Parallel and Generic Pipe-and-Filter Architectures
with TeeTime

Christian Wulf
Software Engineering Group
Kiel University
24098 Kiel, Germany
Email: chw@informatik.uni-kiel.de

Abstract—Pipe-and-Filter (P&F) is a well-known and often
used architectural style. However, to the best of our knowledge,
there is no P&F framework which can model and execute
generic P&F architectures. For example, the frameworks Fast-
flow, Streamlt, and Spark do not support multiple input and
output streams per filter and thus cannot model branches. Other
frameworks focus on very specific use cases and neglect type-
safety when interconnecting filters. Furthermore, an efficient
parallel execution of P&F architectures is still an open challenge.
Although some available frameworks can execute filters in
parallel, there is much potential for optimization. Unfortunately,
most frameworks have a fixed execution strategy which cannot
be altered without major changes.

In this paper, we present our P&F framework TeeTime. It
is able to model and to execute arbitrary P&F architectures.
Simultaneously, it is open for modifications in order to experi-
ment with the P&F style. Moreover, it allows to execute filters in
parallel by utilizing the capabilities of contemporary multi-core
processor systems. Besides a description of its major features, we
also present an application example in Java.

I. INTRODUCTION

Pipe-and-Filter (P&F) is a well-known and often used
architectural style in industry and research since it potentially
combines a high modularity with a high throughput and a
small memory footprint. Recent research [2, 9, 15] shows that
the P&F style still provides a high potential for optimization,
especially in the context of parallelization and the execution
on heterogeneous platforms. The P&F style may be applied
in various application domains. For instance, with Kieker [10]
and ExplorViz [6], we use the P&F style for dynamic analysis
and for live processing of high-volume monitored traces.

So far, however, it is common practice that most developers
and researchers write their own P&F implementations from
scratch tailored to their specific use cases and requirements
inhibiting effective re-use. Furthermore, concurrency is often
handled, if at all, only at a coarse-grained level, neglecting
parallelization potential of multi-core processor systems. This
situation results from the lack of easy-to-use generic P&F
frameworks which are able to cover all kinds of P&F archi-
tectures and simultaneously provide a high performance with
a low overhead caused by the framework implementation.

While there are some frameworks, such as Fastflow [2],
Streamlt [9], GRAMSP [15], Spark [13], Storm [14], and
Akka [1], which cover a broader class of P&F architectures,

Wilhelm Hasselbring
Software Engineering Group
Kiel University
24098 Kiel, Germany
Email: wha@informatik.uni-kiel.de

Johannes Ohlemacher
Software Engineering Group
Kiel University
24098 Kiel, Germany
Email: johl@informatik.uni-kiel.de

they still focus on specific use cases. Fastflow, Streamlt, and
Spark, e.g., are designed to model and execute streaming
applications only. These frameworks do not support more than
one input and output stream and thus cannot model branches.
On the other hand, GRAMPS is tailored to graphics pipelines.

In this paper, we discuss these open challenges in more
detail and present our P&F framework TeeTime as a solution.
To the best of our knowledge, it is the first framework that
is able to model and to execute arbitrary P&F architectures.
Moreover, it allows to declare filters to be executed in parallel
at a new level of abstraction. For example, TeeTime utilizes
the notion of active and passive filters [4] to manage threads
and their synchronization in a fully transparent way.

In our previous work [5, 21], we have successfully applied
TeeTime to build P&F architectures with multiple ports per
filter and with high throughput rates. In this work, we describe
how TeeTime achieves this genericity and performance. Addi-
tionally, we present a small P&F example in Java to provide a
more detailed view on the design and the usage of TeeTime.

We categorize TeeTime as research tool since it allows to
experiment with the P&F architectural style. Its extensible
framework architecture enables to implement arbitrary (com-
posite) filters, various synchronized and unsynchronized pipes,
as well as parallel and distributed execution models. How-
ever, TeeTime also targets software architects and software
developers who just want to use it within their applications.
We provide a Java-based [17] and a C++-based [16] reference
implementation of our framework as open-source software.

II. OPEN CHALLENGES FOR P&F FRAMEWORKS

As mentioned in Section I, we are not aware of a framework
which supports the modeling and the execution of arbitrary
P&F architectures. Such a framework must at least support the
dataflow structures shown in Figure 1. However, most available
frameworks focus on streaming applications which allow at
most one input and one output port. Hence, they cannot model
branches (see Figure 1a). For the same reason, they often do
not support loops (see Figure 1b). Although some frameworks
provide support for loops, they only do so for particular filters.
In contrast, an actor in actor-based frameworks can output to
multiple receivers. However, it still has only one input port—
often called mailbox. In addition, this mailbox is also untyped

cache

HTTP
request

HTTP
Parser

Page L[!
Cache 3

HTTP
Responder

cache
hit

(a) An example branch: a cache stage with an output port for a cache
hit and one for a cache miss used by Welsh et al. [20]

& Tiff . L1 Content PDF File
Verifier [Analyzer Verifier Writer

(b) An example feedback loop: the Document Understanding and
Analysis System of Gokhale et al. [8]

Fig. 1: Variations of P&F dataflow structures

such that each incoming message needs to be checked and
casted according to its type. Thus, a faulty connection between
actors can only be detected at run time.

The P&F style can also provide a basis for parallelization.
For example, multiple filters can run in parallel to increase the
throughput. Allen et al. [3] were one of the first authors who
propose a formal specification including concurrency aspects.
However, they do not address filter scheduling to achieve a low
latency. Moreover, they do not address the synchronization
overhead resulting from the pipes. Finally, they omit a dis-
cussion about an optimal thread-to-filter assignment strategy
to maximize the application’s throughput. Research [9, 15]
shows that an efficient parallel execution of P&F architectures
is still work-in-progress and requires further research.

Hence, a P&F framework must also be extensible and open
for modifications. Reusable and composable filters would ad-
ditionally increase the modularization. Filter scheduling should
not be fixed, but exchangeable. Pipe implementations should
not be hard-coded, but individually adjustable. GRAMPS [15],
e.g., does not provide this level of flexibility.

III. THE P&F FRAMEWORK TEETIME

In this section, we present our P&F framework TeeTime. Its
key features are (1) its support for all P&F variants described
in Section II, (2) its parallel execution model with a high level
of abstraction, and (3) its extensibility to experiment with the
P&F style. The design of the framework architecture as well
as our Java [17] and C++ [16] implementations follow the
original definition by Shaw [12] and Allen et al. [3]. A P&F-
based system consists of the four first-class entities: pipes,
filters, ports, and configurations. In this way, we implement the
scheduling and the synchronization within pipes, the execution
logic within filters, and the type-safety within ports.

In the following Sections III-A to III-E, we describe how
TeeTime addresses the challenges mentioned in Section II. We
will use the term stage as generalization for data sources,
filters, and data sinks, as categorized by Buschmann et al. [4].

A. Automatic Thread Management

Buschmann et al. [4] distinguish three scenarios to trigger
the activity of a stage. First, the stage’s successor pulls output
data from the stage. Second, the stage’s predecessor pushes
new input data to the stage. Finally, the stage is in an active
loop pulling its input from its predecessors and pushing its
output to its successors. Buschmann et al. call the first two
cases passive stages and the last one an active stage.

Instead of manually creating a thread for each stage that
should be active, TeeTime only requires to declare a stage as
active. Based on this information, the framework automatically
associates one dedicated thread with each active stage and its
passive successor stages. Thus, TeeTime completely manages
the instantiation, execution, and termination of the threads.

B. Efficient Pipe-based Communication

Since a distributed system typically communicates via a net-
work which transmits data as byte sequences, data conversion
and synchronization must always be performed. However, in a
shared-memory system, data is usually exchanged via pointers
without any data conversion. Moreover, data synchronization
is only necessary between stages that are executed by two
different threads. Hence, TeeTime connects stages as follows.

When connecting two stages within the same thread, the
framework chooses an unsynchronized pipe holding a single
element (see Figure 2a). Once a stage sends an element, the
corresponding pipe stores it and executes the consumer stage
which in turn pulls the element from the pipe. In this way, we
do not only avoid an unnecessary synchronization between
these stages. We also ensure back-pressure, because each
data element is pushed as far as possible through the whole
P&F architecture before processing the next data element.
This approach allows direct method calls while simultane-
ously preserving stage recombination since it encapsulates the
scheduling of stages within the pipes.

When connecting two stages executed within two different
threads, the framework chooses a pipe that employs a synchro-
nized queue (see Figure 2b). Once a stage sends an element,
the corresponding pipe adds it to the queue either in a non-
blocking or blocking mode depending on the chosen push
strategy. Similarly, the consumer stage can choose between
a busy-waiting or a blocking strategy to consume the element.

For achieving a high throughput and a high scalability, it is
important that this synchronized queue has a low and constant
overhead. We use the lock-free SpScArrayQueue of the
JCTools library [11]. This queue is similar to the queues
described by [7, 19]. It features a low overhead by using
only light-weight synchronization mechanisms, e.g., memory
barriers. It achieves a constant overhead by placing data of
different threads on different cache lines to minimize cache
contention. Finally, the queue allows access from a single
producer and a single consumer only. In this way, it avoids
expensive intra-producer and intra-consumer contention.

One thread
A] O || B

(a) Intra-thread communication with an unsynchronized,
single-element pipe

Two threads
X || oo || v

(b) Inter-thread communication with a synchronized, bounded
single-producer/single-consumer pipe

Fig. 2: Efficient pipe-based communication in TeeTime

C. Automatic Pipe Selection

TeeTime employs a two-phase approach to automatically
identify the correct and most efficient pipe implementation
between two ports. In the first phase, when connecting ports
in the configuration, a placeholder pipe is instantiated. In the
second phase, after all stages have been declared passive or
active, the whole P&F architecture is traversed. Each incoming
and outgoing pipe that is a placeholder, is replaced by a
synchronized or unsynchronized pipe depending on whether
the consuming stage is active or not. In this way, we can also
automatically connect stages that are created at runtime.

D. Efficient Multi-Port Composite Stages

We distinguish between primitive and composite stages. A
composite stage is only a wrapper and does not exist at run-
time. It is flattened to the P&F configuration represented by
its child stages. Thus, it does not have a dedicated execution
logic and cannot be declared active. In this way, we allow
modularization and, at the same time, ensure that a composite
stage does not incur any runtime overhead.

E. Type Safety

TeeTime checks for type safety between interconnected
ports at compile-time and at run-time: At compile-time, it em-
ploys type parameters for ports. If two ports are incompatible
with each other, the compiler detects this issue and outputs an
appropriate error message. At run-time, TeeTime employs a
type attribute for each port. On initialization, TeeTime checks
each connection whether its source and target port match.
Run-time validation is necessary when type parameters are
not available, e.g., when loading a stage via reflection.

1V. TEETIME APPLICATION EXAMPLE

As mentioned in the introduction (Section I), we provide
two reference implementations for TeeTime: one for Java
and one for C++. Although they differ in some technical
details, both base on the same, general, language-independent
framework architecture introduced in Section III. Hence, for
a consistent presentation, we use the same programming
language in all following code listings, namely Java.

Listing 1: An example configuration in TeeTime

lffublic class LogReaderConfig extends Configuration {)

2 final CollectorSink<Record> sink;

3

4 public LogReaderConfig(List<Path> dirs) {

5 InitialElementProducer<Path> producer = new
< InitialElementProducer<> (dirs);

6 KiekerLogDirSwitch kiekerLogDirSwitch = new
< KiekerLogDirSwitch();

7 AsciilLogDirReader asciiDirReader = new
< AsciiLogDirReader () ;

8 BinaryLogDirReader binaryDirReader = new
< BinaryLogDirReader () ;

9 Merger<Record> merger = new Merger<>();

10 this.sink = new CollectorSink<>();

11

12 connectPorts (producer.getOutputPort (),
— kiekerLogDirSwitch.getInputPort ());

13 connectPorts (kiekerLogDirSwitch.getAsciiPort (),
< asciiDirReader.getInputPort());

14 connectPorts (kiekerLogDirSwitch.getBinaryPort (),
< binaryDirReader.getInputPort ());

15 connectPorts (asciiDirReader.getOutputPort (),
— merger.getNewInputPort ());

16 connectPorts (binaryDirReader.getOutputPort (),
< merger.getNewInputPort ());

17 connectPorts (merger.getOutputPort (),
— this.sink.getInputPort (),
— BufferedUnsynchronizedPipeFactory.INSTANCE) ;

18

19 producer.declareActive () ;

20 asciiDirReader.declareActive();

21 binaryDirReader.declareActive () ;

22 merger.declareActive () ; 1}

We consider a P&F architecture (simplified for the sake of
clarity) taken from the Kieker project [18] which processes
directories containing monitoring log files either in an ASCII
or a binary format. Listing 1 shows the corresponding configu-
ration in Java. Line 1, we declare the LogReaderConfig by
extending the class Configuration provided by TeeTime.
We declare the stages in Line 5-10 and their interconnections
in Line 12-17. Active stages are declared in Line 19-22.

First, an initial list of directories is passed to the stage
InitialElementProducer (Line 5) which outputs each
directory one by one to its output port (Line 12). Then, the
stage KiekerLogDirSwitch (Line 6) checks the incoming
directory format. Afterwards, it passes the directory (Lines
13/14) to the stage AsciiLogDirReader (Line 7) or,
respectively, to the stage BinaryLogDirReader (Line 8).
If the directory contains unknown files, it is not passed
and thus filtered out. Subsequently, the triggered log reader
reconstructs and outputs an instance of the class Record for
each log entry in each log file. Such a record is then passed
(Lines 15/16) through the stage Merger (Line 9) to the stage
CollectorSink (Lines 10/17). By passing a pipe factory,
TeeTime does not automatically create a pipe by its own, but
uses the factory to do so for this particular connection. In this
way, TeeTime is open for custom pipe implementations.

Listing 2 shows the execution of the configuration. We
pass two example directories (Lines 1-4) to a new instance
of LogReaderConfig (Line 5). We then execute the con-
figuration by passing it to a new instance of TeeTime’s
Execution class (Line 6) and by invoking the method
executeNonBlocking () (Line 7). Finally, we wait for
its termination (Line 8) in order to receive the reconstructed
records from the CollectorSink.

Listing 2: An example execution of the LogReaderConfig

1| Path[] dirs = { Paths.get ("a/b/c-ascii"),

< Paths.get ("x/y/z-binary") };
LogReaderConfig config = new LogReaderConfig(dirs);
Execution execution = new Execution(config);
execution.executeNonBlocking () ;

execution.waitForTermination () ;
records = config.sink.getElements();

NN B W

Listing 3 shows the implementation of the KiekerLog-
DirSwitch. The stage extends the class AbstractStage
provided by TeeTime (Line 1) and declares one input port
(Line 2) and three output ports (Lines 3-5). All ports have
the type Path which represents a directory from the file
system. The stage’s behavior is implemented by the method
execute () (Lines 7-17) which is invoked by TeeTime.
First, it reads an element from its input port (Line 8). If the
element is null (Line 9), the stage returns and TeeTime re-
schedules it accordingly. Otherwise, the stage checks the for-
mat of the directory element and passes it to the asciiPort,
binPort, or elsePort, respectively. In Lines 19-21, it ex-
ports its input port via the public method get InputPort ()
which in turn is used in Listing 1 to connect the stage with
the producer. The type parameter of the returning input port
ensures the type-safety mentioned in Section III-E.

Listing 3: An example stage used by the LogReaderConfig
2

public class KiekerLogDirSwitch extends AbstractStage {
InputPort<Path> inputPort = super.createlnputPort();
OutputPort<Path> asciiPort = super.createOutputPort ();
OutputPort<Path> binPort = super.createOutputPort ();
OutputPort<Path> elsePort = super.createOutputPort ();

@Override protected void execute() {
Path path = inputPort.receive();

O 01U WN =
~

if (path == null) { return; }
10 if (path.endsWith ("ascii")) {
11 asciiPort.send (path);
12 } else if (path.endsWith("binary")) {
13 binPort.send(path) ;
14 } else {
15 elsePort.send (path);
16 }

17 }

19 public InputPort<Path> getInputPort () {

20 return inputPort;

21 }

22 ce getter for each output port
23|}

V. CONCLUSION

In this paper, we briefly presented our Pipe-and-Filter (P&F)
framework TeeTime. We explained how TeeTime is able to
model and to execute arbitrary P&F architectures and how it
schedules multiple stages in parallel. Moreover, we presented
a small P&F example built with TeeTime. In particular, it
highlights that TeeTime hides the thread management and the
internal use of different pipe implementations from the user.

As future work, we plan to combine TeeTime with Akka in
order to support fault-tolerant, distributed P&F architectures.
Additionally, we work on a graphical live visualization of
running TeeTime-based P&F architectures. We also experi-
ment with further execution models to automatically optimize

the throughput of P&F architectures. Finally, we plan a tool
evaluation by comparing TeeTime with other frameworks.

REFERENCES

[11 Akka Framework. http://akka.io.

[2] Marco Aldinucci et al. “FastFlow: high-level and effi-
cient streaming on multi-core”. In: Programming Multi-
core and Many-core Computing Systems. Wiley, 2014.

[3] Robert Allen and David Garlan. “Towards Formalized
Software Architectures”. In: Recent Trends and Devel-
opments. Vol. 1000. LNCS. Springer, 1992.

[4] Frank Buschmann et al. Pattern-oriented Software Ar-
chitecture: A System of Patterns. Wiley & Sons, 1996.

[5] Gunnar Dittrich and Christian Wulf. “Extraction of
Operational Workflow-based User Behavior Profiles for
Software Modernization”. In: Proc. of the Symposium
on Software Performance. 2016.

[6] Florian Fittkau, Alexander Krause, and Wilhelm Has-
selbring. “Software Landscape and Application Visual-
ization for System Comprehension with ExplorViz”. In:
Information and Software Technology (2016).

[7] John Giacomoni, Tipp Moseley, and Manish Vachhara-
jani. “FastForward for Efficient Pipeline Parallelism: A
Cache-optimized Concurrent Lock-free Queue”. In: the
Proc. of the PPoPP. 2008.

[8] Swapna S. Gokhale and Sherif M. Yacoub. “Reliability
Analysis of Pipe and Filter Architecture Style.” In: the
Proc. of the 18th SEKE. 2006.

[91 Michael I. Gordon et al. “Exploiting Coarse-grained

Task, Data, and Pipeline Parallelism in Stream Pro-

grams”. In: the Proc. of ASPLOS. 2006.

André van Hoorn, Jan Waller, and Wilhelm Hasselbring.

“Kieker: A Framework for Application Performance

Monitoring and Dynamic Software Analysis”. In: Proc.

of the ICPE. ACM, 2012.

JCTools Library. https://github.com/JCTools/JCTools.
[12] M. Shaw. “Larger Scale Systems Require Higher-level
Abstractions”. In: ACM SIGSOFT SEN 14.3 (1989).

1 Spark Framework. http://spark.apache.org/streaming.

Storm Framework. http://storm.apache.org.

Jeremy Sugerman et al. “GRAMPS: A Programming

Model for Graphics Pipelines”. In: ACM Transactions

on Graphics 28.1 (2009).

TeeTime (C++). https://git.io/vDHmm.

TeeTime (Java). https://teetime-framework.github.io.

The Kieker Project. http://kieker-monitoring.net.

Junchang Wang et al. “B-Queue: Efficient and Practical

Queuing for Fast Core-to-Core Communication”. In:

Int. Journal of Parallel Programming 41.1 (2013).

Matt Welsh, David Culler, and Eric Brewer. “SEDA:

An Architecture for Well-conditioned, Scalable Internet

Services”. In: SIGOPS Oper. Syst. Rev. 35.5 (2001).

Christian Wulf, Christian Claus Wiechmann, and Wil-

helm Hasselbring. “Increasing the Throughput of Pipe-

and-Filter Architectures by Integrating the Task Farm

Parallelization Pattern”. In: Proc. of the CBSE. 2016.

http://akka.io
https://github.com/JCTools/JCTools
http://spark.apache.org/streaming
http://storm.apache.org
https://git.io/vDHmm
https://teetime-framework.github.io
http://kieker-monitoring.net

