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ABSTRACT

Supplementary information on the seasonality number and supporting figures.

Discussion of Seasonality Number
Definition
The seasonality number, Se(T ), is defined by equation (1) of the main text. We consider a non-negative, time-dependent
variable x(t) which is (quasi-)periodic, for example with a period of 12 months. The seasonality number is the ratio of two
quantities, the seasonal range ∆x in the variable for a given year T ,

∆x = x(t2)− x(t1), (SI1)

and the average value over the season, x,

x =
1

t2− t1

∫ t2

t1
x(t ′) dt ′. (SI2)

Namely,

Se(T ) =
|∆x|

x
. (SI3)

In these formulae t1 and t2 are the times of consecutive extreme values of x, typically separated by about six months. We
take the absolute value in the numerator of (SI3) to suppress the negative sign of Se for cases of seasonal decrease in x (when
x(t2)< x(t1), which we apply throughout). The seasonality number is a function of T because it can vary between successive
pairs of extrema in x(t).

Pedagogical Examples
Consider the simple examples in Figure SI1 to make the seasonality number concept clear. The upper two panels show annual
periodic cycles with maxima and minima of x(t1) = 16 and x(t2) = 7, and hence ∆x =−9. They are inspired by the observed
1980s–1990s winter Arctic sea ice extent (16×106 km2) being about twice the summer extent (7×106 km2). The upper panel
shows sinusoidal and sawtooth periodic functions. Although the times of their maxima and minima differ, they have identical
ranges and mean values (x = 11), so their seasonality numbers are the same and equal 0.78. These cases demonstrate the point
that Se is independent of the shape of the periodic function x(t), so long as the range ∆x and the mean x are unaffected. The
middle panel shows a clipped sinusoidal function, also with x(t1) = 16, x(t2) = 7, and ∆x =−9 (upper curve). This function
accounts better for the different duration of the winter and summer seasons although still in a simplistic manner. The mean
value x = 13 is larger than for the sinusoidal and sawtooth functions because the distribution of x values over the year for the
clipped sinusoid is biased towards higher values. Therefore, the seasonality number Se = 0.71 is smaller than for the upper
panel. The middle panel also shows a clipped sinusoid function, but with x(t1) = 15,x(t2) = 4, hence ∆x =−11, and x = 11,



crudely resembling the Arctic sea ice extent cycle in recent years that features a stronger decline in summer than in winter. This
case has Se = 1. The bottom panel shows a clipped sinusoid function that might resemble the Arctic sea ice extent cycle in
the coming decades. In this case, x(t1) = 10,x(t2) = 0, hence ∆x =−10, and x = 4.8, yielding Se = 2.1. The distribution of x
values over the year is biased low compared to a sinusoid with the same range. Therefore the mean value is smaller than x = 5,
which is the case for a sinusoid with the same range. Hence, the seasonality number is larger than for a sinusoid with the same
range.

Properties of the Seasonality Number
These examples show that the seasonality number Se is mainly controlled by the range ∆x, and especially by the minimum
value, not the mean value x. Specifically, the middle panel of Fig. SI1 shows an increase of 2 in ∆x (lower curve) and x̄ (upper
curve), compared to the upper panel. The ∆x change impacts Se three times more than the x̄ change (a 28% increase versus a
9% decrease). The following arguments make this idea clear.

In many cases, the periodic function is evenly distributed between maxima and minima, meaning that the distribution of x(t)
between x(t1) and x(t2) is unbiased. Then, x = [x(t2)+ x(t1)]/2, and the seasonality number for this unbiased seasonal cycle is

Se0(T ) = 2
[
|x(t2)− x(t1)|
x(t2)+ x(t1)

]
= 2

(
|ε−1|
ε +1

)
, (SI4)

where ε = x(t2)/x(t1). For the examples in Figure SI1, ε = 7/16 = 0.438 (upper panel, upper curve on middle panel),
4/15 = 0.267 (lower curve on middle panel), and 0/10 = 0 (lower panel). Therefore, an unbiased seasonal cycle gives
Se0 = 0.783, as seen for the sinusoid and sawtooth functions in the upper panel. The upper clipped sinusoid in the middle panel
exhibits a bias that drives x high and therefore Se = 0.71 is smaller than the value of Se0 = 0.783 for the unbiased cycle, but
still quite close. The lower clipped sinusoid in the middle panel is similar with Se0 = 1.16 but Se = 1. In the lower panel, the
unbiased seasonal cycle gives Se0 = 2, somewhat less than the actual value of Se = 2.1 because of the low bias in x(t).

This result shows that Se > 2 only occurs when there is a bias in the distribution of x(t) so that the mean value x is smaller
than [x(t2)+ x(t1)]/2. In other words Se0 ≤ 2, which is seen in (SI4) because |ε−1|/(ε +1)≤ 1. For this reason, we refer to
seasonality numbers greater than two as being in the episodic regime (such as Fig. SI1 lower panel), meaning that x(t) only
intermittently departs from near zero. There is no corresponding restriction on the smallness of Se in the perennial regime
Se < 1: as the range ∆x decreases for any minimum x(t) value greater than zero, Se also decreases towards zero without limit.

Now consider that the mean value x must lie between the maximum and minimum values of x(t); x(t2)≤ x ≤ x(t1) (for
ε < 1, otherwise the inequalities are flipped). Therefore,

|1− ε| ≤ Se(T )≤
∣∣∣∣1ε −1

∣∣∣∣ (SI5)

(for ε < 1, otherwise the inequalities flip). For the examples in the upper panel and upper curve in the middle panel of Figure
SI1, ε = 7/16 = 0.438 and therefore 0.563 ≤ Se ≤ 1.29, which is a moderately tight restriction on the seasonality number,
regardless of the shape of the seasonal cycle x(t). For the lower panel, which shows an x(t) with a minimum value of zero, the
seasonality number must satisfy Se≥ 1, meaning any x(t) with a minimum of zero cannot be in the perennial regime, regardless
of the shape of its seasonal cycle. This is a reasonable property of Se.

Notice that other putative definitions of the seasonality number, for example with the minimum value of x in the denominator,
not the average, have less desirable properties. In particular, if the denominator vanishes, as it does for Arctic sea ice in some
of the CMIP5 models if the denominator is the minimum value, then the seasonality number diverges to infinity. That is less
useful than the seasonality number defined by equation (1) of the main text, which naturally distinguishes between perennial,
seasonal, and episodic regimes.

Relation between Sea Ice Extent Se and Multi-Year Ice Extent
Figure SI2 plots multi-year sea ice extent MY I against seasonality number Se for the data shown in Fig. 1. Multi-year sea
ice extent is defined as the minimum extent for a given year. As expected from the discussion above, there is a compact
relationship between MY I and Se. The linear correlation coefficient for the northern hemisphere NSIDC data is -0.97, which
shows that over the observational record Se is strongly controlled by MY I (the line on Fig. SI2 is the best-fit to these data). The
southern hemisphere NSIDC data are offset to higher MY I values (above the line). The same is true for the southern hemisphere
HadISST data, although the scatter to large MY I at Se≈ 1.25 is presumably due to data uncertainty before the satellite era. The
CMIP5 models depart from the linear correlation at Se & 1.3, MY I . 2×106 km2. At large seasonality number (Se & 1.7 ,
MY I . 1×106 km2), the multi-year ice extent no longer varies with Se because it then depends mainly on the average extent
(the denominator in equation SI3). Therefore, MY I is a good proxy for Se for the Arctic over the observational record, and until
the summer minimum sea ice extent drops below about 2×106 km2.
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Practical Considerations
A few practical issues should be considered when computing the seasonality number from a periodic time series. First, a clear
idea of the period of interest t2− t1 is required in order to avoid spurious extrema in x at shorter periods. For annually-repeating
variables, we expect t2− t1 to be close to six months, for example. Second, using the extreme values to define the range ∆x of
x(t) can be problematic when the time series contains significant random noise. Then, the extrema may be sensitive to the noise
in undesirable ways. Although, this problem is unlikely to severely impact the computation of the seasonality number, it may
be preferable to define ∆x as the difference between (for example) the 95th and 5th percentiles of the distribution of x(t) values
between successive extrema. Third, for an annually-repeating variable one has the choice of defining the seasonality number
each year based on the increase in x(t) (ε > 1) or on the decrease in x(t) (ε < 1). These two seasonality numbers may differ
somewhat if x(t) is biased differently for the increasing phase of its cycle compared to the decreasing phase.

Application to other Variables
The seasonality number is particularly useful for sea ice and can be applied to other Earth system quantities, such as insolation,
ice mass, or heat content of the upper ocean. These are extensive (additive) quantities, which are non-negative by definition.
The seasonality number can be applied to intensive quantities too, but care is required. Specifically, it is not applicable to
variables with an arbitrary offset. Temperature is a good example: it makes sense to talk of the seasonality number of absolute
temperature measured in Kelvin (which is non-negative with a non-arbitrary zero), but not of temperature measured using an
empirical scale such as Celsius or Fahrenheit.
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Figure SI1. Example annual periodic functions x(t) and their seasonality numbers Se to illustrate the seasonality of Arctic sea
ice extent. The range and mean are defined by equations (SI1) and (SI2), respectively, and Se is computed using (SI3).
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Figure SI2. Multi-year sea ice extent plotted against seasonality number for the datasets shown in Fig. 1. The large black dots
are the pedagogical examples from Fig. SI1. The line is the best fit to the northern hemisphere NSIDC data.
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Figure SI3. Northern hemisphere seasonal sea ice extent (from NSIDC and PIOMAS) and volume (from PIOMAS) ranges
plotted against the corresponding seasonal averages. The seasonality numbers are shown with contours. The sea ice extent and
volume seasonality numbers increase with time (Figs. 1b and 2b), mainly because the ranges increase and the averages
decrease, respectively.
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Figure SI4. Annual maxima and minima of sea ice extent for the CMIP5 models. The historical and RCP8.5 projections are
shown. Black lines indicate the multi-model means.
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Figure SI5. As Fig. SI4 except for sea ice volume.
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(a) Sea ice extent
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(b) Sea ice volume
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Figure SI6. Seasonality of Arctic sea ice extent (upper) and volume (lower) for the CMIP5 models. The black line marks the
multi-model mean.

8/9



-0.05 0 0.05 0.1 0.15

Arctic SAT (°C yr -1)

-0.1

-0.05

0

0.05

A
rc

ti
c
 S

IA
 (

1
0

6
k
m

2
 y

r-1
)

(a)

-0.025 0 0.025 0.05

Global SAT (°C yr -1)

-0.1

-0.05

0

0.05

year

(b)

1900

1925

1950

1975

2000

2025

2050

2075

2100

Figure SI7. Calculation of the peak in coincident sea-ice retreat and surface air temperature (SAT) warming. (a) Annual rate
of change in Arctic (> 70oN) sea ice area (SIA) minimum as a function of the Arctic autumn (September to November) mean
SAT annual rate of change (see Fig. 4c). The black × marks the year with the largest normalized distance from the origin,
namely, the largest change in both SIA and SAT, which we define as the peak in the sea ice feedback (see equation (2)). The
SIA and SAT data are from the multi-model mean of the CMIP5 models. (b) Same as (a) but for global autumn mean SAT
(notice the different abscissa scale).
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