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Abstract 10 

We investigate the quality of simulating tropical Atlantic (TA) sector climatology and interannual variability in 11 

integrations of the Kiel Climate Model (KCM) with varying atmosphere model resolution. The ocean model resolution 12 

is kept fixed. A reasonable simulation of TA sector annual-mean climate, seasonal cycle and interannual variability can 13 

only be achieved at sufficiently high horizontal and vertical atmospheric resolution. Two major reasons for the 14 

improvements are identified. First, the western equatorial Atlantic westerly surface wind bias in spring can be largely 15 

eliminated, which is explained by a better representation of meridional and especially vertical zonal momentum 16 

transport. The enhanced atmospheric circulation along the equator in turn greatly improves the thermal structure of the 17 

upper equatorial Atlantic with much reduced warm sea surface temperature (SST) biases. Second, the coastline in the 18 

southeastern TA and steep orography are better resolved at high resolution, which improves wind structure and in turn 19 

reduces warm SST biases in the Benguela upwelling region. 20 

The strongly diminished wind and SST biases at high atmosphere model resolution allow for a more realistic latitudinal 21 

position of the Intertropical Convergence Zone. Resulting stronger cross-equatorial winds, in conjunction with a 22 

shallower thermocline, enable a rapid cold tongue development in the eastern TA in boreal spring. This enables 23 

simulation of realistic interannual SST variability and its seasonal phase locking in the KCM, which primarily is the 24 

result of a stronger thermocline feedback. Our findings suggest that enhanced atmospheric resolution, both vertical and 25 

horizontal, could be a key to achieving more realistic simulation of TA climatology and interannual variability in 26 

climate models. 27 
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1. Introduction 32 

Simulating tropical Atlantic (TA) sector climate and its variability is a long-standing problem in coupled atmosphere-33 

ocean general circulation models (CGCMs, Davey et al. 2002). Persistent biases degrade seasonal forecasts (e.g. Repelli 34 

& Nobre 2004; Stockdale et al. 2006) and undermine the credibility of climate change projections (e.g. Ashfaq et al. 35 

2011; Wan et al. 2011) for a region where a large rural population critically depends on rain for agriculture. For 36 

example, large warm biases amounting to several centigrade are found in the sea surface temperature (SST) of the two 37 

upwelling systems in the eastern TA. One upwelling system is in the eastern equatorial Atlantic (EEA), referred to as 38 

the equatorial cold tongue. The SSTs in the cold tongue region depict a pronounced seasonal cycle with the cold tongue 39 

developing in boreal spring and lasting through summer. This also is the time of strong interannual SST variability in 40 

that region. SSTs in the EEA influence amongst others the West African Monsoon system (e.g. Brandt et al. 2011; 41 

Caniaux et al., 2011) and thus Sahel rainfall (Giannini et al. 2003). The other upwelling system is in the Benguela 42 

Current region off the coast of southwestern Africa, and this region too is a major problem area with much too warm 43 

SSTs in CGCMs. 44 

The SST annual cycle in the TA originates from large-scale atmosphere-ocean-land- interactions. TA SSTs 45 

reach a maximum in boreal spring, when the Intertropical Convergence Zone (ITCZ) is close to and surface winds are 46 

weak at the equator. As the ITCZ moves northward during the course of the year and the West African Monsoon sets in, 47 

southeasterly winds in the EEA cross the equator and strengthen. This drives upwelling (downwelling) slightly south 48 

(north) of the equator, increased vertical mixing in the ocean, and enhanced evaporation subsequently cooling the 49 

equatorial ocean (Philander and Pacanowski, 1981). Such wind induced changes are strongest in the EEA, since the 50 

thermocline is shallowest there. The resulting zonal SST gradient induces an atmospheric pressure gradient that 51 

strengthens the easterly trade winds at the equator, thereby helping to transport the cooling signal to the west (Mitchell 52 

and Wallace, 1992; Xie, 1994). Meridional transport of zonal momentum in the lower atmosphere and zonal pressure 53 

gradient related to monsoon rainfall distribution join in to accelerate easterly winds and further support the westward 54 

propagating signal (Okumura and Xie, 2004). 55 

The two regions, EEA and South Eastern Topical Atlantic (SETA), are not independent of each other. Strength 56 

and position of the South Atlantic Cyclone impacts both timing of the cold tongue onset in the EEA (Caniaux et al., 57 

2011) and SST anomalies in the SETA (Lübbecke et al., 2010). The oceanic pathway consists of eastward propagating 58 

equatorial Kelvin waves (EKW) excited by equatorial zonal wind stress anomalies that displace the thermocline 59 

vertically (Servain et al., 1982; Hormann and Brandt, 2009) and travel southward along the African coast as coastally 60 

trapped Kelvin waves (CTW, Bachèlery et al., 2015; Richter et al., 2011; Toniazzo & Woolnough, 2013; Voldoire et 61 

al., 2014; Wahl et al., 2011; Xu et al., 2014). 62 
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State-of-the-art climate models struggle to realistically represent the TA mean climate and TA variability. Most 63 

models are unable to simulate the cold tongue development and often even show a reversed zonal SST gradient along 64 

the equator due to large warm biases in the EEA and SETA (e.g. Davey et al., 2002; Richter & Xie, 2008). Even though 65 

climate models underwent substantial development, the warm bias problem is seen in models participating in the 66 

Coupled Model Intercomparison Project phase 5 (CMIP5, Richter et al., 2012) in addition to an offset SST error in the 67 

tropical mean SST (Li and Xie, 2012). The flawed climatology hinders simulation of realistic interannual SST 68 

variability and its pronounced seasonal phase locking in many climate models (see Ding et al., 2015a, 2015b for the 69 

KCM), which may be one important reason for the low seasonal prediction skill in the TA attained with the these 70 

models. 71 

Several studies link the EEA warm bias to a westerly wind bias at the equator during boreal spring (DeWitt, 72 

2005; Chang et al., 2007; Richter and Xie, 2008; Richter et al., 2011, 2012; Tozuka et al., 2011; Wahl et al., 2011; 73 

Patricola et al., 2012; Zermeño-Diaz and Zhang, 2013). The westerly wind bias is already present in uncoupled 74 

atmosphere general circulation model (AGCM) integrations with specified observed SSTs (Chang et al. 2007; Richter 75 

and Xie 2008; Chang et al. 2008) and thought to be linked to erroneous zonal sea level pressure (SLP) gradients due to 76 

rainfall errors. Another possible cause for the westerly wind bias is an erroneous momentum flux from the free 77 

troposphere into the well mixed boundary layer (Zermeño-Diaz and Zhang 2013; Richter et al. 2014). Further, CGCMs 78 

produce excessive rainfall south of the equator, referred to as the so-called double ITCZ problem (Stockdale et al. 2006; 79 

Deser et al. 2006; Breugem et al. 2006; Richter and Xie 2008; Richter et al. 2012), that due to air-sea interactions 80 

exacerbates errors from AGCMs when run in coupled mode. 81 

The warm SST bias in the SETA has been attributed to the structure of the alongshore surface winds driving 82 

coastal upwelling and too little low-level stratus cloud cover causing a surplus of solar insolation at the sea surface 83 

(Huang et al. 2007; Huang and Hu 2007; Xu et al. 2014a). Large and Danabasoglu (2006) and Wahl et al. (2011) show 84 

that radiation errors alone cannot completely explain the warm SST bias. Hourdin et al. (2015) underlines the 85 

importance of relative humidity and evaporation for the warm SST bias. 86 

In this paper, we follow the approach to reduce model biases in the TA by systematically increasing the 87 

resolution, both horizontal and vertical, of the atmospheric component of the Kiel Climate Model (KCM), while 88 

keeping the resolution of the ocean component fixed. Several studies have employed a similar strategy but without 89 

much success in reducing the TA warm SST bias (Patricola et al. 2012; Delworth et al. 2012; Doi et al. 2012; Small et 90 

al. 2014). Harlaß et al. (2015) show the key to succeed is keeping consistency between horizontal and vertical 91 

atmosphere model resolution and to enhance resolution in the lower troposphere. We show that improving the 92 
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atmospheric circulation by enhancing the resolution of the atmospheric component of the KCM largely eliminates the 93 

SST biases in the TA and also greatly improves the simulation of interannual variability in the TA. 94 

The paper is organized as follows: Section 2 provides a brief description of the model and the experimental 95 

setup. In Section 3, the results for the TA climatology are described, the results for the TA interannual variability in 96 

Section 4. The paper is concluded by a summary and discussion of the major results in Section 5. 97 

 98 

2. Model and experimental setup 99 

We use the Kiel Climate Model (KCM, Park et al. 2009), a coupled atmosphere-ocean-sea ice general circulation 100 

model. The atmosphere model component is ECHAM5 (Roeckner et al. 2003) with varying resolution, as described 101 

below. The ocean-sea ice component NEMO (Madec 2008) is integrated on a tripolar grid (ORCA2 grid) and is kept 102 

unchanged at a horizontal resolution of 2° x 2°, with a latitudinal refinement of 0.5° in the equatorial region (15°S-103 

15°N). It has 31 sigma levels and resolves the upper 100 m with 10 m spacing. The coupling interval is once a day. 104 

Four experiments have been performed with the coupled model, in which only the atmospheric resolution 105 

varies (Table 1). Horizontal resolution has been increased from T42 (~2.8°) to T255 (~0.47°), with either 31 (L31) or 62 106 

(L62) vertical levels. The top level in the atmosphere remains similar: for L31 and L62 at 10 hPa and 5 hPa, 107 

respectively. There are 6 levels below 850 hPa in L31, but 14 levels in L62. The additional levels are placed between 108 

the original ones. Parametrization schemes, as for example cloud microphysics and optical properties or cumulus 109 

convection, are scale-aware in ECHAM5 (Roeckner et al. 2003) and vary with resolution but are not re-tuned. 110 

We additionally performed atmosphere-only runs at the same resolutions to separate the influences of 111 

atmosphere model biases from those due to coupling. The uncoupled atmosphere model integrations are forced by 112 

NOAA Optimum Interpolation 1/4° daily SST and sea ice data version 2 (Reynolds et al. 2007; Reynolds 2009) 113 

covering the period 1982-2009. 114 

Horizontal 

Resolution 

Grid points 

Lon × Lat 
Vertical Resolution 

Acronym 

Coupled 

Acronym 

Uncoupled 

T042, ~2.80° 128 x  64 31 L L (A) 

T159, ~0.75° 480 x 240 31 M M (A) 

T159, ~0.75° 480 x 240 62 M-V M-V (A) 

T255, ~0.50° 768 x 384 62 H-V - 

Table 1 Model configurations of the KCM analyzed in this study. 115 
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The following reanalysis data are used in the investigations below: European Centre for Medium-Range Weather 116 

Forecasts (ECMWF) Re-Analysis for 1982-2009 on a 0.75° grid (ERA-interim, Dee et al. 2011), 40-yr European Centre 117 

for Medium-Range Weather Forecasts Re-Analysis for 1958-2001 on a 0.5° grid (ERA-40, Uppala et al. 2005), NOAA-118 

CIRES 20th Century Reanalysis version 2 for 1982-2009 on 2° grid (20CRv2, Compo et al. 2011), Simple Ocean Data 119 

Assimilation version 2.0.2 for 1958-2001 on a 0.5° grid (SODA, Carton and Giese 2008). 120 

Observational datasets are: the Met Office Hadley Centre EN3 version 2a for 1955-2010 on a 1° grid 121 

(HadEN3, Guinehut et al. 2009), Met Office Hadley Centre SST for 1982-2009 on a 1° grid (HadISST, Rayner 2003), 122 

NOAA Optimum Interpolated SST v2 for 1982-2009 on a 0.25° grid (NOAA-OISST, Reynolds et al. 2007; Reynolds 123 

2009), Cross-Calibrated Multi-Platform surface winds for 1988-2014 on a 0.25° grid (CCMP2.2, Wentz et al. 2015), 124 

Scatterometer Climatology of Ocean Winds (SCOW, Risien and Chelton 2008) using QuickSCAT measurements, 125 

Clouds and the Earth’s Radiant Energy System Energy Balanced And Filled surface fluxes for 2001-2015 on a 1° grid 126 

(CERES EBAF-Surface Ed2.8, Kato et al. 2013), Woods Hole Oceanographic Institution objectively analyzed air-sea 127 

fluxes for 1984-2009 on a 1° grid (OAFlux, Yu et al. 2008), Global Precipitation Climatology Project v2.2 for 1982-128 

2009 on a 2.5° (GPCP2, Adler et al. 2003), Tropical Rainfall Measuring Mission 3B43 for 1998-2014 on a 0.25° grid 129 

(TRMM, Huffman et al. 2007). 130 

Finally, we use the multi-model ensemble-mean of historical simulations over the period 1870-2004 conducted 131 

with 17 models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5, Taylor et al. 2012), all 132 

interpolated onto a T42 grid. 133 

To study the spatial structure of the interannual variability simulated in the different integrations we performed 134 

linear regression analysis using some key indices and monthly data. We also employ the Bjerknes (BJ) index to 135 

investigate in a compact way the feedbacks simulated in the different versions of the KCM. The BJ index is based on 136 

the recharge oscillator framework for ENSO (Jin et al. 2006) and was originally developed to study equatorial Pacific 137 

interannual variability. Lübbecke and McPhaden (2013), hereafter LMP13, were the first to apply the BJ index to the 138 

TA and we use that methodology. The BJ index includes the zonal advection feedback (ZAF), Ekman feedback (EF), 139 

thermocline feedback (TF), dynamical damping (DD) and thermal damping (TD). The formulation of the positive 140 

feedbacks (ZAF, EF and TF) is based on mean-state variables and a series of coefficients that measure the sensitivity of 141 

the atmosphere (i.e. zonal wind stress) to SST changes, and the ocean (i.e. zonal currents, upwelling and thermocline 142 

tilt) to changes in the zonal wind stress. The negative feedbacks (DD and TD) describe the damping effects on SST 143 

anomalies from mean ocean currents and changes in atmospheric heat fluxes. Table 2 gives an overview of the feedback 144 

terms contributing to the BJ index. The sum of all feedbacks defines the BJ index which thus is a measure of coupled 145 

ocean-atmosphere stability or the growth rate of SST anomalies. All data is detrended and a 3-month running mean 146 
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applied prior to analysis to damp high-frequency fluctuations. Volume average is taken over the Atlantic 3 region 147 

(ATL3; 20°W-0°W, 3°S-3°N) and from the surface to the mixed layer depth (MLD), defined as the depth where the148 

temperature deviates by not more than 0.2 K from the SST. Zonal wind stress anomalies are averaged over the 149 

equatorial Atlantic (40°W-0°W, 3°S-3°N) and thermocline depth is estimated as the depth of the 23°C-isotherm, 150 

following LMP13. Statistical significance is assessed with a two tailed t-test. 151 

Contributing feedbacks  Formulation 

Zonal advection feedback (ZAF) 𝜇𝑎𝛽𝑢 ⟨
−𝜕�̄�
𝜕𝑥

⟩
𝐸

 

Ekman feedback (EF) 𝜇𝑎𝛽𝑤 ⟨
−𝜕�̄�
𝜕𝑧

⟩
𝐸

 

Thermocline feedback (TF) 𝜇𝑎𝛽ℎ ⟨
𝐻(�̄�)�̄�

𝐻𝑚
𝑎ℎ⟩

𝐸

 

Dynamical damping (DD) −(
⟨�̄�⟩𝐸
𝐿𝑥

+
⟨−2𝑦�̄�⟩𝐸

𝐿𝑦
2 +

⟨�̄�⟩𝐸
𝐻𝑚

) 

Thermal damping (TD) 𝛼

Table 2 Contributing feedbacks in the Bjerknes index and their formulation.𝜇𝑎denotes equatorial 152 

zonal wind stress response to eastern equatorial SST anomalies,𝛽𝑢zonal ocean velocity 153 

response,𝛽𝑤ocean upwelling response and𝛽ℎthermocline slope response to equatorial zonal wind 154 

stress anomalies.𝑎ℎis the ocean subsurface temperature response to thermocline depth anomalies 155 

and𝛼the net surface heat flux response to SST anomalies.�̄�, �̄�, �̄�denote mean zonal, meridional and 156 

vertical ocean velocities,�̄�mean SST and𝐻𝑚mean mixed layer depth.⟨∙⟩𝐸denotes volume-averaged 157 

quantities over the eastern equatorial regime with𝐿𝑥and𝐿𝑦as zonal and meridional extent.𝐻(�́�)is a 158 

step function to account only for upstream vertical advection. The responses are estimated via linear 159 

regressions. Methodology adapted from (Lübbecke and McPhaden 2013). 160 

 161 

3. Climatology 162 

Atmosphere 163 

Boreal spring and boreal summer are the two seasons which are very difficult to simulate in climate models. In boreal 164 

spring (March-April-May MAM, Fig. 1a), SSTs in the central equatorial Atlantic (CEA) are at their maximum, the 165 
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ITCZ is at its southern most position and close to the equator, and Trade winds in the western TA converge at the 166 

equator. Zonal winds are very weak there, as are cross-equatorial winds in the EEA. It is especially the surface winds 167 

during boreal spring that precondition the ocean state along the equator and thereby determine the strength of coupled 168 

feedbacks in the following summer. 169 

As mentioned above, many state-of-the-art climate models have large difficulties in simulating boreal spring 170 

surface climate, as demonstrated by the ensemble-mean SST biases of the CMIP5 models analyzed here (Fig. 1b, color 171 

shading). We note that the globally averaged SST has been removed from all observational and model datasets before 172 

computing biases to account for the different mean states in the models. The ensemble-mean SSTs in the coastal 173 

upwelling areas of the Northern Hemisphere (NH) and Southern Hemisphere (SH) are much too high, reaching biases 174 

of more than 7 K in the Benguela upwelling area, presumably due to too weak alongshore winds. Off-equatorial western 175 

TA SSTs are too cold with typical biases of 1 K in the northwest. The ITCZ is located too far south (Fig. 1b, contours), 176 

thereby inhibiting easterly surface winds in the EEA and in turn equatorial upwelling, which gives rise to a warm SST 177 

bias on the order of 1 K that intensifies near the coast. Additionally, a large dry bias over South America is evident. 178 

The picture derived from the lowest resolution version of the KCM (experiment L, Fig. 1c) is rather similar to 179 

that obtained from the CMIP5 models. There are, however, noticeable differences. For example, stronger westerly 180 

winds and more rainfall over the EEA are simulated. When increasing the horizontal resolution to T159, but keeping the 181 

coarse vertical resolution (experiment M, Fig. 1d), SST biases only slightly reduce. The dry bias over northern South 182 

America reduces due to increased large-scale precipitation at orography (not shown), the wet bias over the Gulf of 183 

Guinea becomes smaller, and the excessive rainfall band moves slightly northward in the western TA. The western 184 

equatorial Atlantic (WEA) westerly wind bias remains. 185 

SST biases are substantially reduced only when we additionally enhance the vertical resolution from L31 to 186 

L62 (experiment M-V, Fig. 1e), especially in the coastal upwelling regions of the eastern TA. Further improvement is 187 

seen at a horizontal resolution of T255 with a vertical resolution of L62 (experiment H-V, Fig. 1f), most notably in the 188 

eastern TA where also the cold NH SST bias near 20°N strongly reduces. 189 

SSTs in the EEA and along the coast of southwestern Africa reach their minimum during boreal summer (July-190 

August-September JAS), which is associated with the development of the cold tongue, and the ITCZ is at its most 191 

northern position (Fig. 2a). The CMIP5 models’ warm SST biases are largest during boreal summer and cover the entire 192 

EEA and SETA (Fig. 2b) as it is the case in L (Fig. 2c). Increased horizontal resolution in M reduces the warm SST bias 193 

(Fig. 2d). Further reduction of the warm SST bias is achieved when additionally enhancing the vertical resolution (M-V, 194 

Fig. 2e), and the bias becomes still smaller when going to even higher horizontal resolution (H-V, Figs. 2f). The SST 195 

biases diminish to less than 2 K over most parts of the TA in H-V, which is a major advance upon L (Fig. 2c). 196 
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The much reduced warm SST bias enables a sufficiently northward position of the ITCZ which is simulated at 197 

about the correct position in H-V, although with larger rain rates than observed especially over the ocean, a known 198 

feature of the atmosphere model ECHAM5 (Biasutti et al. 2006; Hagemann et al. 2006). Once again, it is only the 199 

atmosphere model resolution that was varied in the experiments; the ocean model resolution was kept identical. A major 200 

result from this study is that enhancing atmosphere model resolution, both horizontal and vertical, seems to be a key to 201 

significantly reduce Tropical Atlantic sector surface climate biases. 202 

The seasonal migration of the ITCZ is crucial to the development of the cold tongue. Cross-equatorial (Trade) 203 

winds, associated with an ITCZ located sufficiently north, generate coastal upwelling and thereby cool the surface 204 

(Philander and Pacanowski 1981). The ITCZ in the EEA is predominantly located in the NH, it only extends into the 205 

SH during boreal winter and spring (Figs. 3a,b). The two investigated observational datasets differ mainly in rainfall 206 

magnitude, with TRMM having a larger maximum in May/June (Fig. 3b). Cross-equatorial winds are weak during 207 

boreal spring and become much stronger in May/June. The lowest-resolution model L simulates a too southern rainfall 208 

band all year round (Fig. 3c), which is associated with a lack of cross-equatorial winds during boreal winter and spring. 209 

Instead westerly winds are simulated at the equator. The rainfall band narrows at higher horizontal resolution (M, Fig. 210 

3d) and the two rainfall maxima are better represented. Although the SST bias in the SETA is somewhat reduced (Figs. 211 

1d, 2d), the remaining SST bias still prevents the northward extension of rainfall into the Sahel region (Steinig et al. 212 

2017, in prep.) and cross-equatorial winds are still poorly simulated in boreal spring. A sufficiently northern position of 213 

the ITCZ in boreal summer and only slightly overestimated rainfall south of the equator during boreal winter and spring 214 

only is simulated in M-V and H-V (Figs. 3e,f), the two model configurations which employ the higher vertical 215 

resolution L62. 216 

Furthermore, the overall three-dimensional wind structure is well reproduced at L62, as shown for boreal 217 

spring (Fig. 4). In particular, at high vertical resolution easterly surface winds become strong enough in boreal spring 218 

and boreal summer (Fig. 5a) to generate sufficient equatorial upwelling which cools the surface. This is one reason for 219 

the steep seasonal cycle of SST in the ATL3 region being well reproduced in M-V and H-V (Fig. 5h, red and purple 220 

lines). Higher vertical resolution helps to strengthen cross-equatorial winds, whereas a higher horizontal resolution 221 

improves the space-time structure of rainfall (in terms of latitudinal position and double maximum), as can be inferred222 

from H and H-V (Figs. 3e,f). Rainfall rates are in general too high over the Gulf of Guinea and further increase with 223 

higher horizontal resolution (Figs. 1,2). This also is the case in the corresponding AGCM-only simulations with 224 

observed SSTs (not shown). In the uncoupled AGCM experiments, however, the overall space-time structure of rainfall 225 

is well simulated even at lower resolution, but the second rainfall maximum in boreal summer only develops in M-226 

V(A), and enhanced vertical resolution does again help to strengthen the cross-equatorial winds in late boreal spring. 227 
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Steinig et al. (2017, in prep.) in a forthcoming paper presents the sensitivity of the West African Monsoon and 228 

associated Sahel rainfall to atmosphere model resolution using the same simulations as those discussed here. 229 

A latitude-height section in the western TA (40°W-10°W) shows the large extent of significant zonal wind 230 

(color shading) from the surface up to about 250 hPa during boreal spring (MAM) in reanalysis (Figs. 4a,b). Zonal wind 231 

is larger near the surface in the SH than in the NH. There is, however, some uncertainty. For example, 20CRv2 provides 232 

a twice as strong zonal wind at about 700 hPa (Fig. 4b). The zonal wind in the equatorial region is reversed and 233 

westerly at the surface in L (Fig. 4c), and these westerlies extend to a height of about 700 hPa in the SH. Outside the 234 

equatorial region, zonal wind is reasonably well simulated. The westerly bias is still present in M (Fig. 4d), and also M-235 

V but with further reduced magnitude (Fig. 4e). Only experiment H-V, the simulation with high horizontal and vertical 236 

resolution, has an overall good representation of the zonal wind at all heights (Fig. 4f). 237 

Meridional winds converge north of the equator at 4°N (Figs. 4a,b), and this is the location of maximum 238 

rainfall (red line in Fig. 4, right scale). As for zonal wind, there is some uncertainty in the rainfall data. The TRMM 239 

dataset is much better resolved than GPCP, but only available for a short time period, and has a larger maximum than 240 

that in GPCP. Further, TRMM depicts a secondary maximum slightly south of the equator (Fig. 4a). All KCM 241 

configurations overestimate rainfall in the SH (red dashed lines in Figs. 4c-f). In line with that, vertical velocities are 242 

too strong south of the equator. Excessive rainfall in the SH is somewhat reduced and two maxima are simulated in H-243 

V, with one maximum in the NH (Fig. 4f), indicating some improvement relative to the model versions with coarser 244 

resolution. 245 

In order to understand the westerly surface wind bias in the equatorial region we next investigate zonal 246 

equatorial SLP, SST and precipitation gradients between the eastern and western part of the basin. The convention is 247 

that a negative (positive) SLP gradient would induce westerly (easterly) wind. In contrast, a negative (positive) SST 248 

gradient would induce easterly (westerly) winds, as would a negative (positive) precipitation gradient. Observations 249 

indicate that zonal wind is easterly all year-round and weakest in boreal spring (black line in Fig. 5a). The easterly flow 250 

in boreal spring is against the SLP (Fig. 5c) and SST (Fig. 5g) gradients, both favoring westerly winds. Only the 251 

equatorial precipitation gradient tends to support easterlies in boreal spring (Fig. 5e). 252 

A surface wind bias over the WEA in boreal spring also is seen in the uncoupled AGCM simulations (Fig. 5b). 253 

The SST gradient in these integrations by definition is realistic, the SLP gradient reasonably well simulated (Fig. 5d) 254 

and not sensitive to changes in resolution. However, the precipitation gradient independent of resolution depicts the 255 

wrong sign during boreal spring (Fig. 5f), which counteracts the effects of the SST and SLP gradients. It is interesting to 256 

note, that the zonal wind and the SLP gradient are in line in the rest of the year, while only in boreal spring SLP 257 

gradient is negative and zonal wind is at its minimum. Independent of resolution zonal wind is more negative (Fig. 5b), 258 
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as SLP gradient is more positive (Fig. 5d), except for spring, in the uncoupled simulations, still zonal wind changes with 259 

resolution. Thus, the weakening of zonal wind in boreal spring is in line with the SLP forcing, plus an additional 260 

modification as for example advection/entrainment of zonal easterly momentum. A stronger consistency between zonal 261 

wind at 850hPa and the SLP gradient throughout our uncoupled configurations further supports this (Fig. S3a,b). 262 

Richter et al. (2014) found no dominant impact of zonal SLP and SST gradients on easterly surface winds in 263 

MAM (nor their climatology and variability) either. They propose a large role of meridional and more importantly 264 

downward zonal momentum transport from the free troposphere to maintain the easterly surface winds. The westerly 265 

wind bias is linked in Richter et al. (2014) to excessive rainfall over the ocean south of the equator and deficient rainfall 266 

over equatorial South America. We find precipitation over these regions does hardly change with increased resolution 267 

(not shown) but the westerly bias significantly reduces, suggesting a larger influence of maximum rainfall position and 268 

vertical zonal momentum transport at higher resolution. This is further supported by the well resolved easterly jet at 700 269 

hPa north of the equator, while there are much larger wind biases south of the equator at a similar height and below 270 

(Figs. 4c-f). Richter et al. (2014) additionally emphasize the large contribution of internal atmospheric variability to the 271 

free troposphere influence on the boundary layer, which we conjecture has to be adequately resolved. Further analysis 272 

of the processes contributing to the zonal momentum budget, such as vertical mixing, and the use of a boundary layer 273 

model (as in Stevens et al. 2002) are required to shed more light on this issue. 274 

Vertical winds in the western TA north of the equator also strengthen with increased atmosphere model 275 

resolution in the uncoupled simulations, leading to two rainfall maxima almost symmetrically located about the equator 276 

(not shown). This goes in line with stronger southerly winds which transport zonal momentum directly into regions of 277 

largest westerly wind bias. Zermeño-Diaz and Zhang (2013) could not find such a relationship between the ITCZ and 278 

westerly wind bias in AGCMs, but they also highlight the deficient entrainment of zonal momentum from the free 279 

troposphere into the boundary layer, even in the case of well reproduced total rainfall amounts and diabatic heating 280 

profiles over equatorial South America. Vertical transport of zonal momentum is tightly connected to convective 281 

activity, which is important for the impact of zonal momentum transport, meridional and vertical, on surface winds (and 282 

the ocean) in areas with maximum rainfall. In the KCM version H-V, using the highest horizontal and vertical 283 

resolution, meridional winds, uplift and maximum rainfall in the WEA are simulated at about the correct location and 284 

with realistic strength, as are the easterlies (Fig. 4f). 285 

During boreal spring SLP, precipitation and SST gradients (Figs. 5c,e,g) favor westerly flow in L and M, 286 

which the models seem not to be able to withstand. The SST gradient is weaker than observed but still positive in M-V 287 

and H-V in boreal spring, the two experiments in which zonal winds have the correct sign (Fig. 5a). Thus, the SST 288 

gradient cannot account for the westerly surface wind bias in boreal spring. The SLP gradients simulated during boreal 289 
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spring are more negative than observed, but improve at higher resolution (Fig. 5c). Changes among the different KCM 290 

versions are most prominent for the zonal precipitation gradient that switches sign from positive in L, M and M-V, 291 

supporting westerly winds, to negative in H-V, supporting easterly winds, (Fig. 5e). In summary, although all three 292 

zonal gradients help achieving easterly surface flow in boreal spring, the precipitation gradient seems to be the most 293 

important contributor. 294 

Surprisingly, zonal wind in boreal summer, autumn and winter is easterly in L and M (green and red lines in 295 

Figs. 5a,c,e,g), albeit an almost zero SLP gradient and positive SST and precipitation gradients, the latter two both 296 

inducing westerly flow. This underlines the role of other processes affecting the seasonal cycle of equatorial zonal wind 297 

such as the interaction of equatorial Atlantic SSTs with the West African Monsoon. Okumura and Xie (2004) conducted 298 

experiments without a seasonal cold tongue development and still zonal wind anomalies appeared in the EEA in May 299 

and June due to zonal momentum transport across the equator and redistribution of rainfall patterns. 300 

Equatorial Atlantic 301 

Improvements in the simulation of the Tropical Atlantic Ocean in response to enhancing atmosphere model resolution 302 

are as remarkable as those in the atmosphere. As noted above, the ocean model configuration was not changed and kept 303 

at 2°×2° resolution in all integrations of the KCM. We investigate the seasonal evolution of the depth of the 23°C-304 

isotherm (Z-23, Fig. 6). In the TA, Z-23 can be used as a proxy for thermocline depth and upper ocean heat content. 305 

Data from SODA (Fig. 6a) and HadEN3 (Fig. 6b) indicate that the equatorial (3°N-3°S) thermocline is deep in the west 306 

and shoals towards the east throughout the calendar year. Z-23 reaches a maximum (minimum) in the west during 307 

boreal summer and fall (spring). The annual-mean slope is a result of the integrated effect of equatorial zonal wind 308 

stress and seasonal depth variations are strongly linked to zonal wind stress variations during the course of a year. A 309 

sudden onset of cross-equatorial winds in relation to the northward displacement of the ITCZ induces surface cooling 310 

via Ekman upwelling south of the equator, increases vertical mixing and also enhances evaporation over the EEA. The 311 

resulting change in SST gradient (Fig. 5g) weakens (strengthens) the easterlies in boreal spring (summer) in the central 312 

and western equatorial Atlantic thereby propagating the cooling signal to the west. Positive (negative) zonal wind stress 313 

anomalies induce downward (upward) eastward traveling EKWs that deepen (shoal) the thermocline to the east and 314 

warm (cool) the SST, especially in the east where the thermocline is shallow. 315 

In experiments L and M (Figs. 6c,d) Z-23 is too shallow in the west, in line with too weak zonal wind stress 316 

and too deep Z-23 in the east, except in boreal winter, resulting in a too small thermocline tilt across the equator. 317 

Enhanced easterly wind stress in M-V and H-V (Figs. 6e,f) significantly lowers thermocline depth in the west while it is 318 

hardly changed in the east, thereby creating a stronger west-east tilt in Z-23. A much too deep thermocline in the east 319 

during boreal spring exists in all simulations, with H-V depicting the smallest bias. The reason likely is the reversal of 320 
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the easterly wind stress in the CEA in March/April that excites downwelling EKWs which deepen the thermocline in 321 

the east approximately 1 to 2 months later. At the same time, local Ekman pumping due to too strong westerly wind 322 

stress in the very east further deepens the thermocline there. A delay time of 1 to 2 months to account for crossing the 323 

equator is consistent with observational studies (Servain et al. 1982; Keenlyside and Latif 2007). The theoretical phase 324 

speed of the second baroclinic Kelvin wave of 1.2 to 1.5 m/s, considered to be dominant in the EEA (Doi et al. 2007; 325 

Polo et al. 2008), would yield a crossing time of about 1 month. 326 

Two further features are noted. First, maximum thermocline tilt occurs about 1-2 months later in the 327 

simulations with the KCM in comparison to SODA and HadEN3. Second, the shallowest Z-23 in SODA and HAdEN3 328 

is close to the coast in July/August, whereas it is shifted into the ocean interior in the model runs and simulated in 329 

September/October. This could be the result of spurious waves originating in the CEA excited by zonal wind stress 330 

biases. The eastward traveling Kelvin wave signal is reflected at the African coast, partly travels back as Rossby waves 331 

and displaces the Z-23 maximum in all model integrations to about 10°W. 332 

The SST bias in boreal spring in the lowest-resolution configuration (L, Fig. 1c) is small at the equator in the 333 

east and negative (cold bias) in the west. However, the longitude-depth section along the equator reveals the existence 334 

of a strong subsurface warm bias in the east in experiments L and M-V (Figs. 7a,c). This warming is related to the too 335 

deep thermocline, as indicated by Z-23 (Figs. 6c,e). The subsurface bias in the east is smaller in experiment M (Fig. 7b) 336 

in which the thermocline depth bias is also smaller (Fig. 6d). In experiment H-V (Fig. 7d), the subsurface temperature 337 

bias is almost absent. We note that full temperatures and thermocline depth peak in May (not shown). 338 

The western cold bias increases with depth, reaching its maximum at 90 m depth in experiment L (Fig. 7a). 339 

Increased horizontal resolution in the atmosphere only slightly reduces the cold bias (M, Fig. 7b). Higher vertical 340 

atmosphere model resolution in M-V and H-V (Figs. 7c,d) eliminates the western cold bias by lowering the thermocline 341 

in the west (Figs. 6e,f). Although temperature biases are strongly alleviated in H-V, a cold bias is still observed near the 342 

surface and a warm bias below the mixed layer. This could be an indication of too strong vertical mixing in the ocean, 343 

which would diffuse the thermal structure, an effect that does not clearly show up if thermocline tilt is strongly biased. 344 

In SODA, the core of the eastward flowing Equatorial Undercurrent (EUC) resides at about 35°W and 60 m 345 

depth with a peak velocity of 60 cm/s, and the EUC extends over almost the entire basin and displayed depth range (Fig. 346 

7e). Upper ocean zonal currents are not well simulated in experiments L and M (contours, Figs. 7a,b). The zonal 347 

currents in L are unrealistically strong at the surface in the eastern basin and an undercurrent only is seen in west. Peak 348 

velocities are 20 cm/s at 35°W at about 50 m depth, but 40 cm/s at 10°E near the surface. The near-surface maximum 349 

reduces in M (Fig. 7b), but the current structure basically remains as in L. Experiments M-V and H-V (Figs. 7c,d) show 350 

large improvements in the zonal currents. EUC core velocities increase to 35 and 45 cm/s in M-V and H-V, 351 
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respectively, and the eastward current extends to larger depth. Noticeable differences to SODA remain. However, biases 352 

in SODA also may contribute to these differences. 353 

During boreal spring, the WEA experiences easterly winds, the CEA predominantly northward winds and the 354 

EEA very weak westerly winds (Figs. 6a,b). This leads in SODA to strong upwelling in the western part of the basin 355 

and weak downwelling near the African coast (vectors, Fig. 7e). The westerly surface wind bias in L and M (Figs. 6c,d) 356 

results in too weak upwelling in the west and even in downwelling in the CEA and EEA (Figs. 7a,b) due to the reversal 357 

of zonal winds (Figs. 6c,d). Only H-V depicts a reasonable representation of vertical velocities in the EEA that is 358 

somewhat consistent with SODA (Fig. 7d). Enhanced easterly wind stress owing to higher vertical atmosphere model 359 

resolution in M-V and H-V (Figs. 6e,f) strengthens upwelling (Figs. 7c,d) to a similar level as in SODA (Fig. 7e). 360 

Benguela upwelling region 361 

Largest SST biases in the Benguela upwelling region generally are seen during boreal summer. Three major 362 

mechanisms have been suggested to play a role in that area: i) excessive net surface shortwave radiation due to too little 363 

low-level cloud cover, ii) remote influences by advection of subsurface biases (meridional current) and wave 364 

propagation (vertical current), and iii) insufficient representation of meridional current structure. Regarding errors in 365 

marine stratocumulus clouds, all our model configurations simulate too little cloud cover (not shown). In fact the only 366 

noticeable changes in the surface heat budget originate from reduced sensible and latent heat fluxes in M-V and H-V 367 

(not shown) as a result of the much smaller SST biases (Figs. 1e,f, 2e,f). The remaining summer SST bias of 1-2 K may 368 

be due to the low-level cloud cover bias and possibly too weak offshore advection. 369 

To explore remote influences on the Benguela upwelling region we depict meridional sections averaged over a 370 

4° longitude band along the African coast (Fig. 8). While in experiment L the SST bias is strongest in boreal summer 371 

(Fig. 8a), there is a much stronger temperature bias below the surface in boreal spring (Fig. 8e), as in many state-of-the-372 

art models (i.e. in CMIP5; Xu et al. 2014b; Xu et al. 2014a; Toniazzo and Woolnough 2013). We only show for boreal 373 

spring the lowest-resolution KCM configuration L, since the biases are strongest in that simulation. The mechanisms 374 

outlined below are similar in the other experiments but with smaller amplitude. As in the equatorial Atlantic, M-V and 375 

H-V feature the smallest upper ocean temperature biases (Figs. 8c,d). In theory, EKWs forced in the WEA/CEA would 376 

need about 1-2 months to reach the eastern coast where part of the energy is reflected into southward traveling CTWs. It 377 

approximately takes one month for CTWs to arrive at the northern Benguela upwelling region (Bachèlery et al. 2015), 378 

and about another month until the wave signal influence the SST (Florenchie et al. 2004). These considerations also 379 

suggest a remote contribution of equatorial wind stress biases during boreal spring to the temperature biases along the 380 

African coast in JAS in the simulations with the KCM. Fig. 8. highlights the limited southward propagation range of 381 

CTWs in our model at around 15°S, in line with previous studies (Bacherlery et al., 2015; Florenchie et al., 2004; Polo 382 
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et al., 2008). The remotely forced bias remains at higher resolution as the equatorial region is still biased to some 383 

extend, while the local bias south of 15°S is largely eliminated. 384 

The spatial structure and temporal variability of coastal currents and upwelling zones in ocean models is very 385 

sensitive to the nearshore wind pattern. We investigate wind stress, wind stress curl (WSC) and depth-integrated (15 m 386 

– 216 m) meridional velocities in boreal summer (JAS, Fig. 9), when SST biases are largest. The WSC pattern at low 387 

atmosphere model resolution (L, Fig. 9d) is far too broad compared to QuikSCAT, ERA-interim and SODA (Figs. 9a-388 

c). The resulting strong southward coastal current at depth (Fig. 9i) as well as a southward surface current (not shown) 389 

are consistent with a Sverdrup balance-governed situation in L (Small et al. 2015). Comparing the wind stress and WSC 390 

patterns in M, M-V and H-V (Figs. 9e-g) to those in L, coastal trapping of WSC south of about 15°S is clearly visible 391 

and related to the much better resolved orography at higher horizontal resolution. This in turn weakens the Sverdrup 392 

balance-related flow there, and equatorward subsurface currents (Figs. 9j-l) as well as surface currents (not shown) 393 

develop. Larger WSC in H-V strengthens the poleward flow, while larger wind stress strengthens the Benguela current 394 

flowing equatorward in M-V and H-V. Although wind stress and WSC patterns are much more realistic, the coarse 395 

ocean model resolution of 2° inhibits the simulation of the narrow structure of the coastal currents and their strength. 396 

The improved currents due to enhanced wind stress and WSC at higher horizontal resolution clearly impacts 397 

SST (Figs. 9o-q) and the subsurface temperature bias (Figs. 8b-d) along the African coast in M, M-V and H-V by 398 

advecting less (more) warm (cold) water from the north (south) into the Benguela upwelling system. In L the erroneous 399 

southward current (Fig. 9i) advects the subsurface warm bias signal (Fig. 8a,e), originating from the equatorial region, 400 

into the upwelling region where it contributes to the severe warm bias. A small change in the latitudinal position of the 401 

so-called Angola-Benguela-Front has a large effect on SST. The remaining SST bias to a large part is confined to the 402 

coast. Here, due to the coarse ocean model resolution, vertical velocity (Fig. 8) cannot benefit from the improved wind 403 

stress pattern at higher atmosphere model resolution. The vertical velocity increases from L to M but shows only minor 404 

changes when further enhancing the atmosphere model resolution in M-V and H-V. Small et al. (2015) showed that a 405 

realistic WSC pattern along the African coast via sufficient atmosphere model resolution needs an eddy resolving ocean 406 

to well simulate the Benguela upwelling system. A recent study by Patricola and Chang (2016) highlights the 407 

importance of atmosphere resolution to resolve the narrow band of WSC associated with the Benguela low-level jet. 408 

Krebs et al. (2017, submitted), using an ocean-only model set up with realistic wind forcing, support the need for higher 409 

horizontal ocean model resolution by showing that a 1/10° resolution is necessary to realistically simulate coastal 410 

upwelling. 411 

4. Interannual variability 412 
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Fig. 10 presents the long-term standard deviation of monthly SST anomalies in the ATL3 region as a function 413 

of the calendar month. There is a marked seasonal phase locking in the observations (black line). SST variability starts 414 

to rise from low levels in April, reaches its maximum in June and decreases thereafter until it again reaches low levels 415 

in September. We note a small secondary variability maximum in November to January. Experiments L and M 416 

employing low vertical resolution (L31) in the atmosphere model depict weak SST variability in the ATL3 region 417 

throughout the year and thus fail to simulate seasonal phase locking. In contrast, the KCM versions with higher vertical 418 

atmosphere model resolution (L62) do feature seasonal phase locking with a summer peak of similar magnitude as 419 

observed. However, there is a delay such that the summer peak occurs 2 months (1 month) after the observed peak in 420 

experiments M-V (H-V). The delay amounts to 3 months when the KCM is integrated in an L-V (T42 L62) 421 

configuration (Harlaß et al. 2015, Fig. S3). Thus, seasonal SST phase locking in the ATL3 region only is simulated 422 

when the vertical resolution of the atmosphere model amounts to L62. Increasing the horizontal atmosphere model 423 

resolution reduces the delay of the variability maximum at high vertical atmosphere model resolution, suggesting that 424 

both high vertical and horizontal atmosphere model resolution are important to realistically simulate seasonal SST 425 

phase locking in the ATL3 region. This is further illustrated by regressing basin-wide SST anomalies on the ATL3 SST 426 

anomaly index that emphasizes the large-scale character of the interannual variability with two distinct maxima in the 427 

CEA and SETA, which is only realistically simulated in terms of pattern and amplitude at higher vertical atmosphere 428 

resolution (Fig. S1). 429 

In observations the surface wind response to ATL3 SST anomalies, as shown by linear regression, is larger in 430 

magnitude and spatial extent in the NH than in the SH (Figs. 11a,b). In the latter, the wind response is mostly confined 431 

to the WEA and westerly anomalies dominate just south of the equator. Experiments L and M (Figs. 11c,d) show a 432 

predominantly meridional wind response north of the equator, missing the important zonal component to weaken the 433 

easterly Trades, and do not capture the SH response in the WEA. Experiments M-V and H-V show a more realistic 434 

response in terms of wind direction and area extending from the Brazilian coast to about 10°W, but partly overestimate 435 

surface wind strength (Figs. 11e,f). H-V outperforms M-V with regard to the latitudinal position of strongest zonal wind 436 

anomalies located directly south of the equator. Surface wind anomalies also differ among configurations when the 437 

atmosphere model is forced by observed SSTs (Fig. S2). Experiment L(A) shows a too strong (weak) response of the 438 

zonal (meridional) wind anomalies, M(A) only reduces these biases in the SH, and M-V(A) has the most reasonable 439 

surface wind response. This seems to have a beneficial effect in coupled mode. 440 

The rainfall anomaly pattern associated with ATL3 SST variability reveals an increase along the equator and 441 

south of it in the western TA (Figs. 11a,b). Reduced rainfall is observed north of the main positive anomaly, indicating 442 

a southward shift of the ITCZ. The largest rainfall anomaly occurs west of the ATL3 region. All model configurations 443 
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overestimate the magnitude of rainfall anomalies in coupled (Figs. 11c-f) and uncoupled (Fig. S2) mode, a common 444 

bias in atmosphere models (Biasutti et al. 2006). Experiments L and M simulate strong equatorial rainfall anomalies that 445 

extend into the ATL3 region and fail to reproduce the rainfall anomalies in the east north of the equator (Figs. 11c,d). 446 

Experiments M-V and H-V also exhibit noticeable biases depicting only weak signals over South America and a 447 

concentration of rainfall anomalies north of the equator, but they simulate a reasonable rainfall response in the EEA 448 

(Figs. 11e,f). The lack of anomalous rainfall over South America also is evident in the uncoupled AGCM runs with 449 

prescribed observed SSTs (Fig. S2). The erroneous pattern over the South American continent in M-V and H-V is 450 

linked to the locally insufficient diabatic heating in response to ATL3 SST variability (not shown). 451 

We next investigate the 3-dimensional wind response to ATL3 SST anomalies, as illustrated by a latitude-452 

height section at 40°W (Fig. 12). This is important to understand the surface wind anomalies. Zonal wind anomalies 453 

(color shading) obtained from ERA-interim (Fig. 12d) depict a baroclinic response with anomalous westerlies in the 454 

lower and anomalous easterlies in the upper troposphere, consistent with Xie and Carton (2004). The easterly anomalies 455 

are more confined to the equatorial region in comparison to the westerly anomalies. The uncoupled AGCM simulations 456 

(Figs. 12a-c) can represent gross aspects of the observed pattern. The coupled simulations at low vertical atmosphere 457 

model resolution L and M (Figs. 12e,f), perform very poorly, possibly also because they fail to simulate strong 458 

interannual SST variability. The L62 coupled model versions M-V and H-V (Figs. 12g,h) reproduce the observed 459 

response pattern well, but with smaller amplitude in the upper troposphere. 460 

The zonal wind response is essentially symmetric about the equator, whereas the meridional and vertical wind 461 

response is asymmetric (Fig. 12d). Predominantly meridional winds up to about 700 hPa blowing towards the equator in 462 

the SH is observed, while there is a weak but significant downward component in the NH, increasing with height. 463 

Surface wind convergence is observed south of the equator producing uplift. Only the higher-resolution uncoupled 464 

AGCM runs (Figs. 12b,c) reproduce the meridional wind response south and north of the equator down to the surface, 465 

and only experiment M-V(A) shows the downward motion in the NH (Fig. 12c). Since experiments M(A) and M-V(A) 466 

better represent the ITCZ in the WEA (not shown), they also generate an uplift signal just south of the equator. This is 467 

missing in the coupled simulations M-V and H-V (Figs. 12g,h), because of the absent rainfall response in that area 468 

(Figs. 11e,f). Instead, the response is shifted further to the east. Meridional and vertical wind anomalies in experiments 469 

M-V and H-V are consistent with observations, with H-V being the more realistic simulation. 470 

The above analysis suggests that two anomalous wind systems need to be resolved in the WTA. First, the near-471 

surface wind anomalies in and slightly above the boundary layer blowing in both hemispheres from the subtropics 472 

towards the equator. Second, the anomalous downward wind blowing in the NH from the free atmosphere into the473 

boundary layer. The latter can only be resolved with the higher vertical atmosphere model resolution (in both the 474 
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coupled and uncoupled simulations). Our results support the need of resolving boundary layer entrainment of zonal 475 

momentum from the free troposphere in the WTA, which impacts strength and variability of surface winds (Stevens et 476 

al. 2002; Zermeño-Diaz and Zhang 2013; Richter et al. 2014; Meynadier et al. 2015 for EEA), as easterlies and their 477 

interannual variability are to a large extent influenced by the meridional advection and vertical mixing of zonal 478 

momentum. 479 

TA SST variability not only is driven by wind stress but also thermodynamically (e.g. Nnamchi et al. 2015). 480 

We consider the two most important thermodynamic forcing agents, net surface shortwave radiation (SW) and latent 481 

heat flux (LH). SW is closely linked to changes in cloud cover. SW decreases almost along the entire equator and 482 

increases to the north and south of it during positive phases of the ATL3 index (Figs. 13a,b). Variability in SW is also 483 

connected to the Namibian stratocumulus region (Bellomo et al. 2015). ERA-interim and CERES_EBAF substantially 484 

differ in magnitude in the WEA and SETA. The uncoupled AGCM (Figs. S4a-c) and coupled model simulations (Fig. 485 

13c-f) both have difficulties in simulating the SW response to ATL3 SST anomalies, especially in the SETA and partly 486 

due to large cloud cover biases. Poor simulation of marine stratocumulus cloud cover in that region is a common and 487 

long-standing problem of climate models (Ma et al. 1996; Huang and Hu 2007; Toniazzo and Woolnough 2013; Xu et 488 

al. 2014a) and unfortunately increasing atmosphere model resolution does not ameliorate the cloud bias (not shown). 489 

The LH response to ATL3 SST anomalies constitutes a damping on the SST anomalies (negative LH is from 490 

the ocean to the atmosphere) in the EEA and SETA, whereas LH drives SST over the WEA (Figs. 14a,b). All four 491 

coupled experiments capture the basic spatial pattern, but only M-V and H-V simulate reasonable amplitude (Figs. 14c-492 

f). It is only configuration H-V that depicts two distinct localized negative LH anomaly extremes, one in the CEA and 493 

the other in the SETA. The too strong surface wind response in the central northern TA in M-V and H-V as well as the 494 

slightly broader area of positive SST anomalies also is reflected in the LH response pattern. The two uncoupled AGCM 495 

runs L(A) and M(A) (Figs. S4d,e) overdo the response in the WEA owing to the stronger surface wind response in that 496 

region, and they miss the negative LH signal over the SETA. It is only the uncoupled AGCM experiment M-V(A) (Fig. 497 

S4f) depicting a reasonable representation of the LH response. 498 

Elements of the Bjerknes feedback and Bjerknes index 499 

The positive Bjerknes feedback consists of three elements. The first feedback (Figs. 15a,b), describing the relation 500 

between SST anomalies in the EEA (ATL3 region) and zonal wind stress anomalies in the WEA, is reasonably well 501 

simulated in all coupled runs (Figs. 15c-f), but experiments L and M underestimate the strength of the zonal wind stress 502 

response in the WEA. We note large biases in the off-equatorial regions in all experiments, which are not discussed 503 

here. The second feedback relates zonal wind stress anomalies in the WEA to thermocline depth anomalies represented 504 

by Z-23 anomalies (Figs. 16a,b). Anomalously strong zonal wind stress deepens (shoals) the thermocline in the west 505 
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(east), thereby increasing (decreasing) zonal thermocline tilt. In contrast to the first element of the Bjerknes feedback, 506 

there are pronounced differences between the L31 and L62 configurations of the KCM, which is expected as they 507 

strongly differ in thermocline depth climatology (Fig. 6). In L and M, the Z-23 response is too weak in the WEA and in 508 

the Benguela upwelling region. M-V and H-V (Figs. 16e,f) simulate a pattern close to that calculated from ocean 509 

reanalysis data. On the downside, H-V tends to overestimate the positive Z-23 anomalies in the EEA. 510 

Figs. 17a,b show the third Bjerknes feedback element: subsurface temperatures (represented by thermocline 511 

depth anomalies) impacting SST, termed thermocline feedback. Ocean reanalysis depict two maxima, one in the CEA 512 

and the other in the Benguela upwelling region. Interestingly, in experiments L and M the thermocline feedback is well 513 

simulated in the Benguela upwelling region but not in the CEA (Figs. 17c,d). Clearly, only M-V and H-V (Figs. 17e,f) 514 

realistically reproduce the thermocline feedback in both regions, which is probably due to the better climatological 515 

thermocline depth pattern, and also stronger cross-equatorial winds (Fig. 3) and enhanced upwelling (Fig. 7) in the 516 

EEA. 517 

In summary, only the high-vertical resolution (L62) atmosphere model configurations of the KCM, M-V and 518 

H-V, reasonably well simulate the whole Bjerknes feedback loop, in contrast to most CMIP5 models which exhibit 519 

large biases in this respect (Deppenmeier et al. 2016). Most CMIP5 models reasonably well reproduce the first two 520 

elements of the Bjerknes feedback, despite erroneous annual cycles of SST and wind stress (as well as their variance). 521 

However,  none of the CMIP5 models yields a realistic representation of the thermocline feedback (Deppenmeier et al. 522 

2016). Chang et al. (2006) pointed to the importance of subsurface and surface coupling to amplify initial SST 523 

anomalies and trigger the positive feedback. This important link only is present in experiments M-V and H-V (Figs. 524 

S5c-d). In these coupled runs, the seasonal cycle of thermocline depth variability also is improved exhibiting a summer 525 

maximum (Fig. S3c). However, large biases remain in Z-23, with two little variability in boreal fall and early winter. 526 

The Bjerknes Index (BJ index) is calculated for the ATL3 region from SODA (Fig. 18a) and the different 527 

configurations of the KCM. The BJ index does not necessarily well describe the feedbacks in all climate models 528 

(Graham et al. 2014), as it has been derived by assuming the recharge oscillator paradigm and because it is based on 529 

assuming linearity. Yet it is a useful tool to compare models with reanalysis data and to find differences among models. 530 

As in LMP13, the largest positive feedback in SODA is the thermocline feedback (TF). The two negative feedbacks are 531 

the dynamical and thermal damping (DD and TD, respectively), both having similar magnitude in SODA. TD relates 532 

the anomalous net surface heat flux and SST anomalies, with LH and SW contributing the most. DD is due to mean 533 

ocean currents, where mean upwelling dominates. The Ekman feedback (EF) and zonal advection feedback (ZAF) are 534 

the remaining terms and positive. EF describes how wind-induced changes in upwelling and consequently SST 535 

anomalies are related to the mean vertical temperature gradient. ZAF relates the wind-induced changes of zonal currents 536 
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on SST and their impact on the zonal SST gradient. The BJ index is the sum over all terms (DD+TD+ER+ZAF+TF) 537 

and is negative for the TA. Our values calculated from SODA (Fig. 18a) correspond to those of LMP13 but slightly 538 

differ in magnitude due to different treatment of MLD, which is not further discussed here. Contrary to LMP13, we 539 

restrict our analysis to a single SODA version and use ERA40 for surface heat fluxes, since the latter was the forcing 540 

for the SODA version used here (changed to QuickSCAT winds after 2001). Hence error bars are much smaller. 541 

Ultimately, it is the relative contribution of the individual terms that is of importance.  542 

The different KCM configurations basically yield the same relative importance of the contributing feedbacks 543 

as SODA. There is a clear distinction with regard to vertical atmosphere model resolution. In L and M (Figs. 18b,c), 544 

both damping terms are too small and the positive feedbacks of comparable size compared to SODA, and hence the BJ 545 

index (which generally is negative, representing a damped mode of variability) is smaller in magnitude. In contrast, the 546 

BJ index is three times larger in magnitude in the higher-vertical atmosphere model resolution (L62) integrations, M-V 547 

and H-V, owing to much larger negative DD and TD which are in better agreement with SODA (Figs. 18d,e). Vertical 548 

mixing of colder water dominates the DD and LH flux the TD (not shown). The positive TF also becomes larger due to 549 

a much stronger SST response to wind stress anomalies (Figs. 15e,f), higher SST sensitivity to subsurface temperature 550 

anomalies (Figs. S5c,d) and a stronger zonal thermocline tilt (Figs. 6e,f). 551 

Seasonal analysis reveals that the BJ index can become positive in boreal spring in experiments L and M due to 552 

DD and especially TD (Fig. S6). The BJ index stays negative year round in M-V, H-V and SODA, with weakest 553 

amplitude (least stable) in summer, exactly the time of a well-developed cold tongue and largest SST variability. In 554 

SODA, this is primarily due to the large positive TF during April to June, peaking in May, one month prior to 555 

maximum SST variability in June. Especially the negative feedbacks, DD and TD, lack pronounced seasonal variation 556 

in SODA. Seasonal variability of TF is stronger in M-V and H-V, and it is more persistent and delayed by 1 to 2 557 

months, respectively, as is the maximum SST variability in the ATL3 region (Fig. 10).558 

However, the BJ index analysis remains inconclusive to some extent. For example, the BJ index, counter to 559 

intuition, is larger in magnitude, i.e. more damped in experiments M-V and H-V (Fig. 18) in which the strength of 560 

interannual SST variability is reasonably well simulated. The same is true for SODA and could mean that remote 561 

forcing from e.g. the extratropical  Atlantic or the Pacific would be needed to stimulate the Atlantic zonal mode. 562 

5. Summary and discussion 563 

We have shown that increasing atmosphere model resolution in the Kiel Climate Model (KCM), both horizontal and 564 

vertical, greatly improves simulation of the mean state and interannual variability in the tropical Atlantic (TA). The 565 

ocean component has the same coarse zonal resolution (2°) in all configurations of the KCM investigated here. In 566 

particular, the large warm SST biases in the eastern equatorial Atlantic (EEA) and southeastern tropical Atlantic 567 
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(SETA), long-standing problems in many climate models, do drastically reduce at sufficiently high horizontal and 568 

vertical atmosphere model resolution. When increasing the horizontal atmosphere model resolution, but keeping coarse 569 

vertical atmospheric resolution, the effect on the SST biases is modest. A substantial reduction of the SST biases can 570 

only be achieved when employing high vertical resolution and high horizontal atmosphere model resolution. The SST 571 

biases, which originally had magnitudes of up to 7 K in the Benguela upwelling region, diminish to less than 2 K. We 572 

speculate that the remaining SST biases could be, at least partly, due to the coarse horizontal ocean model resolution 573 

and insufficient low-level clouds. This study suggests that high resolution in the atmospheric component of climate 574 

models could be a key to alleviate systematic biases in the TA sector. 575 

A major improvement is the correction of the westerly surface wind bias in boreal spring over the western 576 

equatorial Atlantic (WEA). This wind bias does not primarily have its origin in the incorrect zonal SST gradient along 577 

the equator simulated in coupled mode, since the bias also is present in companion simulations with the atmospheric 578 

component (AGCM) of the KCM, integrated in stand-alone mode with prescribed observed SSTs. This set of uncoupled 579 

AGCM experiments enables distinguishing systematic biases originating in the atmospheric component from biases due 580 

to coupling. Of the uncoupled AGCM runs, only the medium horizontal - high vertical resolution configuration M-581 

V(A), adequately represents equatorial surface winds. This improvement is not directly related to zonal SLP, SST or 582 

precipitation gradients along the equator, but rather to a spatial redistribution of rainfall in the WEA and the transport of 583 

zonal momentum, meridional and especially vertical. 584 

The westerly wind bias in the KCM version employing the lowest resolution (L) is strongest north of the 585 

equator and extends southward with altitude. It further coincides with deficient southerly winds that do not penetrate 586 

into the Northern Hemisphere and too weak easterlies at height. Hence, meridional transports and mixing of zonal 587 

momentum from the free troposphere into the boundary layer are too weak. Furthermore, vertical transport of zonal 588 

momentum is linked to convection that is strongest below rainfall and either missing or too weak in the case of a too 589 

southerly rainfall maximum. Vertical transport of zonal momentum also is linked to strong enough zonal winds at 590 

height. Only the KCM configurations M-V and H-V with high vertical atmosphere model resolution are able to resolve 591 

these processes and reasonably well simulate zonal wind stress in the WEA. 592 

A correct latitudinal position of the ITCZ exhibiting a position close to the equator in boreal spring is 593 

important for the meridional winds in the EEA. They impact the onset of the cold tongue in May/June by a sudden 594 

increase of cross-equatorial winds in conjunction with the northward migration of the ITCZ and the onset of the West 595 

African Monsoon. A too southward ITCZ in the KCM configurations L and M does not allow for any seasonal SST 596 

cooling in the EEA. Improved cross-equatorial winds and rainfall north of the equator in the EEA in the higher vertical 597 
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resolution configurations M-V and H-V amplify the cold tongue and support generation of significant interannual SST 598 

variability. 599 

The large improvements in the atmospheric circulation in turn lead to major improvements in the ocean. In 600 

particular, the reduction of the westerly wind bias in the WEA and generally enhanced equatorial wind stress in the 601 

KCM versions M-V and H-V deepens (shoals) the thermocline in the western (eastern) equatorial Atlantic and enables 602 

among others cooling by cross-equatorial winds in the EEA. Subsurface temperature biases along the equator greatly 603 

ameliorate as a result of the stronger thermocline tilt, and zonal currents and upwelling along the equator become 604 

stronger. Since wave activity and other ocean dynamical processes couple the equatorial Atlantic with the SETA, 605 

pronounced improvements also occur in the SETA. However, the largest local effect in that region is due to a much 606 

narrower wind stress curl pattern and enhanced wind stress along the African coast, which is necessary to force a 607 

reasonably well meridional current pattern in the KCM configurations M, M-V and H-V. This can be achieved by 608 

increased horizontal atmosphere model resolution enabling a better resolved (convex) coastline. The enhanced vertical 609 

atmosphere model resolution strengthens alongshore wind stress and in turn meridional currents. 610 

The low-level cloud biases over the subtropics and related radiation biases in the KCM do not significantly 611 

reduce with higher atmosphere model resolution, which emphasizes the need for refining cloud parametrization. The 612 

simulation of reasonable TA SSTs despite the presence of large low-level cloud biases at high atmosphere model 613 

resolution suggests that either the role of the cloud biases may have been overestimated in previous studies or that error 614 

compensation considerably contributed to the much improved SSTs in the KCM versions employing high atmosphere 615 

model resolution. 616 

In the second part of this study, we show how the substantially improved climatology in the TA at higher 617 

atmosphere model resolution allows for significant interannual variability in the KCM. Seasonal phase locking of SST 618 

variability, however, only occurs at high vertical resolution in the atmospheric model component, even at low horizontal 619 

resolution. But high vertical atmosphere model resolution in conjunction with high horizontal atmosphere model 620 

resolution further improves the seasonal SST phase locking. 621 

The complete Bjerknes feedback loop has been investigated in the different configurations of the KCM, 622 

consisting of the zonal wind stress response in the western to SST anomalies in the EEA, thermocline depth response to 623 

zonal wind stress anomalies in the WEA, and SST response to thermocline depth variability. The latter is reasonably 624 

well simulated only at sufficiently high horizontal and vertical atmosphere model resolution. Most CMIP5 models fail 625 

to reasonably well simulate all three elements of the Bjerknes feedback loop (Deppenmeier et al. 2016). 626 

In contrast to the outstanding improvements in the mean state and interannual variability in the TA, bias 627 

reduction also occurs in the tropical Pacific (TP) but is much smaller (not shown). This is not surprising. First, biases in 628 
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the TP are less severe in comparison to the TA in low atmosphere model resolution versions of the KCM. For example, 629 

the SST biases are much smaller and the SST gradient along the Pacific equator is reasonably well simulated. Second, a 630 

reasonable representation of ENSO is already present in the KCM configuration employing the lowest atmosphere 631 

model resolution. The higher sensitivity of the KCM to atmosphere model resolution in the TA compared to the TP is 632 

expected to some extent and at least partly a consequence of the unique geometry of the TA basin with its surrounding 633 

continents and the relatively small basin size. 634 

We have shown that the seasonal phase locking of interannual SST variability correlates with the phase locking 635 

of the Bjerknes (BJ) index and to a large extent stems from the thermocline feedback destabilizing the system. This 636 

suggests that the interannual variability in the equatorial Atlantic is the result of the interaction between zonal wind 637 

stress, thermocline tilt and surface-subsurface coupling. Consequently, the simulation of zonal wind stress along the 638 

equator is of primary importance, because it largely determines the upper ocean structure in the equatorial Atlantic 639 

including thermocline tilt. 640 

Sufficient horizontal atmosphere model resolution is essential in the Benguela upwelling region, whereby 641 

narrower coastal surface winds and more realistic ocean currents are simulated, that eventually reduce the temperature 642 

biases there. However, a large temperature bias is of equatorial origin intruding the upwelling region through wave 643 

activity (CTWs) and erroneous coastal current systems. A correct position of the ITCZ in boreal spring and summer is 644 

crucial to realistically simulate the equatorial ocean-atmosphere system as surface winds and momentum transports are 645 

tightly coupled to the rainfall band and after all establishs the upper ocean structure. Adding vertical levels in the lower 646 

atmosphere is the key to improve the position of the ITCZ. Horizontal resolution is of secondary importance in that 647 

regard. 648 

We have shown that it is possible with the KCM system to reasonably well simulate the climatology and the 649 

interannual variability in the TA with a coarse-resolution ocean model when employing high atmosphere model 650 

resolution. The much better represented mean ocean state, seasonal and qinterannual variability when using high 651 

atmosphere model resolution is primarily the result of the improvement in the atmosphere model itself. In contrast, a 652 

coupled model with high oceanic resolution but low atmospheric resolution would not necessarily result in a similar 653 

improvement in the KCM system. This is because of intrinsic errors in the atmosphere model at coarse resolution, 654 

which has been demonstrated by companion experiments with the AGCM forced by observed SSTs. We argue that 655 

increasing the oceanic resolution is of lesser importance, since the ocean model even at a relatively coarse resolution 656 

adequately responds to wind stress variability and resolves most processes required to simulate the climatology and 657 

interannual variability in the TA. Nevertheless, we hypothesize that coupled models will benefit from higher resolution 658 

in both model components, as substantial surface and subsurface biases remain. Resolving mesoscale and submesoscale 659 
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structures like eddies and filaments forming at the front between the cold upwelled water and the warm surface water in 660 

the Benguela upwelling region, for example, may help to further reduce warm SST biases in the SETA and will be 661 

highly important for other applications like biogeochemical and ecosystem modeling. 662 
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 853 

Figure Captions 854 

Fig. 1 March-April-May mean SST bias (shading, °C) w.r.t NOAA-OISST, mean total precipitation (contours, interval 855 

2 mm/day), mean 10m wind (vectors, m/s). a) Observed mean state in SST (NOAA-OISST), total precipitation 856 

(GPCP2) and 10m winds (ERA-interim), all 1982-2009, b) CMIP5 historical multi model ensemble mean, c) T42 L31 857 

(L), d) T159 L31 (M), e) T159 L62 (M-V), f) T255 L62 (H-V) 858 

 859 

Fig. 2 As Fig. 1, but for July-August-September (JAS) means 860 

 861 
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Fig. 3 Seasonal cycle of zonally averaged (10°W-0°W) total precipitation (contours, interval 2 mm/day) and 10m wind 862 

vectors (shading denotes magnitude in m/s) over latitude. a) GPCP2.2 and ERA-interim (both 1982-2009), b) TRMM 863 

3B43 (1998-2014) and CCMP2 (1988-2014), c) T42 L31 (L), d) T159 L31 (M), e) T159 L62 (M-V), f) T255 L62 (H-864 

V) 865 

 866 

Fig. 4 Latitude-height section of mean winds (m/s) and total rainfall (red line, mm/day) in March-April-May (MAM) 867 

averaged over 40°W-10°W. Shading denotes zonal wind, vectors meridional-vertical wind (vertical wind scaled by 90), 868 

thick red lines represent particular model output and thick black line denotes observed TRMM rainfall in a) and 869 

GPCP2.2 in b)-f). a) ERA-interim wind (1982-2009) and TRMM rainfall (1988-2014), b) 20CRv2 winds and GPCP2.2 870 

rainfall (both 1982-2009), c) T42 L31 (L), d) T159 L31 (M), e) T159 L62 (M-V), f) T255 L62 (H-V) 871 

 872 

Fig. 5 Lines denote green: T42 L31 (L/L(A)), red: T159 L31 (M/M(A)), blue: T159 L62 (M-V/M-V(A)), purple: T255 873 

L62 (H-V), black crossed: observations. a) 10m zonal wind (m/s) in WTA (40°W-10°W, 3°S-3°N) for coupled models 874 

and b) for uncoupled models, obs: ERA-interim, c) SLP gradient (hPa) for coupled model and d) for uncoupled model, 875 

obs: ERA-interim, e) total precipitation gradient (same boxes, mm/day) for coupled model and f) for uncoupled model, 876 

obs: GPCP2.2, g) SST gradient (°C) for coupled model, obs: NOAA-OISST, h) SST w.r.t. annual mean (°C) in ATL3 877 

(20°W-0°W, 3°S-3°N) for coupled model, obs: NOAA-OISST. WTA: 40°W-10°W, 3°S-3°N. Zonal E - W gradient as 878 

the difference between 10°W-10°E – 50°W-40°W at 3°S-3°N. 879 

 880 

Fig. 6 Hovmöller diagram of 23°C isotherm (shading, m) and wind stress (vectors, Pa) averaged over 3°S-3°N. a) 881 

SODA (1958-2001), b) HadEN3 (1955-2010) isotherm, ERA-interim (1982-2009) wind stress, c) T42 L31 (L), d) T159 882 

L31 (M), e) T159 L62 (M-V), f) T255 L62 (H-V) 883 

 884 

Fig. 7 Depth-Longitude section along the equator (3°S-3°N) in MAM. Mean temperature bias (w.r.t SODA, 885 

shading, °C), mean vertical velocity (vectors, cm/day) and mean zonal currents, contours, interval 2, 4, 6, 8, 10, 15, 20, 886 

25, 30, 35, 40 cm/s, dashed negative (westward). a) T42 L31 (L), b) T159 L31 (M), c) T159 L62 (M-V), d) T255 L62 887 

(H-V), e) SODA (1958-2001) 888 

 889 

Fig. 8 JAS mean Depth-Latitude section along the African coast for mean temperature bias (w.r.t SODA, shading, °C, 890 

4°-longitude-band) and mean vertical velocity (vectors, cm/day, 2°-longitude-band). a) T42 L31 (L), b) T159 L31 (M), 891 
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c) T159 L62 (M-V), d) T255 L62 (H-V), e) T42 L31 (L) for AMJ, f) mean temperature and vertical velocity in SODA 892 

(1958-2001) for a 1° longitude-band. 893 

  894 

Fig. 9 JAS mean wind stress (vectors, N/m2) and curl (shading, N/m3x10e6) in a-g), depth integrated meridional currents 895 

(cm/s, upper 15-216m) in h-l) and SST anomalies (K, w.r.t. global mean) in m-q). a) QuikSCAT (1999-2009), b) ERA-896 

interim (1982-2009), c+g) SODA (1958-2001), d+i+n) T42 L31 (L), e+j+o) T159 L31 (M), f+k+p) T159 L62 (M-V), 897 

g+l+q) T255 L62 (H-V) 898 

 899 

Fig. 10 Monthly stratified standard deviation of SST anomalies (°C) in the ATL3 region (20°W-0°W, 3°S-3°N). Black 900 

cross denotes NOAA-OISST (1982-2009), green: T42 L31 (L), red: T159 L31 (M), blue: T159 L62 (MV), purple: T255 901 

L62 (H-V) 902 

 903 

Fig. 11 Regression of 10m wind (vectors, m/s per °C) and total precipitation anomalies (shading, mm/day per °C) on 904 

ATL3 SST anomalies. Stippling denotes 95% significance level, and only significant vectors depicted. a) HadISST, 905 

ERA-interim and GPCP2 (all 1982-2009), b) NOAA-OISST and 20CRv2 (both 1982-2009), c) T42 L31 (L), d), T159 906 

L31 (M), e) T159 L62 (M-V), f) T255 L62 (H-V). 907 

 908 

Fig. 12 Regression of 3-dimensional wind field on ATL3 SST in m/s per °C as Latitude-Height section at 40°W. Zonal 909 

wind response shaded, meridional and vertical wind response as vectors. Vertical wind scaled by 60. Stippling denotes 910 

95% significance level, only significant vectors depicted. a) T42 L31 L(A), b), T159 L31 M(A), c) T159 L62 M-V(A), 911 

d) HadISST and ERA-interim (both 1982-2009), e) T42 L31 (L), f), T159 L31 (M), g) T159 L62 (M-V), h) T255 L62 912 

(H-V) 913 

 914 

Fig. 13 Regression of net surface short wave radiation (SW) anomalies on ATL3 SST anomalies (W/m2 per °C). 915 

Stippling denotes 95% significance level. a) HadISST and CERES EBAF (both 2001-2015), b) NOAA-OISST and 916 

ERA-interim (both 1982-2009), c) T42 L31 (L), d) T159 L31 (M), e) T159 L62 (M-V), f) T255 L62 (H-V) 917 

 918 

Fig. 14 Regression of latent heat (LH) flux anomalies (W/m2 per °C) on ATL3 SST anomalies. Stippling denotes 95% 919 

significance level. a) HadISST and ERA-interim (both 1982-2009), b) NOAA-OISST and OAFlux (both 1984-2009), c) 920 

T42 L31 (L), d), T159 L31 (M), e) T159 L62 (M-V), f) T255 L62 (H-V) 921 

 922 
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Fig. 15 1st Bjerknes feedback component: regression of wind stress on ATL3 SST (Pa*100/°C). Stippling denotes 95% 923 

significance level. a) HadISST and ERA-interim (both 1982-2009), b) SODA (1958-2001), c) T42 L31 (L), d) T159 924 

L31 (M), e) T159 L62 (M-V), f) T255 L62 (H-V) 925 

 926 

Fig. 16 2nd Bjerknes feedback component: regression of 23°C isotherm depth on wind stress (m/Pa*100) in the WA3 927 

region (3°S-3°N, 40°W-20°W). Stippling denotes 95% significance level. a) SODA (1958-2001), b) ERA-interim and 928 

HadEN3 (both 1982-2009), c) T42 L31 (L), d) T159 L31 (M), e) T159 L62 (M-V), f) T255 L62 (H-V) 929 

 930 

Fig. 17 3rd Bjerknes feedback component: regression of SST on 23°C isotherm depth (°C/10m) in ATL3 (3°S-3°N, 931 

20°W-0°W). Stippling denotes 95% significance level. a) SODA (1958-2001), b) HadISST and HadEN3 (both 1982-932 

2009), c) T42 L31 (L), d) T159 L31 (M), e) T159 L62 (M-V), f) T255 L62 (H-V) 933 

 934 

Fig. 18 Bjerknes index components and total Bjerknes index. a) SODA and ERA40 (both 1958-2001), b) T42 L31 (L), 935 

c) T159 L31 (M), d) T159 L62 (M-V), e) T255 L62 (H-V). DD – Dynamical damping (green), TD – Thermal damping 936 

(turquoise), ZAF – Zonal advection feedback (magenta), EF – Ekman feedback (yellow), TF – Thermocline feedback 937 

(red), Bjerknes index as sum over all feedbacks (blue). See section 2 for calculation procedure. 938 

 939 

Supplementary Figures 940 

Fig. S1 Regression of SST on ATL3 SST anomalies (°C/°C). Stippling denotes 95% significance level. a) HadISST 941 

(1982-2009), b) NOAA-OISST (1982-2009), c) T42 L31 (L), d) T159 L31 (M), e) T159 L62 (M-V), f) T255 L62 (H-V) 942 

 943 

Fig. S2 Regression of 10m winds (vectors, m/s per °C) and total precipitation (shading, mm/day per °C) on ATL3 SST 944 

for uncoupled simulations. Stippling denotes 95% significance level, only significant vectors depicted. a) T42 L31 945 

L(A), b) T159 L31 M(A), c) T159 L62 M-V(A) 946 

 947 

Fig. S3 Lines denote green: T42 L31 (L/L(A)), red: T159 L31 (M/M(A)), blue: T159 L62 (M-V/M-V(A)), purple: T255 948 

L62 (H-V), black crossed: observations. a) zonal wind at 850hPa (m/s) in WTA (40°W-10°W, 3°S-3°N) for coupled 949 

models and b) for uncoupled models, obs: ERA-interim, c) standard deviation (STD) of 23°C isotherm depth in ATL3 950 

(20°W-0°W, 3°S-3°N) for coupled models, obs: SODA.  951 

 952 
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Fig. S4 Regression of net surface short wave radiation (SW, a-c) and latent heat flux (LH, d-f) anomalies on ATL3 SST 953 

anomalies (W/m2 per °C) for uncoupled simulations a/d) T42 L31 L(A), b/e) T159 L31 M(A), c/f) T159 L62 M-V(A). . 954 

Stippling denotes 95% significance level. 955 

 956 

Fig. S5 Regression of upper ocean temperature (averaged over 3°S-3°N) on ATL3 SST (°C/°C). Stippling denotes 95% 957 

significance level. a) T42 L31 (L), b) T159 L31 (M), c) T159 L62 (M-V), d) T255 L62 (H-V), e) SODA (1958-2001) 958 

 959 

Fig. S6 Seasonally stratified Bjerknes index. Abbreviations are as in Fig. 18. Lines denote: black crossed: SODA (1958-960 

2001), green: T42 L31 (L), red: T159 L31 (M), blue: T159 L62 (M-V), purple: T255 L62 (H-V) 961 
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