions. 

Indicates the presence of a strong MRG wave activity in the MAM and SON period with SON period 

as the peak. It describes the results of research conducted by the MRG. WK99 show that wave activity 

more powerful in the summer in the northern hemisphere. The results according to research conducted 

by [15][3] which states that the strongest activity of MRG waves occur during the SON. The results 

further showed that compared with normal conditions, the strongest MRG wave activity occurred in 

La Nina conditions. 

 

3.3. Difference of STSA (outgoing longwave radiation field) 

Differences in the power spectrum of Kelvin waves and MRG wave on El Nino and La Nina 

conditions for the each season is shown in figure 4. Dominance of wave spectrum on the symmetric 

component represented by the red color were MAM period is the strongest event. That means the 

power of Kelvin wave in the MAM period in El Nino conditions is stronger than other periods. While 

the antisymmetric component of the wave spectrum dominance shown by the blue color and the 
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strongest in the period MAM which means that MRG wave at MAM period of La Nina conditions are 

stronger than other periods. 

 
 

Figure 4. Difference of power spectrum in outgoing longwave radiation between El Nino and La Nina 

phases. 

 

3.4.  Spatial Distribution of Kelvin Wave and Mixed Rossby-Gravity (MRG) at each phase of ENSO 

Spatial distribution profile of EPW, in this case the wave Kelvin and MRG not afford shown by STSA 

OLR. The profile is obtained by calculating the value of the variance results of each wave filter 

according to the method performed by [3]. Large variance stating how large wave activity in a region. 

Spatial distribution of Kelvin and MRG wave at each phase of ENSO is shown in figure 5. Kelvin 

wave activity more powerful than MRG wave. This is indicated by the value of the variant Kelvin 

wave is larger than the MRG wave (Varian Kelvin wave reached 20.5 (Watt m-2)2, while MRG wave 

only 10 (Watt m-2)2). 

Kelvin wave spatial distribution is shown in figure 5a. These results have compatibility with 

research conducted by [12][15][3]. Kelvin wave spatial distribution of the strongest normal conditions 

occur in three regions covering the Indian Ocean (90°E), the Pacific ITCZ (5-12oN), and the Atlantic 

Ocean to Africa, South America (0-5oN). In the period from DJF to MAM. In El Nino conditions, the 

activity is centered in the middle of the Pacific Ocean to the east (90-150oW). At the La Nina 

conditions the strongest wave activity in the Atlantic Ocean south America to Africa (0-5oN) occurred 

in the MAM period. 

MRG wave spatial distribution is shown in figure 5b. In this figure shows that the spatial 

distribution of MRG wave is divided into north and south equatorial Pacific around latitude 8o, with 

activity in the northern hemisphere is stronger than in southern [12][3]. In normal conditions, these 

waves are very weak activity with the distribution pattern in the north and south equatorial Pacific 

(120oE-90oW). In El Nino conditions, the activity is slightly increased compared to normal conditions 

and centered in the northern equatorial Pacific Ocean (120oE-90oE) in the JJA up to SON period. At 

7

LISAT                                                                                                                                                  IOP Publishing
IOP Conf. Series: Earth and Environmental Science 54 (2017) 012035         doi:10.1088/1755-1315/54/1/012035



the La Nina conditions are very strong wave activity in the north and south of the equator of the 

Pacific in the period MAM and SON. 

 
(a)                                                                          (b) 

Figure 5. Spatial distribution of Kelvin wave (a) and Mixed Rossby-Gravity (b) wave on Normal, El 

Nino and La Nina condition. 

 

According to Holton (2004)[4], is one of convective heating plant wave activity. In connection with 

this, the ENSO phenomenon is a phenomenon that is closely associated with changes in regional 

centers convection due to warming sea surface temperatures will be analyzed for compliance with 

regional centers of activity EPW wave height. The suitability of the spatial distribution patterns Kelvin 

and MRG waves with convection activity described in the following sections. 

3.5. Factors affecting Seasonal Variations Kelvin wave and Mixed Rossby-Gravity (MRG) wave at 

each phase of ENSO 

ENSO phenomenon is closely related to a shift in the central area of convection activity and 

subsidence as a result of the warming and cooling of the Pacific sea surface temperature [17]. The 

event signal profile illustrated with OLR anomalies [2][3]. The focus of study in this research is 

convection. This relates to the statement [4], the formation of the cloud will generate waves. 

Seasonal variations Kelvin waves and Mixed Rossby-Gravity (MRG) waves at every phase of 

ENSO suspected to be affected by seasonal variations in convection activity shown in the Walker 

circulation (figure 6a) and the profile of OLR anomalies (figure 6b) due to seasonal variations in 
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heating and cooling of the sea surface temperature (figure 6c) in each ENSO phase. Convection 

activity is indicated by negative anomalies of vertical velocity (blue in figure 6a), as proof of the 

existence of convection signal (negative anomalies of OLR blue in figure 6b), due to the warming of 

the sea surface temperature (red in figure 6c). 

 

 
(a) 
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(b)                                                               (c) 

Figure 6. Seasonal Composite of vertical velocity (Pa s-1), OLR (Watt m-2), and SST (oC) Normal 

condition, El Nino and La Nina. Anomalies calculated from the monthly average of the year 1982 to 

2013. 

Overall, convection activity for each season in each phase of ENSO indicated by Walker 

circulation anomaly profile (Figure 6a) have compatibility with convection signal shown by OLR 

profile (figure 6b). Likewise with patterns of warming and cooling of the sea surface temperature 

(figure 6c) behind the convection activity. There is a lag between SST anomalies seen with OLR 

anomalies and Walker circulation. It is seen from the incident phase of the strongest El Nino 

conditions and the La Nina that occurs in the SON and DJF period followed by convective signal and 

Walker circulation strong at DJF and MAM period. Similarly, the pattern of warming and cooling of 

sea surface temperatures MAM and JJA period will be followed by convection and circulation signal 

corresponding Walker circulation. As for normal conditions, do not see the lag time between the 

heating and cooling of the sea surface temperature OLR anomaly and the Walker circulation. 

Based on the above, the mechanism of wave generation Kelvin and MRG can simply be explained 

as follows. The existence of the warming and cooling of the sea surface temperature (phases of ENSO, 

figure 6c) at specified intervals will increase the convection activity indicated by the presence of 
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convective signal amplification. Convective signal profile shown by OLR anomalies (figure 6b) and is 

evidenced by convection shown into the Walker circulation anomaly profile (figure 6a). Activities 

convection underlying wave generation Kelvin and MRG indicated by symmetric and antisymmetric 

components shown by STSA OLR (figure 2 and 3) and their spatial distribution is obtained by 

displaying the results of calculation of variance. The higher the value of the variant in a region 

showing increasingly strong wave activity in the region (figure 5a and 5b). 

 

4. Conclusion 

We have examined the impact of ENSO on seasonal variation of Kelvin waves and MRG waves by 

using NOAA outgoing longwave radiation (OLR) dataset and SST. The Kelvin waves ad MRG waves 

have been isolated by using space-time spectral analysis (STSA) and composite analysis. The key 

results are summarized as follow:  

(1) ENSO phenomenon significantly influences seasonal variation of Kelvin and MRG wave 

activity.  

(2) Kelvin waves are stronger during El Nino years with frequency of about 0.3125-0.0625 cpd 

(T: 3.2-16 day), zonal wave number k=1-10, and phase speed of about 10.8-22.1 m/s. 

(3) MRG waves are stronger during La Nina years with frequency of about 0.3125-0.1875 cpd 

(T: 3.2-6 day), zonal wave number k=(-1)-(-5), and phase speed of about 10.8-22.1 m/s. 

(4) The strongest Kelvin wave activity during El Nino years occurs in MAM periods, while 

MRG wave during La Nina years occurrs in MAM and SON periods. 

(5) Maximum activity of Kelvin wave activity is observed over the central to the east Pacific in 

the El Nino years, while MRG wave activity are observed over the northern and southern 

Pacific during La Nina years.  

The local variation in Kelvin waves and MRG waves is to be likely controlled by the variation in 

the lower level convection due to warming in sea surface temperatures over these regions. It is 

indicated by a shift in the center of convection activity towards the central Pacific to the east following 

the shift in Kelvin wave acitivity. While increase in wave activity MRG are more related to the 

convection over the the northern and southern equatorial Pacific ocean.  The results of this study is 

expected to improve the prediction skill of the intra-seasonal climate in the tropicas based on the 

knowledge of atmosphere-ocean coupled mechanism. Further studies are required to investigate in 

more detail how tropical ocean influence the generation of Kelvin waves and MRG waves in opposite 

ENSO phase and their associated implication on surface climate.  
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