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Abstract 35	

The dichotomy between high microbial abundance (HMA) and low microbial abundance 36	
(LMA) sponges has been observed in sponge-microbe symbiosis, although the extent of this 37	
pattern remains poorly unknown. We characterized the differences between the microbiomes 38	
of HMA (n=19) and LMA (n=17) sponges (575 specimens) present in the Sponge 39	
Microbiome Project. HMA sponges were associated with richer and more diverse 40	
microbiomes than LMA sponges, as indicated by the comparison of alpha diversity metrics. 41	
Microbial community structures differed between HMA and LMA sponges considering 42	
Operational Taxonomic Units (OTU) abundances and across microbial taxonomic levels, 43	
from phylum to species. The largest proportion of microbiome variation was explained by the 44	
host identity. Several phyla, classes, and OTUs were found differentially abundant in either 45	
group, which were considered “HMA indicators” and “LMA indicators”. Machine learning 46	
algorithms (classifiers) were trained to predict the HMA-LMA status of sponges. Among nine 47	
different classifiers, higher performances were achieved by Random Forest trained with 48	
phylum and class abundances. Random Forest with optimized parameters predicted the HMA-49	
LMA status of additional 135 sponge species (1,232 specimens) without a priori knowledge. 50	
These sponges were grouped in four clusters, from which the largest two were composed of 51	
species consistently predicted as HMA (n=44) and LMA (n=74). In summary, our analyses 52	
shown distinct features of the microbial communities associated with HMA and LMA 53	
sponges. The prediction of the HMA-LMA status based on the microbiome profiles of 54	
sponges demonstrates the application of machine learning to explore patterns of host-55	
associated microbial communities. 56	

 57	

  58	
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Introduction 59	

Sponges (Porifera) represent one of the oldest, still extant animal phyla. Fossil evidence 60	
dating back 600 million years ago shows their existence in the Precambrian (Yin et al., 2015) 61	
long before the radiation of all other animal phyla. Sponges are globally distributed in all 62	
aquatic habitats from warm tropical reefs to the cold deep sea and are even present in 63	
freshwater lakes and streams (Van Soest et al., 2012). As sessile filter feeders, sponges are 64	
capable of pumping seawater at rates up to thousands of litres per kilogram of sponge per day 65	
(Vogel, 1977; Weisz et al., 2008). Small particles are retained from the incoming seawater 66	
and transferred into the mesohyl interior where they are digested by phagocytosis (Bell, 2008; 67	
Southwell et al., 2008; Maldonado et al., 2012). 68	

Sponges are associated with microbial communities, with representatives of 41 different 69	
prokaryotic phyla thus far recovered from sponges, from which 13 phyla were shared among 70	
the 81 host species surveyed (Thomas et al., 2016). The sponge-associated microorganisms 71	
carry out functions related to nutrient cycling including carbon, nitrogen, and possibly sulfur 72	
and vitamin metabolism (Taylor et al., 2007; Bayer et al., 2008; Hentschel et al., 2012) as 73	
well as to secondary metabolism and chemical defense (Wilson et al., 2014). Sponge species 74	
were observed to harbour dense communities of symbiotic microorganisms in their tissues, 75	
while others were found essentially devoid of microorganisms (Reiswig, 1974). They were 76	
firstly termed “bacterial sponges” and “non-symbiont harbouring, normal sponges” (Reiswig, 77	
1981) and later the terms high microbial abundance” (HMA) and “low microbial abundance” 78	
(LMA) (Hentschel et al., 2003) were used. Bacterial densities in HMA sponges are two to 79	
four orders of magnitude higher than in LMA sponges (Hentschel et al., 2006). In HMA 80	
sponges, microbial biomass can comprise up to one third of the total sponge biomass 81	
(Vacelet, 1975). HMA microbiomes are exceedingly complex, and LMA microbiomes are 82	
largely restricted to Proteobacteria as well as Cyanobacteria (Hentschel et al., 2006; Weisz et 83	
al., 2007a; Kamke et al., 2010; Gloeckner et al., 2012; Schmitt et al., 2012; Giles et al., 2013). 84	
Functional gene content (Bayer et al., 2014), pumping rates (Weisz et al., 2008), and carbon 85	
and nitrogen compounds exchange (Ribes et al., 2012) were found to differ in respect to the 86	
HMA-LMA dichotomy. However, how the documented HMA-LMA status of sponges may 87	
impact the animal’s physiology and metabolism as well as the surrounding environment is 88	
only beginning to be elucidated. The largest effort to characterize the HMA or LMA status of 89	
sponges thus far was performed by Gloeckner et al. (2014), who inspected 56 sponge species 90	
by transmission electron microscopy (TEM) and diamidino-2-phenylindole (DAPI) counting. 91	
Considering that more than 8,500 formally described sponge species exist and that the true 92	
diversity is still much higher (Van Soest et al., 2012), a comprehensive survey of the HMA-93	
LMA pattern would be a difficult and laborious undertaking. 94	

Machine learning deals with the creation and evaluation of algorithms designed to recognise, 95	
classify, and predict patterns from existing data (Tarca et al., 2007). In supervised machine 96	
learning, the algorithms (classifiers) learn rules from features of labelled objects, known as 97	
training data, to infer the objects’ labels (Sommer and Gerlich, 2013). Ultimately, these rules 98	
can be applied to predict the labels of unobserved objects. Supervised machine learning has 99	
been applied to predict biological features of different dimensions, ranging from molecular 100	
biology to macro ecology (Lawler et al., 2006; Petersen et al., 2011). Despite this, few 101	
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publications have explored the power of machine learning to predict host characteristics based 102	
on microbiome patterns, such as the recent predictions made for human health and ethnicity 103	
(Mason et al., 2013; Walters et al., 2014). The present study was aimed to compare alpha and 104	
beta diversities between HMA and LMA sponge samples, to identify differently abundant 105	
prokaryotic taxa in HMA and LMA sponge species, and to predict the HMA-LMA status of 106	
sponges by machine learning. We demonstrate here that machine learning algorithms allow 107	
the accurate classification of the HMA-LMA status of marine sponges based only on the 108	
taxonomic profiles of samples’ microbiomes.  109	

 110	

Materials and Methods 111	

Data collection and determination of HMA-LMA status 112	

Sponge-associated microbial community data were retrieved from the Sponge Microbiome 113	
Project dataset (Moitinho-Silva et al., in preparation). Briefly, sample processing and 114	
sequencing were performed by the Earth Microbiome Project (www.earthmicrobiome.org, 115	
Gilbert et al. (2014)). Amplicon data analysis was conducted by Moitinho-Silva et al. (in 116	
preparation). The dataset consists of V4 hypervariable region of 16S rRNA gene sequences 117	
clustered at 97% similarity into Operational Taxonomic Units (OTU) and their taxonomic 118	
classification. In this study, samples annotated as diseased or as part of stress experiments 119	
were excluded, as were samples with less than 23,450 sequences, which corresponded to the 120	
first quartile of sequence counts per sample. Samples obtained from taxonomically identified 121	
sponge species with at least three replicates were used for the analyses. To account for 122	
difference in sequencing depth, the OTU abundance matrix was rarefied to 23,455 sequences 123	
per sample. 124	

Classification of sponge species as either HMA or LMA was based on an electron 125	
microscopical survey (Gloeckner et al., 2014). Additionally, six species were classified in this 126	
study based on transmission electron microscopy (TEM). Altogether, 575 samples, 127	
representing 36 sponge species of known HMA-LMA status (n=19 for HMA and n=17 for 128	
LMA), were used for diversity and composition comparisons and as the machine learning 129	
training data (Supplementary Table 1). A total of 1232 samples, representing 135 sponge 130	
species of unknown HMA-LMA status, were then queried by machine learning approach 131	
(Supplementary Table 2). Samples ids are provided in Supplementary Table 3. 132	

Transmission electron microscopy (TEM) 133	

Additional sponge samples were collected by SCUBA diving and processed for TEM by four 134	
different laboratories. Ircinia variabilis specimens (n=3) were collected in March 2010, at 8 135	
to 12 m depth at Mar Menuda (Tossa de Mar, Mediterranean Sea; 41°43'13.62"N, 136	
2°56'26.90"E). Petrosia ficiformis specimens (n=3) were collected in December 2011, at 8 to 137	
11 m depth, at La Depuradora (L’Escala, Mediterranean Sea; 42°7'29"N, 3°7'57"E). These 138	
samples were processed for TEM as described in Erwin et al. (2012). Rhopaloeides odorabile 139	
specimens (n=3) were collected in June 1999 from 8 m depth at Davies Reef (Northeast 140	
Australian Shelf – Great Barrier Reef; 18°50'33.48"S, 147°37'37.08"E). The samples were 141	
processed for TEM following Webster and Hill (2001). Dysidea fragilis and Halichondria 142	
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panicea samples (n=3) were collected at Coranroo (Co Clare, West Coast of Ireland, 143	
53°8'29"N, 09°0’34”W) in 2012 and 2014, respectively. These were processed for TEM 144	
following Stephens et al. (2013). Erylus formosus specimens (n=2) were collected from Bocas 145	
del Toro (Panama) in 2012. In the present study, the same E. formosus individuals were used 146	
for TEM analysis and for amplicon sequencing. After collection, samples were fixed in 4% 147	
paraformaldehyde followed by post-fixation in a 2% solution of osmium tetroxide in 0.1 M 148	
cacodylate buffer/11% sucrose. The samples were dehydrated in a graded ethanol series and 149	
embedded in LR White resin. Ultrathin sections were prepared with an ultramicrotome 150	
(Reichert Ultracut S, Leica, Austria). To obtain contrast the sections were double stained 151	
with uranyl acetate replacement stain followed by lead citrate staining. TEM images were 152	
taken with a Tecnai G2 Spirit BioTwin TEM (80 kV, FEI, USA) at the Central Microscopy of 153	
University of Kiel (Germany). 154	

Experimental design used in diversity analyses 155	

Alpha and beta diversities were compared between HMA and LMA samples (HMA-LMA 156	
status, fixed effect, 2 levels), taking into account the collection site (geographic region, 157	
random effect, 9 levels) and the sponge species (host identity, random effect, 36 levels). 158	
Samples were assigned into geographic regions based on their coordinates following Large 159	
Marine Ecosystems of the World definitions (http://www.lme.noaa.gov/) (Supplementary 160	
Table 1). The host identity factor was nested in the interaction between HMA-LMA status and 161	
geographic region. 162	

Statistical analysis of alpha diversity 163	

Rarefaction curves were constructed to investigate the recovery of OTUs as a function of 164	
sequencing depth with mothur v. 1.37.6 (Schloss et al., 2009). Alpha diversity indices were 165	
obtained from the OTU abundance matrix. OTU counts, the Chao, and ACE estimators 166	
(O'Hara, 2005; Chiu et al., 2014) were considered indicators of community richness. Inverted 167	
Simpson (InvSimpson), Shannon, and Pielou’s evenness indices were considered as indicators 168	
of community diversity. Calculation of alpha diversity indices was performed with the R 169	
package vegan v. 2.3-5 (Oksanen et al., 2016). The effect of HMA-LMA status on the alpha 170	
diversity was examined using likelihood ratio tests that compared two linear models with 171	
mixed effects: one with the HMA-LMA factor, i.e. the full model, and another without the 172	
HMA-LMA factor, i.e. the null model. For this purpose, linear mixed models were fitted by 173	
maximum likelihood with the function lmer of the R package lme4 (Bates et al., 2015) with 174	
the parameter REML set to false. Cell mean parameterization and confidence intervals were 175	
obtained from the full model. For each model, residuals vs fits and normal quantile plots were 176	
inspected to verify that assumptions of normality, constant variance, and linear relationship 177	
were kept. P-values were calculated with ANOVA function based on χ2 statistic with an alpha 178	
level of 5%.  179	

Statistical analysis of beta diversity 180	

Distance-based multivariate analysis of the microbial communities was carried out at the 181	
OTU level as well as the taxonomic levels of phylum, class, order, family, genus, and species. 182	
For each taxonomic level, OTU abundances were grouped according to Greengenes 183	
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classification. Inferences on community structure were based on Bray-Curtis dissimilarities of 184	
samples. Patterns between microbial community structures of sponge samples were inspected 185	
using Nonmetric Multidimensional Scaling (NMDS) performed with the vegan package. The 186	
effects of factors in the described experimental design were tested with PERMANOVA 187	
(Anderson, 2001), using square root transformed data and type III sum of squares. Estimates 188	
of components of variation were calculated in PERMANOVA. Because differences between 189	
groups in PERMANOVA could be due to location, dispersion, as well as location and 190	
dispersion (Anderson et al., 2008); homogeneity of multivariate dispersions was examined 191	
with PERMDISP (Anderson, 2006). P-values of PERMANOVA and PERMDISP were 192	
calculated using 999 permutations. Distance-based multivariate statistics were performed with 193	
PERMANOVA v. 1.0.1 implemented in PRIMER v. 6.1.11 (PRIMER-E, UK) with an alpha 194	
level of 5%. 195	

Statistical analysis of taxa abundances in HMA and LMA species 196	

The detection of microbial taxa that were differentially abundant between HMA and LMA 197	
sponges was conducted at the host species level because analysis of microbial diversities 198	
indicated that this factor was responsible for a large part of the variation observed (see Table 199	
1 and Supplementary Table 4). Therefore, microbial abundances of samples in phylum, class, 200	
and OTU abundance matrices were averaged by sponge species. Generalized linear model 201	
was separately fitted to each taxon using negative binomial distribution with the R package 202	
Mvabund (Wang et al., 2012), given a mean-variance relationship was observed. Univariate 203	
log-likelihood ratio statistic and P-value were calculated after 999 bootstraps. Mean and 204	
confidence interval estimates are presented in percentages for taxa with significant effects 205	
(alpha level of 5%). 206	

Prediction of HMA-LMA status by machine learning 207	

The capability of machine learning algorithms to classify unknown species into HMA or 208	
LMA sponges was evaluated. The training dataset was built on microbial community features 209	
from sponge samples of known HMA-LMA status (in Supplementary Table 1). Because 210	
specific sets of features can impact the accuracy of the classification, prediction performance 211	
was evaluated using the phylum, class, and OTU abundance matrices. Classifiers and their 212	
default parameters (listed in Supplementary Table 7) were chosen based on their availability 213	
on the Scikit Learn python package v. 0.17.1 (Pedregosa et al., 2011). The performance of 214	
each classifier was evaluated using a Leave One Out (LOO) per sponge species fashion, i.e. 215	
for each species, its samples were left out of the training set and the classifier was trained 216	
based on the remaining samples of other species. According to this procedure, each classifier 217	
predicted the HMA-LMA status of species for which samples were not present in the training 218	
set. The performance score was measured as the percentage of correctly classified samples. 219	
Further, parameter tuning was conducted on the classifier and datasets that presented the best 220	
performance, which were the Random Forest classifier and the abundance matrices on the 221	
phylum and class levels. 222	

Random Forest is a nonparametric machine learning method consisting of a collection of tree-223	
structured classifiers (Breiman, 2001; Chen and Ishwaran, 2012). Each tree is grown on 224	
replicates of the training set obtained by sampling. Here, we used bootstrapping as the 225	
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sampling with replacement method. The result of Random Forest was obtained by averaging 226	
the probabilistic prediction of the classifiers as implemented in Scikit Learn (Pedregosa et al., 227	
2011). The effect of different numbers of trees in the forest (ranging from 10 to 100) on the 228	
performance of Random Forest was compared. The maximum depth of the tree was set to 229	
‘None’ and features when looking for the best split was set to ‘auto’. Random Forest 230	
classification that presented higher performance was achieved with 50 trees in the forest. This 231	
parameter was used to predict the HMA-LMA status of sponge species without microscopical 232	
classification, i.e. unlabelled (Supplementary Table 2). 233	

Classification results were summarized as percentage of species samples classified as HMA, 234	
where the values ranged from 0% to 100%. The proportion of samples classified as LMA was 235	
deduced from this percentage. Results obtained from phylum and class abundance matrices 236	
were clustered by affinity propagation (AP). AP clusters data points based on subsets of 237	
representative examples, which are identified among all data points (Frey and Dueck, 2007). 238	
Pairwise similarity was measured as negative squared Euclidean distances (Frey and Dueck, 239	
2007). Exemplary preferences were set to the median, which is expected to result in a 240	
moderate number of clusters in comparison to a small number of clusters that result when the 241	
exemplary preferences are set to their minimum. Clusters were joined by exemplar-based 242	
agglomerative clustering (Bodenhofer et al., 2011). AP and exemplar-based agglomerative 243	
clustering were conducted using the R package apcluster v. 1.4.3 (Bodenhofer et al., 2011). 244	

 245	

Results 246	

HMA-LMA classification based on electron microscopy 247	

Based on TEM observations, we report the HMA-LMA status of five additional sponge 248	
species that were not covered by Gloeckner et al. (2014). Ircinia variabilis, Petrosia 249	
ficiformis and Rhopaloeides odorabile were classified as HMA sponges due to the presence of 250	
abundant and morphologically distinct microbial cells in the mesohyl (Figure 1). I. variabilis 251	
and P. ficiformis exhibited particularly high density of microbial cells in their mesohyl. The 252	
sponge species Dysidea fragilis and Halichondria panicea were classified as LMA because 253	
their mesohyl were largely devoid of microbial cells. In addition, the contradictory 254	
classification of Erylus formosus as being LMA (Gloeckner et al. 2014) or HMA (Easson and 255	
Thacker, 2014) was revisited and based on the present TEM images documenting large 256	
amounts of microorganisms (Figure 1), E. formosus was clearly identified as an HMA sponge. 257	

Alpha and beta diversities in HMA and LMA sponges 258	

Rarefaction curves indicated a broad gradient of sampling depths and number of OTUs (16S 259	
rRNA gene sequences clustered at 97% similarity) obtained for HMA and LMA samples 260	
(Supplementary Figure 1). When rarefaction curves were constructed based on the OTU table 261	
rarefied to 23,455 sequences per sample, the curves were more heterogeneous in LMA than 262	
HMA sponge samples. Alpha diversity measures were calculated from OTU abundances of 263	
sponge samples. All metrics were statistically significantly greater (ANOVA, P ≤ 0.001, 264	
Supplementary Table 4) in the HMA than in the LMA group. The HMA microbiomes were 265	
1.4x to 1.8x richer than the LMA microbiomes as measured by OTU counts and the 266	
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estimators Chao and ACE (Figure 2 A-C). The diversity of HMA microbiomes was 1.5x and 267	
1.6x greater than LMA microbiomes according Shannon and Pielou’s evenness measures 268	
respectively, while being 5.6x greater according to Inverted Simpson index (InvSimpson) 269	
(Figure 2 D-F). 270	

A clear separation between the structures of microbial communities in HMA and LMA 271	
samples was observed in the Nonmetric Multidimensional Scaling (NMDS) plot (Figure 3). A 272	
significant proportion of variation in the community structures (PERMANOVA, pseudo-273	
F1,523= 5.5, P= 0.002) was explained by the HMA-LMA status, while controlling for the 274	
effects of geographic region, the interaction of region and HMA-LMA status, and the host 275	
identity (Table 1). As suggested by the NMDS plots, at least part of the observed differences 276	
between HMA and LMA samples was due to the difference in dispersion between groups, 277	
where HMA samples were less dispersed than LMA samples according to PERMDISP test 278	
(t=14.9, P= 0.001, Supplementary Figure 2). A significant effect of geographic region on 279	
microbial community structure was observed (pseudo-F8,523=1.5, P=0.012), as well as of the 280	
interaction between HMA-LMA status and geographic region (pseudo-F5,523=1.7, P=0.003), 281	
and host identity (pseudo-F37,523=12.2, P=0.001) (Table 1). It is noteworthy, that the host 282	
identity explained most of the variation, followed by the HMA-LMA status, the interaction 283	
between geographic region and HMA-LMA status, and, lastly, geographic region alone 284	
(Table 1). 285	

The effect of HMA-LMA status was observed when OTU abundances were grouped by 286	
microbial taxonomic levels (Table 2). This result is particularly remarkable considering the 287	
increasing number of sequences that cannot be assigned to a given taxon when deeper 288	
classification levels are considered. For instance, 5.75% of sequences were grouped as 289	
unclassified at phylum level and 98.24% were grouped as unclassified at the species level. 290	

Identification of HMA and LMA indicator taxa 291	

The taxa that differed in abundance between HMA and LMA sponges (P-value < 0.05) were 292	
inspected with phylum, class and OTU datasets (Figure 4). Other taxonomic levels were not 293	
included due to the large proportion of sequences assigned to unclassified taxa (> 50%). On 294	
the phylum level, 14 phyla were significantly more abundant in HMA and 19 were more 295	
abundant in LMA species (Supplementary Table 5). Because these numbers included many 296	
low abundance phyla, we further considered only those that differed on average > 0.25%. 297	
Accordingly, the phyla Chloroflexi, Acidobacteria, and Actinobacteria were more abundant in 298	
HMA sponges, followed by PAUC34f, Gemmatimonadetes, BR1093, Poribacteria, AncK6, 299	
Nitrospirae, and Spirochaetes (Figure 4A). The phyla Proteobacteria, Bacteroidetes, 300	
Planctomycetes, and Firmicutes were more abundant in LMA sponges. The classes SAR202, 301	
Anaerolineae, and Acidimicrobiia were more abundant in HMA sponges, followed by 302	
PAUC34f unclassified at class level, Acidobacteria.6, Sva0725, Gemm.2, 303	
Deltaproteobacteria, and others (Figure 4B, Supplementary Table 5). The classes 304	
Alphaproteobacteria, Betaproteobacteria, Flavobacteriia, Planctomycetia, Actinobacteria, 305	
and Saprospirae were more abundant in LMA sponges (Figure 4B). Microbiomes of LMA 306	
sponges were enriched in Proteobacteria unclassified at the class level over HMA 307	
microbiomes. A total of 2,322 OTUs were found to be differentially abundant between HMA 308	
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and LMA groups (Supplementary Table 6). The taxonomic classification of the most 309	
abundant OTUs enriched in either HMA or LMA sponges corresponded to the results 310	
obtained for phylum and class level (Figure 4C). The two abundant OTUs assigned to the 311	
family Synechococcaceae represent a remarkable exception to the above pattern. Despite the 312	
fact that neither the phylum Cyanobacteria nor the class Synechococcophycideae was 313	
enriched in either group, the cyanobacterial Otu0000007 was more abundant in HMA 314	
sponges, while the cyanobacterial Otu0000002 was more abundant in LMA sponges. 315	
Similarly, despite the fact that Thaumarchaeota was not enriched in either of the groups, the 316	
thaumarchaeal Otu0000168 was more abundant in the LMA sponges. The large confidence 317	
intervals observed for some OTUs’ means indicate that these OTUs are not evenly distributed 318	
among the sponge species within HMA or LMA groups. For example, Otu0000094, which 319	
had a mean in LMA sponges of 5.0% (95% confidence interval: 1.3%, 19.9%), were found in 320	
only 4 of the 17 LMA species with most of its sequences (19,738 out of 19,769 total) 321	
recovered from Iotrochota birotulata. 322	

Prediction of the HMA-LMA status by machine learning 323	

To select the supervised machine learning algorithm (classifier) that was most appropriate to 324	
the task of predicting the HMA-LMA status, the performance of several classifiers were 325	
compared. Random Forest resulted in higher weighted means of correctly classified samples 326	
per species when training and validation was carried out with phylum (96.90% ± 5.75, 327	
weighted mean ± weighted standard deviation) and class abundances (94.75% ± 12.27) 328	
(Supplementary Table 7, Figure 5A). On the other hand, AdaBoost performed better with 329	
OTU abundances (91.35% ± 19.63). Although AdaBoost performance was also high for 330	
phylum and class datasets (> 91% weighted mean), it resulted in higher weighted standard 331	
errors, when compared to Random Forest (Supplementary Table 7). Thus, Random Forest was 332	
preferred over AdaBoost. Due to the overall low predictive value obtained for OTU 333	
abundance information (mean performance of 71.2%) in comparison to phylum (84.7%) and 334	
class (82.9%), we decided to perform downstream analysis based on the latter two datasets. 335	
The number of trees in the forest was further optimized for the Random Forest classifier. 336	
Highest overall performance, i.e. mean of performance for phylum and class datasets, was 337	
obtained for 50 trees in the forest (Figure 5B). Optimized Random Forest performance on 338	
phylum and class datasets resulted, respectively, in 98.3% ± 4.2 and 98.6% ± 3.8 of correctly 339	
classified samples clearly demonstrating that most samples for all species were correctly 340	
classified (Figure 5C).  341	

Prediction of the HMA-LMA status of 135 sponge species without a priori knowledge was 342	
performed using Random Forest with optimized parameters. Four clusters were obtained by 343	
affinity propagation based on prediction results on phylum and class abundance information 344	
(Figure 6). Cluster 1 contained 44 species that were largely classified as HMA (84-100% of 345	
samples). Cluster 2 contained 9 species that were inconsistently classified as LMA (55-84% 346	
of samples). This included Tedania sp., for which 56% of samples were classified as LMA. 347	
Cluster 3 contained 8 species that were inconsistently classified as HMA (59-83% of 348	
samples). Cluster 4 grouped 74 species that were largely classified as LMA (86-100% of 349	
samples). Cluster 1 was grouped together with Cluster 3, while Cluster 2 was paired with 350	
Cluster 4 by exemplar-based agglomerative clustering (Supplementary Figure 3). 351	
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To visualize the relationship between the structures of microbial communities from classified 352	
and predicted sponges, NMDS was conducted with the phylum, class, and OTU abundance 353	
matrices (Figure 7). Generally, samples from species in Clusters 1 and 3 closely localized 354	
with samples of HMA sponges. Likewise, samples from species in Clusters 2 and 4 closely 355	
localized with samples from LMA sponges. The distinction between the groups was clearer in 356	
the NMDS plots produced from the phylum and class datasets than in the plot produced from 357	
the OTU dataset. Nevertheless, NMDS plots from all three datasets suggest a bimodal pattern 358	
of structures of microbial communities in sponges, as displayed by the density of samples 359	
along the first NMDS dimension (x axis). 360	

 361	

Discussion 362	

Microbial diversity in HMA and LMA sponges 363	

Studies that have characterized sponge microbial diversity in the context of the HMA-LMA 364	
dichotomy have so far been restricted to a handful of samples and/or species (e.g. Blanquer et 365	
al., 2013; Giles et al., 2013). In surveys that incorporated a larger number of species, the 366	
HMA-LMA dichotomy was only a minor part of the investigation (Schmitt et al., 2012; 367	
Easson and Thacker, 2014). Here, the microbiomes of 575 samples representing 36 species of 368	
known HMA-LMA status were characterized and statistically analysed. The HMA-LMA 369	
status was predicted by machine learning for another 114 of 135 sponge species with high 370	
confidence (representing 1,094 samples). This effort represents the largest investigation of the 371	
HMA-LMA dichotomy so far and was possible due to the recent release of the Sponge 372	
Microbiome Project dataset (Moitinho-Silva et al., in preparation). 373	

All alpha diversity metrics considered in this study showed that HMA sponges are generally 374	
significantly associated with richer, more diverse microbial communities than LMA sponges. 375	
Similar findings were previously reported based on different culture-independent techniques 376	
of community analysis, such as denaturing gradient gel electrophoresis (DGGE) (Weisz et al., 377	
2007b; Bjork et al., 2013), terminal restriction fragment length polymorphism (T-RFLP) 378	
(Erwin et al., 2015), 16S rRNA gene cloning and Sanger sequencing (Giles et al., 2013), 454 379	
pyrosequencing (Bayer et al., 2014; Moitinho-Silva et al., 2014), and Illumina sequencing 380	
(Easson and Thacker, 2014). However, it should be noted that some studies have found 381	
exceptions to this pattern (Blanquer et al., 2013; Easson and Thacker, 2014). Our data 382	
supports the increasing body of evidence showing that HMA sponges are associated with 383	
more diverse microbial communities than LMA sponges. 384	

Our analysis further shows that microbial communities associated with HMA sponges are not 385	
only structurally distinct from those of LMA sponges, but also display smaller variation 386	
within their microbiomes than their LMA counterparts. The strongest driving force for the 387	
observed patterns was host identity, which explained the largest portion of the structural 388	
variation of microbiomes, while a smaller effect was due to the HMA-LMA status, the 389	
interaction of the HMA-LMA status and geographical region, and region alone (Table 1). 390	
These results extend previous studies that have shown the general effects of the HMA-LMA 391	
dichotomy (e.g. Bayer et al., 2014; Erwin et al., 2015), host identity (Hardoim et al., 2012; 392	
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Pita et al., 2013; Easson and Thacker, 2014; Reveillaud et al., 2014; Steinert et al., 2016; 393	
Thomas et al., 2016), and geographic region (Burgsdorf et al., 2014; Luter et al., 2015) on 394	
sponge microbiomes. For the first time, these factors were ranked (Table 1). Furthermore, as 395	
demonstrated for the HMA-LMA dichotomy, we have shown that such effects are observed at 396	
different taxonomic scales, e.g. when OTU abundances are grouped at the phylum, class, or 397	
order level. 398	

Moitinho-Silva et al. (2014) proposed that the aspect of host specificity is most appropriately 399	
addressed when considering the different OTU abundances in sponges. Subsequently, Bayer 400	
et al. (2014) introduced the term “indicator species” for certain phyla, i.e. Chloroflexi, 401	
Poribacteria, and Actinobacteria that were overrepresented in HMA over LMA sponges. In 402	
the present study, we confirm that even more taxa are differentially abundant in HMA and 403	
LMA sponges. Our analysis identifies additional phyla (e.g. Acidobacteria, PAUC34f, 404	
Gemmatimonadetes), classes (e.g. SAR202, Anaerolineae, Acidimicrobiia), and OTUs (e.g. 405	
Otu0000007, Otu0000004, Otu0000008) that are more abundant in HMA than LMA sponges 406	
and can thus be considered as “HMA indicators” (Figure 4). For the LMA sponges, we 407	
confirm the previously reported enrichment of Proteobacteria (Blanquer et al., 2013; Giles et 408	
al., 2013) and identify additional clades at the phylum (e.g. Bacteroidetes, Planctomycetes, 409	
Firmicutes), class (e.g. Alphaproteobacteria, Betaproteobacteria, Flavobacteriia) and OTU 410	
(e.g. Otu0000168, Otu0000002, Otu0000094) levels that can now also considered “LMA 411	
indicators” (Figure 4).  412	

 413	

Prediction of the HMA-LMA status by machine learning 414	

The high classification performance (> 98% correctly classified samples) of the Random 415	
Forest algorithm trained with phylum and class abundances suggests that these taxonomic 416	
levels are good proxies to resolve the HMA-LMA dichotomy in sponges. Several predictions 417	
of the HMA-LMA status made by Random Forest were in agreement with previous studies. 418	
For instance, the predicted HMA sponges Geodia barretti and Rhabdastrella globostellata 419	
were previously described to harbour the HMA-indicator phyla Poribacteria and Chloroflexi 420	
(Radax et al., 2012; Steinert et al., 2016). Similarly, a dense microbial population was 421	
visualized by TEM in the mesohyl of the predicted HMA sponge Stelletta maori (Schmitt et 422	
al., 2011). Moreover, the microbiome of the predicted LMA sponges Ianthella basta and 423	
Stylissa massa were dominated by the LMA-indicator phylum Proteobacteria (Luter et al., 424	
2010; de Voogd et al., 2015). Together with these results, further support to the predictions 425	
made by the Random Forest is provided by the co-localisation of classified and predicted 426	
samples in NMDS plots (Figure 7). Why the classifiers showed less performance when 427	
trained on OTU abundances rather than phylum and class datasets remains unclear. It is 428	
conceivable that OTU abundances are less informative due to the large number of low 429	
abundance OTUs. OTUs that were more abundant in either the HMA or LMA groups may not 430	
be relevant for the classification by machine learning, since they were not necessarily present 431	
or evenly distributed in all species within the group in which they were more abundant (e.g. 432	
Otu0000094). In conclusion, the machine learning results suggested that the HMA-LMA 433	
dichotomy is a general pattern best resolved at phylum and class levels. 434	
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Our machine learning predictions on sponge species, whose HMA-LMA status was 435	
previously unknown, supports the hypothesis that the HMA-LMA dichotomy is a continuum 436	
with a highly bimodal distribution (Figure 7) (Gloeckner et al., 2014). Altogether, 118 of the 437	
135 species were consistently predicted either HMA or LMA sponges, forming the two large 438	
clusters 1 and 4 (Figure 6). Species that fell into clusters 2 and 3 behaved atypically with 439	
respect to the HMA-LMA dichotomy. Altogether, 90% of all species included in this study 440	
were either classified as HMA or LMA by TEM (Figure 1 and Gloeckner et al. (2014)) or 441	
predicted by machine learning as HMA or LMA (Figure 6), and the remaining 10% were 442	
inconsistently classified. Considering the large number of species included in this study 443	
(n=135), we posit that this pattern is representative of the HMA-LMA dichotomy in the 444	
natural environment. Since most collection efforts have so far explored tropical and temperate 445	
regions, further efforts should be directed to explore the HMA-LMA dichotomy in other 446	
marine environments, such as the deep-sea or polar waters. With respect to the species 447	
included in this study, their predicted HMA-LMA status provides a priori information on 448	
their microbiome structure, thus providing a basis for the selection of the appropriate sponges 449	
and for future investigations related to their sponge microbiomes.  450	

Most sponge genera were composed of either the HMA or LMA phenotype. For example, the 451	
genera Agelas, Aplysina and Ircinia contained only HMA sponge species, while the genera 452	
Axinella, Cliona, and Suberites were exclusively LMA sponges. Exceptionally, our analysis 453	
indicated some genera containing both HMA and LMA species. For instance, Xestospongia 454	
bocatorensis was predicted as LMA, while Xestospongia testudinaria and Xestospongia muta 455	
were characterized HMA species (Gloeckner et al., 2014). Similarly, Cinachyrella alloclada 456	
was predicted as HMA, while Cinachyrella levantinensis and Cinachyrella sp. were predicted 457	
as LMA sponges. In addition, the Haliclona spp. were predicted as LMA, although TEM 458	
observations indicated Haliclona sarai as HMA (Marra et al., unpubl. data). The inference of 459	
the evolutionary history of the HMA-LMA dichotomy from our results is limited by the 460	
occurrence of polyphyletic clades in Porifera, including the genera Xestospongia and 461	
Haliclona (Redmond et al., 2011; Redmond et al., 2013). Therefore, future investigations 462	
focusing on the phylogenetic and evolutionary aspects of the HMA-LMA dichotomy are 463	
recommended. 464	

 465	

 466	

Conclusion 467	

The Sponge Microbiome Project was queried to explore the HMA-LMA dichotomy in the 468	
largest currently available dataset on sponge microbiomes. Our results strongly support 469	
previous findings that showed a higher diversity and different microbial community structures 470	
in HMA compared to LMA sponges. A number of clades (phyla, classes, OTUs) that may be 471	
considered as HMA or LMA indicators were identified for future explorations of so far 472	
uncharacterized sponge species. Machine learning algorithms were trained on microbial 473	
community data to recognize and “learn” the HMA-LMA dichotomy. The performance of the 474	
Random Forest algorithm trained with phylum and class abundances showed the excellent 475	
predictive value of these taxonomic levels with regard to the HMA-LMA status. 476	
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Consequently, Random Forest predicted the HMA-LMA status for 118 of 135 477	
uncharacterized sponge species with high confidence. This study demonstrated the usefulness 478	
of machine learning tools to address biological questions related to host-associated microbial 479	
communities. 480	
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Tables 697	

Table 1. The effect of HMA-LMA status, geographic region, and host identity on microbial 698	
communities based on OTU abundances. 699	

Source df MS Pseudo-
F 

P(per
m) 

Var 
comp*

* 

HMA-LMA status 1 41,74
4 5.5289 0.002 34.238 

Geographic region 8 15,26
6 1.4992 0.012 13.223 

HMA-LMA status x geographic region* 5 15,39
8 1.6644 0.003 17.741 

Host identity (HMA-LMA status x geographic 
region) 37 20,92

5 12.249 0.001 41.229 

Residual 52
3 

1,708.
3   41.332 

PERMANOVA analysis was performed with Bray-Curtis dissimilarities between samples 700	
obtained from square root transformed OTU abundances. 701	

*Term has one or more empty cells. 702	

**Estimates of components of variation are shown in squared units of Bray-Curtis 703	
dissimilarity. 704	

 705	

Table 2. The effect of HMA-LMA status on microbial communities at different taxonomic 706	
ranks.  707	

Level MS Pseudo-F P(perm) Unclassified 
sequences* 

Phylum 21,816 12.172 0.001 5.75 
Class 25,402 10.755 0.001 20.27 
Order 184,850 8.7579 0.001 54.64 

Family 31,065 10.029 0.001 64.11 
Genus 33,377 9.9077 0.001 89.34 
Species 33,061 9.6671 0.001 98.24 

df:1, Res:224, Total:250 
PERMANOVA analysis was performed with Bray-Curtis dissimilarities between samples 
obtained from square root transformed abundances. See Table 1 for full model. 

�Percentage of sequences that fell in “unclassified” taxon during the taxonomic grouping 
of OTU abundances. 
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Figures 710	

 711	

Figure 1. Classification of the HMA-LMA status of sponges based on transmission electron 712	
microscopy. Scale bars represent 5 µm, but vary in length. Abbreviations are: bacteria (b) and 713	
sponge cell (sc). 714	

 715	
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 716	

Figure 2. Alpha diversity of HMA and LMA sponge samples. Richness (A-C) and diversity 717	
(D-F) metrics were calculated for each sample (n=575) using rarefied OTU abundances. 718	
Estimated mean and 95% confidence intervals were obtained from linear mixed models of 719	
alpha diversity metrics. The effect of HMA-LMA status was tested with Likelihood ratio 720	
tests. In this procedure, two linear models with mixed effects were compared, the full model 721	
and the null model. All metrics were significantly greater (ANOVA, P ≤ 0.001) in the HMA 722	
than in the LMA group. 723	

Provisional



Predicting the HMA-LMA status in sponges	

23	
	
	

	

	

 724	

Figure 3. Beta diversity of microbial communities associated with HMA and LMA sponge 725	
samples. NMDS was conducted from Bray-Curtis dissimilarities between samples based on 726	
OTU abundances. The three plots displayed represent the same analysis, where sample 727	
symbols and colours stand for (A) HMA-LMA status, (B) geographic region, and (C) host 728	
identity. 729	
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Figure 4. Selection of differentially abundant bacterial and archaeal taxa in the microbiomes 732	
of HMA and LMA sponge species. Estimated mean and 95% confidence intervals were 733	
obtained from negative binominal generalised linear models (HMA=19, LMA=17) and 734	
converted to percentages. (A) Phyla and (B) classes that differed in more than 0.25% of their 735	
mean relative abundance per group are displayed. (C) The cut-off for OTUs was 0.5% 736	
difference. The shown taxa resulted in P-values < 0.05. Classification of OTUs is shown 737	
down to their deepest taxonomic level. 738	
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 740	

Figure 5. Selection and standardization of classifiers. (A) Performance of classifiers training 741	
on phylum, class, and OTU abundances. Percentage of correctly classified samples per 742	
species were averaged according to training tables. Weighted means were used due to the 743	
difference in number of HMA (n=19) and LMA (n=17) sponges. Error bars represent 744	
weighted standard deviations. (B) Performance of Random Forest for phylum and class 745	
datasets according to number of trees in the forest. Mean of weighted averages are displayed 746	
at the top of bars. (C) Performance of Random Forest (number of trees in the forest=50) on 747	
classification of known HMA and LMA sponge species. 748	
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Figure 6. Random Forest predictions of HMA-LMA status of previously uncharacterized 751	
sponge species (n=135). Prediction of samples were carried out by Random Forest (number of 752	
trees in the forest=50) based on phylum and class abundances. Clustering of the classifier 753	
results (left numbered panel, A-D) were performed with affinity propagation. Colour scheme 754	
of right panels represents percentage of samples predicted as either HMA or LMA.  755	
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 757	

Figure 7. Relationship between the structures of microbial communities (beta diversity) from 758	
classified and predicted sponges. NMDS plots were constructed from Bray-Curtis 759	
dissimilarities between samples obtained from (A) phylum, (B) class, and (C) OTU 760	
abundances. Points correspond to samples and are coloured according to the HMA-LMA 761	
classification and to the clusters obtained from Random Forest prediction results (see Figure 762	
6). Density of points along the NMDS dimensions (axes) was plotted in grey. 763	
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