
Workload and Job Size Aware
Performance Anomaly Detection

Bachelor’s Thesis

Wolfgang Andreas Ramos Arhuis

March 29, 2017

Kiel University

Department of Computer Science

Software Engineering Group

Advised by: Prof. Dr. Wilhelm Hasselbring
Dipl. Inf. Armin Möbius

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel, 29. März 2017

iii

Abstract

Varying server response times are often the result of varying workload and the varying
computational demands of requests (job size). Although this link is well established, many
monitoring approaches ignore it by relying exclusively on static response time thresholds
for anomaly detection. We propose a combined approach where static response time
thresholds are supplemented with techniques for detecting anomalies through comparing
observed response times with predictions accounting for workload and job size. Empirical
analysis of data collected from a real world route scheduling server application suggested,
that workload and job size together can account for almost 50 % of the observed response
time variability and can improve the prediction of respone times by almost 15 % for this
application. We demonstrate how this method can be used in software operations by
implementing a control center that helps operators to detect performance declines in this
sofware.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 3

1.2.1 G1: Monitoring . 3
1.2.2 G2: Anomaly Detection . 4
1.2.3 G3: Control Center . 4

1.3 Document Structure . 4

2 Foundations 5
2.1 Workload-Sensitive Response Time Analysis 5
2.2 Performance Anomaly Detection . 6
2.3 Control Centers for Software Operation . 8
2.4 FLS VISITOUR . 8

2.4.1 Route Scheduling Model . 9
2.4.2 Generation of Appointment Proposals 9
2.4.3 Candidate Positions . 11
2.4.4 Distance Calculation . 12
2.4.5 Proposal Iterations . 13
2.4.6 Proposal Windows . 13
2.4.7 Response Time Influences . 14
2.4.8 Call, CallProposal and Calls Web Sevices 14
2.4.9 Optimize Web Service . 16
2.4.10 DeletePlanning Web Service . 16
2.4.11 FieldManager Web Service . 17
2.4.12 RandomAddress Web Service . 17

2.5 Log Analysis with Elastic Stack . 18
2.5.1 Log Forwarding with the Beats Platform 18
2.5.2 Log Management with Logstash . 18
2.5.3 Search Platform Elasticsearch . 19

2.6 JMeter . 19
2.7 R . 20

3 Performance Test 23
3.1 Design . 23
3.2 Test Setting . 24

3.2.1 Generation of Field Service Employees 25

vii

Contents

3.2.2 Generation of Jobs . 26
3.3 Test Procedure . 28

3.3.1 Initialization Phase . 29
3.3.2 Warm-Up Phase . 30
3.3.3 Strain Phase . 31

3.4 Hardware . 31
3.5 Data Collection . 32
3.6 Results . 38

3.6.1 Preliminary Analysis . 38
3.6.2 Concurrency Score . 39
3.6.3 Job Size Parameters . 40
3.6.4 Effects on Response Time . 40
3.6.5 Sliding Window . 43

4 Control Center 47
4.1 Use Cases . 47
4.2 Classes . 47
4.3 Deployment . 51
4.4 User Interface . 53

5 Evaluation 61
5.1 Performance Anomaly Detection . 61
5.2 Control Center . 62

6 Future Work 65

7 Conclusions 67

A Appendix 69
A.1 Excluded Postal Addresses . 69
A.2 Elasticsearch Index Template . 69
A.3 List of Supplementary Files . 70

Bibliography 73

viii

List of Acronyms

AIC Akaike Information Criterion

ANOVA analysis of variance

ARIMA autoregressive integrated moving average

CRAN Comprehensive R Archive Network

CLR Common Language Runtime

CPU Central Processing Unit

CRM customer relationship management

CSS Cascading Style Sheets

GPL General Public License

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IP Internet Protocol

JDBC Java Database Connectivity

JIT just-in-time

JSON JavaScript Object Notation

JSR Java Specification Request

JVM Java Virtual Machine

MSE Mean Squared Error

MSSQL Microsoft SQL

OS Operating System

REST Representational State Transfer

ix

Contents

RAM Random Access Memory

RSS Residual Sum of Squares

SOAP Simple Object Access Protocol

SQL Structured Query Language

UTC Coordinated Universal Time

x

Chapter 1

Introduction

Logistics, transportation, sales and on site service are growing business sectors in our
modern economy. All of them are faced with a common challenge: the efficient allocation of
mobile resources and workforce to jobs at different locations. The process of composing a
set of routes from a set of geographically distributed jobs for a set of field service employees
is called route scheduling or route planning. Good route scheduling can help minimize costs
and waiting time, making it an important success factor for companies. Route scheduling
software can make route scheduling more efficient, especially in complex scenarios with
huge numbers of resources, employees, and jobs. The introduction of mobile devices
into field operations and the extension of mobile networks brought new possibilities for
automatic route scheduling. Mobile clients can be used to report on job process and fetch
the most current schedules from a central server, constantly optimizing schedules. High
availability and performance of the server are critical for the smooth operation of such a
client-server setup. Thus creating the need to monitor route scheduling server applications
for early signs of performance declines.

1.1 Motivation

The problem of finding ideal routes in advance for given sets of n jobs and m field staff
employees is known as vehicle routing problem or vehicle scheduling problem [Lenstra and
Kan 1981]. If field service employees do not share a common base location, the problem
is also referred to as l-depot vehicle scheduling problem. In practice a composition of routes
in advance is usually not sufficient. Changes to prearranged schedules often become
necessary on short notice due to external influences, like traffic, sick leave, misjudged job
duration and the emerging of new jobs. The problem of finding an ideal adaption of a
schedule to such events is known as vehicle rescheduling problem [Li et al. 2007]. Like bad
scheduling, bad rescheduling can lead to a waste of time and money. Thus, there is a need
for efficient rescheduling and schedule optimization services available on short call to
reduce those negative influences. The need for efficient route scheduling and rescheduling
software is however countered by the complexity of the task as all three problems were
proven to be NP-hard [Spliet et al. 2014; Lenstra and Kan 1981]. Thus, it can be considered
unlikely that there exists an algorithm that can solve one of these problems in polynomial

1

1. Introduction

time1 [Sipser 2006]. To get an idea about how complex real-world route scheduling can
be, consider that even a simple setting with only 10 jobs and one field service employee
yields 10! = 3 628 800 possible routes. Although in practice done heuristically, good route
scheduling and rescheduling is still a computationally demanding task. Consequently,
efficient route scheduling and rescheduling applications have high system requirements.

The increased use of mobile devices in field operations provides an ideal environment
for client-server based route scheduling applications like FLS VISITOUR. Through a mobile
client (FLS Mobile), field service employees can fetch the most current schedule from the
server (VISITOUR Server) and report on job process. The server can use these updates on job
process to perform real-time schedule optimization, a task to demanding for current mobile
devices. The major advantage of centralized schedule handling is however the possibility
to include all schedules of all field service employees in an optimization. So if one job
falls out of schedule, or a new job has to be added, the server can utilize all field service
employees to find a proper rescheduling. The optimized schedules can then be propagated
to all field service employees almost in real time through the mobile devices. The overall
usability of such a client-server setup depends heavily on the response time of the server.
Smooth operation is only possible with short response times. Thus, high availability and
performance of the route scheduling server need to be continuously ensured.

Monitoring and performance anomaly detection are two established techniques to detect
early signs of performance declines and ensure high availability. Monitoring is the super-
vision of the operation of a system [IEEE Standards Board 1990]. Anomalies are patterns
that do not conform to expected behavior [Chandola et al. 2009]. A popular indicator used
to monitor the performance of server systems is the response time [Avritzer et al. 2006].
Rohr et al. [2010] define the response time of an operation as the time between the start
and the end of the execution of the operation, including the time needed for executing
nested suboperations. Anomalies in response times can be detected by comparing observed
response times with statically set thresholds or expected response times (see Chandola et al.
[2009] for an overview over techniques for anomaly detection). Expectations for response
times can e. g., be generated using statistical models to predict response times based on
past observations [see e. g., Henning 2016; Bielefeld 2012; Frotscher 2013].

Similar to the definition of the response time of an operation given by Rohr et al. [2010],
the response time of a web service can be defined as the time between the completion of
the reception of a request and the completion of the generation of the response. In the case
of productively used systems, detecting anomalies in response times is complicated by
varying workload. Menasce and Almeida [2001] define the workload of a system as the set of
all inputs received from the environment. They differentiate between workload intensity and
individual request characteristics. The number of concurrently processed requests is a typical
measure of workload intensity in a server system. Individual request characteristics refer to
the parameterization of a request that affect the computational complexity of processing the
request. To avoid confusion between workload caused by workload intensity and workload

1This would only be possible if NP = P.

2

1.2. Goals

caused by individual request characteristics, we will refer to workload intensity as workload
and to individual request characteristics as (request) job size. The term job size was chosen,
because the individual request characteristics affect the duration of the processing of a
request independent of the processing of other requests, like the size of a job does in a
batch system.

Because of varying workload and job size, response times of productively used systerms
often show high statistical variance, thus, complicating the detection of anomalies. Rohr
et al. [2010] developed a method to reduce response time variance by accounting for
workload. The authors grouped response times by defined workload classes. They were
able to show that, the resulting average response time variance of the groups was lower
than the globally computed response time variance. Thus, within each group response
times were more stable, allowing better detection of performance anomalies.

In this thesis, we will develop a method to detect anomalies that accounts for varying
workload and request job sizes in VISITOUR Server. Similarly to Rohr et al. [2010], we will use
a workload measure to account for the effect of workload on response times. In addition,
we will use request parameters to account for the effect of request job size on response
times. We will investigate in how far the variability of VISITOUR’s response times could be
reduced by accounting for these parameters. Additionally, we will demonstrate how this
method could be used in software operations by implementing a control center that utilizes
this method to automatically detect performance anomalies in running VISITOUR Server
instances.

1.2 Goals

The ultimate goal of this thesis is the implementation of a system that makes it possible to
detect anomalies in the performance of VISITOUR Server. Therefore, we will first provide
means to monitor performance, workload and request job sizes in a running server (G1).
We will then use this monitoring setup to conduct an empirical analysis of the influence
of workload and request job size on server response times in order to identify a model
for response time prediction that accounts for workload and job size (G2). Finally, we will
implement a control center that uses this method to support the detection of performance
anomalies in VISITOUR Server (G3).

1.2.1 G1: Monitoring

We will implement a system to monitor and store one performance and several workload
indicators for a single running VISITOUR Server. Monitored data is most useful when
monitoring takes places in real-time, we will thus keep the monitoring delay as small
as possible. We will target a monitoring solution that will allow future work to expand
monitoring by adding additional performance indicators or increasing the number of
simultaneously monitored server instances.

3

1. Introduction

1.2.2 G2: Anomaly Detection

We will develop a prediction based method to detect anomalies in the response times
of VISITOUR Server that accounts for workload and request job size. To identify such a
prediction model tailored to predict application-specific response times, we will conduct an
empirical examination of the influences of workload and job size parameters on VISITOUR’s
response times. To account for the influence of varying workload on server response times,
we will adapt the approach of Rohr et al. [2010] to reduce the variability of response times
through including workload measures into the prediction model. In addition, we will
extend this approach, by including request job size measures in the prediction model to
account for the influence of varying request job sizes on server response times.

1.2.3 G3: Control Center

We will implement a control center that visualizes changes in server performance, workload
and request job sizes over time and utilizes the method envisioned in goal G2 to support
the detection of performance anomalies in running VISITOUR Server instances.

1.3 Document Structure

We begin with an introduction on the foundations of anomaly detection, VISITOUR Server,
software for processing log data, control centers for software operations, load generation
for empirical assessment of server performance, and statistical data analysis in Chapter 2.
Thereafter, in Chapter 3 we detail on the conducted empirical examination of the influences
of workload and request job size on the response times of VISITOUR Server’s appointment
proposal service. In Chapter 4 we describe the implementation of the control center
envisioned in goal G2. Next, we discuss the results from the empirical examination and
the implementation of the control center in Chapter 5. We close with recommendations for
future work in Chapter 6, and a comprehensive summary of our results in Chapter 7.

4

Chapter 2

Foundations

This chapter presents the foundations of response time analysis, anomaly detection, and
related technologies. Section 2.1 details on approach used by Rohr et al. [2010] to analyze
response times with respect to workload. Thereafter, Section 2.2 describes methods to
detect anomalies in response time data. Next, Section 2.3 details on control centers for
software operations. Section 2.4 describes FLS VISITOUR with a focus on the generation of
appointment proposals. Because VISITOUR records content and time of all requests and
responses in a local log file, we will extract response times and request parameterizations
necessary for the envisioned response time prediction method from this file. Therefore,
Section 2.5 presents software that can be used for real time extraction, processing and
storage of log data. To generate response time data for the analysis envisioned in goal G2,
we will use a load generator software. For that reason, Section 2.6 describes the scriptable
load generator JMeter. Finally, Section 2.7 details on software for statistical analysis of
response times and for building a control center that can make use of statistical models for
anomaly detection.

2.1 Workload-Sensitive Response Time Analysis

Blocking a productive system to execute a standardized test procedure is often undesirable.
Thus, monitoring data is the only source for detecting anomalies. However, analyzing
monitoring data for performance anomalies is a difficult task, because productively running
systems are usually faced with varying workload and varying request job sizes. A web
service targeted at human users e. g., usually receives most requests during daytime and
few at night. Thus, during phases with low workload, requests can be rapidly processed
and can use full system resources, while during high-workload phases system resources are
shared among requests. As a result monitored response times often show high statistical
variance, making it difficult to detect anomalies [Rohr et al. 2010; Rohr 2015].

Rohr et al. [2010] developed a method to reduce the variance of response times by
accounting for workload. The authors monitored response times of function calls together
with the number of concurrently executed traces in the test system as workload indicator.
Workload indicator values were used to define workload classes which in turn were used
to group response time measurements. The authors showed that, the resulting average
response time variance of the groups was lower than the globally computed response time

5

2. Foundations

variance. Hence, within the groups, response times were more stable than when assessed
jointly.

2.2 Performance Anomaly Detection

A popular approach to detect performance anomalies in productively used software systems
uses (statistical) regression models to predict a certain performance criterion and then compare
this prediction with an observation of the criterion [see e. g., Henning 2016; Bielefeld 2012;
Frotscher 2013]. The predictions are generated from a set of predictors and a function, that
defines how the criterion is computed from the predictors. This prediction function is the
heart of the regression model, and is determined by (1) the model which constrains the
function to a certain form, leaving some parameters to be deliberately chosen, and (2) a
fitting of the model to empirical data to identify optimal values for these parameters.

Different regression models constrain the prediction function to different forms. Linear
regression e. g., constrains the prediction function to linear functions, i. e., functions of the
form ŷ = a + ∑m

i=0 bixi for m P N. In this definition, ŷ is the prediction for the criterion
y, and x0, . . . , xm are the predictors. In the case of the linear regression, the deliberately
chosen parameters are the coefficients a, and b0, . . . , bm. a is also called intercept. Optimal
coefficient values for a set of n P N observations are identified using the method of least
squares. This method minimizes the residual sum of squares (RSS), which is the sum of
all squared differences between the observed and the predicted criterion values, i. e.,
RSS = ∑n

i=1(yi � ŷi)
2. Each observation is thereby an (m + 1)-tuple, consisting of an

observed y, and m related observed predictor values. The RSS is thus a measure of the
precision of the prediction of a linear regression model. A model with a smaller RSS

generates predictions that are closer to the observed values, than a model with a larger sum
of squares. Note, that fitting a model with no predictors to n observations yields a = M(y).
Hence, the prediction is computed as ŷi = M(y) for all observations 1 ¤ i ¤ n. Therefore, if
no predictors are specified, the RSS is essentially equivalent to the variance of the criterion
computed as var(y) = ∑n

i=0(yi � M(y))2.
A measure of the average deviation of the prediction from the observation is the mean

squared error (MSE). It is computed as 1
df e

RSS, where df e are the degrees of freedom of the RSS.
Degrees of freedom express the dimensionality of the prediction data. As a rule of thumb,
df e is the number of observations minus the number of predictors.

Another measure of the quality of a regression model is the Akaike Information
Criterion (AIC). This measure expresses how economical a model is. Because the inclusion
of predictors can never decrease the precision of the prediction (in the worst case a
predictor does not change the prediction), models that generate good predictions with a
low number of predictors are more economical than models that only generate slightly
better predictions but use much more predictors. Essentially, the AIC expresses a ratio of
the number of predictors included in the model and the model’s RSS. Hence, models with
low AIC values are preferable to models with high AIC values, even if the latter can yield

6

2.2. Performance Anomaly Detection

better predictions.

Regression models are not constrained to linear functions. Beside linear regression,
there is e. g., polynomial regression, that fits a polynom, and exponential regression that fits an
exponential function to sample data, and autoregressive integrated moving average (ARIMA)
models that fit a function to periodic patterns of time series. The quality of all of these
models can be expressed by the same parameters used to express the quality of a linear
regression model, namely the RSS, the MSE and the AIC.

ARIMA models are popular in anomaly detection approaches [see e. g., Henning 2016;
Bielefeld 2012; Frotscher 2013] , because they are especially designed to predict data that
displays a certain periodicity. Shumway and Stoffer [2011] e. g., mention human voice,
Electroencephalography, and stock data as application examples. ARIMA models are used in
performance anomaly detection, because response times of productively running systems,
often also show periodic patterns over the time of a day, a week, and a year. E. g., web
applications targeted at human users, like social, media, and e-commerce often receive
most requests during the evening and fewer requests during the day time, when people
are at work or at school. However, if the data displays no periodic patterns, ARIMA model
based predictions, are essentially equal to regression models that do not account for
periodic patterns, like e. g., linear regression [Shumway and Stoffer 2011]. In cases, where
the periodic pattern in the sample are artificial or coincidental, careless use of ARIMA

models for prediction can even result in pathological prediction models, fitted to fake
periodicity. Hence, Shumway and Stoffer [2011] recommend a close investigation of the
periodic patterns in the data, before fitting an ARIMA model to the data.

A problem of using regression models for anomaly detection is, that fitting a complex
model to a large data set can be a computational very demanding task. Thus, fitting
such models to a continuously growing set of monitoring data will result in a gradual
increase of the time needed for detecting an anomaly. In the implementations presented
by Henning [2016], Bielefeld [2012], and Frotscher [2013], this is prevented, by the use
of a sliding window for prediction. Instead of fitting the prediction model to the entire
data, the model is continuously fitted to the n P N last observations, or the observations
from the last m P N seconds, minutes, etc. Thus, the computational demand for detecting
performance anomalies remains constant, even when the amount of available data increases.
The rationale behind the use of sliding windows is, that observations from the near past
are related more closely to the current system performance, than observations from the
far past [Henning 2016]. Although this might hold true for some applications, prediction
models are usually more robust, when fitted to many observations. Hence, the use of
sliding windows can decrease the precision of the prediction, and increases the risk of
modeling abnormal behavior.

Generation of biased models is a general problem that arises, when empirically identi-
fied prediction models are used for anomaly detection [Chandola et al. 2009]. The data to
which the model is fitted might contain abnomal behaviour, thereby impairing the model’s
usability for identifying subsequent anomalies. The degree to which sliding window based

7

2. Foundations

prediction models are biased depends on how much of the data from the sliding window
results from abnomal behavior. In the worst case, anomalies slowly increase response times,
gradually fitting models to more and more abnormal behavior. To avoid such pathological
fitting processes, any technique that identifies anomalies based on predictions generated
from past data must be supplemented with static thresholds for anomaly detection.

2.3 Control Centers for Software Operation

Control centers can be used for monitoring software systems. Giesecke et al. [2006] dis-
tinguish between control centers for software operation and control centers for software
development. Control centers for software operation should reduce the time needed for
detecting and resolving issues in a running application, thus increasing the availability
of the service. Giesecke et al. [2006] emphasizes that software operation control centers
are targeted at human operators. Hence, a good control center is one that visualizes the
collected data in a way that supports issue detection and resolving.

2.4 FLS VISITOUR

FLS VISITOUR is a route scheduling software with a client-server architecture written in
C# an executed in Microsoft’s Common Language Runtime (CLR). FLS VISITOUR Server
provides means for managing field service employees and jobs (calls) and performs the
computationally demanding task of route scheduling and optimization. It uses a Microsoft
SQL (MSSQL) database server to store information about employees, jobs and the current
schedule. The services of VISITOUR Server are accessible through the Simple Object Access
Protocol (SOAP) which is a protocol for remote procedure calls and the exchange of data.

One of the most important services provided by VISITOUR Server is the generation of
appointment proposals for single jobs. Understanding how VISITOUR generates appointment
proposals, requires an understanding of how VISITOUR models jobs, tours and employees.
Therefore, Section 2.4.1 describes this model. Thereafter, Section 2.4.2 to Section 2.4.6
detail on different aspects of the generation of appointment proposals, and Section 2.4.7
summarizes these aspects into a comprehensive overview over the factors that influence
the reponse time of VISITOUR’ appointment proposal service. Requests for appointment
proposals can be issued through VISITOUR’s Call or CallProposal web service. Therefore,
we subsequently detail on selected web services provided by VISITOUR, namely:

1. the Call, CallProposal, and Calls web services for handling jobs and generating or
confirming appointment proposals (see Section 2.4.8)

2. the Optimize web service for generating and optimizing schedules for specified time
windows (see Section 2.4.9),

8

2.4. FLS VISITOUR

3. the DeletePlanning web service for deleting the current schedule within a specified time
window (see Section 2.4.10),

4. the FieldManager web service for creating/modifying database entries for field service
employees (Section 2.4.11), and

5. the RandomAddress web service for generating random postal addresses (Section 2.4.12).

2.4.1 Route Scheduling Model

VISITOUR is adapted to real world route scheduling demands. Employees are assigned day-
bound work times, overtimes, breaks, and holidays. Jobs are assigned a state, a duration and
possibly timing constraints, like being tied to opening hours. VISITOUR uses states to model
the life cycle of real world jobs. Jobs are created with state new. When an appointment
is confirmed, the corresponding job receives state confirmed. When an employee departs
for a job, the job receives state on route. During execution, the job’s state is in progress.
After a job has been served, it receives the state finished. When a previously confirmed
appointment is canceled, the corresponding job is assigned the state escalated. Figure 2.1
shows VISITOUR’s job states model as finite state machine with example transitions using
the Call (see Section 2.4.8), and DeletePlanning (see Section 2.4.10) web service, and SQL

update requests to the job database.
On every workday each available employee is assigned one tour. Jobs are scheduled by

including them in tours. Tours consist of sequences of jobs and interim travel times.

2.4.2 Generation of Appointment Proposals

To generate an appointment proposal VISITOUR iteratively inserts the target job into different
tours at different positions. Inserting a new job into a tour can result in a domino effect.
To illustrated this, consider what would happen when a new job is added to a tour that
already fills the employee’s entire workday. In order to serve the new job, one or more
previously confirmed jobs would have to be removed from that tour. Instead of canceling
these jobs, VISITOUR tries to include them in other tours, which in turn can lead to more
jobs dropping out of their respective tours.

The process of generating appointment proposals for a target job can roughly be divided
into two phases:

1. Identifying candidate positions, where the target job could be inserted into the current
schedule, i. e., the currently defined tours.

2. Comparing different route compositions with regard to a cost function.

Because real world route scheduling scenarios usually result in many possible route
compositions, VISITOUR uses parameterizable heuristics to limit the computational effort.
The parameterization allows customers to adapt VISITOUR’s route scheduling routines to
their needs, emphasizing speed or quality of optimization processes. In consequence, the

9

2. Foundations

escalated

confirmed

job deleted

new

finished

in progress

on route

Call [function code == 3]

SQL UPDATE [STATUS == 1 & TOUR_DATUM == NULL]

Call [function code == 3]

Call [function code == 3]

Call [function code == 2]

DeletePlanning [start date <= job appointment <= end date]

Call [function code == 3]

departure

Call [function code == 2]

Call [function code == 0]

end reported

start reported

Visual Paradigm Standard(University of Kiel)

Figure 2.1. VISITOUR’s job states. Example transitions are shown between job states. Arbitrary transi-
tions are possible through updating job database entries.

computational demands of an appointment proposal depends heavily on the parameteriza-
tion of these heuristics.

The heuristics offered by VISITOUR can be roughly separated into two groups, based
on the phase during which they are applied. Phase one heuristics reduces the size of the
problem by constraining the investigation to a subset of route compositions. The most pop-
ular phase one heuristics available in every VISITOUR Server installation identify candidate
positions through distance thresholds. These heuristics are described in Section 2.4.3. Other
heuristics in this group are available as payed extensions to the default installation. They

10

2.4. FLS VISITOUR

allow e. g., the identification of suitable positions for jobs based on skill requirements and
customer base.

Phase two heuristics reduce the duration of the investigation. The most commonly used
heuristic in this group works by setting a threshold for the number of route compositions
to investigate. This heuristic is described in Section 2.4.5. Another phase two heuristic
works by setting a threshold for the duration of the investigation in time units. This
heuristic is however not available for generating appointment proposals for single jobs. It
can only be applied to large scale scheduling operations, as offered by the Optimize service
(Section 2.4.9).

2.4.3 Candidate Positions

In every VISITOUR Server installation the number of candidate positions can be limited by
two parameters: the optimization radius and a threshold for employees resp. tours to include
in the optimization (tours threshold). Both parameter are part of the server configuration
and cannot be set as part of a Call or CallProposal request (see Section 2.4.8).

The optimization radius specifies a maximum distance in kilometers for including field
service employees in optimizations. If an employee’s base location is not further away than
the optimization radius the employee’s tour is included in the optimization, otherwise not.
Note, that including a tour in an optimization leads to the inclusion of all jobs on this tour
in the optimization. Thus, by default all jobs on this tour become subject to optimization.

The tours threshold utilizes the fact, that VISITOUR adds employees to optimizations
nearest to furthers, i. e., the tour of the nearest employee is included first, then the tour of
the second nearest, and so on. If the number of included tours in the optimization reaches
the tours threshold, VISITOUR will stop including more tours and move on to comparing
route compositions (phase two).

To clarify the relationship between these two parameters, consider a setup with tours
threshold set to 30 and two jobs j0, and j1, where j0 has 30 employees based within the
optimization radius, and j1 has 50. A request for an appointment proposal for job j0 would
include the tours of all 30 employees in the optimization. A request for an appointment
proposal for j1 on the other hand would include only the tours of the 30 nearest employees
in the optimization, discarding the other 20.

Additionally, VISITOUR uses three employee-specific parameters that determine which
employees are actually able to serve a target job and which only take part in the optimization
to permit domino effects: the deployment radius, and the tour length threshold. The deployment
radius specifies the maximum end to end distance in kilometers field service employees
are allowed to travel from their base location to a target job. The tour length threshold
specifies the maximum total distance an employee is allowed to travel on his tour. The
total traveling distance is computed as the sum of all distances an employee has to travel
on his tour, i. e., the distance between his base location and the first job on his tour, the
distances between the subsequent jobs, and the distance between the final job on his tour
and his base location. Both, the deployment radius and the tour length threshold can be set

11

2. Foundations

for each employee individually or through setting server default values assigned to newly
created employees.

To illustrate the interplay of all four parameters, consider an example setup where tours
threshold is set to 30, optimization radius is to 300 km, and deployment radius to 100 km.
Let’s assume in this setting we have a job j0, that has 20 employees based within 100 km,
additional 10 employees within 200 km, and another 10 employees within 300 km. If an
appointment proposal is requested for j0, all 20 employees based within 100 km would be
considered candidates for serving j0. The tours of the 10 employees based within 200 km
would be included in the optimization, but would not be considered candidates for the
target job, only for jobs dropping out of other tours (provided the distance to these jobs is
not greater than the employee’s deployment radius). Finally, the tours of the 10 employees
within 300 km would not be included in the optimization at all, because the total number
of tours in an optimization is limited by the tours threshold.

To provide the distances between job locations and job and employee locations nec-
essary for these heuristics, VISITOUR maintains a distance matrix (see Section 2.4.4). If a
distance required by an optimization is not found in the distance matrix, it is automatically
computed. Thus, distance calculations affect the response time of VISITOUR’s appointment
proposal service.

In conclusion, the most important factors influencing the job size of the optimization
performed in the course of an appointment proposal request are:

• the number of included tours,

• the number of identified candidate positions,

• and the number of included jobs

The more tours are included in an optimization, the higher is the number of candidate
positions. A high number of candidate positions leads to the inclusion of many possible
route compositions in the investigation. Likewise, a high number of included jobs increases
the complexity of the optimization, by increasing the number of route compositions. If
only empty tours were included in an optimization, finding the best appointment proposal
would be simple: just select the employee whose base location is closest to the job’s location.
The more jobs are included, the more possibilities arise to shift jobs between tours, thus,
increasing the response time of an appointment proposal request.

2.4.4 Distance Calculation

To generate appointment proposals, VISITOUR Server maintains a distance matrix, storing
distances between job/employee base locations. This distance matrix is extended whenever
a job is included in an optimization for the first time, e. g., when the first appointment pro-
posal is requested for a job. Thus, the first appointment proposal request is computationally
more expensive than every following proposal requests targeting the same job.

The standard distance matrix used by VISITOUR is an n� n square matrix. This matrix stores

12

2.4. FLS VISITOUR

all pairwise distances. The default size of a standard distance matrix is 8000� 8000. The
maximum size is limited by the maximum size of arrays in C#. In a 64 bit environment, an
array can contain up to 4 � 109 elements1. Thus, the maximum size of a standard distance
matrix is 63245� 63245, because

√
4 � 109 � 63 245.55.

A popular optimization that reduces memory usage, is the use of a rectangular n�m
matrix, where m n. For each job this matrix stores only the distances to the m nearest
job/employee base locations. This optimization is especially useful, when a huge number
of locations must be handled.

Distance and travel time calculations are based on road map data licensed from TomTom.
This data includes information on the geographical localization of roads, road lengths
and speed limits. End to end travel times are composed from travel times for single road
sections which in turn are derived from section lengths and speed limits.

2.4.5 Proposal Iterations

The proposal iteration heuristic uses the iterative character of phase two to limit the com-
putational effort for generating appointment proposals. In each iteration a possible route
composition is chosen and it’s cost value is computed which is used in a final step to
compare different schedulings and choose one with minimal costs. VISITOUR allows users to
set a threshold to limit the number of performed optimization iterations. When this threshold
is reached, VISITOUR stops investigating further route compositions and returns the position
belonging to the route composition with the lowest cost value as appointment proposal
for the target job. The threshold is part of the server configuration and cannot be specified
individually for every Call or CallProposal request.

2.4.6 Proposal Windows

In real world route scheduling it is often useful to generate multiple appointment proposals
at once, e. g., in order to leave the final choice to the customer or the human dispatcher.
VISITOUR supports this through the use of proposal windows. A proposal window is a
continuous time period during one day for which an appointment proposal is requested. If
multiple appointment proposals should be generated, a job can have multiple proposal
windows assigned. Consider a job j0 that can be served from 08:00 to 18:00 on one day
and a job j1 that can be served from 08:00 to 18:00 on two consecutive days. j0 could be
assigned one proposal window, whereas j1 could be assigned two proposal windows. In the
first case, VISITOUR would generate one appointment proposal and in the second case two
appointment proposals. Most importantly, in the first case VISITOUR would only perform
one optimization, whereas in the second case VISITOUR would perform two optimizations,
one for each service window.

1Source: https://msdn.microsoft.com/en-us/library/System.Array(v=vs.110).aspx

13

https://msdn.microsoft.com/en-us/library/System.Array(v=vs.110).aspx

2. Foundations

2.4.7 Response Time Influences

As described in Section 2.4.3 through Section 2.4.5, the most important factors influencing
the size of the computation triggered by an appointment proposal request are:

• the number of tours that are included in the optimization,

• the number of jobs that are included in the optimization,

• the number of candidate positions,

• the number of requested optimization iterations, and

• distance calculations

By influencing the computation, these parameters also influence the response time of
appointment proposal requests. Most importantly, these parameters influence the response
time of requests independently of other concurrently processed requests. To illustrate this,
imagine a hypothetical situation where VISITOUR processes requests one after another. In
this scenario, the response time of a request would depend exclusively on the identified job
size parameters, and would not be affected by other requests.

In practice however, requests do not arrive one after another, and the generation of
appointment proposals is partially performed concurrently, and sequentially. For every
incoming Call resp. CallProposal request VISITOUR spawns a new thread that extracts the
parameters for the proposal generation from the SOAP request’s payload. The identification
of candidate positions (phase one), and the iterative computation of cost values for different
route compositions (phase two) are however sequentialized through a mutual exclusion
condition, allowing at most one thread at a time. Consequently, when a thread executes
phase one or two, the execution of both phase by other appointment proposal requests is
stalled. The subsequent generation of the SOAP response is again performed concurrently.

Because requests are acceppted concurrently, and afterwards processed sequentially,
they can affect each other’s response time. Therefore, the current workload is another factor,
that influences the response time of VISITOUR’s appointment proposal service.

2.4.8 Call, CallProposal and Calls Web Sevices

The Call service is a multipurpose service for handling jobs. It allows users to create/modify
single jobs, to generate, and confirm appointments, and to delete jobs. Request to this
service specify i.a:

• a function code,

• a job ID to identify a job in the database,

• a location,

• start and end of the time interval during which the job should be scheduled, and

• a duration

14

2.4. FLS VISITOUR

Table 2.1. Mapping of Call request function codes to actions

function code action

0 create or update the target job,
1 generate an appointment proposal
2 confirm an appointment
3 delete a job from the database
4 delete a job only if it’s status is less than on route (see Section 2.4.1)
5 cancel a job’s currently confirmed appointment

The function code, determines the action VISITOUR performs. Table 2.1 shows the mapping
of function codes to actions.

The generation of appointment proposals and the confirmation of an appointment
is possible without prior creation of the job. If no job is specified in the corresponding
requests, a new database entry for the job is created. The confirmation of an appointment
proposal is even possible without specifying a date and time for the appointment. In this
case VISITOUR will automatically generate appointment proposals for the job and choose
one with the lowest cost value.

Jobs in the database are identified by job IDs. On creation every job is assigned a unique
internal job ID. Additionally, users can specify a unique external job ID for each job. These
external IDs can e. g., be useful when calling VISITOUR services from third party customer
relationship management (CRM) systems. To modify an existing job, Call request must
specify the internal or external ID the job to modify together with the job parameters that
should be updated in the database.

The response to a Call request contains a return code to indicate if the requested
operation was successful, or what error occurred. An overview over the possible return
codes for appointment proposal requests (Call requests using function code 1) can be
found in Table 2.2.

The CallProposal service is semantically similar to the Call service used with func-
tion code 1, in that both services trigger the same actions in the server. I. e., issuing a
CallProposal request for a job has the same effect as issuing a Call request with function
code 1 for that job. However, requests and responses of both services differ with regard to
the information, they contain. CallProposal request do not supply a function code, and the
responses do not contain a return code. In case of failure, CallProposal responses return a
text message informing the caller, that the server was unable to find a suitable appointment
proposal.

The Calls service offers bulk job creation and modification. A Calls request is equivalent
to multiple Call requests using function code 0. For each job users can specify the same
parameters as in the corresponding Call request. Concerning the assignment and use of
job IDs the rules described for the Call service also apply to Calls service requests.

15

2. Foundations

2.4.9 Optimize Web Service

With the Optimize web service users can trigger the creation or optimize of the schedule
for a specified time interval (optimization window). A request to this service must specify
the start and the end of the optimization window. Furthermore, users can specify which
unscheduled calls to include in the optimization in addition to the already scheduled jobs.
Users can e. g., choose to include escalated jobs or jobs that are currently destined to be
served, before or after the optimization window.

Optimize is often used to perform large scale prospective scheduling, like creating the
schedule for the next week or next month. In contrast, the Call resp. CallProposal service
is used to perform short-term (re-)scheduling of single jobs. Therefore, VISITOUR uses a
separate threshold to limit the optimization iterations in optimization processes triggered
by Optimize.

As detailed in Section 2.4.2 many of VISITOUR’s route scheduling heuristics are based
on distances. Therefore, VISITOUR first computes all missing pairwise distances for all
employees and all jobs in the optimization window, when an Optimize request is received.
Thus, the Optimize web service can be used to efficiently populate VISITOUR’s distance
matrix.

2.4.10 DeletePlanning Web Service

The DeletePlanning service allows users to cancel all currently confirmed appointments
falling into a specified time interval at once. A request to this service must specify a start
and an end point for the time interval used for canceling appointments. It is important to
emphasize, that DeletePlanning does not delete job database entries or the distance matrix.
Thus, DeletePlanning can be used to clear a schedule without loosing calculated end to
end distances.

In real world route scheduling canceling appointments usually requires actions on the

Table 2.2. Call response return codes for appointment proposal requests (Call requests using function
code 1)

return code description

0 appointment proposal succefully generated
1 appointment proposal succefully generated, job location geocoded by city

center (see Section 2.4.12)
2 job location not geocodable (see Section 2.4.12)
3 error in the specification of the time interval for the appointment

10 no valid appointment proposal found
30 job ID not found

-99 other error

16

2.4. FLS VISITOUR

side of the human dispatcher. Clients or field service employees have to be informed about
the cancellation, and a new appointment has to be found. Therefore, VISITOUR uses the
special job state escalated (see Section 2.4.1) to mark canceled jobs. By default, rescheduling
escalated jobs can only be done by human dispatchers. In consequence, escalated jobs are
by default not included in automatic (re-)scheduling actions, like Optimize requests (see
Section 2.4.9). To re-include escalated jobs in automatic scheduling actions, the job state has
to be changed back to new. In the case of the Optimize service the inclusion of escalated
jobs is controlled through a parameter (see Section 2.4.9).

2.4.11 FieldManager Web Service

Adding or updating data base entries for field service employees is possible through the
FieldManager service. Request to this service must specify at least:

• a surname and a forename,

• a start base location, and

• an end base location.

Start and end base location can be given as postal address or as coordinates. To modify an
existing database entry the FieldManager request must specify the field service employee’s
internal or external ID. Internal IDs are assigned by VISITOUR. External IDs can be specified
to map foreign IDs to field service employees. This is useful e. g., when calling VISITOUR

services from third party CRM systems.

2.4.12 RandomAddress Web Service

For testing purposes it is often useful to automatically generate postal addresses to be used
as job or employee base locations. This is possible through VISITOUR’s RandomAddress web
service. Requests to this service can specify:

• the number of addresses to generate,

• the random seed to use,

• the country and postal codes from which to draw postal addresses

The RandomAddress service returns only postal addresses for which house number level precise
geocoding is possible based on the currently available road network data. Geocoding is
the process of transforming a postal address to a geographic coordinate system, usually
latitude and longitude. Because using postal addresses is prone to error (addresses could
be typed incorrectly, or the road network data could be outdated), geocoding results are
assigned a precision level. These precision levels are the result of several fall-back strategies
VISITOUR uses to map a postal address to a latitude and a longitude. If the house number is
not found, coordinates for the street center are returned (street level precise geocoding). If the

17

2. Foundations

street is not found, coordinates for the city center are returned (city level precise geocoding),
and if the city is not found, no coordinates are returned.

2.5 Log Analysis with Elastic Stack

The Elastic Stack (formerly ELK Stack) is formed by the open-source applications Elastic-
search, Logstash and Kibana that are released under the Apache License 2.0. Elasticsearch
[Elastic 2016b] is a search and storage platform, making log data rapidly searchable.
Logstash [Elastic 2016d] is a log collector and parser, bringing together logs from different
sources. Kibana [Elastic 2016c] is a web front end for visualizing and querying logs stored
in Elasticsearch. Supplemented with applications for shipping logs from remote nodes to a
central log processor and storage, these tools form a system for centralized log management
and analysis. Because Kibana does not provide features for using complex statistical models
for response time prediction, we refrained from implementing the envisioned control center
(see Section 1.2.2) as Kibana plugin. Instead, we chose to implement the control center using
a programming language especially targeted at statistical data analysis (see Section 2.7).

2.5.1 Log Forwarding with the Beats Platform

An application that forwards locally generated log data to a central log processing system is
called a log forwarder or log shipper [Kühnel 2013; Churilin 2013]. The Beats Platform [Elastic
2016a] is an open source framework developed by Elastic for creating log shippers that
send logs to Logstash or directly to Elasticsearch. Log shippers developed with the Beats
Platform are termed Beats. Elastic supplies Beats for shipping

• information extracted from network packets (Packetbeat),

• log files (Filebeat),

• metrics from the operating system and running services (Metricbeat),

• Windows event logs (Winlogbeat).

Filebeat replaces logstash-forwarder as log shipper for Logstash2.

2.5.2 Log Management with Logstash

Logstash [Elastic 2016d] is an application that can collect logs from different sources and
parse them into a desired target format (log normalization), using a pipes-and-filter pattern.
Logstash thus acts as a preliminary stage for log storage and analysis. Input plugins
handle the collection of logs from different sources. Logstash can e.g. read log data from
sources like local log files, databases, syslog messages and log shippers build with the Beats
Platform. In combination with log shippers, Logstash can thus be setup as a central log

2Source: https://www.elastic.co/guide/en/beats/filebeat/current/migrating-from-logstash-forwarder.html

18

https://www.elastic.co/guide/en/beats/filebeat/current/migrating-from-logstash-forwarder.html

2.6. JMeter

processor, gathering logs from several nodes. Output plugins handle the use of different
back ends for storing log data, including Elasticsearch. Filter plugins like grok handle the
transformation of log data into a desired target format. Grok is the recommended filter
plugin in for parsing unstructured logs into structured logs using regular expressions.
Logstash also supplies a web front end for querying log data stored in Elasticsearch, but it
provides only limited features for log data analysis. Therefore, Kühnel [2013], and Churilin
[2013] recommend using Logstash only for pre-processing log data.

2.5.3 Search Platform Elasticsearch

Elasticsearch [Elastic 2016b] is a document-based, distributed full-text search and storage
platform based upon the Apache Lucene [Apache Software Foundation 2016b] text search
library. A document is a unit of information that can be indexed for searching. Documents
are grouped in collections, termed indices. Indices can contain documents of different type.
Types define the structure of the information contained in documents, i. e., the available
fields and their data types. Documents are received, stored, and served in JavaScript Object
Notation (JSON) format. New documents can be submitted via HTTP PUT requests. The
documents stored in an index are made rapidly searchable through the creation of an
inverted index. An inverted index maps text terms to locations in Elasticsearch’s document
stock. Thus, an inverted index can be used like a book’s index to quickly jump to positions
of interest. Searching can be done using the Apache Lucene Query Syntax or the JSON-based
Elasticsearch Query Language. Elasticsearch is build for high performance, availability and
horizontal scalability. High performance is provided through the inverted index, allowing
near real time searching. Scalability and availability are provided through sharding and
replicas. Sharding allows to split an index into several disjunct pieces (shards). A shard
can be thought of as a fully functional index of its own. Sharding is used to scatter an
index over an Elasticsearch cluster, formed by a group of Elasticsearch nodes. This allows
for parallel of operations and load distribution. For optimal parallelization the number of
nodes in a cluster should match the number of shards. Within a cluster it is possible to set
up replications of shards, termed replicas. Replicas are nodes that contain copies of shards
that can replace the original shard in case of a node failure.

2.6 JMeter

JMeter [Apache Software Foundation 2016a] is an open source load generator written in
Java and released under the Apache License. JMeter is targeted at testing web applications
using test plans. Test plans consist of test actions (samplers) nested in thread groups and
controllers. Thread groups and controllers define the control flow of a test plan. Thread groups
define sequences of a test actions that can be executed repeatedly concurrently by an
arbitrary number of threads. Controllers can be nested in thread groups for more fine-
grained regulation of control flow and as additional structuring elements. At a first glance

19

2. Foundations

controllers and thread groups appear very similar, because both consist of test actions and
both are used to manage the control flow. However, they differ in two important aspects:

1. Controllers cannot be used to define sections of concurrent execution. Test actions inside
a controller are always executed by a single thread. Concurrent execution of controller
actions is achieved by nesting controllers in thread groups.

2. Controllers can be nested inside each other, while thread groups cannot.

JMeter supplies e. g., controllers to loop over test actions (loop controller, while controller),
execute or skip test actions based on a condition (if controller), nest the execution of a thread
groups actions within another thread group (module controller), or simply to structure test
plans (simple controller).

Samplers are the most basic units of a test plan. Samplers test single web service
end points using different network protocols or execute scripts written in one of several
supported programming languages. Script samplers can be used e. g., to automatically
perform actions on service responses or to perform preparatory actions for requests, like
loading data from files. JMeter supplies among others samplers to:

• issue HTTP requests (HTTP request sampler)

• interact with databases using Java Database Connectivity (JDBC request sampler),

• execute Apache Groovy [Apache Software Foundation 2017] scripts (JSR 223 sampler).

Java Database Connectivity (JDBC) is an interface for accessing relational databases from
Java programs. A JDBC driver to access MSSQL databases is supplied by Microsoft [Microsoft
Corporation 2017]. Apache Groovy is an object-oriented programming language that is
dynamically compiled to Java Virtual Machine (JVM) bytecode. Groovy scripts can use Java
libraries, thus giving access to the huge library infrastructure available for Java.

In addition to test actions, JMeter test plans can contain timers. Timers can be used to
delay test actions by a fixed (constant timer) or random time interval (e. g., uniform random
timer).

JMeter can be executed in a GUI mode and a command line mode. The GUI mode is recom-
mended for building and debugging test plans. The command line mode is recommended
for executing tests, because of it’s smaller overhead concerning memory and CPU usage.

Because SOAP uses the HTTP protocol, JMeter is suitable for load testing VISITOUR’s
web services. The JDBC request sampler allows JMeter to access VISITOUR’s database. In
addition, complex setup procedures to prepare a VISITOUR server for testing, can benefit
from JMeter’s scripting features.

2.7 R

R [R Foundation 2016] is an open source interpreted programming language targeted at
statistical data analysis and released under the General Public License (GPL). It supplies
functions to perform statistical regressions, analysis of variance (ANOVA), and time series

20

2.7. R

analysis using ARIMA models (see Section 2.2). R is essentially a functional programming
language, but also supports other programming paradigms. R programs are executed
by R’s command line interpreter. R’s core functionality can be extended by user created
packages, available e. g., through the Comprehensive R Archive Network (CRAN). CRAN

supplies among others the packages:

• shiny for creating web applications in R,

• elastic to access Elasticsearch from R, and

• methods to support an object-oriented programming style in R (part of R’s core since
version 1.4)

The shiny package [RStudio Inc. 2016] provides a web framework for R. Shiny is targeted
at building web applications (shiny apps) that make use of R’s features for statistical data
analysis. Shiny apps can be hosted using Shiny Server. For debugging and local usage, shiny
apps can also be run from an R terminal. Shiny can make use of the CSS framework bootstrap
[Twitter Inc. 2016] for creating responsive websites. Responsive websites automatically adapt
the display of their content to the display width of the device accessing the website. Thus,
shiny can be used to create websites that are meant to be accessed from both, mobile and
desktop devices. Shiny supplies three components to support the development of web
applications that react quickly to events, like user inputs: reactive sources, reactive conductors,
and reactive end points. Reactive sources are values that generate events when they are
changed. Changes can come from user inputs through HTML input elements (text, radio
buttons, etc.) or automatic actions, like timed execution of code. Reactive conductors and
end points are functions used to handle events. They are linked to reactive sources by
the observer pattern. I. e., they are called when one of their observed sources is changed.
Reactive conductors and end points differ with regard to propagating events. Reactive
conductors can them self be observed by other reactive conductors and end points. I. e.,
if the value of a reactive conductor changes, all of its observers are called. Thus, reactive
conductors can be used to generate chains of events. Reactive end points on the other
hand do not propagate events. They are used for their side effects, like rendering website
content or persisting data. Planful usage of these reactive components allows users to build
websites that are (re-)generated quickly, constraining (re-)computation of the display to the
necessary minimum.

The elastic package makes use of Elasticsearch’s Representational State Transfer (REST)
interface. It provides e. g., wrapper functions to list all indices of an Elasticsearch instance
and to query an Elasticsearch index using the Apache Lucene or the Elasticsearch query
language (see Section 2.5.3).

The methods package allows developers to use an object-oriented programming style
for software development in R. The package defines a type ReferenceClass that is suit-
able to model objects with complex states [Wickham 2014] by reducing the overhead of
passing arguments to functions. In R, function calls can be costly, when passing large
data as arguments. The reason for this is that R uses call-by-value [see R Core Team

21

2. Foundations

2016] for passing arguments to functions and (in most cases) copies the arguments to the
function’s environment. Using the ReferenceClass objects can reduce this overhead, by
giving functions access to data without the need to pass this data as arguments. This is
accomplished by implementing ReferenceClass objects as environments. Environments are
R base types, consisting of a set of name-to-value mappings and a pointer to an enclosing
environment (the root environment being the empty environment). R uses environments
for name lookup, i. e., when R searches for a name’s definition, it first searches for the
name in the current environment. If the name is not defined in the current environment, R
sequentially searches through the enclosing environments. By assigning the attributes of
an object in a shared environment and setting this environment as enclosing environment
for the object’s methods, attributes can reliably be accesses from within methods without
interference from variables in other environments. Thus, to avoid passing large data as
arguments to a function, the data can be stored in an object’s attribute and the function can
be implemented as a method, accessing that attribute from within the function’s body.

Because R provides means to perform complex statistical analysis (most importantly
linear, and non-linear regression, ANOVA and time series analysis using ARIMA models), it
is suited for analyzing and predicting response times. Supplementing R applications with
a web based graphical user interface is possible using shiny. Thus, shiny can be used to
build a control center that makes use of R’s features for statistical analysis for anomaly
detection. Finally, accessing monitoring data stored in Elasticsearch from R is possible
using the elastic package.

22

Chapter 3

Performance Test

This chapter details on the test setup and test procedure. We used two physical machines:
one to run FLS VISITOUR Server (VISITOUR Server test instance) and the other to generate the
workload for the former (load generator instance). The load generator ran JMeter version 3.1,
the VISITOUR Server test instance ran 64 bit VISITOUR version 1606.3200.810.1, with German
road network data version 201606.

We start with a description of the test design in Section 3.1. Thereafter, Section 3.2
describes the configuration and the setup procedure used to initialize the VISITOUR Server
Test Instance. Thereafter, Section 3.3 describes the test procedure that was performed by the
Load Generator. Section 3.4 describes the used hardware. The methods used to collect the
response time, workload, and job size data generated by the performance test are described
in Section 3.5, and finally, Section 3.6 describes the results of the analysis of the data.

3.1 Design

In Section 2.4.7 we concluded, that the response time of VISITOUR’s appointment proposal
service depends both on, workload and job size. The job size of an appointment proposal
request depends on several job size parameters: (1) the number of tours that are included
in the optimization, (2) the number of jobs that are included in the optimization, (3) the
number of candidate positions, (4) the number of requested optimization iterations, and
(5) distance calculations. The workload at any point in time is given by the number of
concurrently processed requests.

To generate response time data for subsequent analysis we issued Call requests, varying
both, job size parameters and the number of concurrently processed requests:

• The number of tours was explicitly varied through using three optimization radii. The
random geographical distribution of employees and jobs in the test setting provided a
further implicit variation of this parameter (see Section 3.2).

• To vary the number of jobs, we needed to create confirmed appointments in our test
setting. The jobs corresponding to these appointments would then be included in sub-
sequent optimizations. This was done through establishing different schedule saturation
levels in the test setting (see Section 3.2.2). The jobs scheduled at each level were randomly
selected in a preceding step.

23

3. Performance Test

• The number of candidate positions was varied explicitly via the manipulation of the
optimization radius. The use of different schedule saturation levels resulted in a further
implicit variation of this parameter.

• The number of requested optimization iterations was explicitly varied by using three
different settings for this server configuration parameter.

• The necessity for distance calculations was eliminated in the test setting through ini-
tializing the VISITOUR Server test instance with a fully populated distance matrix (see
Section 3.3.1).

• To vary the number of concurrently processed appointment proposal requests we used
four threads, each generating series of requests, with a randomly selected delay between
subsequent requests (see Section 3.3.3).

The used optimization radii were R := {150 km, 300 km, 450 km}. The used saturation
levels were L := {low, mid, high}, and the different settings for requested optimization
iterations were I := {1000, 2000, 3000}. Thus, this test design yields a total of |R| � |L| � |I| =
33 = 27 groups. For each group we generated 600 observations, resulting in a total of
27 � 600 = 16 200 observations. Table 3.1 gives an overview over the used test groups.

3.2 Test Setting

VISITOUR is a real world route scheduling software that performs route scheduling within a
given settings of employees and jobs located at different geographical positions.

Therefore, we created a standard test setting wherein appointment proposals for single
jobs were requested for a given target date. The use of a fixed test setting ensures compa-
rability between different executions of this performance test. Hence, we automated the
establishment of the test setting in a VISITOUR Server and included it in the initialization
phase of our VISITOUR Server test instance (see Section 3.3.1). The test setting consisted of:

1. a set E of 150 field service employees (see Section 3.2.1), and

2. a set J, of 5000 jobs (see Section 3.2.2).

Because VISITOUR loads road network data on a per-country basis, we restricted all
employee and job locations to Germany. As target date we chose Monday, 03. April 2017,
because it is no holiday in Germany, and it is a date after the submission of this thesis and
thus did not require schedule optimization in the past to be enabled during the execution
of the test.

The specified test setting required VISITOUR to handle at most 5150 locations; 150
employee base locations (for each employee we used the same postal address for start
and end base location) and 5000 job locations. Thus, the distance matrix had less than
5150� 5150 entries, because employees and jobs could share locations. Therefore, we were
able to use a default sized standard distance matrix (see Section 2.4.4) in our VISITOUR

Server test instance.

24

3.2. Test Setting

3.2.1 Generation of Field Service Employees

For the test we created a set E of 150 field service employees at random locations within
Germany. Each employee was generated with a deployment radius of 450 km, and a tour
length threshold of 2000 km. Thus, all employees included in an optimization should be
able to serve the target job (see Section 2.4.3). Field service employees were created with
daily working hours 08:00 - 16:00 and being present on the target date (no sick leave or
holiday-related absence). For simplification the generated field service employees were

Table 3.1. Test Groups

Saturation Level Optimization Radius Proposal Iterations Group No.

3000 0
150 km 2000 1

1000 2

3000 3
low 300 km 2000 4

1000 5

3000 6
450 km 2000 7

1000 8

3000 9
150 km 2000 10

1000 11

3000 12
mid 300 km 2000 13

1000 14

3000 15
450 km 2000 16

1000 17

3000 18
150 km 2000 19

1000 20

3000 21
high 300 km 2000 22

1000 23

3000 24
450 km 2000 25

1000 26

25

3. Performance Test

given no breaks and no overtime working window. Thus, all scheduling was bound to the
continuous scheduling window 08:00 to 16:00.

The employee base locations (city, street, and zip code) were created using VISITOUR’s
RandomAddress web service (see Section 2.4.12). In an additional filtering step postal ad-
dresses on German islands without a road link to German mainland road network were
excluded to ensure that all employees had access to German mainland road network (see
Appendix A.1). We also ensured that the employee deployment areas (the area given by the
deployment radius around the employee’s base location) put together covered the entire
German mainland. This was done visually by plotting employee base locations on a map
together with the smallest deployment radius used in the test (see Figure 3.1). The plot
indicated, that all locations on German mainland were covered by at least one employee’s
deployment area. Additionally, a pretest ensured, that all jobs in the test setting could be
served by at least one field service employee (see Section 3.2.2).

The generated addresses (city, street, and zip code) were stored as text file employee-

test-set.json in JSON format. This text file can be found in the supplementary material of
this thesis (see Appendix A.3).

3.2.2 Generation of Jobs

For the test we created a set J of 5000 jobs at random locations in Germany. Each job was
assigned an ID of the form jXXXX where XXXX was a uniquely assigned job number starting
at 0000 and going to 4999. These IDs were used as external job IDs on job creation (see
Section 2.4.8). Thereby, we were able to request appointment proposals and cofirmation
for jobs using their external ID instead of having to specify internal job IDs. All jobs were
created to be served on the target date between 08:00 - 16:00. This single, continuous
scheduling window was chosen as target scheduling window to let VISITOUR generate exactly
one appointment proposal per Call request (see Section 2.4.6). The duration of each job
was set to 1 h. Consequently, each employee could serve up to 8 jobs per day when they
required no traveling time. Therefore, the total number of servable jobs could not be greater
than |E| � 8 = 150 � 8 = 1200.

The addresses (city, street, and zip code) used as job locations were created using
VISITOUR’s RandomAddress web service (see Section 2.4.12). Similarly, to the generation of
employee base locations, postal addresses on German islands without a road link to
German mainland road network were excluded in an additional filtering step to ensure
that all jobs were accessible from German mainland road network (see Appendix A.1).
The generated jobs (city, street, zip code, duration and external job ID) were stored as text
file job-test-set.json in JSON format. This text file can be found in the supplementary
material of this thesis (see Appendix A.3).

We conducted a pretest to ensure that every job in the test setting could be served by at
least one field service employee. In this pretest we requested an appointment proposal for
each job in J using VISITOUR’s Call web service. The pretest was run in test setting where
no jobs where scheduled.

26

3.2. Test Setting

employee base location

48

50

52

54

6 9 12 15

longitude

la
tit

ud
e

Figure 3.1. Base locations of all employees in the test setting with deployment radius 150 km.

Because the generation of candidate positions (and therefore the response time of
the Call service) depends on the schedule saturation (see Section 2.4.3), we included a
manipulation of the schedule saturation in our test. To find suitable schedule saturation levels,
we conducted another pretest to explore the total number of jobs that could be scheduled
in the test setting. This pretest consisted of three subsequent request to the Optimize

web service, requesting a scheduling for the entire target date using 10 000 iterations. All
three requests resulted in the scheduling of 950 jobs. With respect to this empirically

27

3. Performance Test

Table 3.2. Schedule Saturation Levels

Level Set of Jobs No. of Scheduled Jobs

low Jlow 300
mid Jmid 600
high Jhigh 900

found upper bound of jobs that could be served in the test setting, we defined the three
schedule saturation levels shown in Table 3.2. For each schedule saturation level l P L :=
{low, mid, high} we created a set of jobs Jl � J. To set VISITOUR to the desired schedule
saturation level, we scheduled all jobs in the corresponding set Jl . For each set we stored the
external IDs of the jobs as string array in JSON format in a separate text file, creating the files
saturation-level-low.json, saturation-level-mid.json, and saturation-level-high.json.
These text files can be found in the supplementary material of this thesis (see Appendix
A.3).

3.3 Test Procedure

The test procedure (test plan) was divided into three phases: initialization, warm-up, and the
strain phase. The initialization phase was used to establish the test setting and to configure
VISITOUR Server accordingly. During the strain phase, the workload and performance data
for this analysis was captured. A warm-up phase was included, to warm-up effects. Effects
that vanish over time are called warm-up effects. They bias only the first couple of response
times in a test series. Warm-up effect result e. g., from loading data from secondary memory
or just-in-time (JIT) compilation [see e. g., Waller and Hasselbring 2013; Singer 2003]. JIT

compilation describes a technique, where source code is compiled to machine or byte code
at run time as needed. JIT compilation is e. g., used in the JVM and the CLR, where VISITOUR

server is executed. In the CLR compilation actions are usually triggered when a class is
loaded (e. g., when the class is instantiated or one of its static methods is called for the first
time). Thus, the first execution of a program or a section of code is often more expensive
than every following execution. Warm-up phases are used to account for the effect of JIT

compilation on response times in performance tests. Rohr [2015] e. g., used a warm-up
of three minutes to counteract JIT compilation effects. However, Waller and Hasselbring
[2013] noted that warm-up phases are affected by hardware and software configurations
and therefore have to be individually chosen for every test based on preliminary empirical
examinations of response times.

We used JMeter (see Section 2.6) to execute the test plan. Because we repeatedly
observed unpredictable stopping of execution after several thousand requests, we split the
test plan into several pieces. One piece for initialization and warm-up, and three pieces
for the strain phase. We used a shell script (jmeter.bat) to sequentially execute the test

28

3.3. Test Procedure

pieces. This shell script repeatedly started JMeter in command line mode executing on test
piece after another. The initialization and warm-up procedure called JMeter with the test
plan file init_and_warm_up.jmx, the strain phase pieces called JMeter with the test plan file
strain.jmx using different command line parameters. The shell script and the test plan
files are available in the supplementary material of this thesis (see Appendix A.3).

3.3.1 Initialization Phase

During the initialization phase the following steps were performed:

1. Set the tours threshold (SUCHANZAHL) to |E| = 150. Thus, in the test setting no field service
employee was excluded from an optimization because the total number of employees
in the optimization exceeded the tours threshold (see Section 2.4.3). In consequence,
the number of employees in every optimization was fully determined by the job and
employee base location and the current optimization radius

2. Set the maximum number of jobs on a tour (OPT_MAXBESUCHEJETOUR) to 8. As the name
suggests, this parameter is used as a threshold to limit the number of jobs on a tour. We
chose a threshold of 8, because in the test setting every field service employee could
serve only up to 8 jobs on his tour.

3. Set default values for creating field service employees (see Section 2.4.3). This ensured
that all field service employees in the test setting (which were created in step 5) were
created as stated in Section 3.2.1. Listing 3.1 shows the SQL UPDATE query that was used
for this.

(a) Set default deployment radius (OPT_MITARBEITER_EINSATZ_RADIUS) for the creation
of employees to 450 km.

(b) Set default tour length threshold (OPT_MITARBEITER_MAXTOURKM) for the creation of
employees to 2000 km.

(c) Set default daily working hours to 08:00 - 16:00.

4. Create field service employees of the test setting. This was done using VISITOUR’s
FieldManager web service (see Section 2.4.11) and a JMeter loop controller (see Sec-
tion 2.6). The controller read all employee base addresses from employee-test-set.json

and issued a FieldManager request for each address.

5. Create jobs of the test setting. This was done with a request to VISITOUR’s Calls web
service (see Section 2.4.8), passing the data of all 5000 jobs to VISITOUR for batch job
creation.

6. Initialize the distance matrix to eliminate the need for distance calculations during the
strain phase using the Optimize web service (see Section 2.4.9). This was done through:

29

3. Performance Test

(a) Set the threshold applied to optimization iterations triggered by Optimize (ITERATI-
ONEN_LOKAL) to 1, in order to minimize the duration of the optimization.

(b) Request a combined optimization of all jobs on the target date through the Optimize

web service. After this request, the VISITOUR test instance has a fully populated
distance matrix. As a side effect, Optimize also writes the created schedule to the
data base.

(c) Delete the created schedule for the target date while preserving the distance matrix.
This was done through:

i. A request to the DeletePlanning web service (see Section 2.4.10). This deletes
all scheduled job appointments, but not the distance matrix. As a side effect,
the formerly scheduled jobs receive the status escalated.

ii. Reset the status (STATUS) of all jobs to new (1) and clear all entries from tour
dates, i. e., set TOUR_DATUM to NULL for all jobs. Thus, the formerly scheduled
jobs are re-included in subsequent scheduling requests.

(d) Reset ITERATIONEN_LOKAL to 10 000.

The execution of the initialization phase took 9.02 min.

Listing 3.1. SQL query used to configure VISITOUR Server

UPDATE DEV_VISITOUR_WR.DBO.VTSSTAMM SET

SUCHANZAHL = 150,

OPT_MAXBESUCHEJETOUR = 8,

OPT_MITARBEITER_EINSATZ_RADIUS = 450,

OPT_MITARBEITER_MAXTOURKM = 2000,

ARBEITSZEIT_MO_VON = ’08:00’,

ARBEITSZEIT_MO_BIS = ’16:00’,

ARBEITSZEIT_DI_VON = ’08:00’,

ARBEITSZEIT_DI_BIS = ’16:00’,

ARBEITSZEIT_MI_VON = ’08:00’,

ARBEITSZEIT_MI_BIS = ’16:00’,

ARBEITSZEIT_DO_VON = ’08:00’,

ARBEITSZEIT_DO_BIS = ’16:00’,

ARBEITSZEIT_FR_VON = ’08:00’,

ARBEITSZEIT_FR_BIS = ’16:00’;

3.3.2 Warm-Up Phase

A pretest consisting of 10 000 Call requests suggested that 5000 requests would be sufficient
to prevent warm-up effects in the strain phase. Consequently, we chose a warm-up of 5000
request for this test, requesting appointment proposals for randomly chosen jobs from the
entire set of generated jobs J (see Section 3.2.2). The execution of the warm-up took 3.3 min.

30

3.4. Hardware

3.3.3 Strain Phase

During the strain phase the following steps were performed for each optimization radius
r P R := {150 km, 300 km, 450 km}:

1. Set the optimization radius to r.

2. For each schedule saturation level l P {low, mid, high}:

(a) Read the external IDs of the jobs in Jl from the corresponding text file (see Sec-
tion 3.2.2).

(b) Set the VISITOUR Server test instance to the desired schedule saturation level. Each
job is scheduled through a request to VISITOUR’s Call web service using the job’s
external ID and function code 2, causing the job to be automatically scheduled
at the best possible position. This was done using a JMeter loop controller (see
Section 2.6).

(c) For each iteration value i P I := {1000, 2000, 3000}:

i. Set the number of optimization iterations to i.
ii. Request appointment proposals for n := 600 randomly chosen currently

unscheduled jobs using 4 threads (each thread executing 150 request using a
JMeter loop controller). Between subsequent requests each thread waits for
a random time interval 0 ¤ t ¤ 15 000 ms. The time intervals were generated
with a random uniform timer (see Section 2.6).

(d) Delete the created schedule before establishing the next saturation level. This was
done similarly to the deletion of the schedule during the initialization phase (see
Section 3.3.1):

i. Send a request to the DeletePlanning web service.
ii. Reset STATUS to 1 and TOUR_DATUM to NULL for all jobs.

Note, that this test procedure did not simulate real world workload patterns of VISITOUR

Server, because at the time of writing, there was no data on customer workload profiles
available.

3.4 Hardware

Table 3.3 shows the hardware configuration of the VISITOUR Server test instance and the load
generator. Because we used to separate physical machines, the generation of the workload
and the generation of the appointment proposals did not compete for system resources
during the test.

VISITOUR Server uses a lot of memory due to holding road network data (approx. 800 MB
for Germany) as well as the potentially large distance matrix in memory during execution.

31

3. Performance Test

Table 3.3. Hardware Configuration

VISITOUR Server Test Instance Load Generator

Model Dell Latitude E6540 Dell Optiplex 9010
RAM 8 GB 16 GB
OS Windows 7 Professional SP1 64 bit Windows 8.1 Professional 64 bit
CPU Model Intel Core i7-4810MQ Intel Core i7-3770
CPU Cores 4 4
CPU Clock Rate 2.80 GHz 3.40 GHz

Thus, we saw a risk of using too much of the physical machine’s memory during test
execution, resulting in an increased page fault rate and possibly even thrashing. A page fault
occurs when a process accesses a page from its virtual memory that is not present in the
physical memory and therefore must be fetched from secondary memory. Thrashing is
the state when a machine spends so much time transferring pages to and from secondary
memory, that these disk IO operations slow down the overall system performance. This can
happen e.g. when the working sets of all processes together are larger than the machines
physical memory. Consequently, page faults and particularly thrashing can diminish
service response times. We conducted a pretest to screen the memory utilization during
the execution of the test. The pretest ran the entire test procedure described in Section 3.3.
We used Microsoft Resource Monitor utility shipped with Windows 7 SP1 to monitor the
memory utilization during the test execution. The memory usage of the VISITOUR process
peaked at approx. 1 200 000 kB = 1200 MB during the test. The overall memory utilization
stayed below 4.2 GB. Thus, the occurrence of increased page fault rates or thrashing seemed
unlikely during the test.

3.5 Data Collection

The data for the analysis was extracted from the local log file of the VISITOUR Server test
instance. We extracted the Call requests, responses, and the corresponding Monitoring-

Information log entries. Exemplary Call request, and response log entries can be found
in Listing 3.2, and Listing 3.3. Listing 3.4 shows an exemplary MonitoringInformation log
entry.

The first line of every log entry consists of the start marker #####, followed by a single
character serving as IO indicator, an eight digit log entry ID, the log entry timestamp, and
the log entry type. Possible IO indicators are < for requests, > for responses, and i for
information log entries. The log entry ID is used to identify related log entries. E. g., the
request, the response, and the MonitoringInformation belonging to the same appointment
proposal generation process are all logged with the same log entry ID. To illustrate this, we
chose log entries from the same appointment generation process as example log entries

32

3.5. Data Collection

(see Listing 3.4 through Listing 3.3). The timestamp of a log entry is composed of the
date and the time, separated by a space. The date consists of four digits for the year, two
for the month, and two for the day. The time consists of two digits for the hour, two for
the minute, two for the second, and three for milliseconds. The type of a log entry is in
most cases the name of the SOAP service that produced the log entry. In cases, where log
entries are not directly connected to a service, the type is a name that identifies the kind of
the entry. This applies e. g., to MonitoringInformation log entries. Thereafter, Call request,
and response log entries display the information from the corresponding HTML request
respectively response. The HTML header is thereby separated from the payload by an empty
line.

Listing 3.2. Example Call request log entry

#####< 00013663 20170302 190112327 Call

POST http://192.168.1.29:82/VTS/Call

POST /VTS/Call

Connection: keep-alive

Content-Length: 251

Content-Type: text/xml; charset=utf-8

Host: 192.168.1.29:82

User-Agent: Apache-HttpClient/4.5.2 (Java/1.8.0_121)

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Body>

<m:Call xmlns:m="http://www.tourenserver.de">

<m:FunctionCode>1</m:FunctionCode>

<m:VTID>265290</m:VTID>

</m:Call>

</env:Body>

</env:Envelope>

Listing 3.3. Example Call response log entry

#####> 00013663 20170302 190115322 Call

Server: FLS Server 1606.3200.810.1

Connection: keep-alive

Content-Type: text/xml; charset=UTF-8

Content-Length: 771

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi

="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org

/2001/XMLSchema" soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding

33

3. Performance Test

/" xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<CallResponse xmlns="http://www.tourenserver.de/">

<CallResult>0</CallResult>

<VTID>265290</VTID>

<InfoText></InfoText>

<Appointments>

<Appointment>

<FunctionCode>1</FunctionCode>

<Status>0</Status>

<Date>2017-04-03T09:46:00+02:00</Date>

<Time>2017-04-03T09:46:00+02:00</Time>

<Detour>112</Detour>

<FMVTID>2908</FMVTID>

<FMExtID>2908</FMExtID>

<Info></Info>

<Cost>271</Cost>

</Appointment>

</Appointments>

</CallResponse>

</soap:Body>

</soap:Envelope>

Listing 3.4. Example MonitoringInformation log entry

#####i 00013663 20170302 190115322 MonitoringInformation

<optinfo>

<type>proCallProposals</type>

<iterations>3000</iterations>

<duration>2883</duration>

<calls>212</calls>

<tours>54</tours>

<cand>11453</cand>

<dimaadd>0</dimaadd>

<dimafound>621</dimafound>

<dimahit>13382478</dimahit>

<dimamiss>0</dimamiss>

</optinfo>

The logging of MonitoringInformation entries is not enabled by default in VISITOUR

Server. It requires the Monitoring Extension that was specifically developed to supply in-
formation on request job size parameters for this thesis. MonitoringInformation log entries

34

3.5. Data Collection

Table 3.4. Fields in MonitoringInformation log entries

Field Description

type Operation that triggered the optimization. Possible values are:
proCallProposals (optimization was trigged by a CallProposal or a Call re-
quest using function code 1), and proOptimize (optimization was triggered
by an Optimize request).

iterations Number of requested optimization iterations.
duration Duration of the optimization in ms.
calls Number of jobs included in the optimization (see Section 2.4.3).
tours Number of tours included in the optimization (see Section 2.4.3).
cand The cumulated sum of candidate positions: the candidate positions for the

target job, plus the candidate positions for all jobs affected by domino
effects in the course of the optimization, plus one dummy slot to put
escalated jobs in.

dimaadd Number of entries added to the distance matrix in the course of the
generation of the appointment proposal (see Section 2.4.3).

dimafound Number of distances needed for the generation of the appointment pro-
posal and already present in the distance matrix.

dimamiss Number of unsuccessful distance matrix lookup operations.
dimahit Number of successfull distance matrix lookup operations.

supply additional information on the generation of appointment proposals and confirma-
tions, triggered through the Call, CallProposal and Optimize web services. Table 3.4 gives
an overview over the fields of MonitoringInformation entries. The provided fields include
several job size parameter, the duration of the optimization, and measures of distance matrix
operations. The logged job size parameters are tours, calls, cand and iterations, providing
information on the number of included tours, and jobs, the number of candidate positions,
and the number of requested optimization iterations (see Table 3.4 for a description). The
optimization duration is the duration between the start end the end of the optimization,
i. e., the response time of the mere optimization. Although the optimization code section is
performed mutually exclusive, there is no guarantee that the optimization is also executed
uninterruptedly. It could be interrupted by a thread, that executes a different code section,
not falling under the control of the mutual exclusion condition, like e. g., a thread handling
a SOAP request or response. Hence, the workload can affect the optimization duration.
Consequently, the optimization was not included into the subsequent analysis as a job size
parameter.

MonitoringInformation supplies four measures of distance matrix operations: dimadd,
dimafound, dimamiss, and most importantly, dimahit. Dimaadd is the number of distances
that were added to the distance matrix in the course of the optimization. Dimafound is
the complementary measure, capturing the number of distance matrix entries needed for

35

3. Performance Test

e

j0
j1

j2

d0

d5

d3

d4

d1

d2

Figure 3.2. Example route scheduling setting with one field service employee e and three jobs j0, j1,
and j2

the optimization but already pre-calculated in the distance matrix. In contrast, dimahit
and dimamiss are measures of distance matrix lookup operations. Dimahit is the number of
successful lookup operations, and dimamiss is the number of unsuccessful. To illustrate
the relationship between all four measures of distance matrix operations, consider the
route schedulin setting displayed in Figure 3.2. This setting consists of one employee base
location e, and three job locations j0, j1, and j2, and the distances d0 through d5. Let us
assume that in this setting, d0, d2, d3, and d4 are present in the distance matrix, whereas d1,
and d5 are not. An optimization that investigates the routes r0 : e Ñ j0 Ñ j2 Ñ j1 Ñ e, and
r1 : e Ñ j2 Ñ j1 Ñ j0 Ñ e, would thus result in:

• dimaadd = 2, because d5 is necessary for r0, and d1 for r1,

• dimafound = 4, because d0, d2, d3, and d4 were used in the investigation and already
present in the distance matrix,

• dimahit = 6, because d0, d2 were both successfully looked up twice, and d3, d4, were
each successfully looked up once,

• dimamiss = 2, because d5 was looked up unsuccessfully during the investigation of r0,
and d1 was looked up unsuccessfully during the investigation of route r1. Note, that
in cases where the distance matrix is large enough to hold all distances needed in the
course of an optimization, dimamiss is always equal to dimaadd, because misses occur
only once. However, if a distance matrix is used that holds only the n nearest locations,
like e. g., a rectangular distance matrix (see Section 2.4.4), misses can occur and trigger
distance calculations without adding the calculated distance value to the matrix.

Although the job size parameters tours, calls, candidates, and requested iterations were
identified as important job size predictors (see Section 2.4.2), dimahit can be considered
an even more important job size parameter. Dimahit reflects not only the number of
investigated routes, jobs, and candidate positions for the target job, but also the routes,
jobs, and candidate positions used to account for domino effects. Furthermore, dimahit is
also affected by the number of performed optimization iterations.

36

3.5. Data Collection

The log processing setup implemented for the control center (see Section 4.3) was used
to extract the log entries from the log file after the test procedure was finished. This setup
consisted of Filebeat, Logstash and Elasticsearch (see Section 2.5). Filebeat was used to
forward Call and MonitoringInformation log entries to Logstash. For a detailed description
of the utilized Filebeat configuration see Section 4.3. Logstash was used to aggregate the
data extracted from the Call request, response, and MonitoringInformation log entries.
For each appointment proposal, the information from the request, the response, and the
MonitoringInformation was combined in a single event. Then we used Logstash to compute
a total response time in milliseconds from the request and response timestamp and store it
in the combined event. Thereafter, the event written as type call_aggregate into the index
performance-test-calls. Table 4.1 gives an overview over the structure of this index. A
detailed description of the utilized Logstash configuration can be found in Section 4.3.

As a final step, we loaded the data into R using the queryElasticsearch method of
the VisitourInstance class from the implementation of the control center to retrieve the
data from Elasticsearch as data.frame (see Section 4.2). queryElasticsearch computes a
concurrency score for each appointment proposal request. This concurrency score was
calculated similarly to the response time based pwi1 metric used by Rohr et al. [2010] to
compute the workload intensity produced by concurrently executed function calls. For a
request r, received at time st(r) and returned at time rt(r), we define the concurrency score
function cs : r Ñ [1,8) � R as:

cs(r) :=
1

st(r)� rt(r) ∑
sPR

overlap(r, s)

where R is the set of requests generated by the performance test procedure, and overlap is
the overlap interval of two requests, defined as:

overlap(s, r) :=

0 if st(r)� st(s) ¡ 0^ st(r)� rt(s) ¥ 0^ rt(r)� st(s) ¡ 0^ rt(r)� rt(s) ¡ 0
rt(s)� st(r) if st(r)� st(s) ¡ 0^ st(r)� rt(s) 0^ rt(r)� st(s) ¥ 0^ rt(r)� rt(s) ¥ 0
rt(s)� st(s) if st(r)� st(s) ¤ 0^ st(r)� rt(s) 0^ rt(r)� st(s) ¡ 0^ rt(r)� rt(s) ¥ 0
rt(r)� st(s) if st(r)� st(s) ¤ 0^ st(r)� rt(s) 0^ rt(r)� st(s) ¡ 0^ rt(r)� rt(s) 0
0 if st(r)� st(s) 0^ st(r)� rt(s) 0^ rt(r)� st(s) ¤ 0^ rt(r)� rt(s) 0
rt(r)� st(r) if st(r)� st(s) ¡ 0^ st(r)� rt(s) 0^ rt(r)� st(s) ¡ 0^ rt(r)� rt(s) 0

Figure 3.3 displays the possible overlap scenarios expressed in the cases of the overlap
function on a timeline.

In words, cs(r) is the sum of all overlaps, divided by the request’s duration. Because
every request overlaps itself, cs(s) ¥ 1 for all r P R. Like [Rohr et al. 2010] we assume,
that time can be expressed in natural numbers, i. e., st : r Ñ N, and rt : r Ñ N. Because
computers measure time only with a certain precision (usually full milliseconds), this
assumption is met when computer measured times are used.

37

3. Performance Test

t st(r) rt(r)

st(s) rt(s)

st(s) rt(s)

st(s) rt(s)

st(s) rt(s)

st(s) rt(s)

st(s) rt(s)

Case 1:

Case 2:

Case 3:

Case 4:

Case 5:

Case 6:

Figure 3.3. Possible overlaps of two requests r, s

3.6 Results

We performed a preliminary analysis to inspect the data for distance calculations, time-
outs, and warm-up effects. The results of this analysis are described in Section 3.6.1.
Thereafter, we analyzed the distributions of the concurrency score (Section 3.6.2) and the
job size parameters (Section 3.6.3) generated by the performance tests. In Section 3.6.4,
we investigated their influence on the response time of VISITOUR’s appointment proposal
service. We close the analysis with a comparison of different sliding window sizes for
fitting prediction models (Section 3.6.5). All reported analysis were carried out with R
(Section 2.7). The data and the used script file can be found in the supplementary material
of this thesis (see Appendix A.3).

3.6.1 Preliminary Analysis

Distance calculations, time-outs, and warm-up effects (see Section 3.3) can lead to increased
response times. Therefore, we performed a preliminary analysis to inspect the data for
signs of these interfering influences. The analysis showed, that Logstash did not encounter
time-outs during the performance test. I. e., the VISITOUR Server test instance responded
to every appointment proposal request of the test within the chosen time-out interval of
10 min. Furthermore, the analysis showed, that no distance calculations were performed
during the warm-up and strain phase (dimaadd was 0 for all observations).

Figure 3.4 shows the response times that were observed during the warm-up phase. We
analyzed these response times for signs of warm up effects. Only the first response time

38

3.6. Results

0 50 100 150 200

0
20

0
40

0
60

0

time in s

re
sp

on
se

 ti
m

e
in

 m
s

Figure 3.4. Response Times of the appointment proposal service during warm-up

(624 ms) appeared to be biased. Thereafter, the response time of the appointment proposal
service appeared to be rather stable with a mean of 32.74 ms and a standard deviation of
16.04 ms.

3.6.2 Concurrency Score

Figure 3.5 shows the distribution of the concurrency score in the sample. The distribution
shows that predominantly small values were observed. The computed sample mean, and
the dispersion statistics also reflect this trend. The mean concurrency score was M = 1.65,
the standard deviation was sd = 0.76, the 25 % quantile was q0.25 = 1, and the 75 % quantile
was q0.75 = 2.1. Hence, less than 25 % of observed concurrency score values were greater
than 2.

Concurrency Score

F
re

qu
en

cy

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
20

00
40

00
60

00

Figure 3.5. Distribution of the concurrency score in the strain phase

39

3. Performance Test

Table 3.5. Summary statistics of job size parameters

M sd min q0.25 q0.75 max

tours 47.98 31.36 2.00 18.00 72.00 130.00
calls 195.54 157.97 3.00 74.00 282.00 781.00

candidates 10885.57 12037.81 10.00 1369.00 15816.50 62493.00

dimafound 592.50 211.71 308.00 412.00 717.00 1340.00
dimahit 7612761.80 7470834.91 27132.00 2162340.25 10680318.00 39360737.00

3.6.3 Job Size Parameters

Figure 3.6 displays the distributions of the job size parameters tours, calls, candidates,
dimafound, and dimahit (see Section 3.5). Table 3.5 shows the sample means and standard
deviations. The distributions and the dispersion statistics indicate, that the manipulations
of the job size parameters applied in the course of the performance test (see Section 3.1)
resulted in a high variability of job size parameters.

3.6.4 Effects on Response Time

Figure 3.7 shows the response time plotted against the concurrency score and the job
size parameters. The plots do neither indicate any particular ploynomial of exponential
relationship between the response time and the concurrency score nor between the response
time and the job size parameters.

As a first measure for the effect of the concurrent processing of requests on the response
time of VISITOUR’s appointment proposal service we computed the intercorrelation between
the concurrency score and the response time. The found intercorrelation (r = 0.57) indicated,
that concurrent processing influenced the response times in the test setting. However,
Table 3.6 shows that dimaadd (r = 0.69) displayed a higher intercorrelation with the
response time, and the parameters calls, candidates and dimafound displayed similar ones
(all 0.52 ¤ r ¤ 0.55).

High to medium intercorrelations were also found between the concurrency score and
the job size parameters calls, candidates, dimafound, and dimahit respectively (all r ¥ 0.62).
Further high intercorrelations were found between the job size parameters tours, calls, and
candidates (all r ¥ 0.8). The lowest intercorrelation was found between the number of
requested iterations and the response time (r = 0.24).

The various high intercorrelations between workload and job size parameters indicated,
that some observed correlations with the response time are in fact caused by a third
parameter effecting the response time as well as the parameter in question. I. e., the
direct effects of some parameters on the response time could vanish, if the effects of all
other parameters are accounted for. To identify such fake direct effects and to find an
economical prediction model that limits the number of predictors to the ones with the

40

3.6. Results

tours

fr
eq

ue
nc

y

0 20 40 60 80 100 120

0
10

00
20

00

calls

fr
eq

ue
nc

y

0 200 400 600 800

0
10

00
20

00

candidates

fr
eq

ue
nc

y

0 10000 20000 30000 40000 50000 60000

0
20

00
50

00

dimafound

fr
eq

ue
nc

y
0

10
00

25
00

300 400 500 600 700 800 900 1000 1100 1200 1300 1400

dimahit

fr
eq

ue
nc

y

0e+00 1e+07 2e+07 3e+07 4e+07

0
20

00
40

00

Figure 3.6. Distributions of job size parameters

strongest influences on the response time we conducted a stepwise regression analysis.
Because Figure 3.7 did not indicate polynomial or exponential relationships, we used linear
regression. An ARIMA model was also considered inappropriate, because the data was not
simulated using a realistic workload or job size profile. Hence, all periodic patterns in the

41

3. Performance Test

●● ● ●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●● ● ●●●●●●●●●●●●● ●●●●●● ● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●● ●● ●●●●● ●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ● ●●●●●●●●● ● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●● ● ●●●● ●●● ●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●● ●●●●●●●● ●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●● ●●●● ●●●● ●● ● ●●●●●●● ●●● ●●●●●●● ●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ● ●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ● ●●●●●●● ●●●●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●● ●●● ●●●●●●●●●●●● ● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●● ●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●● ●●●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●● ●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●● ●●●●●● ●● ●●● ●●●● ●●●●● ●●●●● ●●●●● ●●● ● ●●●● ● ●● ●●●● ●●● ●●●●●● ●●●●●●●● ●●●● ●●●●●● ●●●●●● ●●●● ●●●● ●●●●●● ●● ●● ●●●●● ●●●●● ●●●● ●●●●●● ●●●●●●●●●● ● ● ● ● ●●●●●●● ● ●●●●●●●●● ● ●●● ●● ●●●●●●●●● ●●●●●●● ●●● ●●●●●●●●●●●●● ●●●●●● ●●●●●●● ●●● ●● ●●● ● ●●●● ● ● ●●● ●●●●●● ●● ●● ●●●●●● ●●●● ●● ●●●● ●●●● ●●●●●●● ●● ●●●●●● ●● ●●●●●● ●● ●●●● ● ●●●●●●●●●● ●●●● ●●●●●●●● ● ●●●●●●●● ●●●●●●●●● ●●● ●●●● ●●●●● ●●●●●● ●● ● ●●●● ●● ●●●●●●● ●●●● ●●●●● ●●●●● ●●● ●●●●●●●●● ● ●●●● ●●● ● ● ●●● ●●●●●● ● ●● ●●●●● ● ●●●●●●●●●● ●●● ●● ●● ●● ●●●●● ●●●●●● ●● ●● ●●●● ●●●●●●●● ●●●● ●●●●● ●●●●●●● ●●●●●●● ●●● ● ●●● ●●●●●●●● ●●● ●●● ●●●●● ●●●●●●●●●● ●● ●●● ●●●●● ●●●●●● ● ●●●●●● ●●●● ●●● ●●● ●●●●● ●●●●●● ● ●●● ●●● ●●●●●●●● ●●●●●●●●●● ●●●●●●●● ●●●●●●●● ● ●●●●●● ●●●● ●●●●●●●●● ●●●●●●● ●● ●●● ● ●●●●●● ●● ●● ●●● ●●●●●●●●● ● ●● ●● ●● ●●●●●●●●●●●●●●●●●●● ●●●● ● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●●● ● ● ●●●●●●●●● ● ● ●●●● ● ●● ●● ●●●●●●● ●●●● ●●●●●●● ●●●●●● ●●●●●●● ●●●●●●●● ●●● ●●● ●●●● ● ●●● ●●●●●●●● ●●● ● ●●●● ●●●●●●●●●●● ●●● ●●●●●● ●●●● ● ●●● ●● ●● ●●●●●● ●●● ●● ● ●● ●●● ●●●● ●● ●●● ●●●● ●● ●● ●●●●●●● ●● ● ●●●●●●●●●●● ●●●● ● ●●●●●● ●●●●●●●●●●●● ● ●●●●●●●● ●●●●●●●●●●● ● ●● ●● ●●●● ●●●●●●●●●●●●● ●●●●● ●●●●●●● ●●●●●●●●●● ● ● ● ●●●● ●●●●●●●● ●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●● ● ●●●●● ●●●●●●●●●●● ●● ●●●● ●●●●●●●●● ●●●● ● ●●●●● ● ●●● ●●● ●●●●●●●●● ● ●●●●● ●●● ●● ●●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●● ● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●● ● ●●●●● ●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●● ●●●●●● ●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ● ●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ● ●●●● ●●●●● ● ●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ● ●● ●● ● ●●● ● ●●●● ●● ●● ●●● ●●●● ●●●●● ●●●● ●●●● ●● ●●●●● ● ●● ●●●●● ● ●●● ●● ●●●●●● ●● ●●●●● ●●● ●●●●● ●● ● ●●● ●●● ● ●●●●● ●●● ●● ● ●●●●● ●●●● ●●● ●●●● ●● ●●●● ●● ●●●●●● ●● ●
●

●●● ● ●●●● ● ● ●●● ● ● ● ● ●●●●●● ●● ●●●●●●● ●● ●●●● ●● ●● ● ●●●●● ● ●●●●●● ●●● ●●● ●● ●●●●● ●● ●●●● ● ●●● ●●●●● ● ●● ●● ●● ●●●● ●● ●●
●

● ●●●● ●●●● ●●●● ● ●●●●●● ● ●●● ●●● ●● ●●● ●● ●●●●●● ● ●●●● ●● ● ●● ●●●●●●● ●●●● ●● ●● ●●●●●●●● ● ● ●●
● ●● ● ●●●●● ● ●● ●● ●●●● ● ●● ●● ● ●●●●● ● ●● ●●●● ●● ●●●● ● ●●● ●●● ● ● ●●●●● ● ●●●●● ● ● ●●●● ●● ●●●●●●● ●● ●● ● ●●●●● ●● ●●●● ●● ●●● ●●●●●● ●● ●● ●●●● ●●● ● ●● ●●●● ●●●●●● ●● ● ●● ●● ●●● ●● ● ●●● ●●● ●● ●● ●●● ●● ● ●

●
●● ●●●● ●

● ● ●●● ●● ●●●● ●●●● ●● ●●●●● ● ● ● ●●●● ● ●●● ●●●● ● ● ● ● ●●●●● ●●●● ●●●●●● ●● ●● ●● ● ●●●
●● ●●● ●● ●●● ●● ●●●● ● ●●●●●●● ●●●● ●● ●●●● ●● ●● ●●● ●●●●●●●●●● ●● ●● ●●● ●●●●●●●● ●●●●●● ●●●●●●●● ●●● ●●●● ●●● ●●●● ●●●●●●●●●●● ●●●●●● ● ●●●●●●●● ●●●●●● ●● ●● ●●● ●●●●● ●●● ● ● ●●●●● ●● ● ● ●● ●●● ●●● ●●●●●●●● ●●● ●●●●●● ●●●● ●●●●● ●●●●●● ● ●●● ●●●●●●●● ●●●●● ●●●●● ● ●●● ● ●●●●● ●●●●●●● ●● ●●●●●●●●●● ●●●● ●●●● ●●●●●●●●● ●●●●●●● ● ●● ●● ●●●●●● ●●● ●●●●● ●●●● ●●●●●●● ●● ●●● ●●●●●●● ● ●● ●●●●●●● ●●●● ●●●● ● ●●● ●●●● ●●●● ●● ●●●● ●● ●●● ● ●●●●● ●● ● ●● ●●● ●●●●●● ●●●●●● ● ●●●●● ● ●●●● ●●●● ●● ●●●●●●●●●●● ● ●●●●●●●● ●●● ●●●● ●●●●● ●●●●●● ●● ●●●● ●●● ●●● ●●● ● ●●●●● ●●● ●●● ●●●● ●●●●● ●●● ●●●● ●● ●●●●●●● ●● ●●●● ●● ●●●●●● ●● ●●●●● ●●●●●●●●● ●●● ●●●●● ● ●● ●●●●● ●● ●● ●●●● ●●●●●●● ●● ●●●● ●●● ● ●●●● ●●● ●●●●● ● ●●●●●●●●●● ●●● ●● ●● ●●● ●● ●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●● ●● ●●● ●●● ● ●● ●●●●●●● ●●●●●●● ● ●●● ●●●●●●●●●●●●●●●●● ●●●●● ●●● ● ●●●●●●● ● ● ●●●●●●●●●●●●●●●● ●●●●●● ●● ●●●●●●● ●●●●●●●●● ●●● ●● ●●●●● ●●●●●●● ●●●● ● ●●●●●●●●●● ●●●●● ●●● ●●●●● ●●● ●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●● ● ●●●● ●●●●●●●●●●● ●●●●●●● ●● ●●●● ●●●●● ●●●●● ●●●●●●● ●●●●●● ●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●●● ●●● ●●● ● ●●●● ●●● ● ●●●●●●● ●● ●●● ● ●●●●●● ●●●●●●●●● ● ●●●●●●●●●●● ●●●●●● ●●● ●●●● ●●●● ●●●●●● ● ●●●●●●●●●●●●●●●●● ● ●●● ●● ●●●●●● ●●●●● ● ●●●●●● ●●●●●●● ●● ●●●●● ●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●● ●● ● ●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●●● ●●●●●●●●● ●● ●●●● ●●●●●●●●●●● ●●●● ●● ●●●●●●●●●●● ●●● ●●●●●● ● ● ●●●●●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●● ●●●●● ●●●●● ● ●●●●●● ● ●●● ●●●●●●●● ●● ●●●●● ●● ●●●●●●●● ●●●●●● ● ● ●● ●● ●●●●●● ●●●●●● ●●●● ● ●●●●●●● ●●●●● ●● ●●●● ●●●● ● ●● ●●●●● ● ●●●● ●●●●●●●●●●●●●●●● ● ●●●●● ● ●●●●●●● ●●● ●●●● ●● ● ●●●●●●●●● ● ●●●●●●●●● ●●●●● ●●●●●●●●●●● ●●●●● ● ● ●●●●●●●●●●●●●●●● ●●●● ●●●● ●● ●●●●● ● ●●●● ●● ●●●●●●●●● ● ●●●●● ● ●●●●●●●●● ● ●●●●●●●● ●●● ●●● ●●● ● ●●● ● ●● ●●●●● ●●●● ●● ●●● ●●●● ● ●●● ● ●● ●●● ●●●●●●●● ●●●●●●●●● ● ●●●●●●●● ●● ● ●●● ●●●● ●●● ●●●●●●●●●●●●●●● ●●● ●● ● ●●●●● ● ●●●●●●● ●● ●●●●●● ●●●●● ●●●●●●●●●●●●● ● ●● ●●●●●●● ●●● ●●●●●●●● ●●●● ●●●● ● ●●●●●● ●●● ●●●● ●● ●●●●●●● ●●●●●●●●● ●●●●●● ●●●● ●●●●●●● ●●●● ●●● ●●●●● ●●●●●●●●● ●●● ●●●●● ●●●●●●●●●● ●●●●●●● ● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●● ●●●● ●●● ●●●●●●●● ●●●●●● ● ●●●●● ●●●●● ● ●● ● ●●●●● ●●●●●●●●●● ● ● ●●●●●●● ●●●●●●●●● ●● ●●●●● ●●●●●● ●● ●●●●● ● ●●●●●●● ●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●● ●●● ● ●●● ● ●● ●●●●● ●●● ● ●●●● ●● ●●●●●●●● ●● ●● ●●●●●● ●● ●●●●●●●●●●●● ●● ●●●●●● ● ●●●●●●● ●●●●● ●●●●●●● ●●●● ●●●●● ●●●● ●●●●● ●●●●●● ● ●● ●● ●●●●●●●● ●●●● ●● ●●●●●●●●●●●● ● ●●●●● ●● ●●●● ●●●●●●●●●●● ●● ●● ●● ●●●●● ●●●● ●●●●●●●●● ●●●● ●●● ● ●●●●● ●● ●●●●●●●●● ●● ●●●●●● ●●●●●● ● ●●● ●●● ●●●●●●●●● ●●● ●●●●●● ● ●● ● ●●●● ● ●●●●● ●● ●●●●●●●●●●●● ●●●● ●●●●●● ●●●●●●●●●●●●● ●● ●●● ●●●● ● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●● ●●● ●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ● ●● ●● ●●● ●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●● ●●●●●●● ●●●●●●● ●●● ● ●●●●●● ● ● ●●●● ●● ●●●● ●●●●●●●●●●● ●●●●●●●●● ●●●●●●● ●●●●● ●●● ●● ●●● ●● ●●●● ● ●●●●●●●●●●●●●●●●●● ●●●●●● ●● ●●● ● ●●●●●●●●●●●● ●●●●●●● ●●●●● ● ●●●●● ●●●●●● ● ●●●●●●●●●●●● ● ●●●●●●●●● ●● ● ●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●● ● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●● ● ●●●● ●●●●●●●●●●●●●●●●●● ●●●●●● ● ●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●● ●● ●●●●●●●●● ● ●●●●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●● ●●● ● ● ●●● ●● ●●● ● ●●

●
●

●
● ●●● ●●● ●●●● ●● ● ●● ●●● ●

●
● ●●● ●● ●●
●●● ● ● ●

●
●

● ●●●●
●● ●●● ● ●

●

●●●● ●
●

●●● ● ● ●●
●

●
●

●●● ● ● ●● ●● ●● ●● ●
●

●●● ●● ●●● ● ●● ●●● ● ●●● ● ●●●● ●
● ● ●● ● ●

●
● ●● ●● ● ●●●● ●●●●●●● ●●●

●
●●●●

●● ● ●●●
● ●●● ● ● ●

●
● ●

● ●
●

●●● ● ●
●●●●

●● ●
●

●●●
●●●● ● ●●● ● ●●●● ●● ●

●
●●● ●

●
●●●●● ● ●●
●●

●●● ●
● ●

●
● ●●● ●●●●● ● ●● ●

● ●●● ●●●● ● ●●● ● ●●● ● ●
● ● ●●

● ● ●● ●●● ●● ● ●●●● ●●● ●● ●●●● ●●●● ●
●

●● ● ●
●

●
● ●●●●●● ●●● ● ● ●●●● ●●● ● ● ●●●●

●● ●
●

●●
●

●
● ●●●●● ●●

●●● ● ● ●●●● ●
●

● ● ●
●

● ●●● ● ●● ●
●

●●●●
●

●●● ●●● ● ●●●● ●● ●●●● ●●●● ● ● ● ●● ●
● ●●●●● ● ● ●●●● ● ●●●● ● ●●● ●●

●● ●●
●●●●● ●●● ● ●● ●

●●
●● ● ●●●●

●
●

●●●●
●● ● ●●●● ● ●

● ●●● ●
●

●●● ●● ● ●●
●

●●● ●● ●● ●● ●● ● ●●● ●●●● ● ●●● ●●● ●
● ● ●● ●

●
●●● ● ● ●●
●

●
●

●
●● ●● ●●● ●

● ●● ●● ●●● ● ●● ●●●● ●● ●
●●

● ●●●
●

●
●●

●●
●

●●● ●●● ●●● ●
● ●●● ●

●
●●●●● ● ●● ●● ●

● ●● ● ●

●

●● ●●●
● ●● ●●●●●● ●●●●●●●●●● ●●●● ●● ●● ●●● ●● ●●●●●● ● ●● ●● ●●●● ●●● ●●●●● ●●●● ●●●● ● ●● ●●●● ●● ● ●●● ●●● ●●● ● ●● ●●●● ●● ●●● ● ●●●●●●● ●●●●●● ●● ●● ●

●

●●●● ●●●● ● ●● ●●●●●●● ●●● ●● ●● ● ● ●●● ●● ● ●●● ●●●●● ●●●● ● ● ●●●●●● ●●● ●● ●● ●●● ● ●●●●● ● ●● ●
●

● ●●●● ●
●

● ●●● ●●●●● ●●●●●● ●● ●●●● ●● ● ●●●● ●● ●● ●●●● ●●●●● ● ● ● ●●●● ●● ●●●● ●● ●●●● ●●●●●● ●●● ●●● ●
● ●●● ●● ● ● ● ●

● ●●●● ●●● ●●● ●● ●●● ● ●
●
●● ●

●
●●● ● ●● ●● ●● ●●● ●●●● ●●● ● ● ●●●● ● ●●● ● ●●● ● ●● ●●● ●●● ●●●● ●● ●●●●●●● ●

● ●●● ●●● ● ● ●●●●● ●●●●●●●●●●● ● ●●●●●●●● ● ●●● ●● ●●
●●● ●● ● ●●● ●●● ●● ●● ●● ●●●● ● ● ●●●● ●● ●●● ●● ●● ●●● ● ● ● ●● ● ● ● ●● ●●●●● ● ●●●● ●● ●● ●●●●● ● ●●● ●●●● ●●●●●● ●● ●●●● ●● ●●● ●●● ●● ●●●●● ●●● ●● ●●● ●●● ● ●● ●

●
●●● ●●● ● ●● ●●●● ●●● ● ●●●● ●● ●● ●●●● ● ●●●●●●● ●

●
●●●● ●●●●●● ● ●

●
●●● ● ● ●● ●●● ● ● ●● ●●●●● ● ● ●●●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●●●●● ●●●●● ●● ●●●● ●●●●●●● ●●●●●● ●●●● ●●● ●●● ●●●●● ●●●●●●● ●●● ●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●● ● ● ●●●●●● ● ●●● ●●●●●●●● ● ●●● ●●●●●●● ● ●● ● ●●●●●●● ● ●●● ●●●● ● ● ●●●●● ●● ●●●●● ●● ●●●●●●● ●● ●●● ●●● ●●●● ●●●●●●●● ● ● ●●●●●●●●● ●●●● ●● ●● ●●● ●●●● ●●●●●● ●●●● ●●●●● ● ●●●●●●●●● ● ●●●●●●● ● ● ●●●●●●●●●●●●● ●●●● ● ●●● ●●●● ●●● ●●●●●● ●●●● ●●●● ● ●●●●●●● ●● ●● ●● ●●●● ●●● ●●●●●●●● ● ●●●● ●●● ● ● ●● ●●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●●●● ●●● ●●●● ●● ●● ●●●● ● ● ●● ● ●●● ●●●● ●●● ● ●●●●●●●● ●●●●●● ●● ●●●●●●● ● ●●● ● ●●●●●●●● ●● ●● ●● ●●●●●● ●●●● ●● ●● ●●● ● ● ●● ●● ●●● ●●●●● ●●●●●● ● ●●●●● ●●●●●●●●● ● ●●●●●●●● ●●●●●●●●●● ●●●● ● ●●●● ●●●●●●● ●● ●● ●●●●●● ● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●
●

●●
●●

●
●

●

●
●

●
●

●
● ●

● ●
●

●

●
●

●
● ●●

●
●

●
●

●● ●

●

●
●

●● ●●●
● ●

●
●

●●
●● ● ●

●

●●● ●●●●
●

●

● ●

●

●●
● ●

●●●
●●

●
●
●

●
●

●

●
●● ●

●
●

●
●

●●
●

●
● ●

●
● ● ●

●
●

●●

●

●
●

●
●●

● ●
● ●

●
●●

●

●

● ●●●

●

●●
●●

●● ● ●
●

●

●

●
●

●
●

●●● ●●●
● ●

●
● ●●

● ●●
●

●●

●

●
●

●●●

●

●
●

●●
●

● ●

●
●

●●● ●
●●●

●
●

●● ●
●

●
●

●
●● ●●

●

●●
●

●
●

●●
●

●
●

●●

●

● ● ●
●
●

●

●

●●
●

●● ●

●

● ●●●●
●

● ●

●

●●
●●● ●

●
●

●●
●

●●
●

●
●

●
● ●

●
●

●

●

● ●●●

●

●●
●●●●●● ●

●

● ●
●

●● ●
●● ●

●

●

●

●●●
●

●●
●

●

●●
●●●

●
●● ●

●
●

●

● ●
●

●●

●

●●
●

●

●● ●●●
●●

●●

●

●●●
●

● ●
●●

●
●

●●
●

●●●
●

●
●

●

●

●●
●

●

●●● ●●
●

●
●

●●

●

●●
●●●●● ●●●● ● ●

●
●●

●
● ● ●

●
●●

●
●

●

● ●
●

●

●

●

●●●

●

●

●

●
●

●●●● ●
●

●●
●● ●

●●
●●

●
●

●

●

●
●●● ●

●

●

● ● ●● ● ●
●

●

●
●

●
● ●

●

●●●● ● ● ●

●
●

●

●●●●●●
●●

●
● ●

●

●

●●●
●

●
● ●

●
●

●
●

●
● ●●● ● ●

●
● ●

●

●●●
● ●● ●●

●

● ● ●●

●

●●

●

●

●
●●●● ●

●

● ●

●

● ●●●

●

●
●●●●●●

●
●

●

●

●●●● ●
●

●
●

●
●

●
●

●

●

●●
●

●●
●

●

●

●● ●
●

●●
●

●

●● ●
●●

●

●
●●

●

●●●
●●

●

●●
● ●

●
●

● ●
●

● ●
●

●
●●

●
●

●
●

●
●

●●●●●●●●●●● ● ●
● ●● ●

●
●●●● ●●● ●

●
●● ●●

●
● ● ●●● ● ●● ● ●●

●●●● ●
●

●
●

●● ●●
●● ●●●● ●●●

●
● ●●

●
●●●● ●● ●

●
●●●● ●

●
●●●

● ●● ●

●

●●●●●
●

●●●● ●● ●
●

●●
●

●● ●●●●● ● ●●●● ●
●

●
●

●● ●● ●●● ●●● ●●● ●●●●● ●●● ● ● ● ● ●
●●●●● ●

●

● ●●● ● ●●●● ● ●
●

●●●● ●
●

●

● ●●●
●● ●●● ●

● ●●●
●●● ●

● ●●● ●●● ●●●

●

●
● ●

●
●●

●
● ●●●

●

● ●●●●●● ●● ●● ●● ●●●● ●● ●●
● ●●● ●

●
●

●● ●

●

● ●● ●
●

●●
●●●●● ● ● ●●●●● ● ●

●
●●●● ●●●●

●
●

● ●●
●

●
●

●● ●● ●● ● ● ●
●

●●●
● ●

●
●●●● ●●
●●● ●●● ●● ●●● ● ●

● ●● ●●● ●● ●●●● ●● ●● ● ● ●
●●●●● ●●●● ●

● ●●●
●● ●● ●

●
●● ●

●
●●

●●● ●●
● ●

● ●
●

●●● ●● ● ●●● ●●
● ●●●

●
●● ●

● ●
●

●
●● ● ●

●

●●●●●●●●●● ●
●
● ●

●
●● ●

●
● ●●●

●●
● ● ● ●● ●●● ●

●
●●

● ● ● ●● ●
●●

●●
● ●● ●

●
●● ●●●●

● ●●
●

●
●●

●●
●●● ●●●

●● ● ●●● ●● ●● ●● ●●● ● ● ● ● ●
●

● ●

●

●● ●
●

●●●
●

●●● ●●● ● ●●●●● ● ●

●
● ●●● ●● ●

●
●●● ● ●

●

● ●● ●● ●● ●

●
●●●

●●● ●
●

●
●

●●
●
●● ● ●

●
●●● ●●●●●● ● ●●● ●

●
●●

●● ●●● ●●● ●● ●●● ●

●

● ●●●●●●●●●●● ● ●●● ●●● ● ●● ●● ● ●● ●●●●●●● ● ●● ● ● ●●● ●●● ●●●●●● ●●● ● ●●●● ●●● ●● ●●● ●●●● ● ● ●
●●●●●● ●● ●●●●● ●● ●●●●●●● ●●●●● ●●●●●● ●●●●●● ●●● ●●●●● ● ●● ●●● ●● ●●● ● ●● ● ● ●●●●●● ●● ●● ● ● ●●●●●● ● ●● ●●● ● ●● ●● ● ●●●●● ●● ● ● ●● ●●● ●●●●●●● ●●● ●●● ●●●● ●● ● ●●● ●● ●●● ●● ●●● ●● ● ● ●● ●

●
●●●● ●●●●●●●● ● ●●● ●●●●●● ● ●●●

●●●●● ●●●● ●●
●●●● ● ●● ●● ●●●●●●●●●●● ● ●●●●●●● ● ● ●● ●●● ●● ●● ●●● ● ●●● ●● ● ●●●●●● ●●●●● ●●●●● ● ● ●●● ●●●● ●●●●● ● ●●●●● ●● ●●● ●● ●●● ●● ●● ●●●●●● ●●●●● ●●● ●●● ●●●●● ●●●● ● ●● ●●

● ●●● ● ●●●●●● ●●
●

● ●●●● ●●● ●●●●● ● ●● ●●● ●●●● ●●●● ● ● ●● ●●●● ●●● ● ● ● ●● ●●● ●●●●● ●● ●● ● ●● ●● ● ●● ●● ●●● ● ●● ●●● ●●● ●● ● ● ●●●● ●●●●●● ● ●●●● ●● ●● ●● ●● ●● ● ●●●●●●● ●●●●● ●● ●●● ●●● ●●● ●●●●●●●●●●●●● ● ●●●●● ●●● ●● ●
● ●●●● ● ●● ●●●●● ● ● ●●●●● ● ●● ●●●●●●●● ●●●●●●● ● ●

●
●●●●●● ●●●●●●●●●● ● ●●●●●●●●● ●● ●●● ● ●●●●●● ● ●●●●●●●● ● ●● ●●●●●●●● ●● ●

●
● ●●● ●●●●●● ●●●●●●● ●● ●● ●●●● ● ●● ●●● ●●●●●●● ●●● ●● ●● ●● ● ● ●● ● ●●● ●●● ●●●●●● ●●●●● ● ●●● ●●●● ●●●● ●●●● ●● ●●●● ●●●●●●●● ● ● ● ●● ●● ●●●● ●● ●●● ●● ●●● ●●●●● ● ●●● ●●● ● ● ●●● ● ●● ● ●● ●● ● ●● ●● ●●●● ● ●● ● ● ●●●● ●● ●● ●●●● ●●●● ● ●●●● ● ●●●●●●●●● ● ●● ●●●●●●●●● ● ●●●●●●●●●● ●●●● ● ● ●●●●●●● ● ●●● ●● ● ●●● ● ●●● ●● ●●● ●●●● ●●●●● ● ●● ●●●●● ●●● ●● ●● ●● ●

● ●●●●●●●●●●● ●●●●●●● ●●● ● ●●●●● ●●● ●●●●●● ●●● ● ● ●● ● ● ●● ●● ● ●●● ●● ●●●●● ● ●●●●●● ●●● ● ● ●● ● ● ●●●● ● ●●● ● ●●● ●● ●●● ●●●●●● ● ●● ●● ● ● ●● ●●●●●● ●●●● ● ●● ●● ●●●●●● ● ● ●● ●●●●● ● ●●●●●●●● ● ● ●●● ● ●●● ●●● ● ●●●● ●● ● ●●●● ●●● ● ●●● ●●● ●● ● ● ●●● ●● ●●●● ● ●●●●●●●● ●● ●●● ●● ●● ●● ●● ●●●● ● ●●● ●●●●●● ●●●●●● ●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●● ● ● ●●●●●● ● ●●●●● ●●● ●●●● ●● ●●●● ●●● ●●● ●● ●● ●● ●●● ●● ●●●● ● ● ●●●●●●● ●● ●●●●●● ●●●●●●●●●●●● ●●● ●●● ●●●●●●●● ●●● ●●●● ●●●●● ● ● ●●●●●●●● ●●● ●●●● ●●●● ●● ●●●●●● ●●● ● ●●● ●●●●●●● ●● ●●●● ●●●● ●●●●●● ●●● ●●●● ●●●●● ●●●●●●●● ●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●● ●●● ●●● ●●●●●●● ●●●●● ●●● ●●●●● ●●●● ● ●● ●● ●● ● ●●●●●● ●● ●●● ●●● ● ●● ●●●● ● ● ●● ●●●●● ● ● ●● ●● ●●●●● ●●● ●●●●●● ●●●●● ● ● ●● ●● ●● ●● ●●●● ●● ●●●● ●●●● ●●●● ●● ●●●●●● ●● ●●●● ●●● ●● ●●●●●●●●● ●●● ●● ●● ● ●●●● ●●● ●● ●●●●●●●●●●● ●●●●●●● ● ●●●● ●● ●●● ●●● ● ● ●●●●●●●● ●● ●● ●● ●● ●●● ●● ●●● ●●●●●● ●● ● ●●●●●●●●●● ● ●● ●● ●●●● ● ● ●●●●●● ●●●● ●● ●● ●●● ●● ●●●●● ●●●●● ● ●●●●●●● ●●● ●●●●●●● ●● ●●●●●●●●●●● ●● ●● ●● ● ● ●●●● ●●● ●●● ● ●●●●●● ●●●●●● ●● ●● ●●●●●●●● ● ●● ●●●● ●● ●●●● ● ●●● ●●●●●●●●●●●●●● ● ● ●●● ●●●● ●● ●●●●●●● ● ● ●●●●●● ●●●●●●● ● ●●● ●●● ●●●●● ●●●● ●●● ●●●●●●●●●●● ●●●●●●● ●●● ●●●●● ● ●● ●●●●●●●●●●●●●●●●●● ●● ●● ●●●●● ● ●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●● ●●●●●●● ●●●●●●●●●●●●●●●●● ● ●●●●● ●●● ●●●●●●●● ●●●●●●●● ●●●●●● ●●● ●●● ● ●●●●● ● ●●●●●●● ●●●●●●●●● ●●●●●● ●●●●● ● ●●●●●●●●●●●●●● ●●● ●●● ●●● ●●●●●●● ●●● ●●● ● ●●● ● ●● ●●●●●● ●●●●●●●● ●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●● ● ● ●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●●● ●●●●● ● ●●●●●●●●●●●●● ● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●● ● ●●●●●●● ●●●●●●●●● ●●●●●● ● ●●●● ●●●●● ●●●●●● ●●●●●●● ● ●●●●●●●●●● ●●●●●●●●●●●●●● ● ●●●●● ●●●●● ● ●●●● ●●● ●●●●●●● ●●● ●●●●●●●● ●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●● ● ●● ●● ●● ● ●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ●
●

●
●

●● ●● ●
●

●

●●● ●
●●

●
●● ●

●
●●

●
●●●

●● ●
●

●
●

●

●

●
●

●

●
●

●

●

● ●
●●

● ●
●●

●

●

● ●●● ● ●
●

●

●
●●●●

●●
●

●
●

●
●

●
●●

● ● ●

●

●
●

●
●

●

●
●

●●●●

●

● ●

●

●
●
●

●
●

●●●●●●● ●

●
●

●
●

●

●● ●●
●

●

●●
●

●●
●●●●

● ●
●

●●

●
●●● ● ●

●

● ●●● ●
●● ●

●

●
●

●
●

●●● ●

●

● ●

●

●
●●

●

●

●
●

●

●

●● ●

●

●

●

●
●

●
●

●●●
●

●●
●

●

● ●

●

●

● ●

●

●●
● ● ● ●● ●● ●

●
●

●
●●●● ●

●
●

●●●
●

●

● ● ●●

●

●●
●●●

●

●●●
●

●● ●
●

●●●●
●

● ●
●●

●● ●
●

●

●
●

●
●

●

●● ●
●

●●

●

● ● ●● ●●

●

● ●
●

●● ●●●
●

●●●●
●●

●

●

●

●

●

●● ●
●●●●●● ●● ●●

●● ● ●

●

●●●

●

●
●

●
●

● ●
●

●
●

●
●

●

● ●●●●
●

●
●●● ● ●

●

●
●

●●●

●

●●●
●●●

●
●

●
●

●
●●●

● ● ●●
●●● ● ● ●

●

●

●
●

●● ●●
●

●

●

● ●
●

●●●● ●● ● ●●●
●● ●

●

● ●

●

●●●●●● ●●
● ●

●

● ●●
●

●●

●

● ●

●

●

●

●

●● ●

●
●

●
●

●●
●

●●
●

●
●●

●

●

●●●● ●● ●●
● ●

●

●●
●● ●●

● ●
●●●●

● ●
●

● ●
●

●

●

●●●●●

●

●
●

●

●
●

●

●

● ●

●

●●●● ●
●

●●
●

●● ●
●

●
●●

● ●

●
●● ●

●

●

●

●

●●

●●

●

●
●

●●
●

● ●●●●●
●

●● ●
●

● ●
●

●
●

● ●●●

●

●
●

●

●

● ●

●

●●
●

●
●●

● ● ●●
●

● ●● ●● ●
●

●
●●●● ●●● ● ●●●

● ● ●●●●●● ●●●● ●

●
●●●● ●

●

●●● ●●●● ●
●

●●●●
●

●● ● ●
●● ●●●●● ●● ●

●

●● ●●● ● ● ●
●
● ●

● ●●● ● ●●● ● ●● ●● ●● ●● ●●●● ●
●

●
●●

●●● ●
● ●●● ●

●●
●●●●●● ●

●
●●●● ●●● ●

●
● ●●

●
●●●

●● ● ● ●●● ●
●●● ●

●
●●●

●

●● ●●●●● ●

●

● ●
●

●●●● ●
●

●

●

●●●● ●●●
●

●●●●●●● ● ●●
●

● ●●●●● ●
●

● ● ●●● ● ● ●● ●●● ● ●

●
●

●●●● ●
●

●●● ●● ● ●●
●

● ●● ● ●

●

●
●

●
●

●

●

●
●

●
●●● ●

●
●●● ●●●●●

●● ●●
●

●● ● ●

●

●●● ● ●
●

●●
●●● ●

●

● ●●●
●

●●●● ●
● ● ●● ● ●

●
●●●

●
●●● ●●

●

● ●
●

●
●

● ● ●●●
● ● ● ●

● ●●● ●● ● ● ●
●

●
●●●●●

●● ●● ●● ●

●
●

●
●●●

●● ●● ●
● ●● ●● ● ●

●
●●

● ●
●

●● ● ●
●

●●
● ● ●

●
●

●

●●●
●

●
● ●●

●● ● ● ●●●● ●● ●●●●● ● ●
●

●
● ●

●
●

●
●●

● ● ●
●

●● ● ●
●

● ●●● ●
●

●

●

●●●● ●●●●●● ●●● ● ●●●
●

●●●
● ● ●●● ● ●●

●●●● ● ●●
●

●●●●● ●● ● ●●●● ●
●

● ●
●

● ●
●

●
●

●

●
●

●●
●● ●

●
●●●● ●● ●● ● ● ● ● ●● ● ● ●

●
● ●●

●
●● ●

●
●

●
●

●
●●●

●●● ●

●
●●●● ● ● ●● ● ●

●

● ●●● ●
●

●
●

●●●● ● ●●●● ●● ●

●
● ●● ●●●● ● ●● ●● ● ●●●● ●

●
●●● ●●●● ● ●●

●●● ●●●● ●● ●●●
●●●● ●●

●●●●●●●● ● ● ●●● ●●●● ●●●● ●●●● ●● ●
●

●●●● ●●● ●● ●●●● ●●●● ●●● ●●● ●● ●●● ●●● ●●● ●●●● ●● ●● ●● ●● ●●●● ● ●●● ●●●● ● ● ●● ● ●●● ●●●●● ●● ●●● ●
● ●●● ●● ● ●●● ●●●●●● ● ● ●●●●●● ●● ●● ●● ●● ●●● ● ●●●● ● ●●●●● ● ● ●●●●● ● ●● ●● ●● ● ●●● ●●● ●●● ● ●●●● ●● ●● ●●● ●●●●● ●●●● ● ● ●●● ●●●●●●●● ● ● ●●● ● ●●● ●● ● ● ●●

●●●●●●●●● ● ● ●●● ●● ●●●●● ●●●●●●●●●●● ●●●● ● ● ●●●● ●●●● ● ●●● ●●● ● ●● ●●●●●●● ●● ●●● ●●●●●●●●● ● ●●●●●●● ●● ●● ● ● ●●●●● ●● ●●●● ●● ●●●● ● ●●● ●● ●●●● ●●●● ●●● ●● ●●●● ● ●●● ●●●●● ●● ●●●●●●● ● ● ●●● ●
●

●●● ●●● ● ●● ●● ●●● ●●● ●●
●●●● ●● ● ●●●●● ●● ●● ●●●●●●● ●●●● ● ●●● ●● ●●● ●●● ●●●● ●●● ● ● ●●●●● ● ●● ●●●●●●● ●● ●● ● ●●● ●● ●● ●●●●●●●● ●● ●●● ● ●●●●●●●●● ●●●● ●● ●● ● ●● ●●● ● ●●● ●●● ●● ●● ● ● ●● ● ●● ●●●●●● ● ●●●● ●●● ● ● ● ●●● ●

● ● ●● ●●●● ●●●● ●● ●● ●● ●● ● ●●● ● ●● ●●●●● ●●●● ●●●● ● ●●●● ●● ●●●●●●●●●●
● ●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

● ●● ●

●

●●●
●

●

●

●

●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●
●● ●●

●

●

●● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●●●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●● ●

●

● ●

●
●

●

●

●

●
●●

●

●
●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●
●●
●

●

●

● ●
●

●

●● ●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●●
●

●

●

●●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●
● ●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●●● ●●●

●
●

●

●

●

●

●
●● ●
●

●

●

●● ●
●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●
●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

●● ●

●

●●

●

●

● ●

●
●

●●
●

●

●●

●

●●●

●

●

●

●

●

●

●●
●●

●

●
●

●
●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●
● ●

●

●

●

●
●●

●

●

●
●

●

●●●
●●

●
●

●● ●

●
●●●

●
●●

●●● ● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

● ●
●
●

●
●

●
●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

● ●
●

●●● ●●
●

●

●
●

●

●

●
●●●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●
●

●

●●● ●●● ●

●

●
●

●

●●

●

●●
●

●

●
●●

●

●●
●

●

●
●

●

●

●
●

●

●
● ●

●

●●

●

●●

●

●
●● ●●

●

●
●

●●

●

● ●●

●

●
●●●

●
●

●

●

● ●

●

●

●

●

●
●● ●

●

● ●
●

●

●

●
● ●●

●

●

●

●

●●●

●

●●
●

●
●● ●

●

●

●

●
●

●

●

●●
●

●
●

●

●

● ●

●

●
● ●

●●●
●●

●
●

●

● ●●
●

●

●

●
●

●●

●

●

●●
●

●

●

●●
●

●

● ●
●

●●
●

●

●
●

●

●
● ●

●

●●● ●
●

●

●

●

● ●

●

●

●

●● ●

●

●●

●

●
●

●

●

●●

●

●

●

● ●●

●

●

●
●●

●

●

● ●
●

●

●

●

●

●
●

●

●

●● ●
●

●●
● ●

●
●

●● ●
●

●●

●

● ●
●●

●●
● ●

●
●

●
●

●●●

●

● ●

●
●

●

●

●
●

●

●
●●●

●
●

●

● ●●

● ●
●

●
●

●

● ● ●●

●
●

● ●

●

●●

●

●
●

●
●

●

●
● ●

●
●

●
●

●
●

●

●

●

●
●●● ●

●

●
●

●

●

●

●●
●

●
●

● ●

●

●
●

●

●

●

● ●

●

●●

●

● ● ●

●
●●

●
●

●

●

●

●●● ●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●
● ●● ●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

●
●●●●

●
●

●

●

●

●

●

●

●
●● ●

●

●
●

● ●

●
●

●
●

●

●
● ●

●

●●
●

●

● ●●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●● ●
●●

● ●
● ●

●
●

●

●●●
●● ●

●

●● ●●
●●

● ●
●

●●
●

●●● ●

●

●● ●
●

●
●●●●●●●●●

●●●● ● ●
●

●● ● ● ●●●●
● ● ●

●
●●● ●

●
●● ●

●●

●●● ●●● ● ●● ●

●

●● ●●●●● ●●● ● ●●● ●●
● ● ●

●

● ●

●
●

●●●
● ●

●
●

●
●●●● ● ● ●

●
● ●●●●●● ●●●●

●● ●
●

●

●●
●● ● ● ● ●● ●●

● ● ●●●
●●

●
●● ● ●●

●●● ●
● ●● ● ●● ●●● ● ●

●
●● ● ●●

●
● ●●

●

●
●

●
● ●

● ●
● ● ● ● ● ●

●
●●

● ●●
●●

●
●

●●●
●

● ● ●●
●

●

● ●
● ● ●

●
● ● ●● ● ● ●

●
●● ●● ●

●
●●

● ● ●●●● ● ●● ●●● ●●
●
● ●●● ●

●
●●

●
●●●● ●● ●● ● ●● ●●● ●

●● ●
●

● ●●● ●
●

●

●

●
● ●●● ●

●
●●●

●
●

●●
●

●●●
●●● ●● ●

●
●●● ●● ●● ●

●
●

●

●
●

●

●

● ●
●

●●●● ●●
●

●●● ●
●

●●●● ●
●

●● ●● ●●●● ● ●

●
●

●●
●●●●● ●● ●● ●● ●● ●●

●●● ●
● ●

●
●● ● ●●●

●● ● ● ●
●

●●●● ●● ●
●

●

●
●

●●●●● ● ●● ●● ● ●●● ●● ●
●

●

● ●
●

● ●
●

● ●●● ●● ●●●● ● ●●●● ●● ●
●

●

● ●●●
●

● ● ●● ●
●

●● ●●
●

●●

●

●● ●●
●

●● ● ● ●

●
●●● ●● ●

●
●

●

●●●

●

●
●

●●●
●

●
●● ● ●

●
● ●● ●● ●

●
●

●

●●

●

●●
●

●● ●●●● ●●●● ●
●

●● ●
●

●
●●● ●● ●● ●

●

●●●●● ● ●● ●

●

●● ●●
●●

●●●●●● ● ●● ●● ●
●

●●●●● ● ● ●●● ● ●●●● ●●● ●
● ●

●
●●● ● ●

●
●●● ●

●
●●●●

●● ●
●

●●●●●● ●●●●● ●●●
●●●●●●

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
50

00
0

15
00

00

concurrency score

re
sp

on
se

 ti
m

e
in

 m
s

● ●● ●●● ●●●●●●●● ●●●●● ●●● ●●●●● ●●●●●●●●●● ●●● ●●● ●●●● ● ●●●●● ●●●● ●● ●●●● ●●●●● ● ●●●● ●●●● ●●●● ●● ●● ●● ●● ● ●●● ●●●● ●● ●●● ●●●●● ●● ●● ●●●●●●●● ●●● ●● ●●●● ●●● ●● ●● ●● ●●●●●● ●● ●●●● ●●● ●● ●●● ●●●●● ●●●●●● ● ●●●●● ●● ●●●●● ●●● ●● ●● ●●● ● ● ●● ●●●●● ●●●●●● ● ●● ●● ●●● ●●●●● ●●●●● ● ●● ●● ●● ● ●●●● ●● ●● ●●● ●● ●●●●● ●●●●●●● ●● ●●●● ●● ●● ●● ●●●● ●●● ●● ●● ●●●●●●● ●● ●●●●●● ●●● ●●● ●● ●● ●● ●●● ● ●●● ●●● ●●●● ●●●● ●●●● ●● ●●●● ●●●●● ●●● ●● ●● ●● ●● ●● ●● ●●●●●● ●●● ●● ●●● ●●● ● ●●●● ●●●● ●●● ●● ●●● ●●●● ●● ●●●● ●●●● ● ●● ●●●●●● ●● ●●●●● ●●●●● ●● ●●●● ●● ● ●●● ●● ●● ●● ●● ●●●●● ●●● ● ●● ●●●● ●●●●●●●●●●●●●● ● ●● ●● ●●● ●●●● ●●● ●● ●●● ●●●●● ●● ●●● ●●● ●●●●●●●● ●● ●● ●●● ●● ●●● ●●●● ●●● ●●● ●●● ●●● ●●● ●●●●●●● ●●●●● ●●●● ●●● ●●● ●●●●● ●●● ●●●● ●●●●●●● ●●●●●●● ●●● ● ●● ●● ●● ●●●●●●●●● ●● ●●● ●● ●● ●●●●● ●● ●●● ●●●●● ●● ●●● ●● ●●● ●● ●● ● ●●●● ●●●●● ●●● ●● ●●● ●●●● ●●● ●●● ●● ●●●●● ● ●●● ●● ●●●● ●●●●●●●● ●●●●●●● ●● ●●●● ●●●● ● ●●●●● ●● ● ● ●●●● ●●● ●●● ●● ●● ●●●●●● ●● ●● ●● ●●● ● ●●●● ●●●●●● ●●●● ●●● ●●●●●●● ●●● ●●●●●●● ●●● ●●●●● ● ●●● ●●● ●●● ●● ●● ●● ●●● ●● ●●●●● ●● ●●● ●●● ●●●●●● ●●●● ●●●●● ●●● ● ●● ●●●●●●●● ●●●●●●● ●● ●● ●● ●●● ●● ●●●● ●● ●● ●●●●●● ●●●●●● ●● ●● ●●●●● ● ● ●●● ● ●●● ●●● ●●●● ●●● ●● ●● ●●● ●● ●●● ●●●●●● ●● ●●●●● ●●● ● ●●● ● ●● ●●● ●●●●●●● ● ●●●● ●● ●● ●●●●●● ●● ●●●●●● ●●●●● ●●●● ●●● ●● ●●●●●●●● ● ●●● ●●● ●●● ●●●● ●●●● ●●●●●● ●●●● ● ●●●●●●● ● ●●●●● ●●● ●● ●●●●● ●●● ● ●●●● ●●● ●● ●●● ●●●●● ●●● ●●●●●● ●●●● ●● ●● ● ●●● ●● ●● ●●● ●●●●●●● ●● ●● ●● ●●● ●●●●● ● ●● ●●●●●●●● ●●●● ●●●● ●● ●●● ●●●● ●● ●●● ● ●●● ●● ●● ● ●●● ●●●●●● ●●●● ●● ● ●●●●● ● ●●● ●●● ●● ●● ●●●● ●●●●● ●●●●● ●●●● ●●●●●●● ● ●●●● ●●● ●●● ●● ● ●●●●● ●●● ●● ●● ●● ●● ●●●● ● ●●● ●● ●● ●●● ●●● ●●●● ●●●● ●● ●●● ● ● ●●●● ●●● ●●●●●● ●● ●●● ●●●● ●● ●●●● ●●●●● ●●● ●● ●●● ●●●● ●● ●● ●● ●● ●●● ●●●● ●●●● ●● ●●●● ●●●●● ●● ●●●●● ● ●● ●●● ●●● ●●● ●● ●●●●● ●● ●● ● ●●●● ●●●●●●● ●●●●●● ●●●● ●●● ●● ● ●●●●●● ●● ●●● ●●●● ●● ●● ●●●●● ● ●●●● ●● ●●● ●●●● ●●● ●● ●●● ●● ● ●●● ●● ●●● ●●● ● ●●● ●●● ●●●●●●●●●●● ●●●●●● ● ●●●●● ●●●● ●●● ●● ●● ●●●● ●● ●● ●● ●●● ●●●●● ●●● ● ●●●●●●● ●●● ●●●● ●●●●● ● ●●● ●●●●●●●●● ●●●●● ●●●● ●●● ●●● ●●● ●●● ●●●● ●●●●● ● ●●●●●● ●●●●●●●●●●● ●●●● ●● ●●●●● ●●●●● ●● ●●●● ● ●●●●●●● ●●● ● ●● ●●●●● ● ●● ●●●●●●● ●●●● ●● ●●●●● ●● ●●●●●●●● ●●● ●●●● ●● ● ●●●●●●●● ●●● ●●● ●●●● ●●●●●●● ●●●●●●● ●●● ●●●●● ●● ●● ●● ●●●●●●●●● ●●●● ●●● ●●● ●●● ●●● ●● ●●● ● ●●● ●●● ●● ●●●● ●● ●●●●● ● ●● ● ● ●●● ●● ● ●●● ●● ● ●●● ● ●●● ●●●●●●●● ●●●● ● ●●● ● ●●● ● ●●● ●● ●●● ●● ● ●●● ●● ● ●● ● ● ●● ●●● ●●● ●●●● ● ●● ● ●●●●● ●●●● ● ●●● ●● ●●●● ● ●● ●● ●● ● ●●●●● ●● ● ●● ● ● ●●●● ●●●● ●●● ● ●●● ●● ●● ●●● ●●● ●●●●● ● ●●● ●● ● ●●●● ●●● ●●●● ●● ●●●●●●● ● ●●● ●● ●●●● ●●● ●●● ● ●●● ●● ●● ●●● ● ●● ●●●●●●● ●● ●●● ●●● ●●● ●● ●●● ● ●●● ●● ●● ●●● ●● ●● ●● ●●● ●● ● ●●● ●●●● ●● ●● ● ●● ●● ●●●● ●●● ●●● ● ●● ●● ● ●●● ● ●●● ● ●●● ●● ● ●●● ●●● ●● ●● ●●●● ●● ●● ● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●● ● ●●●●● ●● ●● ● ●●● ●●● ● ●●●●● ●●● ● ●●● ●●● ●●●● ● ●●●● ●● ●● ● ●●● ●● ●●● ● ● ●●●● ●●●● ●● ● ●●● ●● ●●● ●● ● ●●●● ●● ●●● ●●●● ●● ●● ●●● ●● ●●● ●●● ●●●●● ●●●● ●● ●●●● ●● ●● ● ●●●●●● ● ●●●● ● ●● ● ●● ●●● ●●● ●● ●●● ● ●●● ●●●● ● ● ●●●● ●● ●●●●●●● ●●● ● ●●●● ● ●● ●● ● ●● ● ●●●● ●● ●●●● ●● ●● ● ● ●●●●●● ● ●●● ● ●● ●● ●● ●●●● ●● ●●● ●●● ● ●● ●●● ●●●●●●● ●●●●●● ●● ●●●● ●● ●●●●● ●● ●●●●● ●● ●●● ●●●● ●●● ●● ● ●● ●●● ●●●●● ●● ●● ●● ● ●●● ●●●● ● ● ●● ● ● ●● ●●●●●●● ●● ●● ●● ● ●●● ●● ● ●● ● ● ●● ●●● ●● ● ●● ● ●●● ●●● ●●● ●●● ●●● ●● ●● ●● ●●●●● ●● ●● ●● ●●●●●● ● ●●●● ●●● ● ● ●● ●●● ●●●● ● ●●● ●●●● ●● ●●●●●●● ●● ● ● ●●● ● ●●● ●●●●● ● ●●●● ● ●● ● ● ●●● ● ●● ● ●● ●●● ●●●● ●● ● ●●●●● ● ●● ● ●● ●●● ●● ●● ● ●● ● ●●● ● ●●● ●● ●● ●● ●● ●●● ●●● ●● ●●● ●●● ●●●● ● ●●● ●● ●● ●● ●●●● ●●●● ●●● ●● ●● ●●● ●● ● ●●●● ●●●● ●●● ●●● ●●●● ●●●● ● ●● ●● ●● ●●● ● ●● ● ●●●● ● ●●●● ●●● ●●● ● ●● ● ●●●●● ●● ●●● ●●●● ● ●●●● ● ●●● ● ●● ●● ●●● ●● ●● ● ●●●● ●●● ●●● ●● ●●●● ●● ●● ●● ●●● ●● ●●●● ●● ● ●●● ● ●●● ● ●● ●● ●●● ●● ●●●● ●● ●●● ●● ●●●● ●●● ● ●●●● ●● ● ●●● ●●●● ● ●●●● ●●● ● ●● ● ●● ●● ● ●●●● ●●● ●●●● ●●●● ●●● ●●● ●●●● ● ●●●● ● ●● ●● ●● ●●● ●● ● ●●● ●●● ●●● ● ●●● ● ●● ● ●●● ●● ● ●●● ●●●●●●● ●●● ● ●●● ●● ●● ● ● ●● ●●● ●● ● ●●● ●● ●● ●● ●●● ●●●●● ●● ●●●● ●●●●● ●●● ● ●●● ● ●●●●● ● ●●● ●●● ●●●●●● ●● ●● ●●●● ● ●● ● ●● ●● ●●● ● ●●●● ●●●● ●●● ●● ● ●●● ●● ● ●● ●● ●● ●● ●● ●● ●● ● ●●●● ●● ●●● ● ●● ●● ●● ●● ●● ●●●● ●● ● ●● ●●●● ● ●●● ●●●● ● ● ●● ●●●● ●● ● ●●● ●●● ●● ●● ●●●● ●● ● ● ● ●●●●● ●● ●● ●●●● ● ●●● ●● ●●● ●● ● ● ●● ●● ●● ●● ●●● ●● ● ●● ●● ●●● ●●●● ●● ●● ●●● ●● ●●● ● ●● ●● ●● ● ●●●● ●● ●● ● ●●● ●● ●● ●●● ● ● ● ●●● ●● ●● ●●● ● ● ● ●●● ●●● ●●●●● ●● ●●●● ●●●● ●● ●●●●● ●●● ●●● ●● ● ● ●●● ● ●●● ●● ●●●● ●●● ●●●● ● ●●● ● ●●● ● ●●● ● ●● ●● ●●● ●●● ●●●● ●●● ●● ●●●● ● ● ●●● ●●● ●● ● ●●● ●●● ●●● ●● ● ●●●● ●●●● ●● ●●● ●●●●●● ●● ● ●● ●●● ● ●●●● ●● ●● ●● ●●● ●● ●●●●● ●● ●●● ●● ●● ●● ●●● ●● ●● ●●● ●●● ●●●● ●● ●● ●●●●● ●● ● ●● ●●●●● ●● ●●●●●● ●●●● ●●●●●●● ●●● ● ●●● ● ●●●● ●●● ●●●●● ●●●● ● ●●● ●● ● ●●● ● ● ●● ●●● ● ●●●● ● ●● ●●●● ● ● ●● ●● ●●●●●●●● ● ●● ●●●● ●●● ●● ●●● ●●● ●● ● ●●● ● ●●● ●●● ●●● ●● ●● ●●● ● ●●● ● ●●●● ●●● ●● ●● ● ●● ● ● ●● ●●●●●●● ● ●●●● ●● ●●●● ● ●●●● ● ●●● ●●● ● ●● ● ●●● ●●●● ●●●● ●●● ●●● ● ●●● ●● ●● ●● ●●● ● ●● ●●● ●●●●● ●
●

● ● ●●●● ● ●● ● ●●● ● ●●● ●● ●● ● ●●● ●●● ● ●●● ●● ● ●●● ●● ●● ●●● ●● ● ●●●● ●●● ● ● ●●● ●● ● ●● ●●●● ●● ●● ● ●● ●● ●● ●● ●●● ●●● ● ●●●● ● ●●● ●
●

●●● ●● ●●● ● ●● ●●● ●● ● ● ●● ● ●●● ● ●●● ●●●● ●● ●● ●●● ●●● ● ●● ●●● ●● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●● ●
● ● ●● ● ● ●●●●● ● ●● ●● ●● ● ●● ● ● ●●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●● ●●●● ●● ●● ● ● ●● ●●●● ●● ●●●● ●● ●●●● ●● ●● ● ●● ●●●● ●●● ●●●●● ●● ● ●●●●● ● ●●● ●● ●●●● ●● ● ●●● ●●● ● ● ● ●● ● ●● ● ● ●●●●●● ● ●● ● ● ●●● ●● ● ●● ● ●● ●● ●●●●

●
●● ● ●● ● ●
●● ● ●●● ●●● ●●●● ● ●● ● ●●● ● ●●● ●●●● ●● ●● ●●● ●●● ●● ● ●●●● ● ●●● ● ●●●● ●● ●●●● ●●●● ●●

● ●●● ●●● ● ●● ● ●● ● ●●● ● ● ●● ● ●●●●● ●● ●●●● ●● ●●● ● ●●● ●● ●●● ●●● ● ●●● ●●● ●●● ●●● ●● ●● ●●●● ●● ●●● ●● ●●● ● ●● ●●●● ●●● ●● ● ●●●●● ●● ● ●●● ●●● ●● ● ●●● ●● ●●● ●●● ● ●●● ●● ● ●●● ●●●●● ● ●● ●● ● ●●● ●● ● ●● ● ●● ●● ●●● ●●●●● ●●●●● ●●● ● ●● ●●●●● ●● ●● ● ●●● ● ● ●●● ●●● ●●● ● ●● ●●●● ●● ●●● ●●●● ●●● ●● ● ● ● ●● ●●● ● ●● ● ●●● ● ● ●●● ●●● ● ●●● ●●●● ●● ●●● ● ●● ●● ● ●●● ● ●● ● ●●●● ● ●●● ● ●●● ●●●●● ●●● ●● ●● ● ●● ●● ●●●●●● ●● ●● ● ●● ●●●● ● ●● ●● ●●● ●● ●● ● ●●● ●●● ● ●●●● ●● ●●● ●● ●● ● ● ●● ● ●● ● ●●● ●● ● ●●● ● ● ●● ●●●● ●● ●●● ●● ● ●● ● ●● ●●● ●● ●● ●●● ●● ●●● ●● ●● ●● ●● ●● ● ● ●● ● ●● ●● ●●● ●●● ●●●● ●● ●● ●● ●●●● ●●●● ●● ● ● ●● ●● ●●● ●● ● ● ●● ●●● ●●● ●●● ●● ●●●● ● ● ●●●● ● ●●●●● ● ●●●● ● ● ●●● ●● ●● ●● ● ● ●● ●●●● ● ●● ●●●●● ●●● ●●●● ● ●●● ●●● ● ●● ● ●● ●●● ● ●●● ●● ●●●● ● ●●● ●● ●● ●● ●●● ●● ● ●●● ●●● ●● ● ●● ●●● ● ●● ●●● ●● ●● ●●● ●●● ●● ● ●● ●● ●● ● ●●● ●●● ● ●● ● ●●●● ●●●● ● ● ● ●● ●●●● ●● ● ●● ●● ●● ●● ● ●●●● ●●● ● ●●●● ●●● ● ●●● ●● ●●●● ●● ●●● ● ●●● ● ●●●●● ●● ●●● ●●●● ●●●●● ● ● ●● ●●● ●● ●● ●● ● ●● ●●● ●● ● ●● ● ●●● ●● ●●●●● ●● ● ● ● ●●● ● ●● ●● ● ●● ●●● ●●●● ●●● ●●● ●●●● ●● ●● ●●● ●● ●●● ● ● ●● ●●● ●● ● ●●● ●● ●● ●● ● ● ●● ● ●●● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ● ●● ●● ●●● ● ●● ●● ●● ●● ●●● ● ●●● ●● ●● ●●●● ●● ● ●● ●●●● ●●● ●● ● ● ●●●● ● ●● ●● ●● ● ●●● ● ● ● ●● ●● ●●● ●● ●● ●● ●●● ●● ●● ●●● ● ●● ● ●● ●●● ●●● ●● ● ● ●● ●● ●● ●●●● ● ●●● ●●● ●●● ● ● ●●● ●●● ●●●● ● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●●●● ●●●●●● ● ●● ● ●●● ● ●●● ●● ●●● ● ●● ●● ●●●●● ●● ● ●●● ●● ● ●● ● ●●● ●●● ●●● ●● ●●●● ●●●● ●● ●●●● ●● ●●●●● ●● ●●●●● ● ●● ●● ●● ● ●●●● ●● ● ●● ●● ●●● ● ●●● ● ● ●●●● ●●● ●●● ●●● ●● ●●● ●●● ● ●● ●● ● ●●● ●●●● ● ●●● ●● ●● ●● ● ●● ●● ● ●● ●●● ●● ● ●● ● ●●● ●●●● ●●● ●●● ● ●●● ●●● ● ●● ●●● ● ●●●● ● ●● ● ●●● ● ●● ●●● ●●● ● ●● ●●● ●●●●● ● ●●● ● ●● ● ●●●●● ●●● ● ●●● ●● ●● ● ●● ●● ●●●● ●● ●● ●●● ●● ●● ●●●●●●● ●● ●● ●● ●●●● ●● ●● ●●●●●● ● ●● ●●●●●●● ● ●●●● ●● ●●●●● ●●●●●●● ●●● ●●● ●●● ●● ●● ●● ●● ●●● ●●● ●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●● ● ●●●●●● ●● ●● ●●●● ●● ●●● ●●● ●● ●●● ●●●●● ●●●●● ●●●● ●● ●●●● ●●● ●●●● ●●●●● ●● ●● ●●●● ●●● ●●● ● ●● ●●●●●● ●●● ●●●● ●●●●● ● ●●●● ●●●●● ● ●●● ●●●●●●●● ●●● ●● ●●●● ●●●●● ●●● ●● ●●●●●●● ●●●● ●● ● ●●●● ●● ●●● ●●●●● ●● ●●● ●●● ●● ●●●● ●●● ●●●● ●●●●●● ●● ●●●●●● ●●●●●●● ● ●● ● ●●● ●●● ●●●●●● ●● ●●●● ●●● ● ●●● ●●●●● ●● ●●● ●● ●●● ●● ●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●●●● ●● ●●●●● ●●● ●●●●●● ●●●●●● ●●●●● ●● ●●● ●● ●●●●●●● ●●● ●●● ●●●●●● ●●● ●● ●●● ●●●●●●●● ●●●● ●●●●●●● ●● ●● ●●●●●● ●● ●●●●●●● ●●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ● ●● ●●●● ●●● ●●● ●●●●●● ●●● ●●●● ●● ●●●● ●●●●● ●●● ●●● ●●●● ●●● ●● ●●●● ●●●● ●●● ●● ●●● ●● ●●● ●● ●● ●●● ●●●● ●● ●● ●●●● ●●● ●● ● ●● ●●●●● ●● ●●●● ●● ●● ●●●● ● ● ●●● ●● ●● ●●●●●● ●●● ●●● ●● ●●●●●●● ●● ●●● ●●● ●●●● ●●●●●●● ●●●● ● ●●●●●●●● ●● ●●● ●● ● ●●●● ●●● ●● ●●●● ●● ● ●● ●●● ●●●● ● ●●●●● ● ●●● ●●●●●● ●●●● ●● ●● ●● ●●●● ● ●●● ●● ●●●●● ●● ●●●●● ●●● ●● ●●●● ●●● ●● ●● ●● ●●● ● ●●● ●●●● ●●● ●● ●●● ● ●●●●● ●●● ● ●●● ●●● ●●●●●●●● ●●●●●● ●●● ●● ●● ● ●●●●●● ●●●● ● ●●● ●●●●● ● ●● ●●●● ●● ● ●●●●● ●●● ●●●●●●● ●●●● ●●●●● ●●● ● ●●●● ●●● ●● ●● ●●●● ●●●●● ● ●●●●● ●●● ●● ●●●●● ●●● ●●●●●● ●●● ●● ●●● ●●●● ●● ●●●●●● ●●●●● ●●●● ●● ●● ●● ●● ●● ●● ● ●●●● ●●●●●●●● ●●●●●●● ●● ●●●●● ●●●●● ●●● ●● ●● ●● ●●● ●●●● ●● ●●●● ●●● ●●●●●● ●●●● ●● ● ●●●●● ●●● ●●●● ●●●● ●● ● ●●● ●●● ●● ●●●●●● ●●●● ●● ●●● ● ●● ●● ●●●●●●●● ●●●●●●● ● ●●●●●●● ●●●●● ●● ●●● ●● ●● ●●●● ●●● ●●●●●● ●● ●●●● ●●●●● ●●●● ●●● ●●● ● ●●●● ●● ●●●●● ●● ●● ●●●●●●● ●●● ●●● ●●●●●● ●●●● ●●●● ●● ●● ●●● ●●●● ● ●● ● ●●●●● ● ●● ●● ●●●●● ●●●●● ● ●●● ●●● ●● ●●● ●● ●●●●● ●●●● ●●●●● ● ●● ● ●●●●●● ●●● ●● ●● ●●● ●● ●●●●● ●●●●●●●●●●● ●● ●●●● ●●●●● ●● ●●● ●●●●● ●● ●●● ●●● ●●●● ●●● ●●●●● ●●● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●● ● ●● ●●●● ●●●●● ●●●● ●● ● ●● ●● ●●● ●● ●● ●●●●●● ●● ●●●●● ●●●● ●●● ●●●● ●● ●●● ●● ●●●● ● ●●●●●●●●●● ●● ● ●●●● ●●●●● ●●● ●●● ●●● ● ●● ●●● ●●● ● ●●● ● ●●● ●●●●● ●●●●●●●● ●●●●● ●●● ●● ● ●● ●●● ● ●●● ●●●● ●● ●●● ●●● ●●●●● ● ●● ●●●●●● ●●●● ●● ●●● ●● ●● ● ●● ●●●● ●●●● ●● ●●●● ●● ●● ●●● ● ●●●●●●●● ● ●●●● ●●● ●●●● ●●● ●●● ●●●●● ●●● ●●●●● ●●●●●●●●●● ● ●●● ●●● ●●● ● ●●● ●●● ●●●●●●●●● ●● ●●● ●●●● ●●●●● ●●● ●● ●● ●● ●●● ● ●● ●● ●● ●● ●● ● ●●● ●●●●● ● ●● ● ●● ●●●● ● ●●●● ●● ●●●●● ●●●●●●● ●● ●● ●●●●●● ● ●● ●●●● ● ●● ●● ●●●●●● ●●●●● ●● ●●●
●

●
●

● ●● ●●●● ●●● ●●●● ●● ●●●●
●

●●●● ●● ●●
● ●● ● ●●

●
●

● ●●● ●
● ●● ● ● ●●

●

●● ●●●
●

● ●●● ●●●
●

●
●

●● ● ●●●● ●●● ● ●● ●
●

● ● ●● ●●● ●● ●●●● ●● ●● ● ●● ●●● ●
●●● ●● ●

●
●●●● ●● ●● ●● ●●● ● ●●● ●●●

●
● ●● ●

●● ●●● ●
●● ●● ●●●

●
● ●

●●
●

●● ●● ●
●●● ●

● ● ●
●

● ●●
● ●●● ● ●● ●●●● ●● ●● ●

●
● ● ● ●

●
● ●●● ●● ●●

● ●
●● ●●

● ●
●

● ● ●●● ● ●● ●●● ●●
● ●● ●● ●● ●●● ●●●●● ●● ●

●● ● ●
● ●● ● ●● ●●● ● ●● ●●● ●●●● ●●●●● ●● ●●

●
● ●●●

●
●
● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ● ●

●● ●
●
●● ●

●
●● ●● ●● ●●

● ●●● ●●● ●● ●
●

●●●
●

●●● ●●●● ●
●

● ●●●
●

● ●● ●● ●● ●● ● ●●●●● ●●●● ● ●● ●●● ● ●
●● ●● ●●● ●● ●●● ●● ●●● ●● ●● ● ●

●● ●●
●● ● ●● ●●● ●●● ●

●●
●● ●●●●●

●
●
●● ●●

● ●●● ● ●●● ●
●●● ●●
●

●● ●● ●●●●
●

●●● ●● ●● ●●●●● ● ● ●● ●●●● ● ● ●●●● ●
● ●● ● ●

●
● ●●●● ●●

●
●

●
●

●● ●● ●●● ●
●●●●● ● ●● ● ●●● ●● ●●●●

●●
●●● ●

●
●

● ●
●●

●
●●●● ● ●● ●●●

●●●● ●
●

●● ●●● ●● ●● ●●
● ●●● ●

●

● ●●● ●
● ● ●●● ● ●●●● ● ● ●● ●●● ●● ●●● ●●● ●● ● ●● ●● ● ●● ●●● ● ●● ● ●● ● ●● ●●● ●● ●●● ●●●● ●●●● ● ●● ●●● ●● ● ●● ●● ● ●● ●● ●●● ●● ● ●● ●● ● ●●●●●●● ● ●● ●● ●●● ●● ●●●●

●

●●●● ●●●● ●● ●● ●●● ●●●● ●● ●●● ●●● ●●● ●●●● ●● ●●● ● ●● ●● ● ●●● ●●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●
●

●●●●● ●
●

●●●● ●●●● ● ●● ●● ●● ●● ●● ● ●● ●●●● ●● ● ●●●● ●●●● ● ●● ●●●● ●● ●●●● ●●● ● ●●● ●●●● ●● ●● ● ●●● ● ●● ●
●●● ●●●● ●● ●

●● ●●● ●●●●●●● ●●● ● ●●
●

● ●●
●

●● ●●● ● ●●●●● ●● ●● ●● ●● ●●● ●● ●●●●● ● ●●● ● ●●● ●● ●●● ●●● ● ●● ●● ● ●●● ●● ●
● ●● ●● ●●● ●● ● ●●● ● ● ●●●●●● ●● ● ●● ● ●●● ●● ● ●●●●● ●●●

● ●●● ●● ●●● ●● ●●● ●●● ● ●●●● ●● ●● ● ●● ●● ●●● ● ●● ●●●●● ●●●●● ● ●● ●●● ● ●● ●● ● ●● ● ●● ●●●●● ●● ●●●● ●● ●●● ● ●● ●●●● ● ●● ●● ● ●●● ●●● ●●●●● ● ●●● ● ●● ● ●● ●●● ●●
●
● ●● ●● ●●● ● ●● ● ●● ●● ●● ●● ●● ● ●●●●● ●●● ● ● ●● ●● ●

●
●● ●● ●●●● ●● ●●

●
● ● ●● ●● ● ●●● ●● ●●● ●● ●● ● ●●● ●●●● ● ●●● ●● ●● ●● ● ●●●● ●●● ●● ● ●●●●●● ● ●● ●● ●● ●●●● ● ●●● ● ●● ●● ●● ●●● ●● ●● ● ●●●●● ● ● ●●● ●●●●● ● ●● ● ● ●● ●● ● ●● ●● ●● ●● ● ●●● ● ●●● ●● ●● ●● ● ● ●●● ●●● ●●● ● ●●●●●● ●● ● ●●●●●● ●●●●●●●● ●●●●●●● ● ●● ● ●●●●●● ● ●●● ●● ●●●● ●● ● ●●● ●● ●●●● ● ●●●●●●●● ●● ●● ●●● ●● ●●●● ● ●●● ●●●●●● ●●●●●●●●● ● ●●● ●● ●●●● ●● ●● ●●●● ●● ● ● ●● ● ● ●●●● ●● ●●● ● ●●●●● ● ●●● ●●●● ● ●● ●● ●● ●●●● ●●● ●● ●●●● ●● ●●●●●●● ●●● ●● ●●● ● ●●● ●● ● ●● ●● ●● ●● ●● ●● ●●● ● ●●● ●● ● ●● ●●● ● ●●●● ●●●● ● ●● ●●● ●● ●●● ● ●● ●● ●● ●●●● ● ●● ●● ● ●● ●● ●●● ●● ● ●● ●● ●●● ● ●● ● ●● ●●●● ●● ●●● ●● ● ●● ●●● ● ●●●●● ●● ●● ●●●● ●● ●●● ●●●● ●● ● ●●●● ● ●●● ●●● ●●● ● ●● ● ●● ●●●● ●● ●● ●● ● ●●● ●●● ● ●● ● ● ●● ●● ●● ●●● ● ●●● ●●● ●● ●● ●● ● ●●● ● ●● ● ●● ●● ●●● ● ●● ●●● ●● ●● ● ●●● ●● ●●●● ●●● ●●● ●● ●● ●●●● ●●●● ●●● ●●● ●● ●● ●●● ●● ●●●●● ● ●● ●●●● ● ● ●●● ●● ●●● ● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ● ●

●
●
●●

● ●
●

●

●

●
●

●
●

●
●●

● ●
●

●

●
●

●
●● ●●

●

●
●

● ● ●

●

●
●

●● ●● ●
● ●

●
●

●●
●● ●●

●

●●●● ●●●
●

●

● ●

●

● ●
● ●

●● ●
● ●

●
●

●
●

●

●

●
● ●●

●
●

●
●

● ●
●

●
● ●

●
● ●●

●
●

●●

●

●
●

●
●●

● ●
●●

●
●●

●

●

●● ●●

●

●●
● ●

●● ●●
●

●

●

●
●

●
●

●● ● ●● ●
●●

●
●● ●

● ●●
●

● ●

●

●
●

●● ●

●

●
●

● ●
●

●●

●
●

●● ●●
● ● ●

●
●

●●
●

●
●

●
●

●●● ●

●

● ●
●

●
●

● ●
●

●
●

● ●

●

● ●●
●

●
●

●

●●
●

● ●●

●

●● ● ●●
●

●●

●

● ●
● ● ●●

●
●

● ●
●

●●
●

●
●

●
●●

●
●

●

●

● ● ●●

●

●●
● ●●●●● ●

●

●●
●

● ●●
●● ●

●

●

●

● ● ●
●

●●
●

●

●●
●● ●

●
● ●●

●
●

●

● ●
●

● ●

●

●●
●

●

● ●● ●●
●●

● ●

●

●● ●
●

● ●
●●

●
●

● ●
●

●●● ●
●

●
●

●

●●
●

●

● ● ● ● ●
●

●
●

●●

●

●●
●● ●● ●●●● ●● ●

●
● ●

●
● ●●

●
●●

●
●

●

● ●
●

●

●

●

●●●

●

●

●

●
●

● ● ●● ●
●

● ●
●●●

●●● ●
●

●

●

●

●
●● ●●

●

●

●● ● ●●●
●

●

●
●

●
●●

●

●● ●● ●● ●

●
●

●

●●● ● ●●
●●

●
●●

●

●

● ●●
●

●
●●

●
●

●
●

●
●●● ●● ●

●
●●

●

●●●
● ●●● ●

●

● ●● ●

●

●●

●

●

●
●● ●●●

●

●●

●

●● ●●

●

●
●● ●●●●
●

●
●

●

●●● ●●
●

●
●

●
●

●
●

●

●

● ●
●

●●
●

●

●

●●●
●

●●
●

●

● ●●
●●

●

●
● ●

●

●● ●
● ●

●

●●
●●
●

●
● ●

●
● ●

●
●

●●
●

●

●
●

●
●

● ●● ● ●●●● ● ● ●● ●
● ●●●

●
● ●●● ●● ● ●

●
● ●● ●

●
● ●● ● ● ●●●● ● ●

●● ●● ●
●

●
●

●● ●●
● ●●● ●●● ● ●

●
● ● ●

●
● ●●● ●● ●

●
●● ●●●

●
●● ●

●● ● ●

●

●● ●● ●
●

●●● ●● ●●
●

● ●
●

● ●●●● ●● ●●● ●● ●
●

●
●

●●●● ●● ● ●● ●● ●● ●● ●●●●●● ● ● ●●●
●● ●●● ●
●

● ● ●●● ●●● ●●●
●

●● ●● ●
●

●

●● ●●
● ● ●● ●●

● ● ●●
●●● ●

●● ● ●●●● ●● ●

●

●
●●

●
●●

●
●● ● ●

●

●● ●● ●●● ●● ●● ●●● ●●● ●●●●
● ● ● ●●

●
●

●● ●

●

● ●● ●
●

● ●
● ● ●●●●●● ●● ●● ●●

●
●● ● ●● ● ●●

●
●

●● ●
●

●
●

● ●● ●● ●●●●
●

● ● ●
● ●

●
●●● ●●●

● ● ●●●● ● ●●●● ●●
● ●● ●● ●●● ●● ● ●●● ● ●● ●●

●● ● ●● ● ● ● ●●
● ●● ●

● ● ● ●●
●

●●●
●

●●
●●● ●●

● ●
●●

●
●● ●● ●●● ●●● ●

● ●● ●
●

●● ●
● ●

●

●
● ●●●

●

● ●●●●● ●● ●● ●
●

● ●
●

● ●●
●

● ● ●●
● ●

● ●●●●● ●● ●
●

●●
● ●● ●●●

●●

●●
● ●●●

●
●● ● ●● ●

● ●●
●

●
● ●

● ●
● ● ● ●●●

● ●● ●●● ●●●● ●●●●●● ●●●●
●

●●

●

● ●●
●

●● ●
●

● ●● ●● ●●● ●● ●● ●●

●
● ●●● ●● ●

●
●●● ●●

●

● ●●● ●● ●●

●
● ● ●

●● ●●
●

●
●
● ●

●
●● ●●

●
●● ●● ● ●●●● ●● ● ●●

●
● ●

● ● ●●● ●● ●● ● ● ●●●

●

●● ●●●●● ● ●● ● ● ●●●● ●● ●● ●● ●●● ●● ● ●●● ●● ●● ● ●●●● ● ●● ●● ● ●● ● ●● ● ●● ●● ●● ● ●●● ●●● ● ●●●● ● ●● ●
● ● ●● ●●● ●● ●● ●● ●● ●● ●●●● ●● ● ● ●●●● ●●● ●●●● ● ●● ●● ● ●● ●●● ●●●● ● ●●● ●● ●● ●● ●● ●● ● ● ●● ●●● ● ●●● ● ●● ●●● ●●● ● ●● ●●● ●● ●● ●● ●● ● ● ●●● ● ● ●● ●●● ●● ● ● ●●● ●● ●● ● ● ●● ●●●● ●●● ●●●●● ●● ●●● ●●● ●

●
●●●● ●●● ● ●● ●● ●●● ● ●● ● ●● ●●● ●●

●●●● ●● ●● ●● ●
● ●●● ● ●●● ● ●●● ●● ● ●● ●● ●● ●●●● ●● ●●● ●●● ● ● ●● ●●● ● ●● ●●●● ●● ●● ●● ● ●●●● ●●●● ●● ●●● ●●● ●● ●● ●● ●●●● ●● ● ●● ●●● ●● ●● ●●● ●●● ●● ●● ● ●●● ● ●● ● ●● ● ●● ●●●● ●● ●●● ●● ●● ●●

●●●● ●● ●●● ●●● ●
●

●● ●● ●● ●●● ●●●● ● ●●●● ● ●● ●●● ●● ● ●●●●● ●● ●● ●● ● ●● ●●● ● ● ●●● ●●● ●●● ●●● ●● ● ●● ●● ●● ●● ●● ●●● ●● ●●● ● ●●● ●● ●● ● ●●●● ● ● ●●● ●●●● ● ●●● ● ●● ●●●● ●● ● ●●● ● ●● ●●● ●● ●●●● ●●● ●●● ●● ● ●● ●● ● ●● ●●● ●●● ●●●
● ●● ●● ● ●●● ●● ●● ●● ● ●● ●● ● ●●● ●●● ● ●● ●●● ● ●● ●● ● ●

●
● ●● ●● ●●● ● ●● ●●●● ●● ●●●● ●●●●● ● ●●● ●●●● ●● ●●●● ●● ●● ●● ●●● ●●● ●●●●●● ●●●

●
●●●●●●●●● ● ●●●● ●●● ● ●● ●●● ●● ●●● ●●● ●●●●● ●● ●●● ●● ●●●● ●●●● ●● ● ●●● ●●● ●●● ●● ●●●● ● ●●● ● ●●● ●●●● ●●●●● ●●●●● ●●●● ●●●● ●● ●●●● ●● ●●●●●● ●●● ●●●●●●● ●●● ●●● ●●●● ●●● ● ●● ● ●●●● ●● ●●●●●●●● ●●●●●● ●● ●●● ●● ●●●●● ●● ● ●●●● ●●●●●●●●●●● ●● ●● ● ●●●● ●● ● ●● ●●● ●●●●●● ●● ●● ●●●● ●●● ●●●● ●●● ●●● ●● ●●●●●●● ●● ●● ●● ●● ●●●● ● ●●● ●●●●● ●● ●● ●● ●●

● ●●●●●●●● ●● ●●● ●●● ●●●● ●● ● ●●●● ●●● ●●●● ●●●●●●●●● ●● ● ●● ●●● ●● ●●● ●● ●● ●● ●●● ●● ●● ●●●● ●●● ●●● ●● ●●● ●●●●●●● ●●● ●●●●●● ●●●● ●● ● ●● ●●●● ●●●● ●●● ●●● ●●●●●● ●●●●● ●● ●● ●● ● ●●● ●● ●●●●● ●● ●● ●●●● ●●●●●●● ● ●●●●● ●● ●●● ●● ●●● ●●●● ●●●● ●●●● ●● ●●●● ●●●● ●●● ●●● ●●● ●●●●●●● ●●● ●●●● ●● ● ●●●●● ●●●●●● ●●●●●● ●● ● ●●●● ●●●● ●●●●● ●●● ●●● ●● ●●● ●●● ●●●● ●●●● ●●●● ●●●●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●●●●● ●● ●●● ●●● ● ●●● ●●●●● ●● ●●● ●● ●● ●●● ●●●●●● ●●●● ●● ●● ●● ●●● ●● ●●● ●●● ●●● ●● ● ●● ●●●●●●● ● ●● ● ●● ●●●●● ●●●● ●●●●● ●●●● ●●● ●●●● ●● ●●●● ●●●● ● ●● ● ●● ●●●●● ●●● ●●●●●● ●● ●●●● ●●●●●●●●●●● ● ●●● ●● ●● ●● ●●● ●●●●● ●●● ●● ●●●● ●●● ●●● ●●● ●●●● ● ●● ●● ●● ●● ●●● ●●●●●● ●●●●● ●●●● ● ●● ● ●●●● ●●●● ● ●● ●●●● ● ●●● ●●●● ●● ●● ●●●● ●●●●● ●●●●●●● ●●● ● ●● ● ●●●●●●●●●●● ●●● ● ●●●● ●●●●● ●●●● ●●●● ●●● ●●●●● ●●● ●● ● ●●● ●● ●●●● ●● ●● ●● ●●● ●●●● ●●● ●●● ● ●● ●● ●● ●●●● ●●●●●● ●● ●●● ●● ●●● ●●●●● ●●● ●●●●● ●●●●● ●●● ●● ●●●●●● ●● ●● ●● ●● ●● ●●●●●●● ●●●● ●● ●●●● ●●●●●● ●●● ●● ●●●● ●● ●●●●● ●●●●● ●●●●● ●●● ●●● ●● ●● ● ●●●●● ●●● ● ●●●●●● ● ●●● ● ●● ●●●● ●●● ●● ●●●● ●●● ●● ●●●● ●●●●●● ●●● ● ●●●● ●●●● ●●●● ● ●● ●●●● ●● ● ●●●● ●●● ●●●● ●●● ●●● ● ●●●● ● ●●● ●●●●● ●●● ●● ●● ●● ●● ●●● ●●●●● ● ●● ●●●●●●● ●● ●●●● ●●● ●●● ●●●●● ●●●●●● ●●●●●● ●●● ●● ●●●●● ●●● ●● ●●● ●● ●●● ●●● ●● ● ●●●●● ●●●●●●● ●● ●●● ●●●● ●●●● ●●● ●●●●●● ●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●● ●●●●●●●●●● ●●●●● ● ●●● ●●● ●●● ●● ●●● ●●●●●●● ●●●●● ●● ●● ●●●●●● ●●● ●● ●● ●●●●● ●● ●● ●●●●● ●●●●● ●● ●●●●● ●●● ●●●●●● ●●●●● ●●●●●●● ●● ●● ●●●●● ●● ●● ●● ●● ●●●●● ●● ●● ●● ●● ●●●●● ●●● ●● ●●●● ●● ●●●● ●●● ●●●●● ●●●●● ●●●●●●●●● ●● ●●●●● ●●● ●●●●●● ●●● ●● ●● ●●● ●●●● ●●● ●●●● ●●●●●● ●● ●●●● ●● ● ●●●●● ●●●●●●●●●●●● ●●● ●●●● ● ●●●●●● ●●● ●● ●●● ●●●● ●● ●●● ●●●● ●●●●●● ●● ●● ●● ● ●● ●●●● ●●●● ● ●●● ●● ●● ●●● ●●●●● ●●●● ● ●● ●●● ● ●●● ●● ●●● ● ●● ●●● ●● ● ●● ● ●●●●● ●●●● ●●● ●●● ●●● ●●● ●● ●●● ●● ●● ●●● ●●● ●●●● ●●● ●●● ●●●● ●●● ●●●● ● ● ●●●● ●●●● ●● ● ●●●● ●● ●●●●● ●● ● ●● ●● ●
●

●
●

●● ●● ●
●

●

●●● ●
●●

●
● ●●

●
●●

●
●● ●

● ● ●
●

●
●

●

●

●
●

●

●
●

●

●

● ●
●●

● ●
● ●

●

●

●● ●● ●●
●

●

●
● ●● ●

● ●
●

●
●

●
●

●
● ●

● ●●

●

●
●

●
●

●

●
●

●●●
●

●

●●

●

●
●
●

●
●

●●●●● ●● ●

●
●

●
●

●

●●
●●

●

●

● ●
●

● ●
● ●●●●●

●
●●

●
●● ● ●●

●

●●● ●●
● ●●

●

●
●

●
●

●●● ●

●

●●

●

●
●●

●

●

●
●

●

●

● ●●

●

●

●

●
●

●
●

●●●
●

● ●
●

●

●●

●

●

●●

●

●●
● ●● ● ● ●● ●

●
●

●
●●● ● ●

●
●

●●●
●

●

●●●●

●

● ●
● ● ●

●

●● ●
●

●● ●
●

● ● ●●
●

●●
● ●

●● ●
●

●

●
●

●
●

●

● ● ●
●
●●

●

● ● ●●● ●

●

● ●
●

● ●● ● ●
●

●● ●●
● ●

●

●

●

●

●

● ●●
●● ●● ●● ● ●●●

● ●●●

●

● ●●

●

●
●

●
●

● ●
●

●
●

●
●

●

●●●● ●
●

●
●● ● ●●

●

●
●

●● ●

●

●● ●
● ● ●

●
●

●
●

●
●●●

● ●●●
● ●● ● ● ●

●

●

●
●

●● ●●
●

●

●

● ●
●

●●●● ●● ●● ● ●
●● ●

●

●●

●

● ●●● ●● ● ●
● ●

●

●●●
●

● ●

●

●●

●

●

●

●

●● ●

●
●

●
●

● ●
●

● ●
●

●
●●

●

●

●● ●● ●● ● ●
● ●

●

●●
●● ●●

● ●
●●● ●

●●
●

●●
●

●

●

●● ● ●●

●

●
●

●

●
●

●

●

●●

●

● ●● ●●
●

● ●
●

●● ●
●

●
●●

● ●

●
●●●

●

●

●

●

●●

● ●

●

●
●

●●
●

●●●● ●●
●

●●●
●

●●
●

●
●

●●●●

●

●
●

●

●

●●

●

● ●
●
●

●●
● ●●●

●
● ●●●● ●

●
●

●●● ●●● ●● ●● ●
● ●● ●●● ●● ●● ●● ●

●
●●● ●●

●

●● ●● ●● ● ●
●

● ●● ●
●

●● ●●
● ● ●● ●●●● ● ●

●

● ●● ● ●●●●
●

●●
●●● ● ●●●●● ●●● ●●●●●● ● ●● ●

●
●

● ●
●●● ●

● ●●● ●
●●

●● ● ●● ● ●
●

●●● ●●●● ●

●
● ●●

●
● ●●

●● ●●●● ●●
●● ●●

●
●●●

●

●●● ●●●●●

●

● ●
●

●● ●● ●
●

●

●

●● ● ●●● ●
●

●●● ●●● ●●● ●
●

● ●● ●●●●
●

●● ● ●● ●●●●● ●● ●●

●
●

● ● ●●●
●

● ● ●●● ●●●
●

●● ●● ●

●

●
●
●

●
●

●

●
●

●
●● ●●

●
● ●● ●●● ●●

● ●● ●
●

● ● ●●

●

●● ●●●●
●●

●●● ●

●

●● ●●
●

●● ●● ●
●●●● ●●

●
●●●

●
●●●● ●

●

●●
●

●
●

● ●● ●●
●● ●●

● ●●● ● ●● ●●
●

●
●● ●●●

● ●●● ●● ●

●
●

●
●● ●

● ● ●●●
●●● ●● ●●

●
●●

● ●
●

●● ● ●
●

● ●
●● ●

●
●

●

●● ●
●

●
● ●●

●● ●●● ● ●● ● ●●●●● ●●●
●

●
● ●

●
●

●
●●

● ●●
●

●●● ●
●
●● ●● ●

●
●

●

●●●● ●●
● ●

●●●● ●●● ●●
●

● ●●
● ● ●● ●● ●●

● ●● ●●● ●
●

●● ● ●● ●● ●● ●● ●●
●

●●
●

●●
●

●
●

●

●
●

●●●● ●
●

●●●●●● ●●● ●●●● ●● ●●
●

● ●●
●

● ●●
●

●
●

●
●

● ●●
●●● ●

●
●●●● ●●●● ●●

●

● ●●●●
●

●
●

●● ●● ●●● ●●● ●●

●
●●● ●● ●●●● ●●●● ●● ●● ●

●
●● ● ●● ● ● ●● ●

● ●●●● ●●● ● ● ●●
●● ●● ● ●

●● ●●● ●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●●
●

● ●●● ●● ● ●● ●●● ● ●● ●●● ●● ●●● ●● ●● ●● ●● ●●●● ● ● ●● ●●● ●● ●● ●●●● ● ●●●●● ● ●●● ●●●● ●● ●●● ●●● ●● ●● ●
●●● ●●●●● ●● ●●● ● ●● ● ●●● ● ● ●●●● ●●●● ●● ●●●●● ● ●● ●●●● ● ●●● ●●● ●●● ●●● ●●● ●● ●●●● ● ●● ●●● ●● ●● ●● ●●●● ●●●● ●● ●●● ● ●●● ● ●●● ●● ●●● ●● ●● ●●● ●● ● ● ● ●● ●

●●● ● ●● ●● ●●●● ● ●●
●●●● ●●●● ●● ● ●●●● ●●● ●●● ● ●● ●●● ●●● ●● ●●● ●● ●●● ●●●● ●● ●●● ●●● ●● ●●● ●● ●●● ●●●● ●●●● ●● ●● ●● ●●●● ● ● ●●●● ● ●●● ●● ●● ●●●●● ●● ●● ● ●●● ●●● ●●● ●●● ● ●●●● ● ●● ●●●●●● ●● ●● ● ●●● ●●

●
●●● ●● ●●●● ● ●● ●●●● ●● ●

● ●●●●●● ●●●●● ●● ●●● ● ●● ●●● ●● ●●● ● ●● ●●● ● ●●●● ●●● ●●●●● ●● ●●● ●● ●● ●●● ●●● ●●●● ● ●● ●● ●●● ● ●● ●● ● ●● ●●●● ●●● ●● ●●● ●●● ●● ●●●●●●● ●●
●● ● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●● ●● ● ●● ●●● ●●●●●● ●

● ● ●●● ● ●●● ●● ●●●● ●● ●● ●● ●● ●● ● ●● ●●●●● ●● ●● ●●● ●● ●● ●●●●●●● ●●● ● ●●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●●●

●

● ●●
●

●

●

●

●

●

● ●●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●
●● ●●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●●

●

● ●

●
●

●

●

●

●
●●

●

●
●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●●●

●

●

● ●
●

●

● ● ●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●●●

●

●

●●

●

● ●

●
●

●

●

●

●

●
●
●

●

●

●
● ●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●● ●● ● ●

●
●

●

●

●

●

●
● ●●

●

●

●

● ●●
●
●

●
●

●

●

●

● ●●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

● ●●

●

●●

●

●

●●

●
●

●●
●

●

● ●

●

●●●

●

●

●

●

●

●

●●
●●

●

●
●

●
●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●
●●

●

●

●

●
●●

●

●

●
●

●

● ● ● ●●
●

●
●● ●

●
●●●

●
●●

●● ● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

● ●
●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
● ●

●

● ●
●

●● ●●●●

●

●
●

●

●

●
● ●●

● ●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●
●

●

●● ●●● ●●

●

●
●

●

●●

●

● ●
●

●

●
● ●

●

● ●
●

●

●
●

●

●

●
●

●

●
● ●

●

●●

●

●●

●

●
●● ●●

●

●
●

● ●

●

●●●

●

●
●● ●

●
●

●

●

●●

●

●

●

●

●
● ● ●

●

●●
●

●

●

●
●●●

●

●

●

●

● ●●

●

●●
●

●
●● ●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

● ●

●

●
●●

●●●
●●

●
●

●

● ●●
●

●

●

●
●

●●

●

●

●●
●

●

●

● ●
●

●

●●
●

● ●
●

●

●
●

●

●
● ●

●

● ●● ●
●

●

●

●

●●

●

●

●

●● ●

●

● ●

●

●
●

●

●

● ●

●

●

●

●●●

●

●

●
●●

●

●

●●
●

●

●

●

●

●
●

●

●

●● ●
●

● ●
● ●
●

●

● ●●
●

● ●

●

●●
●●

●●
● ●

●
●

●
●

● ●●

●

● ●

●
●

●

●

●
●

●

●
●● ●

●
●

●

● ●●

●●
●

●
●

●

●●● ●

●
●

●●

●

● ●

●

●
●

●
●

●

●
● ●

●
●

●
●

●
●

●

●

●

●
●● ●●

●

●
●

●

●

●

● ●
●

●
●

●●

●

●
●

●

●

●

●●

●

● ●

●

● ●●

●
●●

●
●

●

●

●

●●●●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●
●● ● ●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●●● ●

●
●

●

●

●

●

●

●

●
● ● ●

●

●
●

● ●

●
●

●
●

●

●
●●

●

● ●
●

●

● ●●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●● ●
● ●

● ●
●●

●
●

●

●●●
● ●●

●

● ●●●
●●

●●
●

●●
●

●● ● ●

●

●● ●
●

●
●● ● ●●●●● ●●● ● ●● ●

●
● ●●● ● ●● ●
● ● ●

●
● ●●●

●
● ● ●

● ●

● ●●●●● ● ●● ●

●

●● ●●● ● ●● ●● ●● ●● ● ●
●● ●

●

● ●

●
●

●● ●
●●

●
●

●
● ●● ●● ●●

●
●●●●● ●● ●● ● ●

● ●●
●

●

●●
●●● ●● ●●●●

● ●●●●
● ●

●
● ●● ●●● ●● ●

●●● ●● ●●● ● ●●
●

● ●●● ●
●

●●●

●

●
●

●
●●

●●
● ● ●● ●●

●
●●

● ●●
● ●

●
●

●● ●
●

● ●●●
●

●

●●
● ● ●

●
● ●● ●● ●●

●
●● ●●●

●
●●

●● ●● ●● ●●●● ●● ●●
●

●●● ●●
●

●●
●

● ●● ● ●●●● ● ●● ●● ●●
●● ●

●

● ●● ● ●
●

●

●

●
●● ●● ●

●
● ●●

●
●

● ●
●

●●●
●● ●

● ●●
●

●●●● ●● ●
●

●
●

●

●
●

●

●

●●
●

●●●● ●●
●

●● ●●
●

●● ● ●●
●

●● ● ● ●● ●● ● ●

●
●

●●● ● ●● ●●●●● ● ●● ● ●● ●●● ●
● ●

●
●● ●●● ●

● ● ● ●●
●

● ● ●●● ● ●
●

●

●
●

● ● ●● ●●●●● ●● ●●●● ● ●
●

●

●●
●

● ●
●

● ● ●●● ● ●● ●●● ●● ● ●● ●●
●

●

●● ●●
●

● ●● ●●
●

●●● ●
●

●●

●

●● ●●
●

●● ● ●●

●
●● ● ●● ●

●
●

●

● ●●

●

●
●

● ●●
●

●
●● ●●

●
● ●●●● ●

●
●

●

● ●

●

● ●
●

● ●●● ●● ●●●● ●
●

● ●●
●

●
●● ●●● ●● ●

●

●●● ●● ● ●● ●

●

●● ●●
● ●

● ●● ●● ● ●●● ●● ●
●

● ●●●● ●● ●● ● ● ●● ●●●●● ●
● ●

●
● ●●●●

●
● ●●●

●
●●●●

●● ●
●

● ●● ●● ●● ● ●● ● ● ●●
●● ●●● ●

0 20 40 60 80 100 120

0
50

00
0

15
00

00

tours

re
sp

on
se

 ti
m

e
in

 m
s

●●●●●●●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●●●● ●●●●●●●● ●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●● ●● ●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●● ●●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●● ●●● ●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●● ●●●●●●● ●●●●●●●● ●●●●● ●● ●●●●● ●●●●●●● ●●●●● ●●● ●●●●●●●●●●●● ●●● ●● ●●●●●● ●●● ●● ●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●● ●●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●● ●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●● ●●●●●●● ●● ●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●● ●●●●●● ●●●●●●●●●●●●● ●●●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●● ●● ●●●●●●●● ●●● ●●●●●●●●●●●● ●● ●●●●●● ●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●● ●●●● ●● ●●●●● ●●● ●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●● ●●●●● ●●●● ●●●●●● ●●●●●●●● ●●●●●●●●●●●●● ●● ●● ●●● ●●●● ●●●●●●●●●●●●●●● ●● ●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●● ●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●● ●● ●●●●●●●●●●●● ●●●● ●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●● ●●●●●●●● ●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●● ●●● ●●●●● ● ●●● ●●● ●● ●●●● ●● ●●●●● ● ●●●●●●● ●● ●●●● ●● ●●●● ●●●● ●●●●●●●● ●●●●● ●●● ● ●●● ●●●● ●● ●●●●● ● ●●● ●●● ●● ●●●● ●●●●●● ●●●● ●●● ● ●●●●● ●●●●● ●●●●●●●●● ●●● ●● ●●●●●●●●●● ● ●● ● ●●●●● ●●●● ●●● ● ●●● ●●●● ●●● ●●● ●●●●●●●●● ●● ●●●●● ●●● ●●●● ●● ●●●●●●●●●●● ●●●●●● ●●● ●●● ● ●●● ●● ●● ●●● ●●● ●●●●●●● ●● ●●● ●●●●●● ●●●●●● ●●● ●● ●● ●●● ●● ●●●● ●●●●● ●●●● ●●●● ●● ●●●●● ●● ●●●● ●●● ●●●● ●● ●● ●●●● ●●●●● ●●●●● ● ●●● ●●● ●● ●●●●●● ●● ●●●●●●● ●●●●●●●● ●● ●● ●● ●● ●●●● ●●●●● ●● ●●● ●●● ●●● ● ●●●●●●●● ●●●● ●●●●●●● ● ●●●● ●● ●● ●●●● ●● ●●● ●● ●●●●●●●● ●●●●●● ●●●●● ●● ●●●●● ●● ●●● ●●●● ●● ●● ●●● ●● ●●● ●●● ●●●●● ●●●●●● ●●●● ●●●● ● ●●●●●● ● ●●●● ● ●●●●● ●●● ●●● ●● ●●● ● ●●● ●●●●●●●● ●●●● ●●●●●●● ●●● ●●●●● ● ●● ●●●●●● ●●●● ●● ●●●● ●● ●● ●● ●●●●●● ●●●●● ●● ●● ●● ●●●● ●●●●●●●●● ●● ●●● ●●●●●●● ●●●●●● ●● ●●●● ●● ●●●● ●●● ●●●●● ●● ●●● ●●●● ●●● ●● ● ●● ●●● ●●●●● ●● ●●●● ●●●● ●●●●● ● ●●●● ●●●●●●●●● ●● ●● ●●● ●●● ●● ● ●●●● ●● ●●● ●● ● ●●● ●●● ●●●●●● ●●● ●●● ●● ●●●●●●●●● ●● ●● ●● ●●●●●●●●●●● ●●● ●●●●●●● ●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●● ● ●●● ●●●●● ● ●●●● ● ●● ● ●●●●●●● ● ●● ●●●●●●● ●● ●●●●●● ● ●●●●● ●●●●● ●●●●●● ●●●● ●●● ●● ●●●● ●● ●●● ●●● ●●●●● ●●● ●●●●● ●●● ●● ●● ●● ●●●● ●●●● ●●● ●● ●●●●● ●● ●●●●● ●●●● ●●●●●●●●●● ●●●●● ●● ●● ●● ●●●● ●●●●●●● ● ●●●● ●●● ●●● ●●● ● ●●●●● ●●●●● ●●●●●●●●●● ●●●●●● ●● ●●● ●● ●●●●●●● ●●●●●● ●● ●●●● ●●●● ●●●●● ●● ●●●●●● ●●●● ● ●●●● ●● ●● ●●● ●● ●●●●●● ●●● ●● ●●●●●●● ● ●●●● ●● ● ●●● ●●●● ●●●●● ●●●●●●●●● ●●● ●●●● ●●●●●●● ●●●● ●●● ●●● ●●●●●●●●● ● ●● ●●●● ●●● ●● ●●●● ●●● ●●● ● ●●●● ●● ●●●● ●● ● ●●● ●●●●●●● ●●●● ●●● ●● ●●●● ●● ●●● ●●●●●● ●● ●●●● ●●● ●●●●● ●● ●●●● ●●●●● ●●●●●●● ●●●●●● ●●●● ●●● ●●●●●● ●● ●●●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●● ●● ●●●● ●●● ●● ●● ●●●● ●●●● ●●●●●●●●● ●●● ● ●● ●● ●● ●● ●● ●●●●●● ● ●● ●●●● ●●●● ●●●● ● ● ●●●●●● ●● ● ●●● ●●● ●● ●●●●●●●● ●●●●●●●● ●● ●● ●●●● ●●●● ●● ●●●●●●● ●● ●● ●● ●● ●●● ●●●●● ●● ●●●●●●● ●● ●● ●●● ●● ●●● ● ●● ●● ●● ● ●●●● ●● ●●● ●●● ●●●●●●●●● ●●●● ●● ●● ●●●● ● ●●●● ●●● ●●●●● ●● ●●●●●●●● ●● ●●●●● ●●● ●●● ●● ● ●●●● ●●●●●● ●●●● ●●● ●●●●● ●●● ● ●●● ●●●● ● ●● ●●●●● ●●● ●●●● ●●● ●● ●●●●● ● ●●● ●●●●● ●●●● ●●● ●●● ●● ● ●●●● ●●●● ●●●●●●●●●●● ●●● ●● ●●●● ●●●● ●●●● ●● ●●● ●● ●●●●● ●● ●●● ●●●● ●● ●●● ●●●● ●●● ●●● ●●●● ●● ●● ●●●●●●● ● ●● ●●●●● ●●●●●●●●●●●● ●●●●●●● ●●●● ●●●●●●●● ●●● ●●●●● ●●●● ● ●●● ●● ●●●●● ●●●●●● ● ●●●●● ●● ●●●●● ● ●● ●● ●●●●●●●● ●●●●●●●●●● ●● ●●● ●●● ●● ● ●●●●●●● ●●● ●●● ●● ●● ●●● ● ●●●●●●●● ●●● ●●●●● ●● ● ●●● ●●●●●●● ● ●●●● ●● ●●●● ● ●●●●● ●●● ●●● ● ●● ● ●●● ●●●● ●●●● ●●● ●●● ● ●●● ●● ●●●●●●● ● ●● ●●● ●●●●● ●
●

● ●●●●● ● ●●● ●●● ● ●●● ●● ●● ● ●●●●●●● ●●● ●● ● ●●● ●● ●● ●●● ●● ● ●●●● ●●● ● ● ●●● ●●● ●● ●●●● ●● ●● ● ●● ●● ●● ●● ●●●
●●● ●●●●● ● ●●● ●

●
●●● ●● ●●● ● ●● ●●● ●●● ●●● ● ●●●●●●●
●●●●●● ●● ●●● ●●●● ●●●●● ●● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●●●

● ● ●●● ● ●●●●● ● ●●●● ●●● ●●● ● ●●● ●●●● ●● ●●● ●● ●●●● ●●● ●● ●●●●●● ●● ●●●● ●●●● ●● ●●●● ●● ●●●● ●● ●● ● ●● ●●●● ●●● ●●●●● ●● ● ●●●●● ● ●●● ●● ●●●●●●● ●●● ●●●●● ●●●● ●● ●● ●●●●●●● ●● ● ●●●● ●● ● ●● ● ●● ●● ●●●●
●

●● ● ●● ● ●
●● ●●●●●●● ●●●● ● ●●● ●●●● ●●● ●●●● ●● ●● ●●● ●●● ●● ● ●●●● ● ●●● ● ●●● ● ●● ●●●● ●●●● ●●

● ●●● ●●● ●●● ● ●● ● ●●● ● ● ●●● ●●●●● ●● ●●●● ●● ●●● ● ●●● ●● ●●● ●●● ● ●●● ●●● ●●● ●●● ●●●● ●●●● ●●●●● ●● ●●● ● ●● ●●●● ●●● ●● ● ●●●●● ●● ● ●●● ●●● ●● ●●●● ●●●●● ●●●● ●●● ●● ● ●●● ●●●● ● ●●● ●● ● ●●● ●● ● ●● ● ●●●● ●●● ●●●●● ●●●●● ●●● ● ●● ●●●●● ●● ●● ● ●●● ● ● ●●●●●● ●●● ● ●●●●●●●● ●●●●●●● ●●● ●● ● ●● ●●●●●● ●● ● ●●●●● ●●●●●● ● ●●● ●●●●●● ●●● ● ●● ●●● ●●● ● ●● ● ●●●●● ●●● ● ●●● ●●●●● ●●●●● ●●● ●● ●● ●●●●●● ●●●● ●●●●●●● ● ●● ●●●●● ●●●● ● ●●● ●●● ● ●●●●●● ●●● ●● ●● ●● ●● ● ●●● ●●● ●●● ●●● ●●●● ●●●● ●●●●● ●● ●●● ● ●● ●●● ●●●● ●●● ●● ●●● ●● ●● ●● ●●●● ● ●●● ●●● ●● ●●● ●●● ●●●● ●● ●● ●● ●●●● ●●●● ●● ● ●●● ●● ●●● ●● ●● ●● ●●● ●●● ●●● ●●●●●● ● ● ●●●● ● ●●●●● ● ●●●●● ● ●●● ●● ●●●●● ●●● ●●●● ● ●● ●●●●● ●●●●●●●● ●●● ●●●● ●● ● ●●●●● ● ●●● ●● ●●●● ● ●●● ●●●●●● ●●● ●● ●●●● ●●● ●● ●●● ●●●●●●●●● ●● ●● ●●● ●●● ●● ●●● ●●●●● ●●●●●● ● ●● ● ●●●● ●●●●●●● ●● ●●●● ●● ● ●● ●● ●● ●● ●●●●●●●● ● ●●●● ●●● ● ●●● ●● ●●●● ●● ●●● ●●●● ● ●●●●● ●● ●●● ●●●● ●●●●● ●●●● ●●● ●● ●●●● ● ●● ●●● ●● ● ●● ●●●● ●● ●●●●● ●● ●●● ●●● ● ●● ●● ●●● ●●● ●●●● ●●● ●●● ●●●● ●● ●● ●●● ●● ●●● ● ●●● ●●● ●● ● ●●● ●●●● ●● ●● ●●●●●● ●● ●●●● ●● ●●● ●● ●●●● ● ●●● ●● ●●● ● ●● ●● ●● ●● ●●● ●●●● ●●●● ●●●● ●●● ●● ●●●● ●●● ●● ● ●●●●● ●●● ●● ●● ●●●●●●●●●●● ●●● ●● ●● ●●●●● ●● ●● ●●● ● ●● ● ●● ●●● ●●● ●●●● ●● ●● ●●●●●●● ●●● ●●● ●●● ●● ●●● ●●● ●●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ● ●●●● ●●●●●●● ●● ●●●● ● ●●● ●● ●●● ● ●● ●●●●●●● ●● ● ●●●●● ●●● ●●●● ●●● ●●● ●● ●●●● ●●●● ●● ●●●● ●● ●●●●● ●● ●●●●● ●●● ●● ●● ● ●●●● ●●● ●●●● ●●●● ●●● ● ● ●●●● ●●● ●●● ●●●●●●●● ●●●● ●●●● ●●●● ●●●● ● ●●● ●●●● ●● ●●●●● ● ●● ●●● ●● ● ●● ●●●● ●●●●●●● ●●● ●●●● ●●● ●●● ●●● ● ●●●● ● ●● ● ●●●● ●● ●●● ●●●● ●● ●●● ●●●●● ● ●●● ● ●● ●●●●●● ●●● ●●●● ●● ●● ● ●● ●● ●●●● ●●●● ●●●●● ●● ●●●●●●● ●●●● ●● ●●●● ●● ●● ●●●●●● ● ●● ●●●●●●● ●●●●●●●●●●●● ●●●●●●● ●●● ●●● ●●● ●●●● ●●●● ●●● ●●● ●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●● ●●●●●●● ●● ●● ●●●● ●● ●●● ●●● ●● ●●● ●●●●● ●●●●●●●●● ●● ●●●● ●●● ●●●● ●●●●● ●● ●● ●●●● ●●● ●●●● ●● ●●●●●● ●●● ●●● ●● ●●●● ● ●●●● ●●●●● ● ●●● ●●●●●●●● ●●● ●● ●●●● ●●●●● ●●●●● ●●●●●● ●●●●● ●●● ●●●● ●● ●●● ●●●●● ● ● ●●● ●●● ●● ●●●● ●●● ●●●●●●●●●●●● ●●●●●● ●●●●●●● ●●● ● ●●● ●●● ●●●●●● ●● ●●●● ●●● ●●●● ●●●●● ●●●●●●● ●●● ●● ●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●●●● ●● ●●●●● ●●● ●●●●●● ●●●●●●●●●●● ●● ●●● ●● ●●●●●●● ●●● ●●●●●●●●● ●●● ●● ●●● ●●●●●●●● ●●●● ●●●●●● ● ●● ●● ●●●●●● ●● ●●●●●●● ●●●● ●●● ●● ●● ●●●● ●● ●● ●● ●●●● ●● ●● ●● ●●● ●●● ●●●●●● ●●● ●●●● ●● ●●●● ●●●●● ●●● ●●● ●●●● ●●●●● ●●●● ●●●● ●●●●● ●●● ●● ●●● ●● ●● ●●● ●●●●●● ●● ●●●● ●●● ●● ●●● ●●●●● ●● ●●●● ●● ●● ●●●● ●● ●●● ●●●● ●● ●●●● ●●● ●●● ●● ●●●● ●● ● ●● ●●● ●●● ●●●● ●●●●●●● ●●●●● ●●● ●●●●● ●● ●●● ●● ● ●●●● ●●● ●● ●●●●●●● ●● ●●● ●●●●● ●●●●● ●●●●●●●●●● ●●●● ●●●● ●● ●●●● ● ●● ● ●● ●●●●●●● ●●●●● ●●● ●● ●●●● ●●●●● ●● ●● ●●● ●●●● ●●●● ●●● ●● ●●● ● ●●●●● ●●●● ●●● ●●● ●●●●●●●● ● ●●●●● ●●● ●●●● ● ●●●●●● ●●●● ● ●●● ●●●●● ● ●● ●●●● ●● ● ●●●●●●●● ●●●●●●● ●●●●● ●●●●●●●● ●●●● ●●● ●● ●● ●●●● ●●●●● ●●●●●● ●●● ●● ●●●●● ●●● ●●● ●●● ●●● ●● ●●● ●●●● ●●●●●●●● ●●●●● ●●●● ●●●● ●● ●● ●● ●●● ●●●● ●●●●●●●● ●●●●●●● ●● ●●●●● ●●●●● ●●● ●● ●● ●● ●●● ●●●●●● ●●●●●●● ●●●●●● ●●●● ●●● ●●●●● ●●● ●●●● ●●●● ●● ● ●●● ●●● ●● ●●●●●● ●●●● ●● ●●● ●●● ●● ●●● ●●●●● ●●●● ●●● ●●●●●●●● ●●●●● ●● ●●● ●● ●● ●●●●●●● ●●●●●● ●● ●●●● ●●●●● ●●●● ●●● ●●● ●●●●● ●● ●●●●● ●● ●● ●●●●●●● ●●● ●●● ●●●●●● ●●●● ●●●● ●● ●●●●●●●●● ●●●● ●●●●● ● ●● ●● ●●●●● ●●●●●● ●●● ●●● ●● ●●● ●● ●● ●●● ●●●● ●●●●●● ●● ●●●●●●● ●●● ●● ●● ●●● ●● ●●●●● ●●●●●●●●●●● ●● ●●●● ●●●●● ●● ●●●●●●●● ●● ●●● ●●● ●●●● ●●● ●●●●● ●●● ●●● ●● ●●● ●● ●● ●●●●●●● ●● ● ●● ●●●● ●●●●● ●●●● ●● ● ●● ●● ●●●●● ●● ●●●●●●●● ●●●●● ●●● ●●●● ●●●● ●●● ●● ●● ●●●●● ●●●●●●●●●● ●● ●●●●●● ●●●● ●●● ●●● ●●● ● ●●●●●●●● ●●●●● ●●● ●●●●●●●●●●●●● ●●●●● ●●● ●●● ●● ●●● ● ●●● ●●●● ●● ●●● ●●●●●●●● ●●● ●●●●●●●●●● ●● ●●●●● ●● ● ●● ●●●● ●●●● ●● ●●●● ●●●● ●●● ● ●●●●●●●● ●●●● ● ●●● ●●●● ●●● ●●● ●●●●● ●●● ●●●●● ●●●●●●●●●●● ●●● ●●● ●●● ● ●●● ●●● ●●●●●●●●● ●● ●●●●●●● ●● ●●● ●●● ●● ●●●● ●●● ● ●● ●● ●● ●● ●●● ●●● ●●●●● ●●● ● ●● ●● ●● ●●●●● ●● ●●●●● ●●●●●●● ●●●● ●●●●●●● ●● ●●●● ● ●● ●● ●●●● ●● ●●●●● ●● ●●●
●

●
●

● ●● ●●●● ●●● ●●●●●● ●● ●●
●

●●●● ●● ●●● ●● ● ●●
●

●
● ●●●●

● ●●● ●●●
●

●● ●●●
●
● ●●● ●●●

●
●

●
●● ● ●●●●●●●● ●● ●

●
● ● ●● ●●● ●● ●●●● ●● ●● ● ●● ●●● ●

●●● ●● ●

●
●●●● ●● ●● ●● ●●● ● ●●● ●●●

●
● ●● ●

●● ●●● ●
●● ●● ●●●

●
● ●

●●
●

●● ●● ●
●●● ●

● ● ●
●

● ●●
● ●●● ● ●● ●●●● ●● ●● ●

●
● ● ● ●

●
●●●● ●● ●●

● ●
●● ●●

●●
●

● ● ●●●● ●● ●●● ●●
● ●● ●● ●● ●●● ●●●●● ●● ●

●● ● ●
● ●● ● ●● ●●● ●●● ●●● ●●●● ● ●●●● ●● ●●

●
● ●●●
●

●
● ●●●●●●● ● ●●●● ●●●● ●● ●● ●● ● ●

●● ●
●
●● ●

●
●● ●● ●● ●●

● ●●● ●●● ●● ●
●

●●●
●

●●● ●●●● ●
●

● ●●●
●

● ●● ●● ●● ●● ● ●●●
●● ●●●● ● ●● ●●● ●●

●● ●● ●●● ●● ●●● ●●●●● ●● ●● ● ●
●● ●●

●● ● ●● ●●● ●●● ●
●●

●● ●●●●●
●

●
●● ●●

● ●●● ●●●●●
●●● ●●
●

●● ●● ●●●●
●

●●● ●● ●● ●●●●● ● ●●● ●●●● ●● ●●●● ●
● ●● ● ●

●
● ●●●● ●●

●
●
●

●
●● ●● ●●● ●

●●●●● ● ●● ● ●●● ●● ●●●●
●●
●●● ●

●
●
● ●

●●
●

●●●● ●●● ●●●
●●●● ●

●
●● ●●● ●● ●● ●●

● ●●●●

●

● ●●● ●
● ● ●●● ● ●●●● ● ● ●● ●●● ●● ●●● ●●● ●● ● ●● ●● ●●● ●●● ●●● ●●● ● ●● ●● ● ●● ●●● ●●● ● ●●●● ● ●● ●●● ●● ● ●● ●● ● ●● ●● ●●● ●● ● ●● ●● ●●●●●●●●●●● ●● ●●● ●● ●●●●

●

●●●● ●●● ● ●● ●● ●●● ●●●● ●● ●●● ●●● ●●● ●●●● ●● ●●● ● ●● ●●● ●●● ●●●● ●●●●● ●● ●● ●● ●● ●● ●● ●●●●
●

●●●●● ●
●

●●●● ●●●● ● ●● ●● ●● ●● ●●● ●●●●●● ●● ● ●●●● ●●●● ● ●● ●●●● ●● ●●●● ●●● ● ●●●●●●● ●● ●● ● ●●● ●●● ●
●●● ●●●● ●● ●

●● ●●● ●●●●●●● ●●● ● ●●
●
● ●●

●
●● ●●● ● ●●●●● ●● ●● ●● ●●●●● ●● ●●●●● ● ●●● ● ●●● ●● ●●● ●●● ● ●● ●● ● ●●● ●● ●

● ●● ●● ●●● ●● ● ●●● ● ● ●●●●●● ●● ●●● ● ●●●●● ● ●●●●● ●●●
● ●●● ●● ●●● ●● ●●● ●●● ● ●●●● ●●●● ● ●●●● ●●● ● ●● ●●●●● ●●●●● ● ●● ●●●● ●● ●● ● ●●● ●● ●●●●● ●● ●●●● ●● ●●●● ●● ●●●● ● ●●●● ● ●●● ●●● ●●●●● ● ●●● ● ●● ● ●● ●●● ●●
●

● ●●●● ●●● ● ●●● ●●●● ●● ●●●● ● ●●●●● ●●● ●● ●● ●● ●
●

●● ●● ●●●● ●● ●●
●

● ● ●● ●● ● ●●● ●● ●●● ●● ●● ● ●●● ●●●●● ●●● ● ● ●● ●● ● ●●●● ●●● ●● ●●●●●●● ● ●● ●●●● ●●●● ●●●● ● ●● ●● ●● ●●● ●● ●● ● ●●●●●● ● ●●● ●●●●● ● ●● ●● ●●●● ● ●● ●● ●● ●●● ●●● ●●●● ●● ●●●● ●● ●●● ●●● ●●● ● ●●●●●● ●● ● ●●●●●● ●●●●●●●● ●●● ●●●● ● ●●● ●● ●●●● ● ●●● ●● ●●●● ●● ● ●●● ●● ●●●● ● ●●●●●●●● ●● ●● ●●● ●●●●●● ● ●●● ●●●●●● ●●● ●●●●●● ● ●●● ●● ●●●● ●● ●●●● ●●●● ● ●●● ● ●●●●● ●● ●●● ● ●●●●●● ●●● ●●●● ● ●● ●● ●●●●●● ●●● ●● ●●●● ●● ●●●●●●● ●●● ●● ●●● ● ●●● ●● ● ●● ●● ●● ●● ●● ●● ●●● ● ●●● ●● ● ●● ●●● ● ●●●● ●●●● ●●● ●●● ●●●●● ● ●● ●● ●● ●●●● ● ●● ●● ● ●● ●● ●●● ●● ● ●● ●● ●●● ● ●● ● ●●●●●● ●● ●●● ●● ● ●● ●●● ● ●●●●● ●● ●● ●●●● ●● ●●● ●●●● ●● ● ●●● ● ● ●●● ●●● ●●●● ●● ● ●● ●●●● ●● ●● ●● ● ●●●●●● ● ●● ● ● ●● ●● ●● ●●● ● ●●● ●●● ●● ●● ●● ● ●●● ● ●● ● ●● ●● ●●● ● ●● ●●● ●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●●●● ●●●● ●●● ●●● ●●●● ●●● ●● ●●●●● ● ●● ●●●●● ● ●●● ●● ●●● ● ●●●● ●● ●● ●● ●● ●●● ●●● ●● ● ●

●
●

●●
● ●

●
●

●

●
●

●
●

●
●●

● ●
●

●

●
●

●
●● ●●
●

●
●

●● ●

●

●
●

●● ●● ●
● ●

●
●

●●
●● ●●

●

● ●●● ●●●
●

●

●●

●

● ●
● ●

●● ●
● ●

●
●

●
●

●

●

●
● ●●

●
●

●
●

● ●
●

●
● ●

●
● ●●

●
●

●●

●

●
●

●
●●

● ●
●●

●
●●

●

●

● ● ●●

●

●●
● ●

●● ●●
●

●

●

●
●

●
●

●● ● ●● ●
●●

●
●● ●

● ●●
●

● ●

●

●
●

●● ●

●

●
●

● ●
●

●●

●
●

●● ●●
● ● ●

●
●

●● ●
●

●
●

●
●●● ●

●

● ●
●

●
●

● ●
●

●
●

● ●

●

● ●●
●

●
●

●

●●
●

● ●●

●

●●● ●●
●

●●

●

● ●
● ● ●●

●
●

● ●
●

●●
●

●
●

●
●●

●
●

●

●

● ● ●●

●

●●
● ●●●●● ●

●

●●
●

● ●●
●● ●

●

●

●

● ● ●
●

●●
●

●

●●
●● ●

●
● ●●

●
●

●

● ●
●

● ●

●

●●
●

●

● ●● ●●
●●

● ●

●

●● ●
●

● ●
●●

●
●

●●
●

●●●
●
●

●
●

●

●●
●

●

● ● ● ● ●
●

●
●

●●

●

●●
●● ●● ●●●● ●● ●

●
● ●

●
● ●●

●
●●

●
●

●

● ●
●

●

●

●

●●●

●

●

●

●
●

●● ●● ●
●

● ●
●●●

●●● ●
●

●

●

●

●
●● ●●

●

●

●● ● ●●●
●

●

●
●

●
●●

●

●● ●● ●● ●

●
●

●

●●● ● ●●
●●

●
●●

●

●

● ●●
●

●
●●

●
●

●
●

●
●●● ●● ●

●
●●

●

●● ●
● ●●●●

●

● ●● ●

●

●●

●

●

●
●● ●●●

●

●●

●

●● ●●

●

●
●● ●●●●
●

●
●

●

●●● ●●
●
●

●
●

●
●

●
●

●

● ●
●

●●
●

●

●

●●●
●

●●
●

●

● ●●
●●

●

●
● ●

●

●● ●
● ●

●

●●
●●
●

●
● ●

●
● ●

●
●

●●
●

●

●
●

●
●

● ●● ● ●●●● ● ●●● ●
● ●●●
●

● ●●● ●● ● ●

●
● ●● ●

●
● ●● ● ● ●● ●● ● ●

●● ●● ●
●

●
●

●● ●●
● ●●● ●●●● ●

●
● ● ●

●
● ●●● ●● ●

●
●● ●●●

●
●● ●

● ● ● ●

●

●● ●● ●
●

●●● ●● ●●
●

● ●
●

● ●●●● ●● ●●● ●● ●
●

●
●

●●●● ●● ● ●● ●● ●● ●● ●●●●●● ● ● ●●●
●● ●●● ●
●

● ● ●●● ●●● ●●●
●

●● ●● ●
●

●

●● ●●
● ● ●● ●●

● ● ●●
●● ● ●

●● ● ●●●● ●● ●

●

●
●●
●
●●

●
●● ●●

●

●● ●● ●●● ●● ●● ●●● ●●● ●●●●
● ●● ●●

●
●

●● ●

●

● ●● ●
●

● ●
● ● ●●●●●● ●● ●● ●●

●
●● ● ●● ● ●●

●
●

●● ●
●

●
●

● ●● ●● ●●●●
●

● ● ●
● ●

●
●●● ●●●

● ● ●●●● ● ●●●● ●●
● ●● ●● ●●● ●● ● ●●● ● ●● ●●

●● ● ●● ● ● ● ●●
● ●● ●

● ● ● ●●
●

●●●
●

●●
●●● ●●

● ●
●●

●
●● ●● ●●● ●●● ●

● ●● ●
●

●● ●
● ●
●

●
● ●●●

●

● ●●●●● ●● ●● ●
●

● ●
●

● ●●
●

● ● ●●
● ●

● ●●●●● ●● ●
●

●●
● ●● ●●●

●●

●●
● ●●●

●
●● ●●● ●

● ●●
●

●
● ●

● ●
● ●● ●●●
● ●● ●●● ●●●● ●●●●●● ●●●●

●
●●

●

● ●●
●

●● ●
●

● ●● ●● ●●● ●● ●● ●●

●
● ●●● ●● ●

●
● ●●●●

●

● ●●● ●● ●●

●
● ● ●

●● ●●
●

●
●
● ●

●
●● ●●
●

●● ● ● ●●●●● ●● ● ●●
●

● ●
● ● ●●● ●● ●●● ● ●●●

●

●● ●●●●● ● ●● ● ● ●●●●●● ●● ●● ●●● ●● ● ●●● ●● ●● ● ●●● ● ● ●● ●● ● ●● ● ●● ● ●● ●● ●● ● ●●● ● ●● ● ●●●● ● ●●
●

● ● ●● ●●● ●● ●● ●● ●● ●● ●●●● ●●● ● ●●●● ●●● ●●●● ● ●● ●● ● ●● ●●● ●●●● ● ●●● ●● ●● ●● ●● ●●● ● ●● ●●● ● ●●● ● ●● ●●● ●●● ● ●● ●●● ●● ●● ●● ●● ●● ●●● ● ● ●● ●●● ●● ● ● ●●● ●● ●● ● ●●● ●●●● ●●● ●●●●● ●● ●● ● ●●● ●
●

●●●● ●●● ● ●● ●● ●●● ● ●● ● ●● ●●● ●●
●● ●● ●● ●● ●● ●

● ●●● ● ●●● ● ●●● ●● ● ●● ●● ●● ●●●● ●● ●●● ●●● ●● ●● ●●● ● ●● ●●●● ●● ●● ●● ● ●●●● ●●● ●●● ●●● ●●● ●● ●● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●●● ●●●●● ●● ● ●●●● ●● ● ●● ● ●● ●●●● ●● ●●● ●● ●● ●●
●●●● ●● ●●● ●●● ●

●
●● ●● ●● ●●● ●●●●● ●●●● ● ●●●●● ●● ● ●●●●● ●● ●● ●● ●●● ●●● ● ● ● ●● ●●● ●●● ●●● ●● ● ●● ●● ●● ●● ●● ●●●●● ●●● ● ●●● ●● ●● ● ●●●● ● ● ●●● ●●●● ● ●●● ● ●● ●●●● ●● ● ●●● ● ●● ●●● ●●●●●● ●●● ●●● ●● ● ●● ●●● ●● ●●● ●●● ●●●

● ●● ●● ● ●●●●● ●● ●● ● ●● ●● ● ●●● ●●●● ●● ●●● ●●● ●● ● ●
●

● ●● ●● ●●● ● ●● ●●●● ●● ●●●● ●●●●● ● ●●● ●●●● ●● ●●●● ●● ●● ●● ●●● ●●● ●●●●●● ● ●●
●

●●●●●●●●● ● ●●●● ●●● ● ●● ●●● ●● ●●● ●●● ●●●●● ● ● ●●● ●● ●●●● ●●●● ●● ● ●●● ●●● ●●● ●● ●●●● ● ●●● ● ●●● ●●●● ●●●●● ●●●●● ●●●● ●●●● ●● ● ●●● ●● ●●●● ●● ●●● ●●●●●●● ●●● ●●● ●●●● ●●● ● ●● ● ●●●● ●● ●●●●●●●● ● ●●●●● ●● ●●● ●● ●●●●● ●● ● ●●●● ● ●●●●●●●●●● ●● ●● ● ●●●● ●● ● ●● ●●● ● ●●● ●● ●● ●● ●●●● ●●● ●●●● ●●● ●●● ●● ●●●●●●● ●● ●● ●● ●● ●●●● ● ●●● ●●●●● ●● ●● ●● ●●
● ●●● ●●●●● ●● ●●● ●●● ●●●● ●● ● ●●●● ●●● ●●●● ●●●●●●●●● ●● ● ●● ●●● ●● ●●● ●● ●● ●● ●●● ●● ●●●●●● ●●● ●●● ●● ●●● ●●●●●●● ●●● ●●●●●● ●●●● ●● ● ●● ●●●● ●●●● ●●● ●●● ●●●● ●● ●●●●●●● ●● ●● ● ●●● ●●●●●●● ●● ●● ●●●● ●●●●● ●● ● ●●● ●● ●● ●●● ●● ●●● ●●●● ●●●● ● ●●● ●● ●●●● ●●●● ●●● ●●● ●●● ●●●●●●● ●●● ●●●● ●● ● ●●●●● ●●●● ●● ●●●●●● ●● ● ●●●● ●●●● ●●●●● ●●● ●●● ●● ●●● ●●● ●●●● ●● ●● ●●●● ●●●●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●●●●● ●●●●● ●●● ● ●●● ●●●●● ●● ●●● ●● ●● ●●● ●●●●●● ●●●● ●● ●● ●● ●●● ●● ●●● ●●● ●●● ●● ● ●● ●●●●●●● ● ●● ● ●● ●●●●● ●●●● ●●●●● ●●●● ●●● ●● ●● ●● ●●●● ●● ●● ● ●● ● ●● ●●●●● ●●● ●●●●●● ●● ●●●● ●●●●●●●●●●● ● ●●● ●● ●● ●● ●●● ●●●●● ●●● ●● ●●●● ●●● ●●● ●●● ●●●● ● ●●●● ●● ●● ●●● ●●● ●●● ●●●●● ●● ●● ● ●●● ●●●● ●●●● ● ●● ●●●● ● ●●● ●● ●● ●● ●● ●●●● ●●●●● ●●●●●●● ●●● ● ●● ● ●●●●●● ●●●●● ●●● ● ●●●● ●●●●● ●●●● ●● ●● ●●● ●●●●● ●●● ●● ● ●●● ●● ●●●● ●● ●● ●● ●●● ●●●● ●●● ●●● ● ●● ●● ●● ●●●● ●●●●●● ●●●●● ●● ●●● ●●●●● ●●● ●●●● ● ●●●●● ●●● ●● ●●●●●● ●● ●● ●● ●● ●● ●●●●●●● ●●●● ●● ●●●● ●●●●●● ●●● ●● ●●●● ●● ●●●●● ●●●●● ●●●●● ●●● ●●● ●● ●● ● ●●●●● ●●● ● ●●●●●● ● ●●● ● ●● ●●●● ●●● ●● ●●●● ●●● ●● ●●●● ●●●●●● ●●● ● ●●●● ●● ●● ●●●● ● ●● ●●●● ●● ● ●●●● ●●● ●●●● ●●● ●●● ● ●●●● ● ●●● ●●●●● ●●● ●● ●● ●● ●● ●●● ●●●●● ● ●● ●●●●● ●● ●● ●●●● ●●● ●●● ●●●●● ●●●●●● ●●●●●● ●●● ●● ●● ●●● ●●● ●● ●●● ●● ●●● ●●● ●● ● ●●●● ●● ●●●●●● ●● ●●● ●●●● ●●●● ●●● ●●● ●●● ●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●● ●●● ●● ●●●●● ●●●●● ● ●●● ●●● ●●● ●● ●●● ●●●●●●● ●●●●● ●● ●● ●●●● ●● ●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●●● ●● ●●●●● ●●● ●●●●●● ●●●●● ●●●●●●● ●● ●● ●●● ●● ●● ●● ●● ●● ●●●●● ●● ●● ●● ●● ●●●●● ●●● ●● ●●●● ●● ●●●● ●●● ●●●●● ●●●●● ●● ●●●●●●● ●● ●●●●● ●●● ●● ●●●● ●●● ●● ●● ●●● ●●●● ●●● ●●●● ●●●●●● ●● ●●●● ●● ● ●●●●● ●●●●●●●●●● ●● ●●● ●●●● ● ●●●●●● ●●● ●● ●●● ●●●● ●● ●●● ●●●● ●●●●●● ●● ●● ●● ● ●● ●●●● ●●●● ● ●●● ●● ●● ●●● ●●●●● ●●●● ● ●● ●●● ● ●●● ●● ●●● ● ●● ●●● ●● ● ●● ● ●●●●● ●●●● ●●● ●●● ●●● ●●● ●● ●●● ●● ●● ●●● ●●● ●●●● ●●● ●●● ●●● ● ●●● ●●●● ● ● ●●●● ●●●● ●● ● ●●●● ●● ●●●●● ●● ● ●● ●● ●

●
●

●

●● ●● ●
●

●

●●● ●
●●

●
● ●●

●
●●

●
●● ●

● ● ●
●

●
●

●

●

●
●

●

●
●

●

●

● ●
●●

● ●
● ●

●

●

●● ●● ●●
●

●

●
● ●● ●

● ●
●

●
●

●
●

●
● ●

● ●●

●

●
●

●
●

●

●
●

● ●●●

●

●●

●

●
●

●
●

●

●●●●● ●● ●

●
●

●
●

●

●●
●●

●

●

● ●
●

● ●
● ●●●●●

●
●●

●
●● ● ●●

●

●●● ●●
● ●●

●

●
●

●
●

● ●● ●

●

●●

●

●
●●

●

●

●
●

●

●

● ●●

●

●

●

●
●

●
●

●●●
●

● ●
●

●

●●

●

●

●●

●

●●
● ●● ● ● ●● ●

●
●

●
●●● ● ●

●
●

●●●
●

●

●●●●

●

● ●
● ● ●

●

●● ●
●

●● ●
●

● ● ●●
●

●●
● ●

●● ●
●

●

●
●

●
●

●

● ● ●
●
●●

●

● ● ●●● ●

●

● ●
●

● ●● ● ●
●

●● ●●
● ●

●

●

●

●

●

● ●●
●● ●● ●● ● ●●●

● ●●●

●

● ●●

●

●
●

●
●

● ●
●

●
●

●
●

●

●●●
● ●

●
●

●● ● ●●

●

●
●

●● ●

●

●● ●
● ● ●

●
●

●
●

●
●●●

● ●●●
● ●● ● ● ●

●

●

●
●

●● ●●
●

●

●

● ●
●

●●●● ●● ●● ● ●
●● ●

●

●●

●

● ●●● ●● ● ●
● ●

●

●●●
●
● ●

●

● ●

●

●

●

●

●● ●

●
●
●

●
● ●

●
● ●

●
●

●●
●

●

●● ●● ●● ● ●
● ●

●

●●
●● ●●

● ●
●●● ●

●●
●

●●
●

●

●

●● ● ●●

●

●
●

●

●
●

●

●

●●

●

● ●● ●●
●

● ●
●

●● ●
●

●
●●
● ●

●
●●●

●

●

●

●

●●

● ●

●

●
●

●●
●

●●●● ●●
●

●●●
●

●●
●

●
●

●●●●

●

●
●

●

●

●●

●

● ●
●
●

●●
● ●●●

●
● ●●●● ●

●
●

●●● ●●● ●● ●● ●
● ●● ●●● ●● ●● ●● ●

●
●●● ●●

●

●● ●● ●● ● ●
●

● ● ● ●
●

●● ●●
● ● ●● ●●●● ● ●

●

● ●● ● ●●●●
●

●●
●●● ● ●●●●● ●●● ●●●●●● ● ●● ●

●
●

● ●
●●● ●

● ●●● ●
●●

●● ● ●● ● ●
●

●● ● ●● ●● ●

●
● ●●

●
●●●

●● ●●●● ●●
●● ●●

●
●●●

●

●●● ●●●●●

●

● ●
●

●● ●● ●
●
●

●

●● ● ●●● ●
●

●●● ●●● ●●● ●
●

● ●● ● ●●●
●

●● ● ●● ●●●●● ●● ●●

●
●

● ● ●●●
●

● ● ●●● ●●●
●

●● ●● ●

●

●
●
●

●
●

●

●
●

●
●● ●●

●
● ●● ●●● ●●

● ●● ●
●

● ● ●●

●

●● ●●●●
●●

●●● ●

●

●● ●●
●

●● ● ● ●
●●●● ●●

●
●●●

●
●●●● ●

●

●●
●

●
●

● ●● ●●
●● ●●

● ●●● ● ●● ●●
●
●

●● ●●●
● ●●● ●● ●

●
●

●
●● ●

● ● ●●●
●●● ●● ●●

●
●●

● ●
●

●● ● ●
●

● ●
●● ●

●
●

●

●● ●
●

●
● ●●

●● ●●● ● ●● ● ●●●●● ●●●
●

●
● ●

●
●

●
●●

● ●●
●

●●● ●
●
●● ●● ●

●
●

●

●●●● ●●
● ●

●●●● ●●● ●●
●

● ●●
● ● ●● ●● ●●

● ●● ●●● ●
●

●● ● ●● ●● ●● ●● ●●
●

●●
●

●●
●

●
●

●

●
●

●●●● ●
●
●●●●●● ●●● ●●●● ●● ●●

●
● ● ●

●
● ●●

●
●

●
●

●
● ●●

● ●● ●

●
●●●● ●●●● ●●

●

● ●●●●
●

●
●

●● ●● ●●● ●●● ●●

●
●● ● ●● ●●●● ●●●● ●● ●● ●

●
●● ● ●● ● ● ●● ●

● ●●●● ●●● ● ● ●●
●● ●● ● ●

●● ●●● ●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●●
●

● ●●● ●● ● ●● ●●●● ●● ●●● ●● ●●● ●● ●● ●● ●● ●●●● ● ● ●● ●● ● ●● ●● ●●●● ● ●●●●● ● ●●● ●●●● ●● ●●● ●●● ●● ●● ●
●●● ●●●●● ●● ●●● ● ●● ● ●●● ● ● ●●●● ●●●● ●● ●●●●● ● ●● ●●●● ● ●●● ●●● ●●● ●●● ●●● ●● ●●●● ● ●● ●●● ●● ●● ●● ●●●● ●●●● ●● ●●● ● ●●● ● ●●● ●● ●●● ●● ●● ●●● ●● ● ● ● ●● ●

●●● ● ●● ●● ●●●● ● ●●
●●●● ●●●● ●● ● ●●●● ●●● ●●● ● ●● ●●● ●●● ●● ●●● ●● ●●● ●●●● ●● ●●● ●●● ●● ●●● ●● ●●● ●●●● ●●●● ●● ●● ●● ●●●● ● ● ●●●● ● ●●● ●● ●● ●●●●● ●● ●● ● ●●● ●●● ●●● ●●● ● ●●● ● ● ●● ●●●● ●● ●● ●● ● ●●● ●●

●
●●● ●● ●●●● ● ●●● ●●● ●● ●

● ●●●●●● ●●●●● ● ● ● ●● ● ●● ●●● ●● ●●● ● ●● ●●● ● ●●●● ●●● ●●●●● ●● ●●● ●● ●● ●● ● ●●● ●●●● ● ●● ●● ●●● ● ●● ●● ● ●● ●●●● ●●● ●● ●●● ●●● ●● ●●●●● ●● ●●
●● ● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●● ●● ● ●● ●●● ●●●●●● ●

● ● ●●● ● ●●● ●● ●●●● ●● ●● ●● ●● ●● ● ●● ●●●●● ●● ●● ●●● ●● ●● ●●●●●●● ●●● ● ●●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

● ●

●
●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

● ●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●●●●

●

● ●●
●

●

●

●

●

●

● ●●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●
●● ●●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●●

●

● ●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●●

●

●

●

● ●
●

●

● ● ●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●●●

●

●

●●

●

● ●

●
●

●

●

●

●

●
●
●

●

●

●
● ●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●● ●● ● ●

●
●

●

●

●

●

●
● ●●

●

●

●

● ●●
●
●

●
●

●

●

●

● ●●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

● ●●

●

●●

●

●

●●

●
●

●●
●

●

● ●

●

●●●

●

●

●

●

●

●

●●
●●

●

●
●

●
●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●
●●

●

●

●

●
●●

●

●

●
●

●

● ● ● ●●
●

●
●● ●

●
● ●●

●
●●

●● ● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

● ●
●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
● ●

●

● ●
●

●● ●●
●

●

●

●
●

●

●

●
● ●●

● ●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●
●

●

●● ●●● ●●

●

●
●

●

● ●

●

● ●
●

●

●
● ●

●

●●
●

●

●
●

●

●

●
●

●

●
● ●

●

●●

●

●●

●

●
●● ●●

●

●
●

● ●

●

●●●

●

●
●● ●

●
●

●

●

●●

●

●

●

●

●
● ● ●

●

●●
●

●

●

●
●●●

●

●

●

●

● ●●

●

●●
●

●
●● ●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

● ●

●

●
●●

●●●
●●

●
●

●

● ●●
●

●

●

●
●

●●

●

●

●●
●

●

●

● ●
●

●

●●
●

● ●
●

●

●
●

●

●
● ●

●

● ●● ●
●

●

●

●

●●

●

●

●

●● ●

●

● ●

●

●
●

●

●

● ●

●

●

●

●●●

●

●

●
●●

●

●

●●
●

●

●

●

●

●
●

●

●

●● ●
●

● ●
● ●

●
●

● ●●
●

● ●

●

●●
●●

●●
● ●

●
●

●
●

● ●●

●

● ●

●
●

●

●

●
●

●

●
●● ●

●
●

●

● ●●

●●
●

●
●

●

●●● ●

●
●

●●

●

● ●

●

●
●

●
●

●

●
● ●

●
●

●
●

●
●

●

●

●

●
●● ●●

●

●
●

●

●

●

● ●
●

●
●

●●

●

●
●

●

●

●

●●

●

● ●

●

●●●

●
●●

●
●

●

●

●

●●●●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●
● ● ● ●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●●● ●

●
●

●

●

●

●

●

●

●
● ● ●

●

●
●

● ●

●
●

●
●

●

●
●●

●

● ●
●

●

● ●●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●● ●
● ●

● ●
●●

●
●

●

●●●
● ●●

●

● ●●●
●●

●●
●

●●
●

●● ● ●

●

●● ●
●

●
●● ● ●●●●● ●●● ● ●● ●

●
● ●●● ● ●● ●

● ● ●
●

● ●●●
●

● ● ●
● ●

● ●●●●● ● ●● ●

●

●● ●●● ● ●● ●● ●● ●● ● ●
●● ●

●

● ●

●
●

●● ●
●●

●
●

●
● ●● ●● ●●

●
●●●●● ●● ●● ● ●

● ●●
●

●

●●
●●● ●● ●●●●

● ●●●●
● ●

●
● ●● ●●● ●● ●

●●● ●● ●●● ● ●●
●

● ●●● ●
●

●●●

●

●
●

●
●●

●●
● ● ●● ●●

●
●●

● ●●
● ●

●
●

●● ●
●

● ●●●
●

●

●●
● ● ●

●
● ●● ●● ●●
●

●● ●●●
●

●●
●● ●● ●● ●●●● ●● ●●

●
●●● ●●

●
●●

●
● ●● ● ●●●● ● ●● ●● ●●

●● ●
●

● ●● ● ●
●

●

●

●
●● ● ● ●

●
● ●●

●
●

● ●
●

●●●
●● ●

● ●●
●

●●●● ●● ●
●

●
●

●

●
●

●

●

●●
●

●●●● ●●
●

●● ●●
●

●● ● ●●
●

●● ● ● ●● ●● ● ●

●
●

●●● ● ●● ●●●●● ● ●● ● ●● ●●● ●
● ●

●
●● ●●● ●

● ● ● ●●
●

● ● ●●● ● ●
●

●

●
●

● ● ●● ● ●●●● ●● ●●●● ● ●
●

●

●●
●

● ●
●

● ● ●●● ● ●● ●●● ●● ● ●● ●●
●

●

●● ●●
●

● ●● ●●
●

●●● ●
●

●●

●

●● ●●
●

●● ● ●●

●
●● ● ●● ●

●
●

●

● ●●

●

●
●

● ●●
●

●
●● ●●

●
● ●●●● ●

●
●

●

● ●

●

● ●
●

● ●●● ●● ●● ●● ●
●

● ●●
●

●
●● ●●● ●● ●

●

●●● ●● ● ●● ●

●

●● ●●
● ●

● ●● ●● ● ●●● ●● ●
●

● ●●●● ●● ●● ● ● ●● ●●●●● ●
● ●

●
● ●●●●

●
● ●● ●

●
●●●●

●● ●
●

● ●● ●● ●● ● ●●● ●●●
●● ●●● ●

0 200 400 600 800

0
50

00
0

15
00

00

calls

re
sp

on
se

 ti
m

e
in

 m
s

●● ●●● ●●● ●● ●●●● ●● ●●●●● ● ●●●●●●● ●●●●●● ●● ● ●●● ●●●● ●●●●●●●● ●●●●● ●●● ● ●●● ●●●● ●● ●●●●●● ●●● ●●● ●● ●●●● ●●●●●● ●●●● ●●● ● ●●●●● ●●●●● ●●●●●●●●●●●● ●● ●●●●●●●●●● ● ●●● ● ●●●● ●●●● ●●● ● ●●● ●●●● ●●● ●●● ●●●●● ●●●● ●● ● ●●●● ●●● ●●●● ●● ●●●●●●●●●●● ●●●●●● ●●● ●●● ● ●●● ●● ●● ●●● ● ●● ●●●●●●● ●● ●●● ●●●●●● ●●●●●● ●●● ●● ●● ●●●●● ●●●● ●●●●● ●●●● ●●●● ●● ●●●●● ●● ●●●● ●●● ●●●● ●● ●● ●●●● ●●●●● ●●●●● ● ●●● ●●● ●● ●●●●●● ●● ●●●●●●● ●●●●●●●● ●● ●● ●● ●● ●●●● ●●●●● ●● ●●● ●●● ●●● ● ●●●●●●●● ●●●● ●●●●●●● ● ●●●●●● ●● ●●●● ●● ●●●●● ●●●●●●●● ●●●●●● ●●●●● ●● ●●●●● ●● ●●● ●●●● ●● ●● ●●● ●● ●●● ●●● ●●●●● ●●●●●● ●●●● ●●●● ● ●●●●●● ● ●●●● ● ●●●●● ●●● ●●● ●● ●●● ● ●●● ●●●●●●●● ●●●● ●●●●●●● ●●●●●●●● ● ●● ●●●●●● ●●●● ●● ●●●● ●● ●● ●● ●●●●●● ●●●●● ●● ●● ●● ●●●● ●●●●●●●●● ●● ●●● ●●●●●●● ●●●●●● ●● ●●●● ●● ●●●●● ●● ●●●●● ●● ●●● ●●●● ●●● ●● ● ●●●●● ●●●●● ●● ●●●● ●●●● ●●●●● ● ●●●● ●● ●●●●●●● ●● ●● ●●● ●●● ●● ● ●●●● ●● ●●● ●● ● ●●● ●●● ●●● ●●● ●●● ●●● ●● ●● ●●●●●●● ●● ●● ●● ●●●●●●●●●●● ●●● ●●●●●●● ●●●●● ●●● ●●●●●●●●●●●●● ●●● ●●●● ● ●●● ●●●●● ● ●●●● ● ●● ● ●●●●●●●● ●● ●●●●●●● ●● ●●●●●●● ●●●●● ●●●●● ●●●●●● ●●●● ●●● ●● ●●●● ●● ●●●●●● ●●●●● ●●●●●●●● ●●● ●● ●● ●● ●●●● ●●●● ●●● ●● ●●●●● ●● ● ●●●● ●●●● ●●●●●●●●●● ●●●●● ●● ●●●● ●●●● ●●● ●●●● ● ●●●● ●●● ●●● ● ●● ● ●●●●● ●●●●● ●●●●●●●●●● ●●●● ●● ●● ●●● ●● ●●●●●●● ●●● ●●● ●● ●●●● ●●●● ●●●●● ●● ●●●●●● ●●●● ● ●●●● ●● ●● ●●● ●● ●●●●●● ●●● ●● ●●●●●●● ● ●●●● ●● ● ●●● ●●●● ●●●●● ●●●● ●●●●● ●●● ●●●● ●●● ●●●● ●●●● ●●● ●●● ●●●●● ●●●● ● ●● ●●●● ●●● ●● ●●●● ●●● ●●● ● ●●●● ●● ●●●● ●● ● ●●● ●●●●●●● ●●●● ●●● ●● ●●●● ●● ●●● ●●●●●● ●● ●●●● ●●● ●●●●● ●●●●●● ●●●●● ●●●●●●● ●●●●●● ● ●●● ●●● ●●●●●● ●● ●●●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●● ●● ●●●● ●● ● ●● ●● ●●●● ●●●● ●●●●●●● ●● ●●●● ●● ●● ●● ●● ●● ●●●●●● ● ●● ●●●● ●●●● ●●●●● ● ●●●●●● ●● ● ●●● ●●● ●● ●●●●●●●● ●●● ●●●●● ●● ●● ●●●● ●●●● ●● ●●● ●●●● ●● ●● ●● ●● ●●● ●●●●● ●● ●●●●●●● ●● ●● ●●● ●● ●●● ● ●● ●● ●● ● ●●●● ●● ●●● ●●● ●●●●●●●●● ● ●●● ●● ●● ●●●● ● ●●●● ●●● ●●●●● ●● ●●●●●●●● ●● ●●●●● ●●● ●●● ●●● ●●●● ●●●●●● ●●●● ●●● ●●●●● ●●● ● ●●● ●●●● ● ●● ●● ●●● ●●● ●●●● ●●● ●● ●●●●● ● ●●● ●●●●● ● ●●● ●●● ●●● ●● ● ●●●● ●●●● ●●●●●●●●●●● ●●● ●● ●●●● ●●●● ●●●● ●● ●●● ●● ●●●●● ●● ●●● ●●●● ●● ●●● ●●●● ●●● ●●● ●●●● ●● ●● ●●●●● ●● ● ●● ●●●●● ●●●●●●●●●●●● ●●●●●●● ●●●● ●●●●●●●● ●●● ●●●●● ●●●● ● ●●● ●● ●●●●●● ●●●●● ● ●●●●● ●● ●●●●● ● ●● ●● ●●●●●●●● ● ●● ●●●● ●●● ●● ●●● ●●● ●● ● ●●● ●●●● ●●● ●●● ●● ●● ●●● ● ●●● ●●●●● ●●● ●●●●● ●● ● ● ●●●●●● ●●● ● ●●●● ●● ●●●● ● ●●●●● ●●● ●●● ● ●● ● ●●● ●●●● ●●●● ●●● ●●● ● ●●● ●● ●● ●● ●●● ● ●● ●●● ●●●●● ●
●

● ●●●●● ● ●●● ●●● ● ●●● ●● ●● ● ●●● ●●●● ●●● ●● ● ●●● ●● ●● ●●● ●● ● ●●●● ●●● ●● ●●● ●●● ●● ●●●●●● ●● ● ●● ●● ●● ●● ●●● ●●● ●●●●● ● ●●● ●
●

●●● ●● ●●● ● ●● ●●● ●● ● ●●● ● ●●● ●●●●
●●●● ●● ●● ●●● ●●● ● ●●●●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●

● ● ●●● ● ●●●●● ● ●● ●● ●●● ●●● ● ●●● ●●●● ●● ●● ● ●● ●●●● ●●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●●●● ●● ●●●● ●● ●● ● ●● ●●●● ●●● ●●●●● ●● ● ●●●●● ● ●●● ●● ●●●● ●●● ●●● ●●●●● ●●●● ●● ●● ●●●●●●● ●● ● ● ●●● ●● ● ●● ● ●● ●● ●●●●
●

●● ● ●● ● ●
●● ●●●● ●●● ●●●● ● ●●● ●●●● ●●● ●●●● ●● ●● ●●● ●●● ●● ● ●●●● ● ●●● ● ●●● ● ●● ●●●● ●●●● ●●

● ●●● ●●● ● ●● ● ●● ● ●●● ●● ●● ● ●●●●● ●● ●●●● ●● ●●● ● ●●● ●● ●●● ●●● ● ●●● ●●● ●●● ●● ● ●●●● ●●●● ●●●●● ●● ●●● ● ●● ●●●● ●●● ●● ● ●●●●● ●● ●●●● ●●● ●● ●●●● ●● ●●● ●●●● ●●● ●● ● ●●● ●●●● ● ● ●● ●● ● ●●● ●● ● ●● ● ●●● ● ●●● ●● ●●● ●●●●● ●●● ● ●● ●●●●● ●● ●● ● ●●● ● ● ●●● ●●● ●●● ● ●● ●●●● ●● ●●●●●●● ●●● ●● ● ●● ●●●●●● ●● ● ●●●●● ●●● ●●● ● ●●● ●●●●●● ●●● ● ●● ●●● ●●● ● ●● ● ●●●●● ●●● ● ●●● ●●●●●●●●● ● ●●● ●● ●● ●●●●●● ●●●● ●●● ●●●● ● ●● ●● ●●● ●●●● ● ●●● ●●● ● ●●●● ●● ●●● ●● ●● ●● ●● ● ●●● ●●● ●●● ●●● ● ●●● ●●●● ●●●●● ●● ● ●● ● ●● ●●● ●● ●● ●●● ●● ●●● ●● ●● ●● ●● ●● ● ●●● ● ●● ●● ●●● ●●● ●●●● ●● ●● ●● ●●●● ●●●● ●● ● ●●● ●● ●●● ●● ●● ●● ●●● ●●● ●●● ●●●●●● ● ● ●●●● ● ●●●●● ● ●●●●● ● ●●● ●● ●● ●● ●●●● ●●●● ● ●● ●●●●● ●●●●●●● ● ●●● ●●●● ●● ● ●●●●● ● ●●● ●● ●●●● ● ●●● ●●●●●● ●●● ●● ●●●● ●●● ●● ●●● ●●●●●●●●● ●● ●● ●●● ●●● ●● ●●● ●● ●● ● ●●●●●● ● ●● ● ●●●● ●●●●● ● ● ●● ●●●● ●● ● ●● ●● ●● ●● ●●●●●●●● ● ●●●● ●●● ● ●●● ●● ●●●● ●● ●●● ● ●●● ● ●●●●● ●● ●●● ●●●● ●●●●● ● ●●● ●●● ●● ●● ●● ● ●● ●●● ●● ● ●● ●●●●●● ●●●●● ●● ●●● ●●● ● ●● ●● ●●● ●●● ●●●● ●●● ●●● ●●●● ●● ●● ●●●●● ●●● ● ●●● ●●● ●● ● ●●● ●●●● ●● ●● ●●● ●●● ●● ●●●● ●● ●●● ●● ●●●● ● ● ●● ●● ●●● ● ●● ●● ●● ●● ●●● ●●●● ●●●● ●●●● ●●● ●● ●●●● ●●● ●● ●● ●●●● ●●● ●●●● ●●●● ●●●●●●● ●●● ●● ●● ●●●●●●● ●● ●●● ● ●● ● ●● ●●● ●●● ●●●● ●● ●● ●● ●●●●● ●●● ●●● ●●● ●● ●● ● ●●● ●●●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●●●● ●●●●●●● ●● ●●●● ● ●●● ●● ●●● ● ●● ●●●●●● ● ●● ● ●●●●● ●●● ●●●● ●●● ●●● ●● ●●●● ●●●● ●● ●●●● ●● ●●●●● ●● ●●●●● ●●● ●● ●● ● ●●●● ●●● ●●●● ●●●● ●●● ● ● ●●●● ●● ● ●●● ●●●●●●●● ●●● ● ●●●● ● ●●● ●●●● ● ●●● ●● ●● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●●● ●●●●●●● ●●● ●●●● ●●● ●●● ●●● ● ●●●●● ●● ● ●●●● ●● ●●● ●●● ● ●● ●●● ●●●●● ● ●●● ● ●● ●●●●●● ●●● ●●●● ●● ●● ● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●● ●●● ●●●●●● ●●●●● ●●● ●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●● ●●● ●● ●●●●● ●●●●●●●●●● ●●●●●● ●● ●● ●●● ●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●●● ●●●● ●● ●● ●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●● ●●●
●

●
●

● ●● ●●●● ●●● ●●●●●● ●● ●●
●

●●●● ●● ●●● ●● ● ●●
●

●
● ●●● ●
● ●●● ●●●

●

●● ●●●
●

● ●●● ●●●
●

●
●

●● ● ●●●●●●●● ●● ●
●

● ● ●● ●●● ●● ●●●● ●● ●● ● ●● ●●● ●
●●●●● ●

●
●●●● ●● ●● ●● ●●● ● ●●● ●●●

●
● ●● ●

●● ●●● ●
●● ●● ●●●

●
● ●

●●
●

●● ●● ●
●●● ●

●● ●
●

● ●●
● ●●● ● ●● ●●●● ●● ●● ●

●
● ● ● ●

●
●●●● ●● ●●

● ●
●● ●●

● ●
●

● ● ●●●● ●● ●●● ●●
● ●● ●● ●● ●●● ●●●●● ●● ●

●● ● ●
● ●●● ●● ●●● ●●● ●●● ●●●● ●●●●● ●● ●●

●
● ●●●

●
●

● ●●●●●●●● ●●●● ●●●● ●● ●● ●● ●●
●● ●

●
●● ●

●
●● ●● ●● ●●

● ●●● ●●● ●● ●
●
●●●

●
●●● ●●●● ●

●
● ●●●

●
● ●● ●● ●● ●● ● ●●●

●● ●●●● ● ●● ●●● ●●
●● ●● ●●● ●● ●●● ●●●●● ●● ●● ● ●

●● ●●
●● ● ●● ●●● ●●● ●
●●

●● ●●●●●
●

●
●● ●●

● ●●● ● ●●● ●
●●● ●●
●

●● ●● ●●●●
●

●●● ●● ●● ●●●●● ● ●●● ●●●● ●● ●●●● ●
● ●● ● ●

●
● ●●●● ●●

●
●
●

●
●● ●● ●●● ●

●●●●●● ●● ● ●●● ●● ●●●●
●●
●●● ●

●
●
● ●

●●
●

●●●● ●●● ●●●
●●●● ●

●
●● ●●● ●● ●● ●●

● ●●● ●

●

● ●●● ●
● ● ●●● ● ●●●●● ● ●● ●●● ●● ●●● ●●● ●● ● ●● ●● ● ●● ●●● ●●● ● ●● ● ●● ●●● ●● ●●● ●●● ● ●●●● ● ●● ●●● ●● ● ●● ●● ● ●● ●● ●●● ●● ● ●● ●● ● ●●●●●●●●●● ●● ●●● ●● ●●●●

●

●●●● ●●●● ●● ●● ●●● ●●●● ●● ●●● ●●● ●●● ●●●● ●● ●●● ● ●● ●●● ●●● ●●●● ●●●●● ●● ●● ●● ●● ●● ●● ●●● ●
●

●●●●● ●
●

●●●● ●●●● ● ●● ●● ●● ●● ●● ● ●● ●●●● ●● ● ●●●● ●●●● ● ●● ●●●● ●● ●●●● ●●● ● ●●● ●●●● ●● ●● ● ●●● ●●● ●
●●● ●●●● ●● ●

●● ●●● ●●●●●●● ●●● ● ●●
●
● ●●

●
●● ●●● ● ●●●●● ●● ●● ●● ●● ●●● ●● ●●●●● ● ●●● ● ●●● ●● ●●● ●●● ● ●● ●● ● ●●● ●● ●

● ●● ●● ●●● ●● ● ●●● ● ● ●●●●●●●● ● ●● ● ●●●●● ● ●● ●●● ●●●
● ●●● ●● ●●● ●● ●●● ●●● ● ●●●● ●●●● ● ●● ●● ●●● ● ●● ●●●●● ●●●●● ● ●● ●●●● ●● ●● ● ●●● ●● ●●●●● ●● ●●●● ●● ●●●● ●● ●●●● ● ●●●● ● ●●● ●●● ●●●●● ● ●●● ● ●● ● ●● ●●● ●●
●
● ●● ●● ●●● ● ●●● ●● ●● ●● ●●●● ● ●●●●● ●●● ●● ●● ●● ●

●
●● ●● ●●●● ●● ●●
●

● ● ●● ●● ● ●●● ●● ●●● ●● ●● ● ●●● ●●●●● ●●●● ● ● ● ●● ● ●●●● ●●● ●● ●●●●●●● ● ●● ●● ●● ●●●● ●●●● ● ●● ●● ●● ●●● ●● ●● ● ●●●●●● ● ●●● ●●●●● ● ●● ●● ●●●● ● ●● ●● ●● ●●● ●●● ● ●●● ●● ●●●● ● ● ●●● ●●● ●●● ● ●●●●●● ●● ● ●●●●●● ●●●●●●●● ●●● ●●●● ● ●●● ●● ●●●● ● ●●● ●● ●●●● ●● ● ●●● ●● ●●●● ● ●●●●●●●● ●● ●● ●●● ●●●●●● ● ●●● ●●●●●● ●●●●●●●●● ● ●●● ●● ●●●● ●● ●●●● ●●●● ● ● ●● ● ● ●●●● ●● ●●● ● ●●●●●● ●●● ●●●● ● ●● ●● ●●●●●● ●●● ●● ●●●● ●● ●●● ●●●● ●●● ●● ●●● ● ●●● ●● ● ●● ●● ●● ●● ●● ●● ●●● ● ●●● ●● ● ●● ●●● ● ●●●● ●●●● ● ●● ●●● ●● ●●● ● ●● ●● ●● ●●●●● ●● ●● ● ●● ●● ●●● ●●● ●● ●● ●●● ● ●● ● ●● ●● ●● ●● ●●● ●● ● ●● ●●● ● ●●●●● ●● ●● ●●●● ●● ●●● ●●●● ●● ● ●●●● ● ●●● ●●● ●●●● ●● ● ●● ●●●● ●● ●● ●● ● ●●● ●●●● ●● ● ● ●● ●● ●● ●●● ● ●●● ●●● ●● ●● ●● ● ●●●● ●● ● ●● ●● ●●● ● ●● ●●● ●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●● ●●●● ●●●● ●●● ●●● ●●●● ●●● ●● ●●●●● ● ●● ●●●●● ● ●●● ●● ●●● ● ●●●● ●● ●● ●● ●● ●●● ●●● ●● ● ●

●
●

●●
● ●

●
●

●

●
●

●
●

●
● ●
● ●

●

●

●
●

●
●● ●●
●

●
●

●● ●

●

●
●

● ● ●● ●
● ●

●
●

●●
●● ●●

●

● ●●● ●● ●
●

●

● ●

●

● ●
● ●

●● ●
● ●

●
●

●
●

●

●

●
● ●●

●
●

●
●

● ●
●

●
● ●

●
● ●●

●
●

●●

●

●
●

●
●●

● ●
●●

●
●●

●

●

● ● ●●

●

●●
● ●

●●
●●

●
●

●

●
●

●
●

●● ● ●● ●
●●

●
●● ●

● ●●
●

● ●

●

●
●

●● ●

●

●
●

● ●
●

●●

●
●

●● ●●
● ● ●

●
●

●● ●
●

●
●

●
●● ● ●

●

● ●
●

●
●

● ●
●

●
●

● ●

●

● ●●
●

●
●

●

●●
●

● ●●

●

●●● ● ●
●

●●

●

● ●
● ● ●●

●
●

● ●
●

●●
●

●
●
●

●●

●
●

●

●

● ● ●●

●

●●
● ●●●●● ●

●

●●
●

● ●●
●● ●

●

●

●

●● ●
●

●●
●

●

●●
●● ●

●
● ●●

●
●

●

● ●
●

● ●

●

●●
●

●

● ●● ● ●
●●

● ●

●

●● ●
●

● ●
●●

●
●

● ●
●

●●●
●

●
●

●

●

●●
●

●

● ● ● ● ●
●

●
●

●●

●

●●
●● ●● ●●●● ●● ●

●
● ●

●
● ●●

●
●●

●
●

●

● ●
●

●

●

●

●●●

●

●

●

●
●

●● ●● ●
●

● ●
●●●

●●● ●
●

●

●

●

●
●● ●●

●

●

●● ● ●●
●

●

●

●
●

●
● ●

●

●● ●● ●● ●

●
●

●

●●● ● ●●
●●

●
●●

●

●

● ●●
●

●
●●

●
●

●
●

●
●●● ●● ●

●
●●

●

●● ●
● ●●●●

●

● ●● ●

●

●●

●

●

●
●● ●●●

●

●●

●

●● ●●

●

●
●● ●●●●
●

●
●

●

●●● ●●
●

●
●

●
●

●
●

●

●

● ●
●

●●
●

●

●

●●●
●

●●
●

●

● ●●
●●

●

●
● ●

●

●● ●
● ●

●

● ●
●●
●

●
● ●

●
● ●

●
●

●●
●

●

●
●

●
●

● ●● ● ●●●● ● ● ●● ●
● ●● ●

●
● ●●● ●● ● ●

●
● ●● ●

●
● ●● ● ● ●● ●● ● ●

●● ●● ●
●

●
●

●● ●●
● ●●● ●●● ● ●

●
● ● ●

●
● ●●● ●● ●

●
●● ●●●

●
●● ●

● ● ● ●

●

●● ●● ●
●

●●● ●● ●●
●

● ●
●

● ●●●● ●● ●●● ●● ●
●

●
●

● ●● ● ●● ● ●● ●● ●● ●● ●●●●●● ● ● ●●●
●● ●●● ●

●

● ● ●●● ●●● ● ●●
●

●● ●● ●
●

●

●● ●●
● ● ●● ●●

● ● ●●
●● ● ●

●● ● ●●●● ●● ●

●

●
●●

●
●●

●
●● ●●

●

●● ●● ●●● ●● ●● ●●● ●●● ●●●●
● ●● ●●

●
●

●● ●

●

● ●● ●
●

● ●
● ●●●●●●● ●● ●● ●●

●
●● ● ●● ● ●●

●
●
●● ●

●
●

●
● ●● ●● ●●●●

●
● ● ●
● ●

●
●●● ●●●

● ● ●●●● ● ●●●● ●●
● ●● ●● ●●● ●● ● ●●● ● ●● ●●

●● ● ●● ● ●● ●●
● ●● ●

● ● ● ●●
●

●●●●
●●

●●● ●●
● ●

●●
●

●● ●● ●●● ● ●● ●
● ●● ●

●
● ●●

● ●
●

●
● ●●●

●

● ●●●●● ●● ●● ●
●

● ●
●

● ●●
●

● ● ●●
● ●

● ●●●●● ●● ●
●

●●
● ●● ●●●

●●

●●
● ●●●

●
●● ●●● ●

● ●●
●

●
● ●

● ●
● ● ● ●●●

●● ● ●●● ●●●● ●●●●●● ●●●●
●

●●

●

● ●●
●

●● ●
●

● ●● ●● ●●● ●● ●● ●●

●
● ●●● ●● ●

●
● ●● ●●

●

● ●●● ●● ●●

●
● ● ●

●● ●●
●

●
●
● ●

●
●● ●●

●
●● ● ● ● ●●●● ●● ● ●●

●
● ●

● ●●●● ●● ●●● ● ●●●

●

●● ●●●●● ● ●● ● ● ●●●●●● ●● ●● ●●● ●● ● ●●● ●● ●● ● ●●● ● ● ●● ●● ● ●● ● ●● ● ●● ●● ●● ● ●●● ● ●● ● ●●●● ● ●● ●
● ● ●● ●●● ●● ●● ●● ●● ●● ●●●● ●●● ● ●●●● ●●● ●●●● ● ●● ●● ● ●● ●●● ●●●● ● ●●● ●● ●● ●● ●● ●●● ● ●● ●●●● ●●● ● ●● ●●● ●●● ● ●● ●●● ●● ●● ● ● ●● ● ● ●●● ● ● ●● ●●● ●● ● ● ●●● ●● ●●● ● ●● ●●●● ●●● ●●●●● ●● ●● ● ●●● ●

●
●●●● ●●● ● ●● ●● ●●● ● ●● ● ●● ●●● ●●

●● ●● ●● ●● ● ● ●
● ●●● ● ●●● ●●●● ●● ● ●● ●● ●● ●●●● ●● ●●● ●●● ●● ●● ●●● ● ●● ●●●● ●● ●● ●● ● ●●●● ● ●● ●●● ●●● ●●● ●● ●● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●●● ●●● ●● ●● ● ●●●● ●● ● ●● ● ●● ●●●● ●● ●●● ●● ●● ●●

●●●● ●● ●●● ●●● ●
●

●● ●● ●● ●●● ●●●●● ●●●● ● ●●●● ● ●● ● ●●●●● ●● ●● ●● ●●● ●● ● ● ● ● ●● ●●● ●●● ●●● ●● ● ●● ●● ●● ●● ●● ●●●●● ●●● ● ●●● ●● ●● ● ●●●● ● ● ●●● ●●●● ● ●●● ● ●● ●●●● ●● ● ●●● ● ●● ●●● ●●●●●● ●●● ●●● ●● ● ●● ●●● ●● ●●● ●●● ●● ●
● ●● ●● ● ●●● ●● ●● ●● ● ●● ●● ● ●●● ●●●● ●● ●●● ●●● ●● ● ●

●
● ●● ●● ●●● ● ●● ●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●●●● ●● ●●● ●●● ●●●●●● ●●●

●
●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●●● ●●● ●● ●●●● ●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●● ●●●●●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●● ●●●●●● ●● ●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●● ●●●●●● ●●

●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●● ●●●●● ●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●● ●● ●●● ●●● ●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●● ●●● ●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●●● ●● ●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●● ●●● ●●●●●●●●●●●● ●●●●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●● ●●● ●●●● ●● ●● ●●●●● ●●●●●●●●●● ●●●● ●●● ●●●●●● ●●●●●●●●● ●●●● ●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●● ●●● ●●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●●●●●●● ●● ●●●●●●●●●●●● ●● ●● ●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●● ●●●●●●●●● ●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●●●● ●●●●● ●●●●●●●●●●●● ●●● ●●●●●●● ●●● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●●●● ●●●●● ●●● ●●●●●●● ●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●●●●● ●● ●●●●●●● ●● ●● ●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●● ●●●●●●●●● ●● ●●●●● ●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●● ●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●● ●● ● ●● ●● ●
●

●
●

●● ●● ●
●

●

●●● ●
●●

●
● ●●

●
●●

●
●● ●

● ● ●
●

●
●

●

●

●
●

●

●
●

●

●

● ●
●●

● ●
● ●

●

●

●● ●● ●●
●

●

●
● ●● ●

● ●
●

●
●

●
●

●
● ●

● ●●

●

●
●

●
●

●

●
●

● ●●
●

●

●●

●

●
●
●

●
●

●●●●● ●● ●

●
●

●
●

●

●●
●●

●

●

● ●
●

● ●
● ●●●●●

●
●●

●
●● ● ●●

●

●●● ●●
● ●●

●

●
●

●
●

● ●● ●

●

●●

●

●
●●

●

●

●
●

●

●

● ●●

●

●

●

●
●

●
●

●●●
●

● ●
●

●

●●

●

●

●●

●

●●
● ●● ● ● ●● ●

●
●

●
●●● ● ●

●
●

●●●
●

●

●●●●

●

● ●
● ● ●

●

●● ●
●

●● ●
●

●● ●●
●

●●
● ●

●● ●
●

●

●
●

●
●

●

● ● ●
●

● ●

●

● ● ●●● ●

●

● ●
●

● ●● ● ●
●

●● ● ●
● ●

●

●

●

●

●

● ●●
●● ●● ●● ● ●●●

● ●●●

●

● ●●

●

●
●

●
●

● ●
●

●
●

●
●

●

●●●
● ●

●
●

●● ● ●●

●

●
●

●● ●

●

●● ●
● ● ●

●
●

●
●

●
●●●

● ●●●
● ●● ● ● ●

●

●

●
●

●● ●●
●

●

●

● ●
●

●●●● ●● ●● ● ●
●● ●

●

●●

●

● ●●● ●● ● ●
● ●

●

●● ●
●
● ●

●

● ●

●

●

●

●

●● ●

●
●
●

●
● ●

●
● ●

●
●

●●
●

●

●● ●● ●● ● ●
● ●

●

●●
●● ●●

● ●
●●● ●

●●
●

●●
●

●

●

●● ● ●●

●

●
●

●

●
●

●

●

●●

●

● ●● ●●
●

● ●
●

●● ●
●

●
●●
● ●

●
●●●

●

●

●

●

●●

● ●

●

●
●

●●
●

●●●● ●●
●

●●●
●

●●
●

●
●

●●●●

●

●
●

●

●

●●

●

● ●
●
●

●●
● ●●●

●
● ●●●● ●

●
●

●●● ●●● ●● ●● ●
● ●● ●●● ●● ●● ●● ●

●
●●● ●●

●

●● ●● ●● ● ●
●

● ●● ●
●

●● ●●
● ● ●● ●●●● ● ●

●

● ●● ● ●●●●
●

●●
●●● ● ●●●●● ●●● ●●●●●● ●●● ●

●
●

● ●
●●● ●

● ●●● ●
●●

●● ● ●● ● ●
●

●●● ●● ●● ●

●
● ●●

●
●●
●

●● ●●●● ●●
●● ●●

●
●●●

●

●●● ●●●●●

●

● ●
●
●● ●● ●
●
●

●

● ● ● ●●● ●
●

●●● ●●● ●●● ●
●

● ●● ● ●● ●
●

●● ● ●● ●●●●● ●● ●●

●
●

● ● ●●●
●

● ● ●●● ●●●
●

●● ●● ●

●

●
●

●
●

●

●

●
●

●
●● ●●

●
● ●● ● ●● ●●

● ●● ●
●

●● ●●

●

●● ●●●●
●●

●●● ●

●

●● ●●
●

●● ●● ●
●●●● ●●

●
●●●

●
●●●● ●

●

●●
●

●
●

● ●● ●●
●● ●●

● ●●● ● ●● ●●
●

●
●● ●●●

● ●●● ●● ●

●
●

●
●● ●

● ● ●●●
●●● ●● ●●

●
●●

● ●
●

●● ● ●
●

● ●
●● ●

●
●

●

●● ●
●

●
● ●●

●● ●●● ● ●● ● ●●●●● ●●●
●

●
● ●

●
●

●
●●

● ●●
●

●●● ●
●
●● ●● ●

●
●

●

●●●● ●●
● ●

●●●● ●●● ●●
●

● ●●
● ● ●● ●● ●●

● ●● ●●● ●
●

●● ● ●● ●● ●● ●● ●●
●

●●
●

●●
●

●
●

●

●
●

●●●● ●
●
●●●●●● ●●● ●●●● ●● ●●

●
● ● ●

●
● ●●

●
●

●
●

●
● ●●

● ●● ●

●
●●●● ●●●● ●●

●

● ●●●●
●

●
●

●● ●● ● ●● ●●● ●●

●
●●● ●● ●●●● ●●●● ●● ●● ●

●
●● ● ●● ● ● ●● ●

● ●●●● ●●●● ● ●●
●● ●● ● ●

●● ●●● ●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●●
●

● ●●● ●● ● ●● ●●●● ●● ●●● ●● ●●● ●● ●● ●● ●● ●●●● ● ● ●● ●● ● ●● ●● ●●●● ● ●●●●● ● ●●● ●●●● ●● ●●● ●●● ●● ●● ●
●●● ●●●●● ●● ●●● ● ●● ● ●●● ● ● ●●●● ●●●● ●● ● ●●●● ● ●● ●●●● ● ●●● ●●● ●●● ●●● ●●● ●● ●●●● ● ●● ●●● ●● ●● ●● ●●●● ●●●● ●● ●●● ● ●●● ●●●● ●● ●●● ●● ●● ●●● ●● ●● ● ●● ●

●●● ● ●● ●● ●●●● ● ●●
●●●● ●●●● ●● ● ●●●● ●●● ●●● ● ●● ●●● ●●● ●● ●●● ●● ●●● ●●●● ●● ●●● ● ●● ●● ●●● ●● ●●● ●●●● ●●●● ● ● ●● ●● ●●●● ● ● ●●●● ● ●●● ●● ●● ●●●●● ●● ●● ● ●●● ●●● ●●● ●●● ● ●●● ● ● ●● ●●●●●● ●● ●● ● ● ●● ●●

●
● ●● ●● ●●●● ● ●●● ●●● ●● ●

● ●●●●●● ●●●●● ● ●● ●● ● ●● ●●● ●● ●●● ● ●● ●●● ● ●●●● ●●● ●●●●● ●● ●●● ●● ●● ●●● ●●● ●●●● ● ●● ●● ●●● ● ●● ●● ● ●● ●●●● ●●● ●● ●●● ●●● ●● ●●●●● ●● ●●
●● ● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●● ●● ● ●● ●●● ●●●●●● ●

● ● ●●● ● ●●● ●● ●●●● ●● ●● ●● ●● ●● ● ●● ●●●●● ●● ●● ●●● ●● ●● ●●●●●●● ●●● ● ●●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●●●

●

● ●●
●

●

●

●

●

●

● ●●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●
●●●●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●●

●

● ●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
● ●

●

●

●

● ●
●

●

● ● ●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●● ●

●

●

●●

●

● ●

●
●

●

●

●

●

●
●
●

●

●

●
● ●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●● ●● ● ●

●
●

●

●

●

●

●
● ●●

●

●

●

● ●●
●
●

●
●

●

●

●

● ●●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

● ●●

●

●●

●

●

●●

●
●

●●
●

●

● ●

●

●●●

●

●

●

●

●

●

●●
●●

●

●
●

●
●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●
●●

●

●

●

●
●●

●

●

●
●

●

● ● ● ●●
●

●
●● ●

●
● ●●

●
●●

●● ● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

● ●
●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
● ●

●

● ●
●

●● ●● ●
●

●

●
●

●

●

●
● ●●

● ●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●
●

●

●● ●●● ●●

●

●
●

●

● ●

●

● ●
●

●

●
● ●

●

●●
●

●

●
●

●

●

●
●

●

●
● ●

●

●●

●

●●

●

●
●● ●●

●

●
●

● ●

●

●●●

●

●
●● ●

●
●

●

●

●●

●

●

●

●

●
● ● ●

●

●●
●

●

●

●
●●●

●

●

●

●

● ●●

●

●●
●

●
●● ●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

● ●

●

●
●●

●●●
●●

●
●

●

● ●●
●

●

●

●
●

●●

●

●

●●
●

●

●

● ●
●

●

●●
●

● ●
●

●

●
●

●

●
● ●

●

● ●● ●
●

●

●

●

●●

●

●

●

●● ●

●

● ●

●

●
●

●

●

● ●

●

●

●

●●●

●

●

●
●●

●

●

●●
●

●

●

●

●

●
●

●

●

●● ●
●

● ●
● ●

●
●

● ●●
●

● ●

●

●●
●●

●●
● ●

●
●

●
●

● ●●

●

● ●

●
●

●

●

●
●

●

●
●● ●

●
●

●

● ●●

●●
●

●
●

●

●●● ●

●
●

●●

●

● ●

●

●
●

●
●

●

●
● ●

●
●

●
●

●
●

●

●

●

●
●● ●●

●

●
●

●

●

●

● ●
●

●
●

●●

●

●
●

●

●

●

●●

●

● ●

●

●●●

●
●●

●
●

●

●

●

●●●●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●
● ● ● ●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●●● ●

●
●

●

●

●

●

●

●

●
● ● ●

●

●
●

● ●

●
●

●
●

●

●
●●

●

● ●
●

●

● ●●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●● ●
● ●

● ●
●●

●
●

●

●●●
● ●●

●

● ●●●
●●

●●
●

●●
●

●● ● ●

●

●● ●
●

●
●● ● ●●●●● ●●● ● ●● ●

●
● ●●● ● ●● ●

● ● ●
●

●●●●
●

● ● ●
● ●

● ●●●●● ● ●● ●

●

●● ●●● ● ●● ●● ●● ●● ● ●
●● ●

●

● ●

●
●

●● ●
●●

●
●

●
●●● ●● ●●

●
●●●●● ●● ●● ● ●

● ●●
●

●

●●
●●● ●● ●●●●

● ●●●●
● ●

●
● ●● ●●● ●● ●

●●● ●● ●●● ● ●●
●

● ●●● ●
●

●● ●

●

●
●

●
●●

●●
● ● ●● ●●

●
●●

● ●●
● ●

●
●

●● ●
●

● ●●●
●

●

●●
● ● ●

●
● ●● ●● ●●

●
●● ●●●

●
●●

● ● ●● ●● ●●●● ●● ●●
●

● ●● ●●
●

●●
●

● ●● ● ●●●● ● ●● ●● ●●
●●●

●

● ●● ● ●
●

●

●

●
●● ● ● ●

●
● ●●

●
●

● ●
●

●●●
●● ●

● ●●
●

●●●● ●● ●
●

●
●

●

●
●

●

●

●●
●

●● ●● ●●
●

●● ●●
●

●● ● ●●
●

●● ● ● ●● ●● ● ●

●
●

● ●
● ● ●● ●●● ●● ● ●● ● ●● ●●● ●

● ●
●

●● ●●● ●
● ● ● ●●

●
● ● ●●● ● ●

●
●

●
●

● ● ●● ● ●●●● ●● ●●● ● ● ●
●

●

● ●
●

● ●
●

● ● ●●● ● ●● ●●● ●● ● ●● ●●
●

●

●● ●●
●

● ●● ●●
●

●●● ●
●

●●

●

●● ●●
●

●● ● ●●

●
●● ● ●● ●

●
●

●

● ●●

●

●
●

● ●●
●

●
●● ●●

●
● ●●●● ●

●
●

●

● ●

●

● ●
●

● ●●● ●● ●● ●● ●
●

● ●●
●

●
●● ●●● ●● ●

●

●●● ●● ● ●● ●

●

●● ●●
● ●

● ●● ●● ● ●●● ●● ●
●

● ●●●● ●● ●● ● ● ●● ●● ●●● ●
● ●

●
● ●●●●

●
● ●● ●

●
●●●●

●● ●
●

● ●● ●● ●● ● ●●● ●●●
●● ●●● ●

0 10000 30000 50000

0
50

00
0

15
00

00

candidates

re
sp

on
se

 ti
m

e
in

 m
s

●●● ●●● ●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●●●●● ●●● ●●● ●●●● ● ●●●●●●●●● ●● ●●●● ●●●●● ● ●●●●●●●● ●●●● ●●●●●● ●●●●●● ●●●● ●●●●● ●●●●●●● ●● ●●●●●●●● ●●● ●●●●●● ●●● ●● ●●●● ●●●●●●●●●●●● ●●● ●●●●● ●●●●● ●●●●●● ●●●●●●●● ●●●●● ●●● ●● ●● ●●●● ●●● ●●●●●●●●●●●● ●● ●● ●●● ●●●●● ●●●●● ●●●●● ●●●●●●●●● ●● ●●● ●● ●●●●● ●●●●●●●●●●●●●●● ●● ●● ●●●● ●●●●●●●●●●●●●● ●● ●●●●●● ●●● ●●●●●●● ●●●●●●●●● ●●● ●●●● ●●●● ●●●● ●●●●●● ●●●●● ●●● ●● ●●●● ●● ●●●● ●●●●●●●●● ●●●●● ●●● ●●●●● ●●●●●●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ●● ●●●●● ●●●●● ●● ●●●●●●● ●●● ●● ●●●● ●● ●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●● ● ●●●● ●●●●●●● ●●● ●●●●●●●●●● ●●●●● ●●● ●●●●●●●● ●● ●● ●●●●● ●●● ●●●●●●● ●●● ●●● ●●● ●●● ●●●●●●● ●●●●● ●●●●●●● ●●● ●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●● ●●●●● ●● ●●●●●●●● ●● ●●● ●● ●●●●● ●● ● ●●●● ●●●●● ●●● ●●●●●●●●● ●●● ●●● ●● ●●●●●● ●●● ●● ●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●●● ●●●●● ●●● ●●●●●●●●●●●●●●● ●●●●●● ●● ●● ●● ●●● ●●●●● ●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●● ●● ●● ●●●●● ●●●●●●● ●●●●● ●●●●●●●●● ●●●●●●●●● ●●● ● ●● ●●●●●●●●●●●●●●● ●●●●●●●●● ●● ●●●● ●● ●● ●●●●●● ●●●●●● ●●●● ●●●●●●● ●●●● ●●●●●● ●●●●●●● ●● ●● ●●●●● ●●● ●●●●●● ●●●●●●● ●●●●●●● ●●● ●●● ●●●●●●●●●●●● ●● ●● ●●●●●● ●● ●●●●●● ●●●●● ●●●● ●●● ●●●●●●●●●● ●●●● ●●● ●●● ●●●● ●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●● ●●● ●● ●●● ●●●●● ●●● ●●●●●● ●●●●●● ●● ●●●●●● ●● ●●● ●●●●●●● ●● ●●●● ●●● ●●●●●●●● ●●●●●●●●●●●● ●●●● ●●●●● ●●●● ●●●●● ● ●●● ●● ●●●●●●●●●●●●●●●●●● ●●●●●● ● ●●● ●●● ●●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●● ●● ●●●● ●● ●●●●● ●●● ●●●● ●●●●●● ●●●● ●●●●●●●●●● ●●●●● ●●● ●●●●●● ●●●●● ●●●● ●●●●●● ●●●●●●●● ●● ●●● ●●●● ●● ●● ●● ●● ●●● ●●●● ●●●● ●●●●●●●●●●● ●● ●●●●● ●●● ●●●●●●●●● ●● ●●●●● ●●●● ● ●●●● ●●●●●●● ●●●●●● ●●●●●●● ●● ●●●●●●●●●●●● ●●●●●● ●● ●●●●●● ●●●● ●● ●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●●● ● ●●●●● ●●●● ●●●●●●●●●●●●● ●● ●● ●●● ●●●●● ●●● ●●●●●●●● ●●●●●●● ●●●●●● ●●● ●●●●●●●●● ●●●●● ●●●● ●●● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●● ●●●●● ●●●●●●● ●●● ● ●● ●●●●● ●●● ●●●●●●● ●●●● ●●●●●●● ●● ●●●●●●●● ●●●●●●● ●●● ●●●●●●●● ●●● ●●● ●●●● ●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●● ●●●●●●●●● ●●●● ●●● ●●●●●● ●●● ●●●●● ● ●●● ●●● ●● ●●●● ●● ●●●●● ● ●● ● ● ●●● ●● ●●●● ●● ● ●●● ●●●● ●●●●●●●● ●●●●● ●●● ● ●●● ●●●● ●● ●●●●● ● ●●● ●● ● ●● ●●●● ●●● ●●● ●●●● ● ●● ● ●●●●● ●●●●● ●●● ●● ●●●● ● ●● ●● ●●● ●●●●● ●● ● ●● ● ● ●●●● ●●●● ●●● ● ●●● ●●●● ●●● ●●● ●●●●● ● ●●● ●● ● ●●●● ●●● ●●●● ●● ●●●●●●● ●●●● ●●●●●● ●●● ●●● ● ●●● ●● ●● ●●● ● ●● ●●●●●●● ●● ●●● ●●● ●●● ●●●●●● ●●● ●● ●● ●●● ●● ●● ●● ●●●●● ● ●●● ●●●● ●● ●●●●● ●● ●●●● ●●● ●●● ● ●● ●● ● ●●● ●●●● ● ●●●●● ● ●●● ●●● ●● ●●●●●● ●● ●● ● ●●●● ●●●●●●●● ●● ●● ●● ●● ●●● ● ●●●●● ●● ●● ● ●●● ●●● ● ●●●●● ●●● ●●●● ●●● ●●●● ● ●●●● ●● ●● ●●●● ●● ●●● ●● ●●●● ●●●● ●●● ●●● ●● ●●● ●● ●●●●● ●● ●●● ●●●● ●● ●● ●●● ●● ●●● ●●● ●●●●● ●●●●●● ●●●● ●●●● ● ●●●●●● ● ●●●● ● ●●● ●● ●●● ●●● ●● ●●● ● ●●● ●●●●● ●●●●●●● ●●●●●●● ●●● ● ●●●● ● ●● ●●●●● ● ●●●● ●● ●●●● ●● ●● ● ● ●●●●●● ● ●●● ● ●● ●● ●● ●●●● ●●●●●●●● ● ●● ●●● ●●●●●●● ●●●●●● ●● ●●●● ●● ●●●● ● ●● ●●●●● ●● ●●● ●●●● ●●● ●● ● ●● ●●● ●●●●● ●● ●●●● ●●●● ●●●●● ● ●●● ● ●● ●●●●●●● ●● ●● ●● ● ●●● ●● ● ●● ●● ●● ●●● ●● ● ●●● ●●● ●●● ●●● ●●● ●●● ●● ●● ●● ●●●●● ●● ●● ●● ●●●●●● ● ●●●● ●●● ●● ●●●●● ●●●● ● ●●● ●●●●●● ●●●●●●● ●● ● ● ●●● ● ●●● ●●●●● ● ●●●● ● ●● ● ●●●●● ●● ● ●● ●●●●●●● ●● ●●●●●● ● ●●● ●● ●●●●● ●●●●●● ●●● ● ●●● ●● ●● ●● ●● ●●● ●●● ●● ●●● ●●● ●●●● ● ●●● ●● ●● ●● ●●●● ●●●● ●●● ●● ●● ●●● ●● ● ●●●● ●●●● ●●●●●● ●●●● ●●●● ● ●● ●● ●● ●●●● ●●● ●●●● ● ●●●● ●●● ●●● ● ●● ● ●●●●● ●● ●●● ●●●●● ●●●● ● ●●● ● ●● ●● ●●● ●● ●●● ●●●● ●●● ●●● ●● ●●●● ●●●● ●●●●● ●● ●●●●●● ●●●● ● ●●● ● ●● ●● ●●● ●● ●●●●●● ●●● ●● ●●●● ●●● ● ●●●● ●● ● ●●● ●●●● ●●●●● ●●●● ●●●●● ●●● ●●●● ●●● ●●●● ●●●● ●●● ●●● ●●●● ● ●●●● ● ●● ●● ●● ●●● ●● ●●●● ●●● ●●● ● ●●● ● ●● ● ●●● ●● ● ●●● ●●●●●●● ●●●● ●●● ●● ●● ● ● ●● ●●● ●● ●●●● ●● ●● ●● ●●● ●●●●● ●● ●●●● ●●●●● ●●● ●●●● ● ●●●●● ● ●●● ●●● ●●●●●● ●● ●●●●●● ● ●● ● ●● ●● ●●●● ●●●● ●●●● ●●● ●● ●●●● ●● ● ●● ●● ●●●● ●●●● ●● ● ●●●● ●● ●●● ● ●● ●● ●● ●● ●● ●●●● ●● ● ●● ●●●● ●●●● ●●●● ● ● ●● ●●●● ●● ● ●●● ●●● ●● ●●●●●● ●● ●●● ●●●●● ●● ●● ●●●● ●●●● ●● ●●● ●●●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●●● ●●●● ●● ●● ●●● ●● ●●● ● ●● ●● ●● ● ●●●● ●● ●●● ●●● ●● ●●●●●●● ● ●●● ●● ●● ●●●● ● ●●●● ●●● ●●●●● ●● ●●●●●●●● ●● ●●●●● ●●● ●●● ●● ● ●●●● ●●●●●● ●●●● ●●● ●●●● ● ●●● ● ●●● ●●●● ● ●● ●● ●●● ●●● ●●●● ●●● ●● ●●●●● ● ●●● ●●● ●● ● ●●● ●●● ●●● ●● ● ●●●● ●●●● ●●●●● ●●●●●● ●●● ●● ●●●● ●●●● ●●●● ●● ●●● ●● ●●●●● ●● ●●● ●● ●● ●● ●●● ●● ●● ●●● ●●● ●●●● ●● ●● ●●●●● ●● ● ●● ●●●●● ●●●●●●●●●●●● ●●●●●●● ●●●● ●●●●●●●● ●●● ●●●●● ●●●● ● ●●● ●● ●●●●● ● ●●●●● ● ●●●● ● ●● ●●●● ● ● ●● ●● ●●●●●●●● ●●● ●●●● ●●● ●● ●●● ●●● ●● ● ●●● ● ●●● ●●● ●●● ●● ●● ●●● ● ●●● ●●●●● ●●● ●●●● ● ●● ● ●●● ●●●●●●● ● ●●●● ●● ●●●● ● ●●●●● ●●● ●●● ● ●● ● ●●● ●●●● ●●●● ●●● ●●● ● ●●● ●● ●● ●● ●●● ● ●● ●●● ●●●●● ●
●

● ●●●●● ● ●●● ●●● ● ●●● ●● ●● ● ●●● ●●●● ●●● ●● ● ●●● ●● ●● ●●● ●● ● ●●●● ●●● ● ● ●●● ●●● ●● ●●●● ●● ●● ● ●● ●● ●● ●● ●●● ●●● ● ●●●● ● ●●● ●
●

●●● ●● ●●● ● ●● ●●● ●● ● ● ●● ● ●●● ●●●●
●●●● ●● ●● ●●● ●●● ● ●●●●● ●● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●● ●● ●● ●● ●

● ● ●●● ● ●●●●● ● ●● ●● ●●● ●●● ● ●●● ●● ●● ●● ●●● ●● ●●●● ●●● ●● ●●●● ●● ●● ● ● ●● ●●●● ●● ●●●● ●● ●●●● ●● ●● ● ●● ●●●● ●●● ●●●●● ●● ● ●●●●● ● ●●● ●● ●●●● ●● ● ●●● ●●● ●● ●●● ● ●● ●● ●●●●●●● ●● ● ● ●●● ●● ● ●● ● ●● ●● ●●●●
●

●● ● ●● ● ●
●● ●●●●●●● ●●●● ● ●●● ●●● ● ●●● ●●●● ●● ●● ●●● ●●● ●● ● ●●●● ● ●●● ● ●●● ● ●● ●●●● ●●●● ●●

● ●●● ●●● ● ●● ● ●● ● ●●● ● ● ●●● ●●●●● ●● ●●●● ●● ●●● ● ●●● ●● ●●● ●●● ● ●●● ●●● ●●● ●●● ●●●● ●●●● ●● ●●● ●● ●●● ● ●● ●●●● ●●● ●● ● ●●●●● ●● ● ●●● ●●● ●● ●●●● ●● ●●● ●●●● ●●● ●● ● ●●● ●●●●● ●●● ●● ● ●●● ●● ● ●● ● ●● ●● ●●● ●●●●● ●●●●● ●●● ● ●● ●●●●● ●● ●● ● ●●● ● ● ●●● ●●● ●●● ● ●● ●●●● ●● ●●● ●●●● ●●● ●● ● ● ● ●● ●●●● ●● ● ●●● ● ● ●●● ●●● ● ●●● ●●●● ●● ●●● ● ●● ●● ● ●●● ● ●● ● ●●●●● ●●● ● ●●● ●●●●● ●●●●● ●● ● ●● ●● ●●●●●● ●● ●● ●●● ●●●● ● ●● ●● ●●● ●●●● ● ●●● ●●● ● ●●●●●● ●●● ●● ●● ●● ●● ● ●●● ●●● ●● ● ●●● ● ●●● ●●●● ●● ●●● ●● ● ●● ● ●● ●●● ●● ●● ●●● ●● ●●● ●● ●● ●● ●●●● ● ●●● ● ●● ●● ●●● ●●● ●●●● ●● ●● ●● ●●●● ●●●● ●● ● ● ●● ●● ●●● ●● ●● ●● ●●● ●●● ●●● ●● ●●●● ● ● ●●●● ● ●●●●● ● ●●●● ● ● ●●● ●● ●● ●● ● ●●● ●●●● ● ●● ●●●●● ●●●●●●● ● ●●● ●●● ● ●● ● ●● ●●● ● ●●● ●● ●●●● ● ●●● ●●●●●● ●●● ●● ●●●● ●●● ●● ● ●● ●●●●●● ●●● ●● ●● ●●● ●●● ●● ● ●● ●●●● ● ●●●●●● ● ●● ● ●●●● ●●●●● ● ● ●● ●●●● ●● ● ●● ●● ●● ●● ● ●●●● ●●● ● ●●●● ●●● ● ●●● ●● ●●●● ●● ●●● ●●●● ● ●●●●● ●● ●●● ●●●● ●●●●● ●● ●● ●●● ●● ●● ●● ● ●● ●●● ●● ● ●● ● ●●● ●● ●●●●● ●● ● ●● ●●● ● ●● ●● ● ●● ●●● ●●●● ●●● ●●● ●●●● ●● ●● ●●● ●● ●●● ● ●●● ●●● ●● ● ●●● ●● ●● ●● ●● ●● ● ●●● ●● ●●●● ●● ●●● ●● ●● ●● ● ● ●● ●● ●●● ● ●● ●● ●● ●● ●●● ●●●● ●●●● ●●●● ●●● ●● ●●●● ●●● ●● ● ● ●●●● ● ●● ●● ●● ●●●●● ●●●● ●● ●●● ●● ●● ●●●●● ●● ●● ●●● ● ●● ● ●● ●●● ●●● ●●●● ●● ●● ●● ●●●●● ●●● ●●● ●●● ●● ●●● ●●● ●●●● ● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●●●● ●●●●●● ● ●● ●●●● ● ●●● ●● ●●● ● ●● ●●●●●●● ●● ● ●●●●● ● ●● ●●●● ●●● ●●● ●● ●●●● ●●●● ●● ●●●● ●● ●●●●● ●● ●●●●● ●●● ●● ●● ● ●●●● ●● ● ●●●● ●●●● ●●● ● ● ●●●● ●●● ●●● ●●●●●●●● ●●● ● ●●●● ● ●●● ●●●● ● ●●● ●● ●● ●● ●●● ●● ● ●● ●●● ●● ● ●● ●●●● ●●●●●●● ●●● ●●●● ●●● ●●● ●●● ● ●●●● ● ●● ● ●●●● ●● ●●● ●●● ● ●● ●●● ●●●●● ● ●●● ● ●● ●●●●●● ●●● ● ●●● ●● ●● ● ●● ●● ●●●● ●●●● ●●● ●● ●● ●●●●●●● ●● ●● ●● ●●●● ●● ●● ●●●●●● ● ●● ●●●●●●● ● ●●●●●●●●●●● ●●●●●●● ●●● ●●● ●●● ●●●● ●● ●● ●●● ●●● ●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●● ●●●●●●● ●● ●● ●●●● ●● ●●● ●●● ●● ●●● ●●●●● ●●●●●●●●● ●● ●●●● ●●● ●●●● ●●●●● ●● ●● ●●●● ●●● ●●●● ●● ●●●●●● ●●● ●●● ●● ●●●● ● ●●●● ●●●●● ● ●●● ●●●●●●●● ●●● ●● ●●●● ●●●●● ●●● ●● ●●●●●● ● ●●●● ●●● ●●●● ●● ●●● ●●●●● ● ● ●●● ●●● ●● ●●●● ●●● ●●●● ●●●●●● ●● ●●●●●● ●●●●●●● ●●● ● ●●● ●●● ●●●●●● ●● ●●●● ●●● ●●●● ●●●●● ●●●●● ●● ●●● ●● ●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●●●● ●● ●●●●● ●●● ●●●●●● ●●●●●● ●●●●● ●● ●●● ●● ●●●●●●● ●●● ●●● ●●●●●● ●●● ●● ●●● ●●●●●●●● ●●●● ●●●●●● ● ●● ●● ●●●●●● ●● ●●●●●●● ●●●● ●●● ●● ●● ●●●● ●● ●● ●● ●●● ● ●● ●● ●● ●●● ●●● ●●●●●● ●●● ●●●● ●● ●●●● ●●●●● ●●● ●●● ●●●● ●●● ●● ●●●● ●●●● ●●● ●● ●●● ●● ●●● ●● ●● ●●● ●●●● ●● ●● ●●●● ●●● ●● ●●● ●●●●● ●● ●●●● ●● ●● ●●●● ●● ●●● ●● ●● ●● ●●●● ●●● ●●● ●● ●●●● ●● ● ●● ●●● ●●● ●●●● ●●●●●●● ●●●●● ●●● ●●●●● ●● ●●● ●● ● ●●●● ●●● ●● ●●●● ●●● ●● ●●● ●●●● ● ●●●●● ●●●●●●●●●● ●●●● ●● ●● ●● ●●●● ● ●● ● ●● ●●●●● ●● ●●●●● ●●● ●● ●●●● ●●● ●● ●● ●● ●●● ●●●● ●●●● ●●● ●● ●●● ● ●●●●● ●●●● ●●● ●●● ●●●●●●●● ● ●●●●● ●●● ●●●● ● ●●●●●● ●●●● ● ●●● ●●●●● ● ●● ●●●● ●● ● ●●●●●●●● ●●●●●●● ●●●●●●●●●●●● ● ●●●● ●●● ●● ●● ●●●● ●●●●● ● ●●●●● ●●● ●● ●●●●● ●●● ●●● ●●● ●●● ●● ●●● ●●●● ●● ●●●●●● ●●●●● ●●●● ●●●● ●● ●● ●● ●●● ●●●● ●●●●●●●● ●●●●●●● ●● ●●●●● ●●●●● ●●● ●● ●● ●● ●●● ●●●● ●● ●●●● ●●● ●●●●●● ●●●● ●●● ●●●●● ●●● ●●●● ●●●● ●● ● ●●● ●●● ●● ●●●●●● ●●●● ●● ●●● ●●● ●● ●●● ●●●●● ●●●● ●●● ●●●●●●●● ●●●●● ●● ●●● ●● ●● ●●●● ●●● ●●●●●● ●● ●●●● ●●●●● ●●●● ●●● ●●● ●●●●● ●● ●●●●● ●● ●● ●●●●●●● ●●● ●●● ●●●●●● ●●●● ●●●● ●● ●●●●●●●●● ● ●● ● ●●●●● ● ●● ●● ●●●●● ●●●●● ● ●●● ●●● ●● ●●● ●● ●● ●●● ●●●● ●●●●●● ●● ●●●●●●● ●●● ●● ●● ●●● ●● ●●●●● ●●●●●●●●●●● ●● ●●●● ●●●●● ●● ●●● ●●●●● ●● ●●● ●●● ●●●● ●●● ●●●●● ●●● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●● ● ●● ●●●● ●●●●● ●●●● ●● ● ●● ●● ●●●●● ●● ●●●●●●●● ●●●●● ●●● ● ●●● ●●●● ●● ● ●● ●● ●●●●● ●●●●●●●●●● ●● ●●●●● ● ●●●● ●●● ●●● ●●● ● ●●●●●●●● ●●●● ● ●●● ●●●●●●●●●●●●● ●●●●● ●●● ●● ● ●● ●●● ● ●●● ●●●● ●● ●●● ●●●●●●●● ● ●● ●●●●●● ●●●● ●● ●●●●● ●● ● ●● ●●●● ●●●● ●● ●●●● ●● ●● ●●● ● ●●●●●●●● ●●●● ● ●●● ●●●● ●●● ●●● ●●●●● ●●● ●●●●● ●●●●●●●●●● ● ●●● ●●● ●●● ● ●●● ●●● ●●●●●●●●● ●● ●●●●●●● ●● ●●● ●●● ●● ●● ●● ●●● ● ●● ●● ●● ●● ●●● ●●● ●●●●● ● ●● ● ●● ●●●● ●●●●● ●● ●●●●● ●●●●●●● ●●●● ●●●●●●● ●● ●●●● ● ●● ●● ●●●● ●● ●●●●● ●● ●●●
●

●
●

● ●● ●●●● ●●● ●●●●●● ●● ●●
●

●●●● ●● ●●● ●● ● ●●
●

●
● ●●● ●

● ●●● ●●●
●

●● ●●●
●

● ●●● ●●●
●

●
●

●● ● ●●●● ●●● ● ●● ●
●

● ● ●● ●●● ●● ●●●● ●● ●● ● ●● ●●● ●
●●● ●● ●

●
●●●● ●● ●● ●● ●●● ● ●●● ●●●

●
● ●● ●

●● ●●● ●
●● ●● ●●●

●
● ●

●●
●

●● ●● ●
●●● ●

● ● ●
●

● ●●
● ●●● ● ●● ●●●● ●● ●● ●

●
● ● ● ●

●
● ●●● ●● ●●

● ●
●● ●●

●●
●

● ● ●●●● ●● ●●● ●●
● ●● ●● ●● ●●● ●●●●● ●● ●

●● ● ●
● ●● ● ●● ●●● ●●● ●●● ●●●● ●●●●● ●● ●●

●
● ●●●
●

●
● ●●●●●●●● ●●●● ●●●● ●● ●● ●● ● ●

●● ●
●
●● ●

●
●● ●● ●● ●●

● ●●● ●●● ●● ●
●

●●●
●

●●● ●●●● ●
●

● ●●●
●

● ●● ●● ●● ●● ● ●●●
●● ●●●● ● ●● ●●● ●●

●● ●● ●●● ●● ●●● ●● ●●● ●● ●● ● ●
●● ●●

●● ● ●● ●●● ●●● ●
●●

●● ●●●●●
●

●
●● ●●

● ●●● ●●●● ●
●●● ●●
●

●● ●● ●●●●
●

●●● ●● ●● ●●●●● ● ●●● ●●●● ●● ●●●● ●
● ●● ● ●

●
● ●●●● ●●

●
●
●

●
●● ●● ●●● ●

●●●●● ● ●● ● ●●● ●● ●●●●
●●
●●● ●

●
●
● ●

●●
●

●●●● ● ●● ●●●
●●●● ●

●
●● ●●● ●● ●● ●●

● ●●● ●

●

● ●●● ●
● ● ●●● ● ●●●● ● ● ●● ●●● ●● ●●● ●●● ●● ● ●● ●● ● ●● ●●● ●●● ● ●● ● ●● ●● ● ●● ●●● ●●● ● ●●●● ● ●● ●●● ●● ● ●● ●● ● ●● ●● ●●● ●● ● ●● ●● ●●●●●●●●●●● ●● ●●● ●● ●●●●

●

●●●● ●●●● ●● ●● ●●● ●●●● ●● ●●● ●●● ●●● ●●●● ●● ●●● ● ●● ●● ● ●●● ●●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●
●

●●●●● ●
●

●●●● ●●●● ● ●● ●● ●● ●● ●● ● ●● ●●●● ●● ● ●●●● ●●●● ● ●● ●●●● ●● ●●●● ●●● ● ●●●●●●● ●● ●● ● ●●● ●●● ●
●●● ●●●● ●● ●

●● ●●● ●●●●●●● ●●● ● ●●
●

● ●●
●

●● ●●● ● ●●●●● ●● ●● ●● ●● ●●● ●● ●●●●● ● ●●● ● ●●● ●● ●●● ●●● ● ●● ●● ● ●●● ●● ●
● ●● ●● ●●● ●● ● ●●● ● ● ●●●●●● ●● ● ●● ● ●●●●● ● ●●●●● ●●●

● ●●● ●● ●●● ●● ●●● ●●● ● ●●●● ●●●● ● ●● ●● ●●● ● ●● ●●●●● ●●●●● ● ●● ●●● ● ●● ●● ● ●●● ●● ●●●●● ●● ●●●● ●● ●●●● ●● ●●●● ● ●● ●● ● ●●● ●●● ●●●●● ● ●●● ● ●● ● ●● ●●● ●●
●
● ●● ●● ●●● ● ●●● ●●●● ●● ●●●● ● ●●●●● ●●● ●● ●● ●● ●

●
●● ●● ●●●● ●● ●●

●
● ● ●● ●● ● ●●● ●● ●●● ●● ●● ● ●●● ●●●●● ●●● ● ● ●● ●● ● ●●●● ●●● ●● ●●●●●●● ● ●● ●● ●● ●●●● ●●●● ● ●● ●● ●● ●●● ●● ●● ● ●●●●●● ● ●●● ●●●●● ● ●● ● ● ●●●● ● ●● ●● ●● ●●● ●●● ● ●●● ●● ●●●● ●● ●●● ●●● ●●● ● ●●●●●● ●● ● ●●●●●● ●●●●●●●● ●●● ●●●● ● ●●● ●● ●●●● ● ●●● ●● ●●●● ●● ● ●●● ●● ●●●● ● ●●●●●●●● ●● ●● ●●● ●●●●●● ● ●●● ●●●●●● ●●● ●●●●●● ● ●●● ●● ●●●● ●● ●●●● ●●●● ● ● ●● ● ● ●●●● ●● ●●● ● ●●●●●● ●●● ●●●● ● ●● ●● ●●●●●● ●●● ●● ●●●● ●● ●●●●●●● ●●● ●● ●●● ● ●●● ●● ● ●● ●● ●● ●● ●● ●● ●●● ● ●●● ●● ● ●● ●●● ● ●●●● ●●●● ● ●● ●●● ●● ●●● ● ●● ●● ●● ●●●● ● ●● ●● ● ●● ●● ●●● ●● ● ●● ●● ●●● ● ●● ● ●● ●●●● ●● ●●● ●● ● ●● ●●● ● ●●●●● ●● ●● ●●●● ●● ●●● ●●●● ●● ● ●●● ● ● ●●● ●●● ●●● ● ●● ● ●● ●●●● ●● ●● ●● ● ●●● ●●● ● ●● ● ● ●● ●● ●● ●●● ● ●●● ●●● ●● ●● ●● ● ●●● ● ●● ● ●● ●● ●●● ● ●● ●●● ●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●●●● ●●●● ●●● ●●● ●●●● ●●● ●● ●●●●● ● ●● ●●●●● ● ●●● ●● ●●● ● ●●●● ●● ●● ●● ●● ●●● ● ●● ●● ● ●

●
●
●●

● ●
●

●

●

●
●

●
●

●
●●

● ●
●

●

●
●

●
●● ●●
●

●
●

●● ●

●

●
●

●● ●● ●
● ●

●
●

●●
●● ●●

●

●●●● ●●●
●

●

● ●

●

● ●
● ●

●● ●
● ●

●
●

●
●

●

●

●
● ●●

●
●

●
●

● ●
●

●
● ●

●
● ●●

●
●

●●

●

●
●

●
●●

● ●
●●

●
●●

●

●

● ● ●●

●

●●
● ●

●●
●●

●
●

●

●
●

●
●

●● ● ●● ●
●●

●
●● ●

● ●●
●

● ●

●

●
●

●● ●

●

●
●

● ●
●

●●

●
●

●● ●●
● ● ●

●
●

●● ●
●

●
●

●
●●● ●

●

● ●
●

●
●

● ●
●

●
●

● ●

●

● ●●
●

●
●

●

●●
●

● ●●

●

●●● ●●
●

●●

●

● ●
● ● ●●

●
●

● ●
●

●●
●

●
●

●
●●

●
●

●

●

● ● ●●

●

●●
● ●●●●● ●

●

●●
●

● ●●
●● ●

●

●

●

● ● ●
●

●●
●

●

●●
●● ●

●
● ●●

●
●

●

● ●
●

● ●

●

●●
●

●

● ●● ●●
●●

● ●

●

●● ●
●

● ●
●●

●
●

● ●
●

●●●
●
●

●
●

●

●●
●

●

● ● ● ● ●
●

●
●

●●

●

●●
●● ●● ●●●● ●● ●

●
● ●

●
● ●●

●
●●

●
●

●

● ●
●

●

●

●

●●●

●

●

●

●
●

●● ●● ●
●

● ●
●●●

●●
● ●

●
●

●

●

●
●● ●●

●

●

●● ● ●●●
●

●

●
●

●
●●

●

●● ●● ●● ●

●
●

●

●●● ● ●●
●●

●
●●

●

●

● ●●
●

●
●●

●
●

●
●

●
●●● ●● ●

●
●●

●

●● ●
● ●●● ●

●

● ●● ●

●

●●

●

●

●
●● ●●●

●

●●

●

●● ●●

●

●
●● ●●●●
●

●
●

●

●●● ●●
●
●

●
●

●
●

●
●

●

● ●
●

●●
●

●

●

●●●
●

●●
●

●

● ●●
●●

●

●
● ●

●

●● ●
● ●

●

●●
●●
●

●
● ●

●
● ●

●
●

●●
●

●

●
●

●
●

● ●● ● ●●●● ● ● ●● ●
● ●●●
●

● ●●● ●● ● ●

●
● ●● ●

●
● ●● ● ● ●● ●● ● ●

●● ●● ●
●

●
●

●● ●●
● ●●● ●●● ● ●

●
● ● ●

●
● ●●● ●● ●

●
●● ●●●

●
●● ●

●● ● ●

●

●● ●● ●
●

●●● ●● ●●
●

● ●
●

● ●●●● ●● ●●● ●● ●
●

●
●

●●●● ●● ● ●● ●● ●● ●● ●●●●●● ● ● ●●●
●● ●●● ●
●

● ● ●●● ●●● ●●●
●

●● ●● ●
●

●

●● ●●
● ● ●● ●●

● ● ●●
●●● ●

●● ● ●●●● ●● ●

●

●
●●
●
●●

●
●● ●●

●

●● ●● ●●● ●● ●● ●●● ●●● ●●●●
● ● ● ●●

●
●

●● ●

●

● ●● ●
●

● ●
● ● ●●●●●● ●● ●● ●●

●
●● ● ●● ● ●●

●
●

●● ●
●

●
●

● ●● ●● ●●●●
●

● ● ●
● ●

●
●●● ●●●

● ● ●●●● ● ●●●● ●●
● ●● ●● ●●● ●● ● ●●● ● ●● ●●

●● ● ●● ● ● ● ●●
● ●● ●

● ● ● ●●
●

●●●
●

●●
●●● ●●

● ●
●●

●
●● ●● ●●● ●●● ●

● ●● ●
●

●● ●
● ●
●

●
● ●●●

●

● ●●●●● ●● ●● ●
●

● ●
●

● ●●
●

● ● ●●
● ●

● ●●●●● ●● ●
●

●●
● ●● ●●●

●●

●●
● ●●●

●
●● ●●● ●

● ●●
●

●
● ●

● ●
● ● ● ●●●

● ●● ●●● ●●●● ●●●●●● ●●●●
●

●●

●

● ●●
●

●● ●
●

● ●● ●● ●●● ●● ●● ●●

●
● ●●● ●● ●

●
●●●●●

●

● ●●● ●● ●●

●
● ● ●

●● ●●
●

●
●
● ●

●
●● ●●
●

●● ●● ●●●●● ●● ● ●●
●

● ●
● ● ●●● ●● ●●● ● ●●●

●

●● ●●●●● ● ●● ● ● ●●●● ●● ●● ●● ●●● ●● ● ●●● ●● ●● ● ●●● ● ● ●● ●● ● ●● ● ●● ● ●● ●● ●● ● ●●● ● ●● ● ●●●● ● ●●
●

● ● ●● ●●● ●● ●● ●● ●● ●● ●●●● ●●● ● ●●●● ●●● ●●●● ● ●● ●● ● ●● ●●● ●●●● ● ●●● ●● ●● ●● ●● ●●● ● ●● ●●● ● ●●● ● ●● ●●● ●●● ● ●● ●●● ●● ●● ●● ●● ● ● ●●● ● ● ●● ●●● ●● ● ● ●●● ●● ●● ● ● ●● ●●●● ●●● ●●●●● ●● ●●● ●●● ●
●

●●●● ●●● ● ●● ●● ●●● ● ●● ● ●● ●●● ●●
●●●● ●● ●● ●● ●

● ●●● ● ●●● ● ●●● ●● ● ●● ●● ●● ●●●● ●● ●●● ●●● ● ● ●● ●●● ● ●● ●●●● ●● ●● ●● ● ●●●● ●●● ●●● ●●● ●●● ●● ●● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●●● ●●● ●● ●● ● ●●● ● ●● ● ●● ● ●● ●●●● ●● ●●● ●● ●● ●●
●●●● ●● ●●● ●●● ●

●
●● ●● ●● ●●● ●●●●● ●●●● ● ●●●●● ●● ● ●●●●● ●● ●● ●● ●●● ●●● ● ● ● ●● ●●● ●●● ●●● ●● ● ●● ●● ●● ●● ●● ●●● ●● ●●● ● ●●● ●● ●● ● ●●●● ● ● ●●● ●●●● ● ●●● ● ●● ●●●● ●● ● ●●● ● ●● ●●● ●●●●●● ●●● ●●● ●● ● ●● ●●● ●● ●●● ●●● ●●●

● ●● ●● ● ●●● ●● ●● ●● ● ●● ●● ● ●●● ●●● ● ●● ●●● ● ●● ●● ● ●
●

● ●● ●● ●●● ● ●● ●●●● ●● ●●●● ●●●●● ● ●●● ●●●● ●● ●●●● ●● ●● ●● ●●● ●●● ●●●●●● ● ●●
●

●●●●●●●●● ● ●●●● ●●● ● ●● ●●● ●● ●●● ●●● ●●●●● ● ● ●●● ●● ●●●● ●●●● ●● ● ●●● ●●● ●●● ●● ●●●● ● ●●● ● ●●● ●●●● ●●●●● ●●●●● ●●●● ●●●● ●● ● ●●● ●● ●●●● ●● ●●● ●●●●●●● ●●● ●●● ●●●● ●●● ● ●● ● ●●●● ●● ●●●●●●●● ● ●●●●● ●● ●●● ●● ●●●●● ●● ● ●●●● ● ●●●●●●●●●● ●● ●● ● ●●●● ●● ● ●● ●●● ●●●● ●● ●● ●● ●●●● ●●● ●●●● ●●● ●●● ●● ●●●●●●● ●● ●● ●● ●● ●●●● ● ●●● ●●●●● ●● ●● ●● ●●
● ●●● ●●●●● ●● ●●● ●●● ●●●● ●● ● ●●●● ●●● ●●●● ●●●●●●●●● ●● ● ●● ●●● ●● ●●● ●● ●● ●● ●●● ●● ●●●●●● ●●● ●●● ●● ●●● ●●●●●●● ●●● ●●●●●● ●●●● ●● ● ●● ●●●● ●●●● ●●● ●●● ●●●● ●● ●●●●●●● ●● ●● ● ●●● ●●●●●●● ●● ●● ●●●● ●●●●● ●● ● ●●● ●● ●● ●●● ●● ●●● ●●●● ●●●● ● ●●● ●● ●●●● ●●●● ●●● ●●● ●●● ●●●●●●● ●●● ●●●● ●● ● ●●●●● ●●●●●● ●●●●●● ●● ● ●●●● ●●●● ●●●●● ●●● ●●● ●● ●●● ●●● ●●●● ●● ●● ●●●● ●●●●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●●●●● ●● ●●● ●●● ● ●●● ●●●●● ●● ●●● ●● ●● ●●● ●●●●●● ●●●● ●● ●● ●● ●●● ●● ●●● ●●● ●●● ●● ● ●● ●●●●●●● ● ●● ● ●● ●●●●● ●●●● ●●●●● ●●●● ●●● ●● ●● ●● ●●●● ●● ●● ● ●● ● ●● ●●●●● ●●● ●●●●●● ●● ●●●● ●●●●●●●●●●● ● ●●● ●● ●● ●● ●●● ●●●●● ●●● ●● ●●●● ●●● ●●● ●●● ●●●● ● ●● ●● ●● ●● ●●● ●●● ●●● ●●●●● ●● ●● ● ●●● ●●●● ●●●● ● ●● ●●●● ● ●●● ●●●● ●● ●● ●●●● ●●●●● ●●●●●●● ●●● ● ●● ● ●●●●●● ●●●●● ●●● ● ●●●● ●●●●● ●●●● ●● ●● ●●● ●●●●● ●●● ●● ● ●●● ●● ●●●● ●● ●● ●● ●●● ●●●● ●●● ●●● ● ●● ●● ●● ●●●● ●●●●●● ●● ●●● ●● ●●● ●●●●● ●●● ●●●● ● ●●●●● ●●● ●● ●●●●●● ●● ●● ●● ●● ●● ●●●●●●● ●●●● ●● ●●●● ●●●●●● ●●● ●● ●●●● ●● ●●●●● ●●●●● ●●●●● ●●● ●●● ●● ●● ● ●●●●● ●●● ● ●●●●●● ● ●●● ● ●● ●●●● ●●● ●● ●●●● ●●● ●● ●●●● ●●●●●● ●●● ● ●●●● ●● ●● ●●●● ● ●● ●●●● ●● ● ●●●● ●●● ●●●● ●●● ●●● ● ●●●● ● ●●● ●●●●● ●●● ●● ●● ●● ●● ●●● ●●●●● ● ●● ●●●●● ●● ●● ●●●● ●●● ●●● ●●●●● ●●●●●● ●●●●●● ●●● ●● ●● ●●● ●●● ●● ●●● ●● ●●● ●●● ●● ● ●●●● ●● ●●●●●● ●● ●●● ●●●● ●●●● ●●● ●●● ●●● ●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●● ●●● ●● ●●●●● ●●●●● ● ●●● ●●● ●●● ●● ●●● ●●●●●●● ●●●●● ●● ●● ●●●● ●● ●●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●●● ●● ●●●●● ●●● ●●●●●● ●●●●● ●●●●●●● ●● ●● ●●● ●● ●● ●● ●● ●● ●●●●● ●● ●● ●● ●● ●●●●● ●●● ●● ●●●● ●● ●●●● ●●● ●●●●● ●●●●● ●● ●●●●●●● ●● ●●●●● ●●● ●●●●●● ●●● ●● ●● ●●● ●●●● ●●● ●●●● ●●●●●● ●● ●●●● ●● ● ●●●●● ●●●●●●●●●● ●● ●●● ●●●● ● ●●●●●● ●●● ●● ●●● ●●●● ●● ●●● ●●●● ●●●●●● ●● ●● ●● ● ●● ●●●● ●●●● ● ●●● ●● ●● ●●● ●●●●● ●●●● ● ●● ●●● ● ●●● ●● ●●● ● ●● ●●● ●● ● ●● ● ●●●●● ●●●● ●●● ●●● ●●● ●●● ●● ●●● ●● ●● ●●● ●●● ●●●● ●●● ●●● ●●● ● ●●● ●●●● ● ● ●●●● ●●●● ●● ● ●●●● ●● ●●●●● ●● ● ●● ●● ●

●
●

●

●● ●● ●
●

●

●●● ●
●●

●
● ●●

●
●●

●
●● ●

● ● ●
●

●
●

●

●

●
●

●

●
●

●

●

● ●
●●

● ●
● ●

●

●

●● ●● ●●
●

●

●
● ●● ●

● ●
●

●
●

●
●

●
● ●

● ●●

●

●
●

●
●

●

●
●

● ●●
●

●

●●

●

●
●

●
●

●

●●●●● ●● ●

●
●

●
●

●

●●
●●

●

●

● ●
●

● ●
● ●●●●●

●
●●

●
●● ● ●●

●

●●● ●●
● ●●

●

●
●

●
●

● ●● ●

●

●●

●

●
●●

●

●

●
●

●

●

● ●●

●

●

●

●
●

●
●

●●●
●

● ●
●

●

●●

●

●

●●

●

●●
● ●● ● ● ●● ●

●
●

●
●●● ● ●

●
●

●●●
●

●

●●●●

●

● ●
● ● ●

●

●● ●
●

●● ●
●

● ● ●●
●

●●
● ●

●● ●
●

●

●
●

●
●

●

● ● ●
●
●●

●

● ● ●●● ●

●

● ●
●

● ●● ● ●
●

●● ●●
● ●

●

●

●

●

●

● ●●
●● ●● ●● ● ●●●

● ●●●

●

● ●●

●

●
●

●
●

● ●
●

●
●

●
●

●

●●●
● ●

●
●

●● ● ●●

●

●
●

●● ●

●

●● ●
● ● ●

●
●

●
●

●
●●●

● ●●●
● ●● ● ● ●

●

●

●
●

●● ●●
●

●

●

● ●
●

●●●● ●● ●● ● ●
●● ●

●

●●

●

● ●●● ●● ● ●
● ●

●

●●●
●
● ●

●

● ●

●

●

●

●

●● ●

●
●
●

●
● ●

●
● ●

●
●

●●
●

●

●● ●● ●● ● ●
● ●

●

●●
●● ●●

● ●
●●● ●

●●
●

●●
●

●

●

●● ● ●●

●

●
●

●

●
●

●

●

●●

●

● ●● ●●
●

● ●
●

●● ●
●

●
●●
● ●

●
●●●

●

●

●

●

●●

● ●

●

●
●

●●
●

●●●● ●●
●

●●●
●

●●
●

●
●

●●●●

●

●
●

●

●

●●

●

● ●
●
●

●●
● ●●●

●
● ●●●● ●

●
●

●●● ●●● ●● ●● ●
● ●● ●●● ●● ●● ●● ●

●
●●● ●●

●

●● ●● ●● ● ●
●

● ● ● ●
●

●● ●●
● ● ●● ●●●● ● ●

●

● ●● ● ●●●●
●

●●
●●● ● ●●●●● ●●● ●●●●●● ● ●● ●

●
●

● ●
●●● ●

● ●●● ●
●●

●● ● ●● ● ●
●

●● ● ●● ●● ●

●
● ●●

●
●●●

●● ●●●● ●●
●● ●●

●
●●●

●

●●● ●●●●●

●

● ●
●

●● ●● ●
●
●

●

●● ● ●●● ●
●

●●● ●●● ●●● ●
●

● ●● ● ●●●
●

●● ● ●● ●●●●● ●● ●●

●
●

● ● ●●●
●

● ● ●●● ●●●
●

●● ●● ●

●

●
●
●

●
●

●

●
●

●
●● ●●

●
● ●● ●●● ●●

● ●● ●
●

● ● ●●

●

●● ●●●●
●●

●●● ●

●

●● ●●
●

●● ●● ●
●●●● ●●

●
●●●

●
●●●● ●

●

●●
●

●
●

● ●● ●●
●● ●●

● ●●● ● ●● ●●
●
●

●● ●●●
● ●●● ●● ●

●
●

●
●● ●

● ● ●●●
●●● ●● ●●

●
●●

● ●
●

●● ● ●
●

● ●
●● ●

●
●

●

●● ●
●

●
● ●●

●● ●●● ● ●● ● ●●●●● ●●●
●

●
● ●

●
●

●
●●

● ●●
●

●●● ●
●
●● ●● ●

●
●

●

●●●● ●●
● ●

●●●● ●●● ●●
●

● ●●
● ● ●● ●● ●●

● ●● ●●● ●
●

●● ● ●● ●● ●● ●● ●●
●

●●
●

●●
●

●
●

●

●
●

●●●● ●
●
●●●●●● ●●● ●●●● ●● ●●

●
● ● ●

●
● ●●

●
●

●
●

●
● ●●

● ●● ●

●
●●●● ●●●● ●●

●

● ●●●●
●

●
●

●● ●● ●●● ●●● ●●

●
●● ● ●● ●●●● ●●●● ●● ●● ●

●
●● ● ●● ● ● ●● ●

● ●●●● ●●● ● ● ●●
●● ●● ● ●

●● ●●● ●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●●
●

● ●●● ●● ● ●● ●●● ● ●● ●●● ●● ●●● ●● ●● ●● ●● ●●●● ● ● ●● ●● ● ●● ●● ●●●● ● ●●●●● ● ●●● ●●●● ●● ●●● ●●● ●● ●● ●
●●● ●●●●● ●● ●●● ● ●● ● ●●● ● ● ●●●● ●●●● ●● ●●●●● ● ●● ●●●● ● ●●● ●●● ●●● ●●● ●●● ●● ●●●● ● ●● ●●● ●● ●● ●● ●●●● ●●●● ●● ●●● ● ●●● ● ●●● ●● ●●● ●● ●● ●●● ●● ● ● ● ●● ●

●●● ● ●● ●● ●●●● ● ●●
●●●● ●●●● ●● ● ●●●● ●●● ●●● ● ●● ●●● ●●● ●● ●●● ●● ●●● ●●●● ●● ●●● ●●● ●● ●●● ●● ●●● ●●●● ●●●● ●● ●● ●● ●●●● ● ● ●●●● ● ●●● ●● ●● ●●●●● ●● ●● ● ●●● ●●● ●●● ●●● ● ●●● ● ● ●● ●●●● ●● ●● ●● ● ●●● ●●

●
●●● ●● ●●●● ● ●●● ●●● ●● ●

● ●●●●●● ●●●●● ● ● ● ●● ● ●● ●●● ●● ●●● ● ●● ●●● ● ●●●● ●●● ●●●●● ●● ●●● ●● ●● ●● ● ●●● ●●●● ● ●● ●● ●●● ● ●● ●● ● ●● ●●●● ●●● ●● ●●● ●●● ●● ●●●●● ●● ●●
●● ● ●● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●● ●● ● ●● ●●● ●●●●●● ●

● ● ●●● ● ●●● ●● ●●●● ●● ●● ●● ●● ●● ● ●● ●●●●● ●● ●● ●●● ●● ●● ●●●●●●● ●●● ● ●●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

● ●

●
●
●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

● ●

●
●
●

●

●

●

●

●

●
●●

●

●

●

●●●●

●

● ●●
●

●

●

●

●

●

● ●●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●
●● ●●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●●

●

● ●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●●

●

●

●

● ●
●

●

● ● ●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●●●

●

●

●●

●

● ●

●
●

●

●

●

●

●
●
●

●

●

●
● ●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●● ●● ● ●

●
●

●

●

●

●

●
● ●●

●

●

●

● ●●
●
●

●
●

●

●

●

● ●●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

● ●●

●

●●

●

●

●●

●
●

●●
●

●

● ●

●

●●●

●

●

●

●

●

●

●●
●●

●

●
●

●
●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●
●●

●

●

●

●
●●

●

●

●
●

●

● ● ● ●●
●

●
●● ●

●
● ●●

●
●●

●● ● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

● ●
●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
● ●

●

● ●
●

●● ●●
●

●

●

●
●

●

●

●
● ●●

● ●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●
●

●

●● ●●● ●●

●

●
●

●

● ●

●

● ●
●

●

●
● ●

●

●●
●

●

●
●

●

●

●
●

●

●
● ●

●

●●

●

●●

●

●
●● ●●

●

●
●

● ●

●

●●●

●

●
●● ●

●
●

●

●

●●

●

●

●

●

●
● ● ●

●

●●
●

●

●

●
●●●

●

●

●

●

● ●●

●

●●
●

●
●● ●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

● ●

●

●
●●

●●●
●●

●
●

●

● ●●
●

●

●

●
●

●●

●

●

●●
●

●

●

● ●
●

●

●●
●

● ●
●

●

●
●

●

●
● ●

●

● ●● ●
●

●

●

●

●●

●

●

●

●● ●

●

● ●

●

●
●

●

●

● ●

●

●

●

●●●

●

●

●
●●

●

●

●●
●

●

●

●

●

●
●

●

●

●● ●
●

● ●
● ●

●
●

● ●●
●

● ●

●

●●
●●

●●
● ●

●
●

●
●

● ●●

●

● ●

●
●

●

●

●
●

●

●
●● ●

●
●

●

● ●●

●●
●

●
●

●

●●● ●

●
●

●●

●

● ●

●

●
●

●
●

●

●
● ●

●
●

●
●

●
●

●

●

●

●
●● ●●

●

●
●

●

●

●

● ●
●

●
●

●●

●

●
●

●

●

●

●●

●

● ●

●

●●●

●
●●

●
●

●

●

●

●●●●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●
● ● ● ●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●●● ●

●
●

●

●

●

●

●

●

●
● ● ●

●

●
●

● ●

●
●

●
●

●

●
●●

●

● ●
●

●

● ●●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●● ●
● ●

● ●
●●

●
●

●

●●●
● ●●

●

● ●●●
●●

●●
●

●●
●

●● ● ●

●

●● ●
●

●
●● ● ●●●●● ●●● ● ●● ●

●
● ●●● ● ●● ●

● ● ●
●

● ●●●
●

● ● ●
● ●

● ●●●●● ● ●● ●

●

●● ●●● ● ●● ●● ●● ●● ● ●
●● ●

●

● ●

●
●

●● ●
●●

●
●

●
● ●● ●● ●●

●
●●●●● ●● ●● ● ●

● ●●
●

●

●●
●●● ●● ●●●●

● ●●●●
● ●

●
● ●● ●●● ●● ●

●●● ●● ●●● ● ●●
●

● ●●● ●
●

●●●

●

●
●

●
●●

●●
● ● ●● ●●

●
●●

● ●●
● ●

●
●

●● ●
●

● ●●●
●

●

●●
● ● ●

●
● ●● ●● ●●
●

●● ●●●
●

●●
●● ●● ●● ●●●● ●● ●●

●
●●● ●●

●
●●

●
● ●● ● ●●●● ● ●● ●● ●●

●● ●
●

● ●● ● ●
●

●

●

●
●● ● ● ●

●
● ●●

●
●

● ●
●

●●●
●● ●

● ●●
●

●●●● ●● ●
●

●
●

●

●
●

●

●

●●
●

●●●● ●●
●

●● ●●
●

●● ● ●●
●

●● ● ● ●● ●● ● ●

●
●

●●● ● ●● ●●●●● ● ●● ● ●● ●●● ●
● ●

●
●● ●●● ●

● ● ● ●●
●

● ● ●●● ● ●
●

●

●
●

● ● ●● ● ●●●● ●● ●●●● ● ●
●

●

●●
●

● ●
●

● ● ●●● ● ●● ●●● ●● ● ●● ●●
●

●

●● ●●
●

● ●● ●●
●

●●● ●
●

●●

●

●● ●●
●

●● ● ●●

●
●● ● ●● ●

●
●

●

● ●●

●

●
●

● ●●
●

●
●● ●●

●
● ●●●● ●

●
●

●

● ●

●

● ●
●

● ●●● ●● ●● ●● ●
●

● ●●
●

●
●● ●●● ●● ●

●

●●● ●● ● ●● ●

●

●● ●●
● ●

● ●● ●● ● ●●● ●● ●
●

● ●●●● ●● ●● ● ● ●● ●●●●● ●
● ●

●
● ●●●●

●
● ●●●

●
●●●●

●● ●
●

● ●● ●● ●● ● ●●● ●●●
●● ●●● ●

400 600 800 1000 1200

0
50

00
0

15
00

00

dimafound

re
sp

on
se

 ti
m

e
in

 m
s

●●● ●●●●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●● ●●●● ●●●●● ●●●●●●●●● ●●●●●●●● ●●● ●●●●●● ●●● ●● ●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●● ●●●●● ●●●● ●●●●●●● ●●●●●●●● ●● ●●●● ●● ●●●● ●●●● ●●●●●●●● ●●●●● ●●● ● ●●● ● ●●●●● ●●●●● ● ●●● ●●● ●●●●●● ●●●●●● ●●●● ●●● ● ●●●●● ●●●●● ●●●●● ●●●● ●●● ●● ●●●●●●●●●● ●●● ●● ●●●● ●●●● ●●● ● ●●● ●●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●●●● ●●● ●●●●●● ●●● ●●● ● ●●● ●● ●● ●●● ●●● ●●●●●●● ●● ●●● ●●●●●● ●●●●●● ●●● ●● ●● ●●● ●● ●●●● ●●●●●●●●●●●●●●● ●●●●● ●● ●●●● ●●●●●●● ●● ●● ●●●●● ●●●● ●●●●● ● ●●● ●●●●●●●●●●● ●● ●●● ●●●● ●●●●●●●● ●● ●● ●● ●● ●●● ● ●●●●● ●● ●●●●●● ●●● ● ●●●●●●●● ●●●● ●●● ●●●● ● ●●●●●● ●● ●●●● ●● ●●● ●● ●●●●●●●● ●● ●●●● ●●●●● ●● ●●● ●● ●● ●●● ●●●● ●● ●● ●●● ●● ●●● ●●● ●●●●● ●●●●●●●●●● ●●●●●● ●●●●● ● ●●●●● ●●●●●●●● ●●● ●●●●● ● ●●●●●●●●●●● ●●●● ●●●●●●● ●●●● ●●●● ● ●● ●●●●●● ●●●● ●● ●●●● ●● ●● ●● ●●● ●●● ●●●● ●●● ●● ●● ●●●●●●●● ●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●● ●● ●●●●●●●●●● ●● ●●●●●●● ●●● ●●●●●●●● ●●●●● ●● ●●●● ●●●● ●●●●●●●●●● ●●●●●●●●● ●●●● ●●●●●●●● ● ●●●● ●● ●●● ●● ●●●● ●●● ●●●●●● ●●● ●●● ●● ●●●●●●●●● ●●●●●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●● ●●●● ●●●● ●●●●● ● ●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●●●●● ●●●●●● ●●●● ●●● ●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●●● ●●●● ●● ●●●● ●●●●●●●●● ●●●●● ●● ●●●●● ●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●● ●●● ●●● ●●● ● ●●●●● ●●●●● ●●●●●●●●●●●●●●●● ●● ●●● ●● ●●●●●●● ●●●●●● ●● ●●●● ●●●● ●●●●● ●● ●●● ●●● ●●●● ●●●●● ●● ●● ●●●●● ●●●●●● ●●● ●● ●●●●●●● ● ●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●● ●●●●●●●●●●● ●●●● ●●● ●●● ●●●●●●●●●● ●● ●●●● ●●● ●● ●●●● ●●● ●●●●●●●●●● ●●●●●● ● ●●● ●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●● ●● ●●● ●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●● ●●● ●●● ●● ●●●●●●●● ●●● ●●●●● ●● ●●●●●●●●●●●● ●●● ●●●●● ●● ●●●●●●●●●●● ●●●●● ●● ●●●●● ●●●●● ●●● ●●●● ●● ● ●●● ●●●● ●●●● ●●● ●●● ●●●●●● ●●●●●●● ● ●●●●● ●●●●●●
●
● ●●●●● ●●●● ●●●● ●●● ●● ●● ●●●●●● ●● ●●●●●●●● ●●● ●● ●●● ●● ●●●●● ●●● ●● ●●● ●●● ●● ●●●●●●●●● ●●●● ●●●● ●●● ●●● ●●●●● ●●●● ●

●
●●● ●● ●●●● ●● ●●● ●●●●●● ●●●● ●●●●
●●●●●●●● ●●●●●●●●●●●●●●●●●● ●● ●● ●●● ●●●●● ●● ●● ●● ●● ●●●● ● ●●●●●●●●●● ●●●●●●● ●●●● ●●● ●●●● ●● ●●● ●● ●●●●●●● ●● ●●● ●●● ●● ●●●●●●●● ●●●●●● ●●●●●●●●●● ●●● ●●●● ●●● ●●●●● ●●●●●●●●● ●●●●● ●●●●●●● ●●● ●● ●●● ●●●● ●● ●●●●●● ●●●●●● ●●●● ●● ● ●● ●●● ●● ●●●●
●

●●●●● ●●
●● ●●●●●●● ●●●● ●●●●● ●●●●●● ●● ●●●● ●●●●●●●● ●●● ●●●● ● ●●●● ●●● ●●●●●●● ●●●● ●●
●●●● ●●● ●●● ●●● ●●●●●● ●●● ●●●●●●● ●●●● ●●●● ●●●●● ●●●●●●●● ●●●●●●● ●●● ●● ●●●●●●●●● ●●●●●●●●●● ●●● ●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●●●●● ●● ●●●●● ●●●●●●●●● ●●●● ●●● ●● ●●●●●●●● ●●● ●●●●●●●● ●● ●●●●●●●●●●●●●● ●●● ● ●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●● ●●● ●●● ●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●● ●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●●●● ●● ●●●●●●●● ●●●●● ●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●● ●●●● ●● ●●● ●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●●●● ●●●●● ●● ●● ●●●●● ●●●●●● ●●●● ●● ●● ●●●●●● ● ●● ●●●●● ●● ●●●●● ●●●●●●● ●●●● ●●● ●●● ●●● ●●● ●●●● ●● ●● ●●● ●●● ●●● ●●●● ●●● ● ●● ●● ● ●●● ●●● ● ●●● ●●●●●●● ●● ●● ●●●● ●● ●●● ● ●● ●● ●●● ● ●●●● ●● ●●●●●●● ●● ●●●● ●●● ● ●●● ●●●●● ●● ●● ●●●● ●●● ●●●● ●● ●● ●●●● ●●● ●●● ●●●● ●● ● ●● ●● ●●●●● ● ●●● ●●●●●● ●● ●●● ●● ●●●● ●●●●● ●●●●● ● ●●●●● ●●●●● ●●● ●● ●● ●● ●●● ●●●●● ● ●●●● ●●● ●● ●●●● ●●● ●●●● ●●●●●● ●● ●●●●●● ●●● ●●●● ●●● ● ●●● ●●● ●●●●● ● ●● ●●●● ●●● ● ●●● ●●●●● ●●●●●● ● ●●● ●● ●●●● ●●●●●●●● ●● ●●●●●●●●●●● ● ●●● ●●●●● ●● ●●●●● ●●● ●●●●●● ●●●● ●● ●●●●● ●● ●●● ●● ●●●●●●● ● ●● ●● ●●● ●●●● ● ●● ●● ●●● ●●●●●●●● ●●●● ●●●●●● ● ●● ●● ●●● ● ●● ●● ●●●●●●● ●●●● ●●● ●● ●● ●●●● ●● ●● ●● ●●● ● ●● ●● ●● ●●● ●●● ●●●●●● ●● ●●●●● ●● ●●●● ●●●●● ●●● ●●● ●●●● ●●● ●● ●●●● ● ●●● ●●● ●● ●●● ●● ●●● ●● ●● ●●●●●●●●● ●● ● ●●● ●●● ●● ●●● ●●●●● ●● ●●●● ●● ●●●●●● ●● ●●● ●●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●● ●●● ●●● ●●●● ●●●●●●● ●●●●●●●● ●●●●● ●● ●●● ●● ● ●●●● ●●● ●● ●●●●●●● ●● ●●● ●●●●● ●●●●● ●●●●●●●●●● ●●●● ●●●● ●● ●●●● ● ●● ● ●● ●●●●●●● ●●● ●● ●●● ●● ●●●● ●●●●● ●● ●● ●●● ●●●● ●●●●●●● ●●●●● ●●●●●● ●●●● ●●● ●●● ●●●●●●●● ● ●●● ●● ●●● ●●●● ●●●●●●●●●●● ● ●●● ●●●●● ● ●● ●●●● ●● ● ●●●●●●●● ●●●●●●● ●●●●● ●●●●●●●● ●●●● ●●●●● ●● ●●●● ●●●●● ●●●●●● ●●● ●● ●●●●● ●●●●●●●●● ●●● ●●●●● ●●●● ●●●●●●●● ●●●●● ●●●● ●●●● ●●●●●● ●●● ●●●● ●● ●●●●●● ●●●●●●● ●● ●●●●● ●●●●● ●●● ●●●● ●● ●●●●●●●●● ●●●● ●●● ●●●●●● ●●●● ●●● ●●●●● ●●●●●●● ●●●● ●● ● ●●● ●●● ●● ●●●●●● ●●●● ●● ●●● ●●● ●●●●● ●●●●● ●●●● ●●● ●●●●●●●● ●●●●● ●● ●●● ●● ●●●●●●●●● ●●●●●● ●● ●●●● ●●●●● ●●●● ●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●● ●●●●●●●●● ●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●●● ●●●●● ●●●● ●●●●●● ●●●● ●●●●●●●●●●●●● ●●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●● ●●●

●
●

●
● ●● ●●●● ●●● ●●●●●● ●● ●●

●
●●● ● ●● ●●

● ●●● ●●
●

●
● ●●●●

● ●●● ●●●
●

●● ●●●
●
● ●●● ● ●●

●
●

●
●● ● ●●●●●●●● ●● ●

●
● ●●● ●●● ●● ●●●● ●● ●● ● ●● ●●● ●

●●● ●● ●

●
●●●● ● ● ●● ●● ●●● ● ●●● ●●●

●
● ●● ●

●● ●●● ●
●● ●● ●●●

●
● ●

●●
●

●● ●● ●
●●● ●

● ● ●
●

● ●●
● ●●● ●●● ●●●● ●● ●● ●

●
● ● ● ●

●
●●●● ●● ●●

● ●
●● ●●

● ●
●

● ● ●●●● ●● ●●● ●●
● ●● ●● ●● ●●● ●●●● ●●● ●

●● ● ●
● ●● ● ●● ●●● ●●● ●●● ●●●● ● ●● ●● ●● ●●

●
● ●●●
●

●
● ●●●●●●● ● ● ●●● ●● ●● ●● ●● ●● ●●

●● ●
●
●● ●

●
●● ●● ●● ●●

● ●●● ●●● ●● ●
●

●●●
●

●●● ●●●● ●
●

● ●●●
●

● ●● ●● ●● ●● ● ●●●
●● ● ●●● ● ●● ●●● ●●

●● ●● ●●● ●● ●●● ●●●●● ●● ●● ● ●
●● ●●

●● ● ●● ●●● ●●● ●
●●

●● ●● ●● ●
●

●
●● ●●

● ●●● ● ●● ● ●
●●● ●●
●
●● ●● ●●●●

●
●●● ●● ●● ●●●●● ● ●●● ●●●● ●● ●●●● ●

● ●● ● ●
●

● ●●●● ●●
●

●
●

●
●● ● ● ●●● ●

●●●●● ● ●● ● ● ●● ●● ●●●●
●●

●●● ●
●

●
● ●
●●

●
●● ●● ●●● ●●●

●●●● ●
●

●● ●●● ●● ●● ● ●
● ●●● ●

●

● ●●● ●
● ● ●●● ● ●●●● ● ● ●● ●●●●● ●●● ●●● ●● ● ●●● ●● ●● ●● ● ●●● ● ●● ●●● ●● ● ●● ●●● ●●● ● ●●●● ● ●● ●●● ●● ● ●● ●● ● ●● ●● ●●●●●● ●● ●● ●●●●●●●●●●● ●● ●●● ●● ●●●●

●

●●●● ●●● ●●● ●● ●●● ●●●● ●●●●● ●●● ●●● ●●●● ●● ●●● ● ●● ●●● ●●● ●●●● ●●●●● ●● ●● ●● ●● ●● ●● ●●●●
●

●●● ●● ●
●

●●●● ●●●● ●●● ●● ●● ●● ●● ●●●●●●● ●● ● ●●●● ●●●● ● ●● ●●●● ●● ●●●● ●● ● ● ●●● ●●●● ●● ●● ●●● ● ●●● ●
●●● ●●●● ●● ●
●● ●●● ●●●●●●● ●●● ● ●●

●
● ●●

●
●● ●●● ● ●●●●● ●● ●● ●● ●●●●● ●● ●●●●● ● ●●● ● ●●● ● ● ●●● ● ●● ● ●●●● ●●●● ●● ●

● ●●●● ●●● ●● ● ●●● ● ● ●●● ●●●●● ●●● ● ●●●●● ● ●●●●● ● ●●
● ●●● ●● ●●● ●● ●●● ●●● ● ●●●● ●●●● ● ●●●● ●●● ● ●● ●●●●● ●●●●● ● ●● ●●●● ●● ●● ●●●● ●● ●●●●● ●● ●●●●●● ●●●● ●● ●●●● ● ●●●● ● ●●● ●●● ●●●●● ●●●● ● ●● ● ●● ●●● ●●

●
● ●●●● ●●● ● ●●● ●●●● ●● ●●●● ● ●●●●● ●●● ●● ●● ●● ●

●
●● ●● ●●●● ●● ●●
●

● ● ●● ●● ● ●●● ●● ●●● ●● ●● ● ●●● ●●●●● ●●● ● ●● ●●● ● ●●●● ●●●●● ●●●●●●● ●●● ●●●● ●●●● ●●●● ●●● ●● ●●●●● ●●●● ● ●●●●●● ● ●●● ●●●●● ●●●●● ●●●● ● ●●●● ●● ●●●●●● ●●●● ●● ●●●● ●●●●● ●●● ●●● ●●●●●●● ●● ●●●●●●● ●●●●●●●● ●●●●●●● ●●●●●●●●●● ●●●● ●● ●●●● ●● ●●●● ●● ●●●●●●●●●●●●● ●● ●●●●● ●●●●●● ● ●●●●●●●●● ●●●●●●●●● ●●●● ●● ●●●● ●● ●●●●●●●●●●●●● ●●●●● ●● ●●● ●●●●●●● ●●● ●●●● ● ●●●●●●●●●●●●● ●● ●●●● ●● ●●●●●●● ●●● ●● ●●● ●●●●●● ● ●● ●● ●● ●● ●● ●● ●●●● ●●● ●● ●●● ●●●● ●●●● ●●●● ●●●●●● ●●●●● ●●●●● ●● ●●●●● ●● ●●● ●● ●● ●●● ●●●●● ●●●●● ●●● ●●●●●●● ●● ●●● ●●●●●●●●●●●●●● ●● ●● ●●●● ●● ●●● ●●●● ●● ●●●●●●●●● ●●● ●●●● ●●● ●● ●●●● ●● ●●●● ● ●●●●●● ● ●● ● ●●● ●● ●● ●●●● ●●● ●●● ●● ●● ●●● ●●●● ●● ●●● ●● ●●●● ●● ●●●●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●●●● ●●●●●●● ●●● ●●●● ●●● ●● ●●●●●● ●● ●●●●●● ●●●●● ●●● ●●●●●●●●● ●●●● ●●●●●●●● ● ●

●
●

●●
● ●
●

●

●

●
●

●
●

●
● ●

● ●
●

●

●
●

●
●● ●●

●

●
●

●● ●

●

●
●

● ●●● ●
● ●

●
●

●●
●● ●●

●

● ●●● ●● ●
●

●

● ●

●

●●
●●
●●●●●

●
●

●
●

●

●

●
● ●●
●

●
●

●

● ●
●
●

● ●
●
● ●●

●
●

● ●

●

●
●

●
● ●
●●
● ●

●
●●

●

●

● ● ●●

●

●●
● ●

● ●● ●
●

●

●

●
●

●
●

●● ● ●● ●
●●
●

●● ●
● ●●

●
● ●

●

●
●

●● ●

●

●
●

●●
●

●●

●
●

●● ●●
● ● ●

●
●

●● ●
●

●
●

●
●● ●●

●

●●
●

●
●

● ●
●

●
●

● ●

●

●●●
●

●
●

●

●●
●

● ●●

●

●●● ●●
●

●●

●

●●
● ●●●

●
●

●●
●

●●
●
●
●

●
●●

●
●

●

●

●●●●

●

●●
● ●● ●●● ●

●

●●
●

● ●●
●● ●

●

●

●

●● ●
●

●●
●

●

●●
●●●●

● ●●
●

●

●

● ●
●

● ●

●

●●
●

●

● ●●● ●
●●

● ●

●

●● ●
●

●●
●●

●
●

●●
●

●●●
●

●
●

●

●

●●
●

●

● ● ●●●
●

●
●

●●

●

●●
●● ●● ●●●● ●● ●

●
● ●

●
● ●●

●
●●
●

●

●

● ●
●

●

●

●

●●●

●

●

●

●
●

●● ●● ●
●

● ●
● ●●

● ●● ●
●

●

●

●

●
●● ●●

●

●

●● ● ● ●●
●

●

●
●

●
● ●

●

●●● ● ●● ●

●
●

●

●●● ● ●●
●●
●

●●
●

●

● ●●
●

●
●●

●
●

●
●

●
●●● ●● ●
●

●●

●

●● ●
● ● ●●●

●

● ●● ●

●

●●

●

●

●
●●●● ●

●

● ●

●

●●●●

●

●
●● ●●●●
●

●
●

●

●● ●● ●
●

●
●

●
●

●
●
●

●

● ●
●

●●
●

●

●

●●●
●

●●
●

●

●●●
●●

●

●
●●

●

●●●
● ●

●

● ●
●●

●
●

● ●
●

● ●
●

●
●●

●
●

●
●

●
●

● ●● ● ●●●●●●●● ●
● ●● ●

●
● ●●● ●●● ●

●
● ●● ●

●
● ●● ● ● ●● ●● ● ●
●●●● ●

●
●

●
●● ●●

● ●●● ●●●● ●
●

● ● ●
●
● ●●● ●● ●

●
●● ●● ●

●
●● ●

● ● ●●

●

●● ●● ●
●

●●● ●● ●●
●

● ●
●

●●●●● ●● ●●● ●● ●
●

●
●
● ●● ●●● ● ●●●●●● ●●● ●●●●● ● ●●●●

●● ●●● ●
●

●● ●●● ●●●●●●
●

●● ●● ●
●

●

●● ●●
● ●●● ●●

● ●●●
●● ● ●

●●●●● ●● ●● ●

●

●
●●

●
●●

●
●●●●

●

●● ●● ●●● ●●●● ●● ●●●●●●●●
● ●● ●●

●
●

●● ●

●

●●● ●
●
● ●

● ●●●● ●●● ●● ●● ●●
●

●● ●●● ●●●
●

●
●● ●

●
●

●
● ●● ●● ●●● ●

●
● ● ●
● ●

●
●●● ●●●

● ● ●●●● ● ●●●● ●●
● ●●●● ●●● ● ●●●●● ● ●●●●

●● ●●●● ●● ●●
● ●●●

● ● ● ●●
●

●● ●
●

●●
●● ●●●

● ●
●●

●
●● ●● ●●●● ●● ●

●●● ●
●

●●●
●●

●

●
● ●●●

●

● ●●●●●●● ●● ●
●

● ●
●

● ●●
●

●●●
●

● ●
● ●●●●●●● ●

●
●●

● ●● ●● ●
●●

●●
● ●●●

●
●● ●●● ●

● ●●
●

●
● ●

● ●
● ●● ●●●

●● ●●●● ●●●●● ●●●●● ● ●●●
●

●●

●

●●●
●

●●●
●

● ●● ●● ●●● ●● ●●●●

●
●●● ●●● ●

●
● ●●● ●

●

● ●● ● ●● ●●

●
●●●

●● ●●
●

●
●
● ●

●
●● ●●

●
●● ● ●●●● ●● ●● ●●●

●
●●● ●● ● ●●● ●●● ● ●●●

●

●● ●●●● ● ●●● ●●●●●●●●●● ●●●●●●● ● ●●● ●●●● ●●●● ●●●●●● ●●●● ●● ●●● ●● ●●●●●●● ●●●●●● ●●●● ●
●●●● ●●●●● ●●●●●● ●●●●●● ●●●● ●●●● ●●● ●●●● ●●●●● ●●● ●●● ●●●● ● ●●● ●●●● ●● ●● ●●●●●●●●●● ●●● ●●● ●●● ●●●●●● ● ●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●●● ●●● ●●●● ●●● ●●●●●●● ●● ● ●●●●

●
●●●●●●●●●● ●●●●● ● ●●● ●● ●●● ●●
●● ●● ●● ●●● ● ●

● ●●●●●●●●●●● ●●●●● ●● ●●●●●● ●● ●●●●● ●●● ●●●●● ● ●●●●●● ●● ●● ●● ●●●●●●●● ●●● ●●● ●●● ●●●● ●● ●●●● ●●●●●●●●●● ●●●●● ●●●●● ●● ● ●●●● ●● ●●● ●●● ●●●●●● ● ●●●● ●● ●●
● ●●● ●●●●●●●●●

●
●● ●● ●●●●● ●●●●● ●●●● ● ●●●●● ●●●●●●●● ●● ●● ●● ●●●●● ●●●● ●● ●●●●●●●●● ●● ●●●●●●● ●● ●●●●●●●●●●●●●● ●● ●● ●●●●● ●●●●● ●●●●● ●●●● ●● ●●●● ●●● ●●●●●●●● ●●●●●●● ●●● ●●●●● ● ●● ●●● ●● ●●● ●●● ●● ●

● ●●●●● ●●●●●●● ●● ● ●● ●● ● ●● ●●●●● ●●●●●●●● ●●● ●
●

● ●● ●●●●●● ●● ●●●● ● ● ●●●● ●●●●● ● ●●● ●●●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●●●● ● ●●
●

●● ●●●●●●● ● ●● ●● ●●● ● ●● ●●● ●● ●●● ●●● ●●●●● ● ● ●●● ●● ●●● ● ●● ●● ●● ●●●● ●●● ●●● ●● ●● ●● ● ●●● ● ●●● ●●● ● ● ●●●● ●● ●● ● ●●●● ●● ●● ●● ● ●●● ● ● ●●●● ●● ●●● ●●●●●●● ● ●● ●●● ●●●● ●●● ● ●● ● ●●●● ●● ●●●●●●●● ● ●●● ● ● ●● ●●● ●● ●● ● ●● ●● ● ●●●● ● ●●●●●●●● ●● ●● ●● ● ●● ●● ●● ● ●● ●●● ● ●●● ●● ●● ●● ● ●●● ●●● ●●●● ●● ● ●●● ●● ●●●● ●●● ●● ●● ●● ●● ●●● ● ● ●●● ●● ●●● ●● ●● ●● ●●
● ●●● ●●●●● ●● ●●● ●●● ●●●● ●● ● ●●●● ●●● ●●●● ●● ●● ● ●●●● ●● ● ●● ●●● ●● ●●● ●● ●● ●● ●●● ●● ●●●●●● ●●● ●●● ●● ●●● ●●●● ●●● ●●● ●●●●●● ●●● ● ●● ● ●● ●●●● ●●●● ● ●● ● ●● ●● ●● ●● ●●● ● ●●● ●● ●● ● ●●● ●●●●●●● ●● ●● ●● ●● ●●●● ● ●● ● ●●● ●● ●● ●●● ●● ●●● ●●●● ● ●●● ● ●●● ●● ● ●● ● ●●●● ●●● ●●● ●●● ●●●●●●● ●●● ●●●● ●● ● ●●●●● ●● ●● ●● ●●●●●● ●● ● ●●●● ●●●● ● ●●●● ●●● ●●● ●● ●●● ●●●●●●● ●● ●● ●●●● ●●●●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ● ●●●● ●●● ● ●●● ●●●●● ●● ●●● ●● ●● ●●● ●●●●●● ●●●● ●● ●● ● ● ●●● ●● ●●● ●●● ●●● ●● ● ●● ●●●●●●● ● ●● ● ●● ●●●●● ●●●● ●●●●●●●●● ●●● ●● ●● ●● ●●●● ●● ●● ● ●● ● ●● ●●●●● ●●● ●●●●●● ●● ●●●● ●●●●●●●●●●● ● ●●● ●● ●● ●● ● ●● ●●●●● ●●● ●● ●●● ● ●●● ●●●●●● ●●●● ● ●●●● ●● ●● ●●● ●●● ●●● ●●●●● ● ●●● ● ●●● ●●●● ●●●● ● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●●●●● ●●●●●●● ●●● ● ●● ● ●●●●●● ●● ●●● ●●● ● ●●●● ●●●●● ●●●● ●● ●● ●●● ● ●●●● ●●● ●● ● ●●● ●● ●●●● ●● ● ● ●● ● ●● ●●●● ●●● ●●● ● ●● ●● ●● ●●●● ●●●●●● ●●● ●● ●● ●●● ●● ●●● ●●● ●●●● ● ●●●●● ●●● ●● ●●●●●● ●● ●● ●● ●● ●● ●●●●●●● ●●●● ●● ●●●● ●●●●●● ●●● ●● ●● ●● ●● ●●●●● ●●●●● ●●●●● ●●● ●●● ●● ●● ● ●●●●● ●●●● ●●●●●● ● ●●● ● ●● ●●●● ●●● ●● ●●●● ●●● ●● ●●●● ●●●●●● ●●● ● ●●●● ●● ●● ●●●● ● ●●●●●● ●● ● ●●●● ●●● ●●●● ●●● ●●●● ●●●●●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●●●●● ●●●●●●● ●● ●●●● ●●● ●●● ●●●●● ●●●●●● ●●●●●● ●●● ●● ●●●●● ●●● ●● ●●●●● ●●● ●●●●●●●●●● ●●●●●●●● ●● ●●● ●●●● ●●●● ●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●● ●●● ●●●●●●●●●● ●●●●●● ●●● ●●● ●●●●● ●●● ●●●●●●● ●●●●●●●●● ●●●●●● ●●● ●● ●●●●●●●●● ●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●●●●● ●● ●● ●●●●● ●● ●● ●● ●●●●●●● ●●●● ●● ●● ●●●●●●●●●● ●●●● ●● ●●●● ●●● ●●●●● ●●●●● ●●●●●●●●●●● ●●●●● ●●● ●● ●●●● ●●● ●● ●● ●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●● ●●● ●●●●● ●●●●●● ●●● ●● ●●● ●●●●●● ●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●●●●●●●● ●● ●● ●●● ●●●●● ●●●● ●●● ●●●●●●●●● ●●● ●●● ●●● ●●●●●● ●●●●● ●●●● ●●● ●●● ●●● ●●● ●● ●●● ●●●●●●●●●●●●●● ●●● ●●● ●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●● ●● ●●●●● ●● ● ●● ●● ●

●
●

●

●● ●● ●
●

●

●●● ●
●●

●
● ●●

●
●●

●
●● ●

● ● ●
●

●
●

●

●

●
●

●

●
●

●

●

● ●
●●

● ●
● ●

●

●

●● ●●●●
●

●

●
● ●● ●

● ●
●

●
●

●
●

●
● ●

● ●●

●

●
●

●
●

●

●
●

● ●●●

●

●●

●

●
●

●
●

●

●●●●● ●● ●

●
●

●
●

●

●●
●●

●

●

● ●
●

● ●
● ●●●

●●
●

●●

●
●● ● ●●

●

●●● ●●
● ●●

●

●
●

●
●

● ●● ●

●

●●

●

●
●●

●

●

●
●

●

●

● ●●

●

●

●

●
●

●
●

●●●
●

● ●
●

●

●●

●

●

●●

●

●●
● ●● ● ● ●● ●

●
●

●
●●● ● ●

●
●

●●●
●

●

●●●●

●

●●● ● ●

●

●● ●
●

●● ●
●

● ● ●●
●

●●
● ●

●● ●
●

●

●
●

●
●

●

● ● ●
●

● ●

●

● ● ●●● ●

●

● ●
●

● ●● ● ●
●

●● ● ●
● ●

●

●

●

●

●

● ●●
●● ●● ●● ● ●●●

● ●●●

●

●●●

●

●
●

●
●

● ●
●

●
●

●
●

●

●●●● ●
●

●
●● ● ●●

●

●
●

●● ●

●

●● ●
● ● ●

●
●

●
●

●
●●●

● ●●●
● ●● ● ●●

●

●

●
●

●● ●●
●

●

●

● ●
●

●●●● ●● ●● ●●
●● ●

●

●●

●

● ●● ● ●●● ●
● ●

●

●● ●
●
● ●

●

● ●

●

●

●

●

●● ●

●
●

●
●

● ●
●

● ●
●

●
●●

●

●

●● ●● ●● ● ●
● ●

●

●●
●● ● ●

● ●
●●● ●

●●
●

●●
●

●

●

●● ● ●●

●

●
●

●

●
●

●

●

●●

●

● ●● ●●
●

● ●
●

●● ●
●

●
●●

● ●

●
●●●

●

●

●

●

● ●

● ●

●

●
●

●●
●

●●●● ●●
●

●●●
●

●●
●

●
●

●●●●

●

●
●

●

●

●●

●

● ●
●

●
●●

● ●●●
●

● ●●●● ●
●

●
●●● ●●● ●● ●● ●

● ●● ● ●● ●● ●● ●●●

●
●●● ●●

●

●● ●● ●● ● ●
●

●●● ●
●
●● ●●

● ● ●● ●●●● ● ●

●

● ●● ● ●●● ●
●

●●
●●● ● ●●●●● ●●● ●●●●●● ●●● ●
●

●
● ●

●●● ●
● ●●● ●

●●
●● ● ●● ● ●

●
●● ● ●● ●● ●

●
● ●●

●
●● ●

●● ●●●● ●●
●● ●●

●
●● ●

●

●●● ●●●●●

●

● ●
●
●● ●● ●
●

●

●

●● ●●●● ●
●

●●● ●●● ●●● ●
●

● ●● ● ●●●
●

●● ● ●● ●●●●● ●● ●●

●
●

● ● ●● ●
●

● ● ●●● ●●●
●

●● ●● ●

●

●
●

●
●

●

●

●
●

●
●● ●●

●
● ●● ●●● ●●

● ●● ●
●

● ● ● ●

●

●● ●●●●
●●

●●● ●

●

●● ●●
●

●● ● ● ●
●● ●● ●●

●
●● ●

●
●●●● ●

●

●●
●

●
●

● ●● ●●
●● ●●

● ●●● ● ●● ●●
●
●

●● ●●● ● ●●● ●● ●

●
●

●
●● ●

● ● ●●●
●●● ●● ● ●

●
●●

● ●
●
●● ● ●

●
● ●

●● ●
●

●

●

●● ●
●

●
● ●●

●● ●●● ● ●● ● ●●●●● ●●●
●

●
● ●

●
●

●
●●

● ●●
●
●●● ●

●
●● ●● ●

●
●

●

●●●● ●●
● ●

●●●● ●●● ●●
●

● ●●
● ● ●● ●● ●●

● ●● ●●● ●
●

● ● ● ●● ●● ●● ●● ●●
●

●●
●

●●
●

●
●

●

●
●

●●●● ●
●
●●● ●●● ●●● ●●●● ●● ●●

●
● ●●

●
● ●●

●
●

●
●

●
● ●●

● ●● ●

●
●●●● ●●●● ●●

●

● ●●●●
●

●
●

●● ●● ●●● ●●● ●●

●
●●● ●● ●●●● ●●●● ●● ●● ●

●
●● ● ●● ● ● ●● ●

● ●●●● ●●●● ●●●
●● ●● ● ●

●● ●●● ●●●●●●● ●●●● ●● ●● ●●●● ●● ●●
●

● ●●●●● ●●●●●●● ●● ●●● ●● ●●●●● ●● ●● ●● ●●●● ● ● ●● ●●● ●● ●● ●●●● ● ●●●●● ● ●●● ●●●● ●● ●●● ●●● ●● ●●●
●●● ●●●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●●● ●● ●●●●● ● ●● ●●●●● ●●● ●●● ●●● ●●● ●●● ●● ●●●● ● ●● ●●● ●● ●● ●● ●●●● ●●●● ●● ●●●● ●●● ●● ●● ●●●●● ●● ●● ●●● ●● ●●● ●● ●

●●● ● ●● ●● ●●●● ● ●●●●●● ●●●● ●● ●●●●● ●●● ●●●● ●● ●●● ●●● ●● ●●● ●● ●●● ●●●● ●● ●●● ●●● ●● ●●● ●● ●●● ●●●● ●●●● ● ● ●● ●● ●●●●● ● ●●●● ●●●● ●● ●● ●●●●● ●● ●● ●●●● ●●● ●●●●●● ● ●●●●● ●● ●●●●●●●● ●● ●● ●● ●●
●

●●●●● ●●●● ● ●●●●●● ●● ●
● ●●●●●● ●●●●● ●●● ●● ● ●● ●●● ●● ●●● ● ●●●●● ● ●●●● ●●● ●●●●● ●●●●● ●● ●● ●●● ●●● ●●●● ●●● ●● ●●● ● ●●●● ● ●● ●●●● ●●● ●● ●●●●●● ●●●●●●●●● ●●

●● ●●●●●● ●● ●● ●●● ●● ●● ●●●●● ●● ●● ●● ● ●● ●●● ●●●●●● ●
● ●●●● ● ●●● ●● ●●●● ●● ●● ●● ●● ●● ● ●● ●●●●● ●● ●● ●●● ●● ●● ●●●●●●● ●●● ● ●●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●●●●

●

● ● ●
●

●

●

●

●

●

● ●●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●●
●●

●

●

●

●

●

●
●●●●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

● ●●

●

●●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●
● ●

●

●

●

●●
●

●

● ● ●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●●●

●

●

●●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●
●●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●● ● ●

●
●

●

●

●

●

●
● ●●

●

●

●

● ●●
●
●

●
●

●

●

●

●●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

● ●●

●

●●

●

●

●●

●
●

●●
●

●

● ●

●

●● ●

●

●

●

●

●

●

●●
●●

●

●
●

●
●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●
●●

●

●

●

●
●●

●

●

●
●

●

● ●● ●●
●
●

●● ●

●
● ●●

●
●●

●● ●●●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

● ●
●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

● ●
●

●● ●● ●
●

●

●
●

●

●

●
● ●●

● ●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●
●

●

●● ●● ● ●●

●

●
●

●

●●

●

● ●
●

●

●
● ●

●

●●
●

●

●
●

●

●

●
●

●

●
●●

●

●●

●

●●

●

●
●●●●

●

●
●

● ●

●

●●●

●

●
●● ●

●
●
●

●

●●

●

●

●

●

●
●●●

●

●●
●

●

●

●
●●●

●

●

●

●

●●●

●

● ●
●

●
● ● ●

●

●

●

●
●

●

●

● ●
●

●
●

●

●

● ●

●

●
●●

●●●
●●

●
●

●

● ●●
●

●

●

●
●

●●

●

●

●●
●

●

●

● ●
●

●

●●
●

● ●
●

●

●
●

●

●
● ●

●

●● ● ●
●

●

●

●

●●

●

●

●

●● ●

●

● ●

●

●
●

●

●

●●

●

●

●

●●●

●

●

●
●●

●

●

●●
●

●

●

●

●

●
●

●

●

●● ●
●

● ●
● ●
●

●

● ●●
●

● ●

●

●●
●●

●●
● ●

●
●

●
●

●●●

●

●●

●
●

●

●

●
●

●

●
●● ●

●
●
●

● ●●

●●
●

●
●

●

●●● ●

●
●

●●

●

● ●

●

●
●

●
●

●

●
●●

●
●

●
●

●
●

●

●

●

●
●● ●●

●

●
●

●

●

●

●●
●

●
●

●●

●

●
●

●

●

●

●●

●

● ●

●

●● ●

●
●●

●
●

●

●

●

● ●●●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●
● ● ● ●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
● ●● ●

●
●

●

●

●

●

●

●

●
● ● ●

●

●
●

● ●

●
●

●
●

●

●
●●

●

● ●
●

●

● ●●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●● ●
●●

● ●
●●

●
●

●

●●●
● ●●

●

● ●●
●

●●
●●

●
●●

●

●● ●●

●

●●●
●

●
●● ● ● ●● ●● ● ●● ●●● ●

●
● ●●●●●● ●
●● ●

●
●●●●

●
● ● ●

●●

●●●●●●● ●●●

●

●●●●● ● ●●●●●● ●● ● ●
●● ●

●

●●

●
●

●●●
●●

●
●

●
●●● ●●●●

●
●●●●●●● ●●● ●

● ●●
●

●

●●
●●● ●● ●●●●

● ●●
●●

● ●
●

● ●● ●●● ●● ●
●●●●● ●●● ● ●●
●

● ●●● ●
●

●●●

●

●
●

●
●●

●●
● ● ●● ●●

●
●●

● ●●
● ●

●
●

●● ●
●
● ●●
●

●

●

●●
● ● ●

●
● ●● ●●●●

●
●● ●●●

●
●●

● ● ●● ●● ●●●● ●● ●●
●
● ●● ●●

●
●●

●
● ●●● ●●●● ●●● ●● ●●

●●●
●

● ●● ●●
●
●

●

●
● ●●●●
●

●●●
●

●

● ●
●

●●●
●● ●

● ●●
●

●●●● ●● ●
●

●
●

●

●
●
●

●

●●
●

●● ●● ●●
●

●● ● ●
●

●●● ●●
●

●● ●● ●● ●● ● ●

●
●

●●
● ● ●● ●●●●● ● ●●● ●● ●●● ●

● ●
●

●● ●●● ●
● ●● ●●

●
●● ●●● ●●

●
●

●
●

●● ●●● ●●●● ●● ●●● ● ● ●
●

●

●●
●

● ●
●

● ●●●● ● ●●●●●●● ● ●●●●●

●

● ●●●
●

● ●● ●●
●

●●● ●
●

●●

●

●● ●●
●

●● ●●●

●
●●●●● ●

●
●

●

● ●●

●

●
●

●●●
●

●
●● ●●

●
● ●●●● ●

●
●

●

●●

●

● ●
●
●●●● ●● ●●●● ●
●

● ●●
●

●
●● ●●●●●●

●

●●● ●●● ●● ●

●

●● ●●
● ●

● ●● ●●●●●● ●●●
●

● ●●●● ●●●●● ● ●● ●● ●●● ●
● ●

●
● ●●●●

●
● ●●●

●
●●●●

●● ●
●

● ●● ●● ●● ● ●●● ●●●●●● ●● ●

0e+00 1e+07 2e+07 3e+07 4e+07

0
50

00
0

15
00

00

dimahit

re
sp

on
se

 ti
m

e
in

 m
s

Figure 3.7. Response time plotted against concurrency score and job size parameters

data are at best coincidental.
We started the stepwise regression with a model with no predictors, predicting the

response time solely by the sample’s mean response time (base model). Then, we added
predictors to the model step by step. In each step, we added the predictor accounting for

42

3.6. Results

most of the models remaining RSS (see Section 2.2). Then we recomputed the RSS for the
new model and continued to the next step. Table 3.7 shows the steps we performed. In the
first step we added dimahit as a predictor to the model, accounting for 47 % of the RSS of
the base model. Then we added the concurrency score the model, accounting for another
1 % of the remaining RSS. Because adding more predictors to the model would only result
in a reduction of the remaining RSS by less than 1 %, we refrained from performing more
steps. In total, the inclusion of dimahit and the concurrency score as predictors resulted in
a reduction of the RSS by 47.5 %, compared to the base model. Thus, in the test setting, this
prediction model reduced the variance of the response time by almost half.

3.6.5 Sliding Window

In the previous section we used all available data to identify an efficient prediction model,
using only the strongest influences on the response time as predictors. For real time
monitoring, it is however often not desirable to fit a model to all available data. As the
number of observations grows, the fitting of the model becomes more and more costly,
gradually slowing down the monitoring application. Sliding Window based prediction
approaches limit the fitting of prediction models to a fixed number of observations, and
often provide sufficient precise predictions suited for anomaly detection (see Section 2.2).

Choosing the right window size is of critical importance, when sliding window based
prediction is used. The keep the costs for computing the prediction low, a small window size
is desirable. However, large window sizes might increase the precision of the prediction. To
find a good default sliding window size to use in combination with the identified prediction
model, we compared predictions generated with different sized sliding windows. For each
sliding window size w we computed a resulting mean absolute prediction error as a measure
of the precision of the generated predictions. This mean absolute prediction error was
computed as 1

16200�w ∑16200
i=w+1 |yi � ŷi| where yi and ŷi are the observed and the predicted

Table 3.6. Intercorrelations

tr
† (1) (2) (3) (4) (5) (6)

tours (1) 0.36
calls (2) 0.55 0.80

candidates (3) 0.53 0.85 0.98

requested iterations (4) 0.24 0.00 0.00 0.00

dimafound (5) 0.52 0.90 0.98 0.98 0.00
dimahit (6) 0.69 0.55 0.81 0.76 0.41 0.77

concurrency score 0.57 0.45 0.67 0.62 0.29 0.63 0.77
† response time

43

3. Performance Test

Table 3.7. Stepwise Regression

RSS AIC

Base Model 296181
tours 1.23� 1012 293994
calls 9.81� 1011 290289

candidates 1.02� 1012 290858
requested iterations 1.33� 1012 295201

dimafound 1.03� 1012 291136
dimahit 7.48� 1011 285909

concurrency score 9.46� 1011 289711

+ dimahit 285909
calls 7.48� 1011 285908

candidates 7.48� 1011 285905
dimafound 7.48� 1011 285901

tours 7.47� 1011 285885
requested iterations 7.46� 1011 285861

concurrency score 7.41� 1011 285744

+ concurrency score 285744
calls 7.4� 1011 285737

candidates 7.41� 1011 285744
dimafound 7.4� 1011 285728

tours 7.39� 1011 285714
requested iterations 7.39� 1011 285703

response time of the i-th observation (the i-th appointment proposal request). Each ŷi was
generated by fitting a regression model that used dimahit and the concurrency score as
predictors to the data from the preceding sliding window, i. e., the observations i�w to
i � 1 inclusively. This model was then used to compute the prediction ŷi from dimahit
and concurrency score of the i-th observation. To illustrate this, consider the generation of
ŷ201 using a sliding window of size 200. ŷi would be computed as ŷ201 = a + bx201 + cz201,
where x201 is the dimahit, and z201 is the concurrency score form the 201-th observation,
and a, b, and c are the coefficients resulting from fitting a regression model to the data
from the first to the 200-th observation.

Note, that for each sliding window, the first w observations are not included the
computation of the mean absolute prediction error. The reason for this is that for these
observations the number of preceding observations is smaller than the specified sliding
window size. Because fitting models to fewer observations can affect the precision of the
predictions generated with these models, we decided to excluded the first w observations
from the computation of the mean absolute prediction error for each sliding window size

44

3.6. Results

Table 3.8. Mean error of sliding window based response time prediction for different sliding window
sizes

(a) Selected Window size from 25 to 6400

Window Size Mean absolute error

25 2103.54
50 2028.86

100 1990.35
200 2003.16
400 2051.1
800 2115.6
1600 2218.61
3200 2422.16
6400 3069.49

(b) Window sizes from 50 to 800 in steps of 50

Window Size Mean absolute error

50 2028.86
100 1990.35
150 1986.67
200 2003.16
250 2010.23
300 2024.57
350 2036.15
400 2051.1
450 2064.35
500 2078.48
550 2093.03
600 2095.16
650 2100.31
700 2104.22
750 2109.56
800 2115.6

w.
For comparison, we also computed the mean absolute prediction error for the non-

sliding window based version of the model. This mean absolute prediction error was
computed as 1

16200 ∑16200
i=1 |yi � ŷi|, where every prediction ŷi was calculated as ŷi = a +

bxi + czi using the coefficients a, b, and c from the model fitted to the entire data. The
calculated value was 2808.

In a first analysis, we investigated sliding windows sized 25 to 6400, step by step
doubling the sliding window size. Table 3.8a displays the results from this analysis. The
smallest mean absolute prediction errors were found for window sizes below 800. Therefore,
we performed a more fine-grained analysis to investigating sliding window sizes from 50 to
800, in steps of 50. The results of this investigation are displayed in Table 3.8b. The results
indicated, that 150 observations is a suitable default sliding window size for predicting
response times of VISITOUR’s appointment proposal service using a linear regression model
with predictors dimahit and concurrency score.

Because constraining prediction models to sliding windows affects the precision of
the prediction, we performed a final analysis to compare the effects of adding dimahit
and concurrency score as predictors to the base model when a sliding window of 150
observations was used. The different models were compared with regard to their mean

45

3. Performance Test

Table 3.9. Mean absolute prediction error of prediction models with window size 150

Mean absolute prediction error

(base model) 2288.78
+ dimahit 2077.25

+ concurrency score 1986.67

Note: The first 150 observations were excluded from the computation
of the mean absolute prediction error of each model. For these obser-
vations the number of preceding observations for fitting a prediction
model was smaller than the chosen sliding window size.

absolute prediction error in the sample. This analysis showed, that adding dimahit as
predictor to the prediction model reduced the mean absolute prediction error by 9.24 %.
Adding concurrency score as predictor reduced the mean absolute prediction error by
another 3.96 % compared with the base model. Table 3.9 shows the mean absolute prediction
errors computed for all three models.

46

Chapter 4

Control Center

This chapter details on the control center that was envisioned in goal G3 (see Section 1.2.3).
The control center was developed with R using the R web framework shiny (see Section 2.7).
We start by describing the use cases identified for the control center in Section 4.1. A use
case describes the interactions between an actor (e. g., a user) and a software to achieve
a goal. To implement the control center, we used the object-oriented programming style
supplied by R’s methods package. Section 4.2 details on the classes of the control center
implementation. Thereafter, we describe the deployment of the control center and the setup
used for monitoring VISITOUR Server instances (Section 4.3). Finally, Section 4.4 describes
the control center’s user interface and functionality.

4.1 Use Cases

We identified six use cases for the control center. The use cases real time anomaly detection,
and analyze static monitoring data are concerned with the analysis of response time, workload,
and job size data. In the former the operator monitors a VISITOUR Server instance in real
time, in the latter, the operator queries the instance’s monitoring data for data from a
specified time interval. If an anomaly is detected in a monitored instance, the operator
is notified by email. This is described by the use case warn operator. The add instance and
remove instance use cases deal with adding resp. removing instances to resp. from the
control center, and the set defaults describes the setting of default values for creating new
instances, and for the email configuration used for sending email notifications. Figure 4.1
shows the identified use cases in a use case diagram.

4.2 Classes

Real time prediction of response times for multiple VISITOUR Server instances using a
sliding window approach requires the control center to handle potentially large monitoring
data that is subject to frequent updates, each adding and dropping parts of the data, while
retaining most of it. Hence, VISITOUR Server instances can be modeled as objects, whose state
changes whenever the data is updated. Consequently, we chose to use ReferenceClasses to
implement the control center, because they are suited for modeling objects with complex

47

4. Control Center

Visitour Server Control

Analyze Static Monitoring Data
Real Time Anomaly Detection

extension points

Add Instance

Remove Instance

Warn Operator
extension points

Real Time Anomaly Detection

Analyze Static Monitoring Data

Set Defaults Warn Operator

ElasticsearchOperator

< < E x t e n d > >

< < E x t e n d > >

< < E x t e n d > >

query

poll

validate accessibility

Visual Paradigm Standard(University of Kiel)

Figure 4.1. Use case diagram for the control center.

states [Wickham 2014] and can reduce the overhead caused by passing large data to
functions. The class diagram in Figure 4.2 shows the classes that were used.

The VisitourInstance class models a single running VISITOUR Server that is monitored
for performance anomalies. A VisitourInstance is connected to one Elasticsearch index,
from which the monitoring data is retrieved. The interactions with Elasticsearch are imple-
mented, using features provided by the elastic package (see Section 2.7). The connection to
Elasticsearch is specified through a host name resp. IP, a port, and an index name. Host
and port are part of the instance’s VisitourOptions object (see below). The used transport
protocol is HTTP. The connection can be established using the connect method. This method
will throw an error, if the host or the index is unreachable. The data in the specified
index is assumed to be structured as described in Section 4.3. This is however currently
not checked by connect. Querying Elasticsearch for monitoring data is possible via the
queryElasticsearch method. This method retrieves documents from the selected index and
returns the data as a data.frame. A data.frame is a matrix-like data structure, where every
column can store values of another type. We could e. g., create a data.frame where the first
column stores integer values, the second character (R’s string type), and the third numeric

(R’s floating point number type). Thus, data.frames can be used to mix data of different
types for combined analysis. Every call to queryElasticsearch must specify start and end

of a time interval. This interval is used as a filter in the query to Elasticsearch, limiting
the returned results to documents whose response_timestamp (see Section 4.3) falls into the
specified interval. If called with caching = TRUE, the returned data.frame is cached in the
object’s data attribute, and the start resp. end time used to filter documents are saved in
the object’s start resp. end attribute. In all calls to queryElasticsearch that use caching,

48

4.2. Classes

+name : character
+index : character
+data : data.frame
+start : POSIXct
+end : POSIXct

+new(name, index, options)
+connect(index, host, port)
+queryElasticsearch(start, end, size, sort, start_inclusive, end_inclusive, cache)
+realTimeQuery()
+getStart()
+getEnd()
+getData()
+isEmpty()

<<ReferenceClass>>
VisitourInstance

+host : character
+port : character
+timezone : character
+plotWindow : integer
+pollInterval : integer
+slidingWindow : integer
+anomalyThreshold : numeric
+staticThreshold : numeric

+new(host, port, timezone, plotWindow, pollInterval, slidingWindow)
+set(host, port, timezone, plotWindow, pollInterval, slidingWindow)
+val idate()

<<ReferenceClass>>
VisitourOptions

+mailFrom : character
+mailTo : character
+mailHost : character
+mailPort : integer
+mailUsername : character
+mailPassword : character

<<ReferenceClass>>
ControlCenter

+opt ions1

1

+instances

+defaul ts

0..*

Visual Paradigm Standard(University of Kiel)

Figure 4.2. VISITOUR Control Center Class Diagram

monitoring data will be loaded from the cache, if possible. This is done by computing the
overlap of the interval given by the attributes start and end, and the interval given by the
start and end parameter of the function call. The data falling into the overlap is loaded

49

4. Control Center

from cache (i. e., the object’s data attribute), and only the missing data is retrieved from
Elasticsearch. The cache is designed to hold the result of a single call to queryElasticsearch.
I. e., after a cached call to queryElasticsearch, start and end attributes are set to the start

and end values used in the call, and all data dropping out of this interval is removed from
the cache. Caching monitoring data was added because we observed noticeable lags, when
combining several thousand results retrieved from Elasticsearch to a data.frame. All real
time monitoring features of the control center (see Section 4.4) use caching to reduce these
lags,

Live monitoring of response time, workload, and job size data is accomplished in the
control center by regularly polling the Elasticsearch indices for recently added data. We
added the realTimeQuery method to conveniently query Elasticsearch for data falling into
the interval between the end of the cached data and the current system time. This method
is a wrapper, calling queryElasticsearch using the end attribute (if available) as start, and
the system time as end parameter. For convenience, we also added getter methods for data,
start, and end, as well as a method (isEmpty) to test if the cache is empty. Note, that a
non-empty cache can contain zero data, if there is no workload and response time data
for the specified interval available in the index. For such a cache isEmpty returns FALSE.
The rationale behind this is that the corresponding interval can be safely excluded from
subsequent cached request.

The VisitourOptions class is a container for options usable both, as part of the configura-
tion of a single VisitourInstance, and as default values for creating new VisitourInstances
in the control center. The attributes host and port are used for connecting to a system
running Elasticsearch. The timezone is used to set the time zone for querying an index,
i. e., the time zone of the start and end parameter of queryElasticsearch, and the start

and end attribute of an VisitourInstance object. Currently the only supported time zone is
Coordinated Universal Time (UTC). The plotWindow specifies the length of the time interval
(in seconds) that is displayed in the real time view of the control center (see Section 4.4). More
precisely, the start of the displayed interval is given by the system time minus the specified
plotWindow. Its end is given by the system time. The (approx.) number of seconds to wait
between polls to an Elasticsearch index is given by the pollInterval. The slidingWindow

attribute specifies the size of the sliding window (in observations) used to fit the statistical
model for predicting the most recent response time (see Section 3.6.5). By default it is set to
150. The anomalyThreshold, and the staticThreshold attributes store thresholds for anomaly
detection. The staticThreshold is applied directly to monitored response times, i. e., if a
reponse time exceeds this threshold, an email notification is send to the operator, provided
that this is the first anomaly since the last reset of the instance’s warning cache. This cache
tracks if a warning had been issued for this instance before. The purpose of this is to
prevent the control center from sending an arbitrary large number of warning emails to
the operator. The anomalyThreshold is applied to the anomaly score of an observation, which
is computed as proposed by Henning [2016] as AD(y, ŷ) := y�ŷ

y , where y is the observed
response time, and ŷ is the predicted. Similar to the staticThreshold, a notification email

50

4.3. Deployment

is send to the operator, if an anomaly score exceeds the anomalyThreshold.
Finally, the ControlCenter class models a control center capable of monitoring multiple

VISITOUR Server installations at once for performance anomalies and sending notification
emails. Every ControlCenter maintains its own set of VisitourOptions used as default values
for creating new VisitourInstances. For the email notification setup, the ControlCenter the
credentials (email address, host, port, username and password) for the email accound used
to send, and a recipient email address (mailTo). The control center shiny app is currently
designed to be used by a single operator. Therefore, only a single global ControlCenter
object is maintained by the server. This object is shared between all sessions and persisted
across sessions.

4.3 Deployment

The control center shiny app can be deployed on a Shiny Server, e. g., by placing the
app’s files (server.R, ui.R, global.R, and the files in the www, and modules subdirectory) in
a subdirectory of the server’s directory for hosting apps. The app files are available in the
supplementary material of this thesis (see Appendix A.3). A full setup capable of real time
monitoring VISITOUR Server instances requires however additional components: a running
Filebeat instance on every monitored system, as well as a Logstash and an Elasticsearch
instance for processing and storing monitoring information. The full setup necessary for
monitoring VISITOUR Server instances is shown as deployment diagram in Figure 4.3.

On every VISITOUR Server, Filebeat (see Section 2.5.1) is used to forward Call, CallProposal
and MonitoringInformation log entries from the server’s local log file to Logstash. Other
log entries are currently discarded to keep the monitoring related network traffic to the
necessary minimum. When monitoring multiple server system at once, it is necessary to
provide means for mapping monitoring data to a corresponding VISITOUR Server instance.
Because VISITOUR can be hosted on customer systems, neither the host name nor the IP
(the system could be part of a private network behind a gateway) of the server provide
reliable identification. Therefore, each Filebeat instance is assigned a name. The name can
be set in the instance’s configuration file. It can be deliberately chosen and is included in
the information send to Logstash. Thus, Logstash can identify the source of a forwarded
log entry, provided each monitored VISITOUR Server runs its own Filebeat instance, using
a unique name. By default, Filebeat also adds auxiliary data to each forwarded log entry.
This auxiliary data consists of the host name, the path to the log file, and Filebeat’s ver-
sion number. A template configuration file for Filebeat (filebeat.yml) is available in the
supplementary material of this thesis (see Appendix A.3).

Logstash (see Section 2.5.2) is configured to extract timestamps, job IDs, log entry IDs,
function codes and return codes from the forwarded log entries for Call resp. CallProposal
request, and the corresponding responses. Because CallProposal requests are semanti-
cally similar to Call requests using function code 1 (see Section 2.4.8), we decided to
treat them alike, using the same Elasticsearch document type for indexing and supply-

51

4. Control Center

Visitour Server

Logstash

< < a r t i f a c t > >
Server Log

Elasticsearch< < c o m p o n e n t > >
Fi lebeat

< < c o m p o n e n t > >
Visitour

Visitour Server

< < a r t i f a c t > >
Server Log

< < c o m p o n e n t > >
Fi lebeat

< < c o m p o n e n t > >
Visitour

Control Center

< < a r t i f a c t > >
Web Browser

< < c o m p o n e n t > >
Control Center Shiny App

< < c o m p o n e n t > >
Shiny Server

REST

Lumberjack

serve

query

index

generates

tracks

tracks

generates

Visual Paradigm Standard(University of Kiel)

Figure 4.3. Setup for colleting monitoring data from VISITOUR Server installations.

ing the same information. Therefore, Logstash is configured to fill in the information
CallProposal requests and responses lack compared to their Call counterparts (see Sec-
tion 2.4.8). CallProposal requests are assigned function code 1, and responses are assigned
return code 0, if they contain an appointment proposal and return code 10, if they do
not. From the MonitoringInformation log entries Logstash extracts all supplied job size
parameters (see Section 3.5). In a final step, all information belonging to an appointment
proposal (i. e., the information extracted from the corresponding request, response, and
monitoring information), is combined into a single event using Logstash’s aggregate filter.
Matching requests to responses and monitoring information is thereby done using the log
entry ID, which is the same for all log entries belonging to the same request. In the course
of combining the information, Logstash also extends the information in the combined

52

4.4. User Interface

event by a total response time, computed from the difference between the timestamps
of the response and the request in milliseconds. The combined events are then indexed
into Elasticsearch using the document type call_aggregate, while the original events are
dropped. The name of the target index is thereby generated from the name assigned to the
Filebeat instance by appending -calls. Thus, all log entries forwarded from an instance
named customer-x will be stored in the index customer-x-calls. If necessary, this index will
be automatically created using the template displayed in Listing A.1. If the index is created
beforehand, the user has to make sure, that its mapping for type call_aggregate conforms
to the mapping indicated by Listing A.1. Otherwise, indexing the combined events will
return an error. The auxiliary data provided by Filebeat is also written to the index. The
rules file for handling the forwarded log entries (visitour_monitoring.conf), as well as
the configuration file (logstash.yml) used for Logstash are available in the supplementary
material of this thesis (see Appendix A.3).

Elasticsearch (see Section 2.5.3) is used to persist monitoring data. For each monitored
system, the monitoring information is stored in a dedicated index. Thus, querying moni-
toring data from multiple system has to be done by specifying multiple index names in
the query. A description of the fields available in each index can be found in Table 4.1.
Listing A.1 shows the template used to generate indices for storing monitoring data.

4.4 User Interface

The control center uses a sidebar layout. The sidebar contains one tab for each monitored
VISITOUR Server instance, giving access to the instance’s dashboard (instance dashoard), one
tab to add new instances (add instance view), and one tab to set default values for creating
new instances and specifying the email configuration used for sending email notifications
(settings view). A button to hide the sidebar is available in the control center’s title bar.

The instance dashboard uses a tabbed layout, displaying three tabs in a horizontal
tab bar positioned underneath the title bar. The real time tab opens a view for real time
monitoring (real time view). The query tab opens a view for displaying monitoring data on a
query basis (query view). Changing the settings of an instance is possible via the instance
management view. By default, the real time view is presented to the user, when the instance
dashboard is visited. Figure 4.4 shows the real time view of an example VISITOUR Server
instance, Figure 4.5 shows the query view. Both views display response time, workload,
and job size data. The most important difference between them is that the real time view
is updated periodically, while the query view is not. The real time view is targeted at
supporting software operators in detecting performance anomalies (use case real time
anomaly detection; see Section 4.1), whereas, the query view can be used for retrospective
analysis of monitoring data (use case analyze static monitoring data; see Section 4.1).

The real time view displays response times, workload, and job size parameters (see
Section 3.5) of the appointment proposal service, plotted over a time axis. Because anomaly
detection is based on response times, the response time plot is positioned at the top of

53

4. Control Center

Table 4.1. Fields used in Elasticsearch indices for storing monitoring data (document type call_-

aggregate)

Field Description

tours tours field of MonitoringInformation log entry (see Table 3.4).
dimaadd dimaadd field of MonitoringInformation log entry (see Table 3.4).
optimization_type Operation that triggered the optimization. For possible values see Sec-

tion 3.5.
duration Time needed to generate the appointment proposal (time between the

request_timestamp and response_timestamp) in ms.
log_entry_type Name of the used SOAP service. Possible values are Call or CallProposal.
response_timestamp Timestamp extracted from the request log entry.
request_timestamp Timestamp extracted from the response log entry.
source Path to the log file from which the entry was extracted. The path is

relative to the root directory of the source system.
beat_name Name assigned to the Filebeat instance (see Section 4.3).
dimahit dimahit field of MonitoringInformation log entry (see Table 3.4).
beat_version Filebeat’s version number.
requested_iterations iterations field of MonitoringInformation log entry (see Table 3.4).
candidates cand field of MonitoringInformation log entry (see Table 3.4).
calls Number of jobs included in the optimization (see Section 2.4.2).
call_result Return code of the request. For possible values see Section 2.4.8.
call_id Internal ID of the target job.
log_entry_id ID of the log entry (see Section 3.5).
optimization_duration duration field of MonitoringInformation log entry (see Table 3.4).
dimafound dimafound field of MonitoringInformation log entry (see Table 3.4).
dimamiss dimamiss field of MonitoringInformation log entry (see Table 3.4).
timeout Boolean value indicating if Logstash’s aggregate filter timed out, while

waiting for a response log entry. The threshold for a timeout is set to
600 s in the used Logstash configuration (visitour_monitoring.conf)

host_name Host name of the machine running VISITOUR Server.
function_code Function code used in the request. For possible values see Section 2.4.8.

the real time view. The plots of the workload and job size parameters are displayed in a
shared panel using a tab layout. The plot of each parameter is displayed in a dedicated tab.
The updating frequency of all plots is given by the poll interval set for the corresponding
VISITOUR Server instance. The real time view provides a button remove warning that resets
the instance’s warning cache, when clicked (see Section 4.2).

The query view displays the same plots as the real time view, but is targeted at analyzing
static monitoring data, like e. g., extracted from a log file submitted by a customer for
performance analysis. Therefore, this view is not updated automatically. Via the inputs
for start and end, operators can deliberately set the displayed time interval. The query
is executed, when the update button is clicked. If start and end are not specified, the
application displays the entire data available in the instances Elasticseach index, provided

54

4.4. User Interface

Figure 4.4. Real time view of a VISITOUR Server instance with opened concurrency score tab

that the max_result_window of the index is large enough. The max_result_window is part of
the configuration of an index and is used by Elasticsearch to limit queries to this index
to a maximum number of results. By default, it is set to 10 000. If a query tries to retrieve
more results, Elasticsearch returns an error. The control center does currently not handle
this kind of error, and therefore all queries issued from the control center are presently
constrained to 10 000 results.

The instance management view allows operators to delete instances, via the delete
instance button, which removes the instance from the control center when clicked. Figure 4.6
shows the management view of an example VISITOUR Server instance.

New VISITOUR Server instances can be added to the control center through the add
instance view (see Figure 4.7). In this view operators can specify a name for the new
instance and the Elasticsearch connection (host, port, and index) to use. Further inputs
are supplied to set the polling interval, the plot window, the sliding window for response
time prediction, and the time zone used for queries. The new instance is created, when the
add button is clicked. On creation, a tab labeled with the instance’s name is added to the
sidebar as a link to the instance’s dashboard.

The settings view (see Figure 4.8) allows operators to set default values for creating
new instances and specify the email configuration used for sending email notifications. The
default values for instance creation are pre-filled into the inputs of the add instance view,

55

4. Control Center

Figure 4.5. Query view of a VISITOUR Server instance with opened candidates tab

in order to speed up the creation of new instances. The idea behind the usage of default
values for instance creation is, that in real time monitoring scenarios, instances often share
certain settings, like e. g., host and port of the Elasticsearch instance. Thus, pre-filling the
inputs for creating new instances relieves the operator from having to repeat frequently
used settings. Default values can be set for:

• host and port used for Elasticsearch connections,

• the time zone to use for queries,

• the plot window,

• the sliding window,

• the poll interval, and

• the thresholds used for anomaly detection.

When the settings view is opened, the inputs in the settings view appear pre-filled with the
current default values and email configuration. Changes to these values are saved when
the save button is clicked, provided that the entered values are valid. This is checked using
the validate method of the ControlCenter’s VisitourOptions instance (see Section 4.2). If
the validation fails, the returned error is displayed in a notification appearing in the lower
right corner of the display area.

56

4.4. User Interface

Figure 4.6. Instance management view of a VISITOUR Server instance

A dedicated send test mail button is provided to test the configuration for notification
emails. When this button is clicked, a test mail is send to the specified recipient. If sending
fails, an error is displayed.

57

4. Control Center

Figure 4.7. Add instance view of the control center

58

4.4. User Interface

Figure 4.8. Settings view of the control center

59

Chapter 5

Evaluation

In this chapter we discuss the results from the conducted performance test (Chapter 3)
and the implementation of the control center (Chapter 4). We start by an evaluation
of the performance test results in Section 5.1. Thereafter, in Section 5.2 we discuss our
implementation of the control center.

5.1 Performance Anomaly Detection

The investigation of the data showed no evidence that distance calculations and warm-up
effects affected the response times during the strain phase (see Section 3.6.1). Thus, we
considered the elimination of these interfering effects through the chosen initialization and
warm-up procedure a success.

The analysis showed only a small intercorrelation between the number of requested
iterations and the response time. This indicated that the number of requested iterations
is only weakly related to the response time of VISITOUR’s appointment proposal service.
A possible explanation is that the number of requested iterations does not capture the
complexity of the performed iterations. Iterations become e. g., more complex, the more
domino effects have to be accounted for. Another possible explanation is that the number
of actually performed iterations could differ from the number of requested iterations. In
cases where scheduling is simple, VISITOUR could finish optimizing before the requested
number of iterations is reached.

The analysis of the concurrency score showed a strongly skewed distribution in the
sample, and a low sample mean and variance (see Section 3.6.2). Hence, the chosen
manipulation of workload did mainly generate low workload. According to Rohr et al.
2010, there is no linear relationship between response time and workload. Instead, the effect
of workload on response time increases with growing workload. Low workload does not
significantly increase response times. For medium workload, the response time increases
linearly with the workload, and for high workload, response time increases super-linear.
Thus, we believe that the effect of workload on the response time of VISITOUR’s appointment
proposal service is underestimated in our analysis, because we did not generate medium or
high workload. This lack of simulating high workload threatens the external validity of our
findings. External validity is the extend to which experimental findings can be generalized
to other contexts, most importantly real world contexts. The control center however might

61

5. Evaluation

still provide good anomaly detection, even in case of high workload, because we chose to
keep workload as predictor in the implementation. Chapter 6 details on possibilities to
adapt the test procedure and the test setting to cover high workload scenarios.

Another major thread to the external validity of our findings stems from the fact, that
the test procedure did not simulate real world usage patterns of FLS VISITOUR Server. In
a real world scenario, the workload of a VISITOUR Server instance could follow a periodic
pattern to some degree, like many server applications. Workload could e. g., be higher
during the evening time than during the day. A realistic simulation of workload was
however not possible for two reasons. The main reason was that customer usage data is
confidential and thus, can only be analyzed with customer approval. Because this thesis
was intended as a first feasibility analysis, we refrained from approaching customers for
their approval. The second reason was that VISITOUR Server is used by customers with very
difference usage profiles and performance requirements. Firstly, customers differ greatly
with regard to the number of field service employees and the number of jobs to manage.
Secondly, customers use different VISITOUR Server configurations, and most importantly
run VISITOUR with different extensions enabled. Extension can have a major influence on
the response times of the appointment proposal service, e. g., through reducing the number
of candidate position to investigate (see Section 2.4.2). Thus, even when customer workload
profiles were available, they could not be easily compared to each other, and findings
applying to one usage profile might not apply to other usage profiles. For the same reason,
defining a representative usage profile from different customer profiles could turn out
difficult.

In summary, the conducted performance test provides first evidence, that accounting
for job size parameters of appointment requests could improve anomaly detection in server
applications. However, to ensure the external validity of this finding, further investigations
are necessary, examining other server applications, and high workload scenarios.

5.2 Control Center

As envisioned in Section 1.2.3 we implemented a control center to support the detection of
anomalies in the performance of VISITOUR Server. This control center used the prediction
model identified in the performance test to detect anomlies in the reponse time of the
appointment proposal service.

The control center was targeted at being used by a single human operator and thus,
maintains only one global ControlCenter object. Using the control center with multiple
operators could induce race conditions, when two or more operators simultaneously add or
remove monitored instances. This risk could be eliminated by maintaining a ControlCenter

object for every operator. This would require the extension of the control center with a
user management. The chosen implementation was designed to be ready for adding user
management features. All user-specific features of a control center (i. e., the instances to
monitor, and the default values for creating new instance) are part of the ControlCenter

62

5.2. Control Center

class that represents an abstraction of a user-configured control center. Hence, handling
multiple user-specific control center configurations can be realized by extending the control
center shiny app with mechanisms to manage multiple ControlCenter instances. The
professional version of Shiny Server can be used to supplement the control center with a
user management. This would also increase the security of the web application, because
Shiny Server provides means for secure user authentication by username and password.

Another area where the current implementation lacks security is the connection to
Elasticsearch. Currently, the control center only support basic features for connecting to
an Elasticsearch index, namely through specifying a host, a port, and an index name. It
does not provide means to use Elastisearch’s features for secure authentication, e. g., via a
user name and a password. Furthermore, the control center currently relies on the insecure
HTTP protocol for data exchange with Elasticsearch. The security of the transport could be
increased by adding support for the more secure HTTPS protocol to the control center.

The handling of error arising from Elasticsearch queries is another area, where the
implementation of the control center could be improved. Most importantly, the control
center expects the data in the specified Elasticsearch index to have a certain structure,
without pre-checking it. If the data is structured differently, the control center will most
likely encounter an error when trying to query the index or when processing returned
results. The resistance to this kind of errors could be improved by checking that the
mapping of the selected index conforms to the mapping indicated by Listing A.1. This can
be done by retrieving the current mapping of the selected index and comparing it with the
required mapping before querying the index for data.

Another major point, that currently impaires the usability of the control center for
analyzing large monitoring data is the limitation of queries to 10 000 results (see Section 4.2).
By limiting the number of retrievable observations, this threshold can limit the size of the
time interval displayable in the query and the real time view. The reason for this limitation
is that by default Elasticsearch constrains the maximum number of documents that can be
retrieved from an index by a single query to 10 000. Although this threshold could be raised,
by increasing the index max_result_window, Elastic recommends to not exceed the default
of 10 000, because heap memory and time needed for search requests are proportional to
the number of documents affected by the request1. A possible solution to relieve the control
center from this limitation is described in Chapter 6.

In summary, we implemented a control center that is capable of displaying monitoring
data for several VISITOUR Server instances in real time and that uses the empirically
identified prediction model to automatically detect anomalies in the appointment proposal
service and notifies the operator when anomalies occur. The implementation reached a state,
where the control center is ready to be used by a single human operator. The implementation
can however be further improved by adding a user management, enhancing security, and
extending the features for querying and connecting to Elasticsearch.

1Source: https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-search-after.html

63

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-search-after.html

Chapter 6

Future Work

As discussed in Section 5.1, the developed performance test procedure did not simulate
medium and high workload scenarios. In future investigations, this shortcoming could
be met in different ways. One possibility is to reduce the delay between subsequent Call
requests issued by a thread. Another way is to increase the number of threads. This is
however limited by the load generator’s system resources, because only a certain number
of threads can be executed concurrently without interfering to much with each other. A
more promising approach would be to use multiple machines to generated appointment
proposal requests. JMeter supports this kind of distributed testing by allowing a master-slave
setup of JMeter instances. In this setup the JMeter master instance coordinates the test
execution, whereas the JMeter slave instances receive test action commands from the master
and execute the requested test actions. This feature could be used to simulate realistic
medium or high workload scenarios, where multiple clients access the services provided
by VISITOUR Server.

As indicated in Section 5.2 the current implementation of the control center could be
enhanced by implementing means to retrieve more than 10 000 results from an Elasticsearch
index. For this purpose, Elastic recommends using the search_after query parameter1.
This parameter can be used to split a single query that would return more than 10 000 into
multiple queries, based on the value of a field that holds a unique value for every document
in the index. The idea is to specify a sorting on the selected field in the query, and then
set an offset for returning results using search_after. More precisely, Elasticsearch will
skip all results whose field value is smaller or equal (relative to the selected sorting), to
the specified search_after and start returning results after the value is surpassed. Thus,
retrieving more than 10 000 documents can achieved by setting search_after in each query
(except the first) to the last value the preceding query returned for the selected field. Hence,
the first query is used to retrieve the first 10 000 documents, the second query retrieves
the next 10 000 documents, and so on. To use search_after in a query to Elasticsearch, the
search must be specified using the JSON-based Elasticsearch Query Language. Such queries
are supported by the elastic R package through the body parameter of the Search function.

Another interesting area for future work could be the implementation of the developed
performance test procedure as regression test. Regression tests are standardized test proce-
dures that are applied to every release of a software in order to detect performance declines

1Source: https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-search-after.html

65

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-search-after.html

6. Future Work

across sequential releases. Using of our test procedure as regression test is possible, because
the procedure was completely automated through a shell script that successively executes
the JMeter test plans for initialization, warm-up and strain phase. The integration of the test
procedure into a test infrastructure could be accomplished similarly to the integration of
custom application benchmarks into a continuous integration system presented by Waller
et al. [2015]. A shell script akin to that used by Waller et al. [2015] could be used to deploy
new VISITOUR Server builds to a dedicated test machine and trigger the execution of the
performance test script on another machine. After test execution, the log file would have to
be automatically fetched from the machine that ran VISITOUR Server (e. g., through making
the server’s log directory accessible from the network) and send to a machine running
Filebeat with our filebeat.yml configuration template (see the list of supplementary files
in Appendix A.3) forwarding appointment proposal events to Logstash. Note, that the
VISITOUR machine should not run Filebeat itself during test execution, because this would
draw system resouces away from VISITOUR. The Logstash instance receiving the appoint-
ment proposal events from Filebeat can be configured with our logstash.conf (see the list
of supplementary files in Appendix A.3) to store the log entries in an Elasticsearch index.
From there, common regression test statistics, like mean response times could be extracted.

66

Chapter 7

Conclusions

In this thesis, we set out to empirically identify a method to detect anomalies in running
VISITOUR Server instances while accounting for workload and request job size. We utilized
this method for the implementation of a control center to support operators in detecting
performance anomalies. As a foundation for both, the empirical examination of the influ-
ences of workload and job size on response times, and the control center, we created a
setup for extracting workload, job sizes, and response time data from VISITOUR’s local log
file.

The empirical examination of the influence of workload, and job size on response times,
exhibited first evidence, that accounting for job size can improve anomaly detection when
a prediction based detection approach is used. The effect of workload on response times
could however not be reliably investigated, because the analysis revealed an insufficient
manipulation of the workload in the test procedure.

The implemented control center displays workload, job size and response time data
for multiple VISITOUR Server instances in real time. It can automatically detect anomalies
and notify the operator by email if necessary. Further development can enhance the
implementation by adding a user management, improving error handling, security, and
access to large scale monitoring data.

67

Appendix A

Appendix

A.1 Excluded Postal Addresses

Postal addresses on German islands without a road link to German mainland road network
were excluded from the list of possible job and employee base locations generated for the
performance test setting (see Section 3.2). Therefore, the following zip codes were excluded:
18565, 25845, 25846-25847, 25849, 25859, 25863, 25869, 25929-25933, 25938-25942, 25946-
25949, 25952-25955, 25961-25970, 25980, 25985-25986, 25988-25990, 25992-25994, 25996-25999,
26465, 26474, 26486, 26548, 26571, 26579, 26757, 27498, and 83256.

A.2 Elasticsearch Index Template

Listing A.1 shows the curl command used to generate the index template used by Logstash
to create new indices for storing monitoring data.

Listing A.1. curl command used to create the template call_aggregates which is used for generating
new indices for storing monitoring data (identified through the suffix -calls)

curl -i -XPUT ’http://localhost:9200/_template/call_aggregates’ -d ’{

"template": "*-calls",

"settings": {"number_of_shards": 1, "number_of_replicas": 1},

"mappings": {

"call_aggregate": {"_source": {"enabled": true},

"properties": {

"@timestamp": {"enabled": false, "type": "date"},

"beat_name": {"type": "keyword", "ignore_above": 256},

"beat_version": {"type": "text", "index" : true},

"call_id": {"type": "long"},

"call_result": {"type": "integer"},

"function_code": {"type": "integer"},

"calls": {"type": "long"},

"candidates": {"type": "long"},

"dimaadd": {"type": "long"},

"dimafound": {"type": "long"},

69

A. Appendix

"dimahit": {"type": "long"},

"dimamiss": {"type": "long"},

"duration": {"type": "long"},

"host_name": {"type": "keyword", "ignore_above": 256},

"log_entry_id": {"type": "long"},

"log_entry_type": {"type": "keyword", "ignore_above": 256},

"operation": {"type": "keyword", "ignore_above": 256},

"optimization_duration": {"type": "long"},

"optimization_type": {"type": "keyword", "ignore_above": 256},

"request_timestamp": {"type": "date"},

"requested_iterations": {"type": "long"},

"response_timestamp": {"type": "date"},

"source": {"type": "text", "index": true},

"tags": {"enabled": false},

"timeout": {"type": "boolean"},

"tours": {"type": "long"}

}}}}’

A.3 List of Supplementary Files

Table A.1 gives an overview over the files available in the supplementary material of this
thesis provided on CD.

70

A.3. List of Supplementary Files

Table A.1. List of files provided on the CD containing the digital supplementary material of this
thesis

Filename Description

Files used in the performance test procedure

employee-test-set.json Postal addresses of field service employees.
job-test-set.json Postal addresses of jobs.
saturation-level-low.json External IDs of jobs scheduled in saturation level low.
saturation-level-mid.json External IDs of jobs scheduled in saturation level mid.
saturation-level-high.json External IDs of jobs scheduled in saturation level high.
jmeter.bat Shell script used to sequentially execute the test plans for

the initilization, warm-up and strain phase.
init_and_warm_up.jmx JMeter test plan for the initialization and warm-up phase.
strain.jmx JMeter test plan for the strain phase.

Results from the performance test

test.RData The data from the performance test used in the analysis
in Section 3.6.

analysis.R R script used for the analysis of the performance test
data in Section 3.6.

Files of the control center shiny app

server.R R script containing the server function.
ui.R R script containing the definition of the UI.
global.R R script containing shared code.
subdirectory www CSS files used by the control center.
subdirectory modules Other R files used by the control center, e. g., the defini-

tions of the classes (see Section 4.2).

Files used to configure Filebeat, and Elasticsearch to process VISITOUR’s log file

filebeat.yml Filebeat configuration (see Section 4.3).
visitour_monitoring.conf Logstash’s rules file for handling log events (see Sec-

tion 4.3).
logstash.yml Logstash configuration (see Section 4.3).

71

Bibliography

[Apache Software Foundation 2016a] Apache Software Foundation. Apache JMeter. Avail-
able: http://jmeter.apache.org/. Version 3.1. 2016. (Cited on page 19)

[Apache Software Foundation 2016b] Apache Software Foundation. Apache Lucene. Avail-
able: http://lucene.apache.org/. Version 6.2. 2016. (Cited on page 19)

[Apache Software Foundation 2017] Apache Software Foundation. Apache Groovy. http:

//groovy-lang.org/. Version 2.4.8. 2017. (Cited on page 20)

[Avritzer et al. 2006] A. Avritzer, A. Bondi, M. Grottke, K. S. Trivedi, and E. J. Weyuker.
Performance assurance via software rejuvenation: monitoring, statistics and algorithms.
In: International Conference on Dependable Systems and Networks (DSN’06). June 2006,
pages 435–444. (Cited on page 2)

[Bielefeld 2012] T. C. Bielefeld. Online performance anomaly detection for large-scale
software systems. Received b+m Software & Systems Engineering Award 2012. Diploma
thesis. Kiel University, Mar. 2012. url: http://eprints.uni-kiel.de/15488/. (Cited on pages 2,
6, 7)

[Chandola et al. 2009] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: a
survey. ACM Comput. Surv. 41.3 (July 2009), 15:1–15:58. url: http://doi.acm.org/10.1145/

1541880.1541882. (Cited on pages 2 and 7)

[Churilin 2013] A. Churilin. Choosing an open-source log management system for
small business. Master’s thesis. Tallinn University of Technology, 2013. url: http:

//de.slideshare.net/fixnix/choosing- an- open- source- log- management- system- for- small- business.
(Cited on pages 18, 19)

[Elastic 2016a] Elastic. Beats platform. Available: https://www.elastic.co/de/products/beats.
Version 5.0. 2016. (Cited on page 18)

[Elastic 2016b] Elastic. Elasticsearch. Available: https://www.elastic.co/de/products/elasticsearch.
Version 5.0. 2016. (Cited on pages 18, 19)

[Elastic 2016c] Elastic. Kibana. Available: https://www.elastic.co/de/products/kibana. Version 5.0.
2016. (Cited on page 18)

[Elastic 2016d] Elastic. Logstash. Available: https : / / www . elastic . co / de / products / logstash.
Version 5.0. 2016. (Cited on page 18)

[Frotscher 2013] T. Frotscher. Architecture-based multivariate anomaly detection for
software systems. Master thesis. Kiel University, Oct. 2013. url: http://eprints.uni-

kiel.de/21346/. (Cited on pages 2, 6, 7)

73

http://jmeter.apache.org/
http://lucene.apache.org/
http://groovy-lang.org/
http://groovy-lang.org/
http://eprints.uni-kiel.de/15488/
http://doi.acm.org/10.1145/1541880.1541882
http://doi.acm.org/10.1145/1541880.1541882
http://de.slideshare.net/fixnix/choosing-an-open-source-log-management-system-for-small-business
http://de.slideshare.net/fixnix/choosing-an-open-source-log-management-system-for-small-business
https://www.elastic.co/de/products/beats
https://www.elastic.co/de/products/elasticsearch
https://www.elastic.co/de/products/kibana
https://www.elastic.co/de/products/logstash
http://eprints.uni-kiel.de/21346/
http://eprints.uni-kiel.de/21346/

Bibliography

[Giesecke et al. 2006] S. Giesecke, M. Rohr, and W. Hasselbring. Software-betriebs-leitstände
für unternehmensanwendungslandschaften. In: Tagungsband Informatik 2006, Band 2.
Volume P-94. Lecture Notes in Informatics. Gesellschaft für Informatik e.V., Oct. 2006,
pages 110–117. url: http://eprints.uni-kiel.de/14543/. (Cited on page 8)

[Henning 2016] S. Henning. Visualization of performance anomalies with kieker. Bachelor’s
Thesis. Christian Albrechts Universität zu Kiel, Sept. 2016. url: http://eprints.uni-

kiel.de/34141/. (Cited on pages 2, 6, 7, and 50)

[IEEE Standards Board 1990] IEEE Standards Board. Ieee standard glossary of software
engineering terminology. IEEE Std 610.12-1990 (Dec. 1990), pages 1–84. (Cited on
page 2)

[Kühnel 2013] J. Kühnel. Centralized and structured log file analysis with open source and
free software tools. Bachelor’s thesis. Fachhochschule Frankfurt am Main, 2013. url:
http://www.kuehnel.org/bachelor.pdf. (Cited on pages 18, 19)

[Lenstra and Kan 1981] J. K. Lenstra and A. Kan. Complexity of vehicle routing and
scheduling problems. Networks 11.2 (1981), pages 221–227. (Cited on page 1)

[Li et al. 2007] J.-Q. Li, P. B. Mirchandani, and D. Borenstein. The vehicle rescheduling
problem: model and algorithms. Networks 50.3 (2007), pages 211–229. url: http://dx.doi.
org/10.1002/net.20199. (Cited on page 1)

[Menasce and Almeida 2001] D. A. Menasce and V. Almeida. Capacity planning for web
services: metrics, models, and methods. 1st. Upper Saddle River, NJ, USA: Prentice Hall
PTR, 2001. (Cited on page 2)

[Microsoft Corporation 2017] Microsoft Corporation. Microsoft JDBC Driver for SQL Server.
Available: https://www.microsoft.com/en-us/download/details.aspx?id=11774. Version 6.0. 2017.
(Cited on page 20)

[R Core Team 2016] R Core Team. R Language Definition. Available: https : / / cran . r -

project.org/doc/manuals/R-lang.html. 2016. (Cited on page 21)

[R Foundation 2016] R Foundation. R. Available: https://www.r-project.org. Version 3.3.1.
2016. (Cited on page 20)

[Rohr 2015] M. Rohr. Workload-sensitive timing behavior analysis for fault localization in
software systems. Doctoral thesis/PhD. Kiel, Germany: Faculty of Engineering, Kiel
University, Jan. 2015. url: http://eprints.uni-kiel.de/27337/. (Cited on pages 5 and 28)

[Rohr et al. 2010] M. Rohr, A. van Hoorn, W. Hasselbring, M. Lübcke, and S. Alekseev.
Workload-intensity-sensitive timing behavior analysis for distributed multi-user soft-
ware systems. In: Joint WOSP/SIPEW International Conference on Performance Engineering
(WOSP/SIPEW ’10). New York: ACM, Jan. 2010, pages 87–92. url: http://eprints.uni-

kiel.de/14441/. (Cited on pages 2–5, 37, and 61)

[RStudio Inc. 2016] RStudio Inc. Shiny. Available: https://shiny.rstudio.com/. Version 0.14.2.
2016. (Cited on page 21)

74

http://eprints.uni-kiel.de/14543/
http://eprints.uni-kiel.de/34141/
http://eprints.uni-kiel.de/34141/
http://www.kuehnel.org/bachelor.pdf
http://dx.doi.org/10.1002/net.20199
http://dx.doi.org/10.1002/net.20199
https://www.microsoft.com/en-us/download/details.aspx?id=11774
https://cran.r-project.org/doc/manuals/R-lang.html
https://cran.r-project.org/doc/manuals/R-lang.html
https://www.r-project.org
http://eprints.uni-kiel.de/27337/
http://eprints.uni-kiel.de/14441/
http://eprints.uni-kiel.de/14441/
https://shiny.rstudio.com/

Bibliography

[Shumway and Stoffer 2011] R. H. Shumway and D. S. Stoffer. Time series analysis and its
applications. Springer, 2011. (Cited on page 7)

[Singer 2003] J. Singer. Jvm versus clr: a comparative study. In: Proceedings of the
2Nd International Conference on Principles and Practice of Programming in Java. PPPJ
’03. Kilkenny City, Ireland: Computer Science Press, Inc., 2003, pages 167–169. url:
http://dl.acm.org/citation.cfm?id=957289.957341. (Cited on page 28)

[Sipser 2006] M. Sipser. Introduction to the theory of computation. Volume 2. Thomson, 2006.
(Cited on page 2)

[Spliet et al. 2014] R. Spliet, A. F. Gabor, and R. Dekker. The vehicle rescheduling problem.
Computers & Operations Research 43 (2014), pages 129–136. url: http://www.sciencedirect.

com/science/article/pii/S0305054813002670. (Cited on page 1)

[Twitter Inc. 2016] Twitter Inc. Bootstrap. Available: http://getbootstrap.com/. Version 3.3.7.
2016. (Cited on page 21)

[Waller et al. 2015] J. Waller, N. C. Ehmke, and W. Hasselbring. Including performance
benchmarks into continuous integration to enable devops. SIGSOFT Softw. Eng. Notes
40.2 (Apr. 2015), pages 1–4. url: http://doi.acm.org/10.1145/2735399.2735416. (Cited on
page 66)

[Waller and Hasselbring 2013] J. Waller and W. Hasselbring. A benchmark engineering
methodology to measure the overhead of application-level monitoring. In: Proceedings of
the Symposium on Software Performance: Joint Kieker/Palladio Days 2013. CEUR Workshop
Proceedings, Nov. 2013, pages 59–68. url: http://eprints.uni-kiel.de/22326/. (Cited on
page 28)

[Wickham 2014] H. Wickham. Advanced r. Chapman and Hall, 2014. (Cited on pages 21
and 48)

75

http://dl.acm.org/citation.cfm?id=957289.957341
http://www.sciencedirect.com/science/article/pii/S0305054813002670
http://www.sciencedirect.com/science/article/pii/S0305054813002670
http://getbootstrap.com/
http://doi.acm.org/10.1145/2735399.2735416
http://eprints.uni-kiel.de/22326/

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.2.1 G1: Monitoring
	1.2.2 G2: Anomaly Detection
	1.2.3 G3: Control Center

	1.3 Document Structure

	2 Foundations
	2.1 Workload-Sensitive Response Time Analysis
	2.2 Performance Anomaly Detection
	2.3 Control Centers for Software Operation
	2.4 FLS VISITOUR
	2.4.1 Route Scheduling Model
	2.4.2 Generation of Appointment Proposals
	2.4.3 Candidate Positions
	2.4.4 Distance Calculation
	2.4.5 Proposal Iterations
	2.4.6 Proposal Windows
	2.4.7 Response Time Influences
	2.4.8 Call, CallProposal and Calls Web Sevices
	2.4.9 Optimize Web Service
	2.4.10 DeletePlanning Web Service
	2.4.11 FieldManager Web Service
	2.4.12 RandomAddress Web Service

	2.5 Log Analysis with Elastic Stack
	2.5.1 Log Forwarding with the Beats Platform
	2.5.2 Log Management with Logstash
	2.5.3 Search Platform Elasticsearch

	2.6 JMeter
	2.7 R

	3 Performance Test
	3.1 Design
	3.2 Test Setting
	3.2.1 Generation of Field Service Employees
	3.2.2 Generation of Jobs

	3.3 Test Procedure
	3.3.1 Initialization Phase
	3.3.2 Warm-Up Phase
	3.3.3 Strain Phase

	3.4 Hardware
	3.5 Data Collection
	3.6 Results
	3.6.1 Preliminary Analysis
	3.6.2 Concurrency Score
	3.6.3 Job Size Parameters
	3.6.4 Effects on Response Time
	3.6.5 Sliding Window

	4 Control Center
	4.1 Use Cases
	4.2 Classes
	4.3 Deployment
	4.4 User Interface

	5 Evaluation
	5.1 Performance Anomaly Detection
	5.2 Control Center

	6 Future Work
	7 Conclusions
	A Appendix
	A.1 Excluded Postal Addresses
	A.2 Elasticsearch Index Template
	A.3 List of Supplementary Files

	Bibliography

