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Abstract 13 

The influence of winter on the selection of dominant taxa for the phytoplankton spring bloom 14 

was studied in batch culture experiments. Different natural phytoplankton assemblages from 15 

different phases of the temperate zone winter were exposed to varying periods of darkness (0, 6/7, 16 

13, and 19 weeks) followed by a re-exposure to saturating light intensity for 14 days to 17 

experimentally simulate the onset of spring. The results showed that dark incubation plays a strong 18 

effect on shaping the phytoplankton community composition. Many taxa disappeared in the 19 

absolute darkness. Dark survival ability might be an important contributing factor for the success of 20 

diatoms in spring. Different phytoplankton starting assemblages were dominated by the same 21 

bloom-forming diatoms, Skeletonema marinoi and Thalassosira spp., after dark incubation for only 22 

6 weeks, irrespective of the high dissimilarities between phytoplankton communities. The growth 23 

capacity of surviving phytoplankton is almost unimpaired by darkness. Similar growth rates as that 24 

before darkness could be resumed for the surviving taxa with a potential lag time of 1-7 days 25 

dependent on taxon and the duration of darkness. 26 

Introduction 27 

The spring bloom is a renowned feature of the seasonal phytoplankton dynamics in temperate 28 

and cold oceans and lakes. Three decades ago, Sommer et al. (1986) proposed the plankton ecology 29 

group (PEG) model as a standard template to describe the seasonal succession of plankton in 30 

common patterns of sequential steps. After that, additional types of interactions driving details in 31 

taxonomic and functional group replacements during the growth season were detected by extensive 32 

studies (summarized in Sommer et al., 2012b). Nevertheless, relatively little work has been carried 33 

out on overwintering dynamic considering it occupies a long period of time in the overall 34 

succession process in temperate and cold environments. The widespread lack of attention to the 35 

overwintering period has also been noticed in the revised version of the PEG model (Sommer et al., 36 

2012b). 37 

The overwintering period starts from late autumn when the abiotic environment deteriorates, 38 

leading to a negative community net production and ends next early spring when a new bloom 39 

begins. As the final step mentioned in the original PEG model, a start close to zero of both 40 

phytoplankton and zooplankton was assumed during the winter-spring transition (Sommer et al., 41 

1986). However, considerable evidence for some winter growth of phytoplankton (Behrenfeld, 2010) 42 



3 
 

and for zooplankton overwintering(Campbell, 2008; Hagen et al., 1996) has emerged.  43 

The most obvious characteristic of winter is the low light intensity. Light supply is considered 44 

to be the single dominant trigger of the spring bloom in both old and updated PEG models (Sommer 45 

et al., 2012b; Sommer et al., 1986). This idea is in agreement with the classical concept of critical 46 

depth hypothesis (Sverdrup, 1953). The significance of light in bloom initiation was also confirmed 47 

by Siegel et al. (2002) who found a notable uniform daily light dose of 1.3 mol photons m
-2

 d
-1

 at 48 

the start of the spring bloom for the North Atlantic Ocean. Conversely, lack of light is also seen as 49 

the primary explanatory factor for the winter minimum in the cold-temperate and boreal zone, while 50 

there is no winter depression of phytoplankton in the more light-rich Mediterranean 51 

(Moustaka-Gouni et al., 2014). Thus, different dark survival abilities and strategies between 52 

different taxonomic groups in phytoplankton may provide a driving factor for the overwintering 53 

dynamics.  54 

Overwintering capabilities of the different phytoplankton taxa might be important for the 55 

composition of the subsequent spring bloom because it determines the initial abundance of species 56 

for the spring bloom. Long-term survival in darkness has been well studied with isolated 57 

phytoplankton strains showing that several diatoms could survive for up to 1 year in the vegetative 58 

stage (Antia, 1976), although with interpsecific differences (Antia, 1976; Griffis & Chapman, 1988; 59 

Lewis et al., 1999; Peters, 1996; Peters & Thomas, 1996a; Smayda & Mitchell-Innes, 1974). Some 60 

bloom-forming diatoms, like Skeletonema spp., Thalassiosira spp., and Ditylum brightwellii, 61 

showed strong dark survival ability (Antia, 1976; Griffis & Chapman, 1988; Murphy & Cowles, 62 

1997; Peters, 1996; Peters & Thomas, 1996a). Strains qualified as benthic types usually have longer 63 

survival times than pelagic types and the temperature for maximal dark survival could be 64 

determined by the temperature regions from which the strains were isolated (Antia, 1976).  65 

Survival of winter darkness is necessary but may not be sufficient for the formation of the 66 

spring bloom. Starting growth quickly after the improvement of light conditions and achieving 67 

higher exponential growth rates are equally important. It has been shown that diatoms have a higher 68 

inherent growth rate than flagellates in the absence of silicate limitation (Egge & Aksnes, 1992). 69 

The question is whether this growth rate will be negatively affected by the physiological 70 

consequences of prolonged survival in darkness or under low light. Most studies suggest that 71 

darkness has no effect on growth rate even after a relatively long period of dark incubation time 72 
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(Araujo et al., 2008; Furusato et al., 2004; Murphy & Cowles, 1997; Peters, 1996; Peters & Thomas, 73 

1996a; Peters & Thomas, 1996b; Vermaat & Sand-Jensen, 1987) indicating that species could 74 

survive in the dark without physiological impairment. However, a decrease of growth rate with the 75 

increase of dark incubation time was reported for several diatom species, such as Skeletonema 76 

costatum, Chaetoceros curvisetus, and Thalassiosira gravida (Smayda & Mitchell-Innes, 1974).   77 

Species do not always start exponential growth immediately when re-exposed to the light, but 78 

often start after a lag phase. Although growth rate could be resumed at the initial level, the recovery 79 

time would increase with the increasing dark incubation time (Peters, 1996; Peters & Thomas, 80 

1996a; Peters & Thomas, 1996b). This might be caused by the gradual decrease of photosynthetic 81 

pigments in response to darkness (Lüder, 2003). A lag phase of 1-7 days is common (Araujo et al., 82 

2008; Coughlan, 1977; Peters, 1996; Peters & Thomas, 1996b). It could be longer if the dark 83 

incubation time is extended. In the prolonged darkness, it was reported that the lag time of 84 

Thalassiosira antarctica increased from immediate growth to 13 days when dark incubation time 85 

increased from 21 days to 127 days and the lag time of Thalassiosira tumida increased from 3 days 86 

to 15 days when dark incubation time increased from 148 days to 272 days (Peters & Thomas, 87 

1996a). 88 

No doubt that these studies provide a valuable reference on the dark survival ability and 89 

growth capacity of individual species after winter, the problem is these monoculture studies 90 

excluding other species are insufficient to predict if diatoms would still be able to succeed under 91 

competition, consumption or infection. Actually, there was one study conducted by Zhang et al. 92 

(1998) who exposed natural phytoplankton assemblage samples collected from Arctic sea ice to a 93 

6-month dark incubation and found that the dominant species shifted from pennate diatoms to small 94 

flagellates after darkness, and flagellates had a higher growth rate than diatoms in the subsequent 95 

light culture. These findings are opposite to our expectation derived from the monoculture dark 96 

survival experiments.  97 

Therefore, we proposed to fill the knowledge gap by exposing different natural phytoplankton 98 

assemblages from different phases of the temperate zone winter immediately and after dark 99 

incubation to saturating light intensity to experimentally simulate the onset of the spring bloom at 100 

the community level. By analysing the changes in taxon abundance, growth rate and lag phase, we 101 

expected to answer three questions: 102 
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1. How do different overwintering inocula respond to the darkness? 103 

2. How do growth rates of individual taxa change after dark incubation? 104 

3. How do lag phases of individual taxa change after varying time intervals of dark? 105 

 106 

Method 107 

Experimental design 108 

Water samples of different natural phytoplankton assemblages were collected at 5m depth in 109 

the early, middle and late winter from Kiel Fjord, Baltic Sea, Germany (54°19'46"N 10°09'18"E). 110 

The three communities sampled at different times in winter were called W1, W2, and W3, 111 

respectively. In situ, environmental conditions during sampling of the three communities were 112 

relatively similar to each other (Table 1). Initial nutrient concentrations were high in all the 113 

communities but were slightly lower in the late winter water. Therefore, extra nutrients of 8.42 114 

µmol L
-1

 silicate (Si), 0.47 µmol L
-1

 phosphate (P), and 7.89 µmol L
-1

 nitrate (N) were added in W3 115 

to balance the decline. After filtration by a 250μm mesh to avoid grazing from large zooplankton, 116 

water samples were distributed into 2L plastic bottles. Four of the bottles were immediately 117 

incubated in light (0 weeks dark incubation = control) while the remaining ones were incubated in 118 

darkness for different periods before exposing to light. The dark incubations lasted for 0, 6, 13, and 119 

19 weeks (W1), 0, 7, and 13 weeks (W2), or 0 and 6 weeks (W3). Each treatment was replicated 4 120 

times. Light incubations following darkness lasted for 14d. Light was offered at a saturating level 121 

(100 μmol photons m
-2

 s
-1

; Light/dark cycle= 12:12h). Light and dark incubation temperatures were 122 

4°C. During culturing, bottles were gently shaken every day to assure a homogenous distribution of 123 

the plankton and to avoid the growth of benthic microalgae on the wall of bottles. Phytoplankton 124 

subsamples (100 mL) were collected three times per week (Monday, Wednesday, and Friday). 125 

Subsamples which were counted by inverted microscope were fixed with alkaline Lugol’s solution 126 

and stored in brown glass bottles. Subsamples for flow cytometric analysis were fixed with 37% 127 

formaldehyde, frozen immediately by liquid nitrogen and then stored at -80°C to protect 128 

chlorophyll from decomposing.  129 

Phytoplankton >5μm were counted by the inverted microscope method after sedimentation for 130 

at least 24 h (Utermöhl, 1958). Phytoplankton were identified to the genus level in most cases. The 131 

aim was to count 100 individuals per taxon group in order to obtain 95% confidence limits of ±20%, 132 



6 
 

except for rare taxa. For log transformations half of the detection limit was used as zero 133 

replacement value, if a taxon was undetectable only at a few sampling occasions. Phytoplankton 134 

biomass was estimated as carbon biomass converted from cell volumes (Menden-Deuer & Lessard, 135 

2000) which were measured through the calculation of similar geometric standard solids 136 

(Hillebrand et al., 1999). Small phytoplankton (<5μm) were counted by a flow cytometer 137 

(FACScalibur, Becton Dickinson, San Jose, CA, USA) and distinguished by size and fluorescence 138 

of allophycocyanin, chlorophyll a and phycoerythrin without further taxonomic identification. All 139 

picoplankton cells detected by flow cytometer were assumed to be spherical and estimated by the 140 

volume conversion factor of 0.157 pg C μm
-3

 (Sommer et al., 2012c). 141 

Data analysis 142 

The analysis of the microbial plankton communities focused on phytoplankton and excluded 143 

bacteria, heterotrophic flagellates, ciliates, and benthic microalgae. Phytoplankton were categorized 144 

into five functional groups by size classification (Sieburth et al., 1978) and the distinction between 145 

diatoms and flagellates: picoplankton (<3μm), nanodiatoms (3-20μm), nanoflagellates (3-20μm), 146 

dinoflagellates (>20μm), and microdiatoms (>20μm). The dissimilarities between different 147 

phytoplankton communities were analysed by SIMPER test (Clarke, 1993) using PRIMER 7, based 148 

on the Bray-Curtis dissimilarity coefficient (Bray & Curtis, 1957). Community indexes were 149 

calculated without inclusion of picoplankton because of the different level of taxonomic resolution.  150 

The Shannon-Wiener index of diversity (H’) was calculated from genus abundance data: 151 

H′ = − ∑ 𝑝𝑖
𝑠
𝑖=1  𝑙𝑜𝑔2 𝑝𝑖         (1) 152 

where pi is the relative abundance of taxon i, s is the number of taxa. 153 

Growth rate and lag time were taken as the main indicators of growth capacity. The growth rate 154 

was calculated as the slope of a linear regression fitted through a semi-logarithmic plot of 155 

abundance on time (log N – time) during the exponential phase, i.e. the linear portion of the growth 156 

curve. Lag time was calculated by the intercept between the fitted regression line and the baseline 157 

which was the abundance of taxa at the beginning. Negative values of lag time implying that no lag 158 

phase was found were adjusted to zero. If the growth curve did not show the typical batch culture 159 

pattern (lag phase, exponential phase, stationary phase), an average growth rate (µgrowth) from day 0 160 

to 14 was calculated instead. Differences between metrics of growth capacity (i.e., growth rate and 161 

lag time) were evaluated for statistical significance using analysis of variance. One-way ANOVA 162 
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was conducted to analyse the impact of dark incubation on growth rate and lag phase. Two-way 163 

ANOVA was used to examine the combined effect of dark incubation and community. Normality 164 

was checked by Shapiro-Wilk test and homogeneity of variance was checked by Fligner-Killeen test. 165 

If the assumptions of normality and homogeneity could not be satisfied even after transformations, 166 

an alternative non-parametric test was used instead (i.e. Welch’s t-test).  167 

 168 

Results 169 

Phytoplankton community 170 

The initial phytoplankton community compositions differed strongly between different 171 

sampling periods, but were uniform between replicates of the same community (Table 2). The 172 

dissimilarities of initial composition were 77% between W1 and W2, 54% between W1 and W3, 173 

and 77% between W2 and W3. The total biomass ranged from 18 to 22 µg C L
-1

 in W1 and W3 but 174 

was lower in W2 with only 6 µg C L
-1

. In W1, initial phytoplankton biomass was dominated by 175 

microdiatoms (75.5±4.2%, SD). W2 was dominated by nanoflagellates (63.8±18.9%). W3 was 176 

dominated by microdiatoms (53.8±5.1%) followed by picoplankton (19.9±3.5%) and 177 

nanoflagellates (19.3±5.8%). Dinoflagellates together with nanodiatoms formed less than 10% of 178 

the total biomass in each community. In all communities, picoplankton were represented by the 179 

same two clusters distinguished by differences in fluorescence of phycoerythrin and chlorophyll a. 180 

The abundances of heterotrophic plankton are listed in Table 3 as a reference. Nauplii and copepods 181 

were discovered in W2 and W3 but not in W1, while, microzooplankton (ciliates and heterotrophic 182 

flagellates) were more abundant in W1 than in W2 and W3.  183 

Dark survival capability 184 

Most of the phytoplankton taxa did not survive 6 weeks of dark incubation in the natural 185 

assemblage communities. The diversity of communities decreased dramatically during that time. 186 

The diversity index (H’) decreased from 1.46 to 0.38, 0.92 to 0.25, and 2.31 to 0.81 for W1, W2, 187 

and W3, respectively. The richness of detectable surviving taxa was also low, with 8 taxa in W1, 4 188 

taxa in W2, and 5 taxa in W3. Among the surviving phytoplankton, some taxa were unable to 189 

resume measurable cell division after re-illumination, few other taxa could grow again (Table 4). 190 

Several heterotrophic zooplankton could also survive in the dark, such as Protoperidinium, 191 

Gyrodinium, Strobilidium, and copepods. No resting spores or cysts were observed during the dark 192 
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incubation experiment. Picoplankton became undetectable during dark incubation but re-appearance 193 

of both clusters after re-illumination suggests that they had not disappeared. The abundance ratio 194 

between heterotrophs and phytoplankton increased from less than 0.01 before dark incubation in all 195 

communities to about 0.02 in W1 and W3 and to even more than 1.0 in W2 after darkness. 196 

Taxa that survived the first 6 weeks of dark incubation normally persisted during prolonged 197 

darkness although the abundance gradually decreased as the dark incubation time increased. The 198 

survivorship patterns varied among different taxa in W1 (Fig. 1). Skeletonema displayed the typical 199 

type I survivorship curve (p<0.001), whereas Thalassiosira with a steady mortality rate followed 200 

the type II survivorship curve (p<0.001). For both taxa, only about 5% of the initial biomass of each 201 

taxon survived after 19 weeks of darkness. All other phytoplankton, which had much lower 202 

abundance after dark incubation and were calculated together as “all other species”, showed the 203 

type III survivorship curve (p<0.001). The surviving “all other species” formed only about 1% of 204 

their initial biomass after 19 weeks of darkness.  205 

Pseudo-nitzschia from W1 and W3 communities behaved differently from each other. 206 

Pseudo-nitzschia from W1 experienced a catastrophic population decline already after 6 weeks in 207 

the darkness with no ability to grow after re-illumination, while, the Pseudo-nitzschia from W3 not 208 

only exhibited a much higher survival rate but could also regrow in the subsequent growth 209 

experiment. A morphological analysis based on the density of striae showed that these were two 210 

different types presented in the two communities (W1: 17 striae in 10 μm; W3: 23 striae in 10 μm; 211 

assessed with empty frustules under phase contrast). Contrary to Pseudo-nitzschia, the dark survival 212 

abilities of other phytoplankton taxa showed only minor change between the different experimental 213 

communities. 214 

Growth after dark incubation 215 

Skeletonema marinoi and Thalassiosira were the winners in the light culture after varying 216 

periods of dark incubations, comprising more than 98%, 94%, and 85% of the total biomass at the 217 

end of culture in W1, W2, and W3, respectively. However, the three phytoplankton communities 218 

showed clearly different compositions in the light culture without prior dark incubation. W1 was 219 

dominated by a S. marinoi alone which contributed more than 80% to the total biomass after 14-day 220 

light incubation, while, W2 and W3 were co-dominated by several taxa. Specifically, W2 was 221 

dominated by the diatoms Proboscia alata (19±3%), Skeletonema marinoi (15±7%), Chaetoceros 222 
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(24±6%), Coscinodiscus (20±12%), and the cryptophyte Teleaulax (10±13%) equally. W3 was 223 

dominated by Thalassiosira (48±20%) followed by Skeletonema marinoi (26±19%) and 224 

Pseudo-nitzschia (12±3%). 225 

Only few taxa could resume growth after dark incubation (Table 4). Growth rates (Fig. 2; 226 

Supplementary Document 1) could be calculated for Skeletonema marinoi and Thalassiosira in all 227 

the communities and the sum of “all other species” for W1 and W3, while for W3 growth rates 228 

could also be calculated for Pseudo-nitzschia. The growth rates of picoplankton and Attheya 229 

septentrionalis could not be calculated.   230 

No significant changes of growth rates were discovered after dark incubation by the analysis 231 

with three different taxa. Skeletonema and Thalassiosira maintained consistent growth rates in W1 232 

and W2 during 19 and 13 weeks dark incubation. Growth rates of the three taxa analysed in W3 233 

decreased, but not significantly. In all the experiments, Skeletonema and Thalassiosira showed 234 

similar growth rates ranging from 0.50 to 0.88 day
-1

 which was higher than that of Pseudo-nitzschia 235 

with 0.36 day
-1

. The growth rate of “all other species” was even lower which ranged from 0.08 to 236 

0.27 day
-1

 even before dark incubation. There were almost no biomass increases of “all other 237 

species” in the cultures after darkness, except for W3 (Fig. 2; Supplementary Document 1). 238 

A two-factor ANOVA showed no significant effect of the duration of darkness on the growth 239 

rates of Skeletonema and Thalassiosira, while there was a significant effect of community of origin 240 

and (Skeletonema: F2,18=8.8, P<0.01; Thalassiosira: F2,18=34.5, P<0.001) and a significant 241 

interaction effect of darkness and community (Skeletonema: F2,18=8.0, P<0.01; Thalassiosira.: 242 

F2,18=5.7, P<0.05). To balance the design of experimental duration, the two-way ANOVA only 243 

included dark incubation times of 0 and 6 weeks.  244 

The responses of lag time to the duration of dark incubation varied among taxa. Skeletonema 245 

was not negatively influenced by darkness and maintained a similar lag time after 19 weeks dark 246 

incubation and the lag time of Skeletonema in W2 even decreased after darkness (F1,10=11.58, 247 

P<0.01). In contrast, Thalassiosira, from both W1 and W3, displayed a significant increase in lag 248 

time of 2-3 days (W1: F1,14=15.12, P<0.01; W3: F1,6=12.01, P<0.05). Pseudo-nitzschia from W3 249 

showed the longest lag time of 5 days after 6 weeks incubation (Welch’s test: p<0.01). The 250 

following two-way ANOVA tests with Skeletonema and Thalassiosira confirmed that the lag times 251 

of Thalassiosira were significantly influenced by darkness (F1,18=7.1, P<0.05), while the lag time of 252 
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Skeletonema was significantly affected by the factor community and its interaction with darkness 253 

(F2,18=4.6, P<0.05).The lag time of the three taxa and “all other species” from different 254 

communities were only minor (if at all detectable) and ranged from 1-7 days in the culture before 255 

and after dark incubation. 256 

 257 

Discussion 258 

Our experiments focused on the two most important traits which enable phytoplankton to 259 

dominate the spring bloom in cold-temperate and boreal latitudes, survival of an extended low-light 260 

period and the ability to resume growth thereafter. The dark incubations indicated a strong selection 261 

pressure by the combination of lack of an essential growth resource (light) and continued losses to 262 

heterotrophic consumers. All phytoplankton taxa under study substantially lost biomass and the 263 

majority became undetectable leading to low diversity of the surviving communities. Only few 264 

diatoms and mixotrophic flagellates together with taxonomically unidentified picoplankton formed 265 

the residual biomass after dark incubation. The comparison between the three experimental 266 

communities shows a unifying effect of dark incubation on phytoplankton community composition. 267 

Irrespective of the initial composition, the three different communities were dominated by the same 268 

bloom-forming diatoms, Skeletonema and Thalassiosira, when cultured in the light again. 269 

Interspecific differences in growth rate after re-illumination reinforced the survival effect because 270 

Skeletonema and Thalassiosira outperformed the rest of the taxa.   271 

According to the long-term observations in the Kiel Bight, three diatom genera, Skeletonema, 272 

Thalassiosira, and Chaetoceros, are the most important components in the spring phytoplankton 273 

biomass (Smetacek, 1985; Wasmund et al., 2008; Wasmund et al., 1998). Unlike the other two 274 

diatoms, Chaetoceros is more likely to become dominant when there is a later spring bloom 275 

(Smetacek, 1985; Wasmund et al., 2008). Considering this difference, the mechanism promoting the 276 

dominance of Chaetoceros might be slightly different from the other two genera. Photographs taken 277 

during the course of the experiment suggest that most of the Chaetoceros in our samples were C. 278 

decipiens. 279 

The successful survival of diatoms is in agreement with dark survival studies of individual 280 

species (Antia, 1976; Griffis & Chapman, 1988; Murphy & Cowles, 1997; Peters, 1996; Peters & 281 

Thomas, 1996a). Similarly, the ability of diatoms to start growth after darkness either immediately 282 
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or after a short delay (<1 week) has been demonstrated by several single species culture studies 283 

(Araujo et al., 2008; Furusato et al., 2004; Murphy & Cowles, 1997; Peters, 1996; Peters & Thomas, 284 

1996a; Peters & Thomas, 1996b; Vermaat & Sand-Jensen, 1987). However, one study conducted 285 

with a natural phytoplankton assemblages resulted in the dominance of flagellates after dark 286 

incubation (Zhang et al., 1998). A possible explanation for the important difference between both 287 

studies lies in the fact that Zhang et al. (1998) obtained their experimental community from melting 288 

ice which means phytoplankton had been frozen before the study. Freezing has been shown to 289 

strongly influence survival and growth ability of microalgae (Vermaat & Sand-Jensen, 1987), but 290 

possibly with different taxon specific effects than darkness. 291 

While the temperature conditions and nutrient concentrations of our study are representative of 292 

present-day conditions in the Baltic Sea, further climate warming might change survival and 293 

re-growth capabilities of overwintering phytoplankton. Reeves et al. (2011) suggested that 294 

increasing temperature during Antarctic winter will have little effect on diatoms since the dark 295 

survival of Antarctic diatoms is temperature insensitive, only significantly impacted at an unrealistic 296 

temperature of 10°C. However, increasing food demand of heterotrophs and mixotrophic flagellates 297 

is likely to increase mortality rates of phytoplankton in darkness as indicated by the continued 298 

decrease in abundance of surviving taxa during 19 weeks of darkness.  299 

Compared to natural conditions, the darkness incubation was an extreme treatment, because 300 

winter phytoplankton experience low light, but not complete darkness, except for the polar night 301 

and of ice covered water bodies with a thick layer of snow. This difference might explain why some 302 

of the taxa unable to survive darkness were found in the mid- and late winter field samples, e.g. the 303 

diatom Proboscia alata and the cryptophyte Teleaulax.  304 

The incubation in 2 L bottles might have caused some artifacts, e.g. the reduction of loss rates 305 

relative to in situ conditions due to sinking or to grazers present in situ at abundances of less than a 306 

1 Ind L
-1

. However, these losses are considered low: (1) sedimentary losses play a negligible role 307 

during the high turbulence regime of an ice-free winter, (2) except for excluding mesozooplankton 308 

by sieving with 250 µm mesh size, grazer densities at the start of the experiment conformed to the 309 

natural situation. The decline of abundance during dark incubation affected all autotrophic, 310 

mixotrophic and heterotrophic protists, therefore competitive, allelopathic and predatory 311 

interactions will have declined, but this is a community wide effect of darkness (with indirect 312 



12 
 

ramifications through biotic interactions) which was within the target of a study at the community 313 

level and not an artifact. The tendency of increasing heterotroph to autotroph ratios during darkness 314 

might have led to increasing grazing losses affecting mostly picoplankton, while diatoms are less 315 

likely to be grazed by the microzooplankton. Similarly, increases of microzooplankton because of 316 

the removal of copepods will have mainly affected picoplankton. The absence of sediment in the 317 

bottles might have excluded resting stages and discriminated against taxa relying on resting stages 318 

for overwintering. 319 

The observed lag-phases were short (less than 1 week) and confirm the ability of 320 

phytoplankton to quickly resume growth when light availability reaches a sufficient level. Increases 321 

in lag as a consequence of increasingly long dark incubation were found in some cases, but not in 322 

all cases (Fig. 3; Supplementary Document 1). The increase in lag time by dark incubation was also 323 

found with monospecific cultures (Peters, 1996; Peters & Thomas, 1996a; Peters & Thomas, 324 

1996b). However, the duration of the lag phase after darkness is only a minor effect on the timing of 325 

the spring bloom compared to the one-month delay that could be caused by the low light (Sommer 326 

et al., 2012a). Therefore, changes in lag time introduced by variability in exposure to darkness does 327 

not explain the time shift of the spring bloom from April to March in Kiel Bight at the beginning of 328 

21st century (Wasmund et al., 2008). Future research should focus, inter alia, on the effect of 329 

warming, which is expected to increase respiration rates both of auto- and heterotrophs while 330 

seasonal light availability will not increase during the period before the onset of thermal 331 

stratification. However, an earlier onset of stratification will not only improve light supply to 332 

phytoplankton (Sverdrup, 1963), it will also lead to an earlier onset of nutrient limitation, as 333 

opposed to the nutrient-replete conditions in our experiment. 334 

 335 

Conclusions 336 

Darkness in winter is a very unfavorable environment for phytoplankton and many taxa cannot 337 

survive in the absolute dark for few weeks in the natural assemblage community. However, despite 338 

its strong impact on the survival of phytoplankton, the growth capacity of surviving phytoplankton 339 

is almost unimpaired. Surviving taxa could still resume a similar growth rate as that before darkness 340 

with a potential lag phase of only a few days. Dark survival ability might be the contributing factor 341 

for the success of diatoms in the spring bloom and seems the most plausible explanation for the 342 
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annually repeating pattern of the phytoplankton spring bloom. Three different communities were 343 

dominated by the same bloom-forming diatoms in the culture after dark incubation.  344 
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Tables 443 

 444 

Table 1. Summary of the environmental conditions 445 

Sample Day Imix pH Salinity T Si PO4 NO3 NH4 

W1 Dec. 7, 2015 18.4 7.86 21.4 8.55 19.79 1.21 13.44 4.76 

W2 Jan. 18, 2016 43.7 7.96 20.8 2.95 17.17 0.94 12.26 3.06 

W3
a
 Mar. 7, 2016 186.1 7.96 20.4 4.18 22.17 1.20 19.28 2.24 

Imix is the 24 h mean of the integrated mixed water column (12m) irradiance, calculated from 446 

surface irradiance according to Riley (1957), assuming an attenuation coefficient of 0.3 m
-
1 (µmol 447 

photons PAR m
-2

 d
-1

), T is the temperature measured in situ (°C); dissolved nutrients are the 448 

concentration in the bottles (µmol L
-1

)  449 
a 
includes the extra nutrients 450 

  451 
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Table 2. The biomass of functional groups of phytoplankton before the culture 452 

Phytoplankton group 
Mean biomass (μg C L

-1
±SD) 

W1 W2 W3 

Microdiatoms 

Chaetoceros  - + 3.08±0.34 

Coscinodiscus  - - 4.08±1.88 

Ditylum brightwellii 0.15±0.15 - - 

Guinardia flaccida + - + 

Guinardia  + - 0.26±0.16 

Proboscia alata 0.45±0.16 0.86±0.15 + 

Pseudo-nitzschia  12.3±2.6 - 2.4±0.3 

Rhizosolenia  0.64±0.35 - - 

Thalassionema  + - - 

Thalassiosira  1.92±0.42 - 0.21±0.06 

Dinoflagellates 

Ceratium lineatum + + 0.83±0.29 

Dinophysis  0.14±0.14 0.19±0.2 0.14±0.1 

Prorocentrum  + + + 

Ceratium fusus 0.23±0.02 + + 

Ceratium tripos - + - 

Other microplanktonic flagellates 

Eutreptiella braarudii - + - 

Nanodiatoms 

Chaetoceros minimus + - - 

Leptocylindrus minimus + - + 

Skeletonema  1.67±0.44 + 0.28±0.2 

Nanoflagellates 

Dictyocha  + + + 

Eutreptiella gymnastica - + 2.97±0.61 

Plagioselmis  - 1.18±0.52 + 

Teleaulax  2.34±0.08 3.26±3.08 0.43±0.34 

Picoplankton 

pico A 0.16±0.03 + + 

pico B 0.16±0.01 0.53±0.03 3.57±0.52 

+ means the rare taxa with biomass less than 0.1 μg C L
-1

 453 

- means the absence of taxa  454 
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Table 3. The abundance of heterotrophs before the culture 455 

Heterotrophic group 
Mean abundance (N L

-1
±SD) 

W1 W2 W3 

Ciliates 170±50 340±190 160±100 

Gyrodinium  140±120 120±50 - 

Protoperidinium  370±170 110±40 80±40 

Katodinium  910±1230 - - 

Protoperidinium bipes 480±560 440±620 - 

Nauplii - 5±10 20±23 

Copepods - - 40±32 

- means the absence of taxa  456 
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Table 4. The survival abilities of phytoplankton after dark incubation for 6 weeks 457 

No survival Survival without growth 
a
 Survival and regrowth 

a
 

Ceratium fusus 

Ceratium lineatum 

Ceratium tripos 

Chaetoceros minimus 

Dactyliosolen fragillissimus 

Dictyocha  

Eutreptiella braarudii 

Eutreptiella gymnastica 

Heterocapsa rotundata 

Guinardia flaccida 

Guinardia  

Leptocylindrus minimus 

Picoplankton 
b
 

Plagioselmis  

Proboscia alata 

Rhizosolenia  

Teleaulax  

Thalassionema  

Chaetoceros  

Coscinodiscus  

Ditylum brightwellii 

Dinophysis  

Prorocentrum  

Pseudo-nitzschia 
c
 

Attheya septentrionalis 

Picoplankton 
b
 

Pseudo-nitzschia 
c
 

Skeletonema  

Thalassiosira  

a
 survival means the taxa showed relatively consistent presence in the subsequent light culture 458 

b
 the picoplankton discovered before darkness had disappeared, while, new picoplankton were identified to grow 459 

c
 Pseudo-nitzschia behaved differently for the species from different communities  460 

  461 
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Figure Legends 462 

 463 

 464 

Fig. 1 Dark survival rates of species from W1, the lines show the regressions fitted to the data: all 465 

other species: Y=0.017X
2
-0.679X+2.671, R

2
=0.961; Skeletonema: Y=-0.011X

2
+0.032X+0.4556, 466 

R
2
=0.721; Thalassiosira: Y=-0.149X+0.418, R

2
=0.938  467 

 468 

 469 

 470 

Fig. 2 Growth rates as a function of the length of dark incubation prior to re-illumination, after 471 

varying periods of darkness and average growth rates during dark incubation, error bars mean ± 1 472 

SD. Growth rates in light culture: open squares: Skeletonema, open circles: Thalassiosira; open 473 

diamonds: Pseudo-nitzschia, open triangles: all other species. Growth rates in dark incubation: full 474 

squares: Skeletonema, full circles: Thalassiosira; full diamonds: Pseudo-nitzschia, full triangles: all 475 

other species. 476 
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 477 

Fig. 3 Lag times as a function of the length of dark incubation prior to re-illumination, after varying 478 

periods of darkness, error bars mean ± 1 SD. Open squares: Skeletonema, open circles: 479 

Thalassiosira; open diamonds: Pseudo-nitzschia, full triangles: all other species. 480 

  481 
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 482 

Supplementary Document 1. Growth rate and lag time after varying periods of darkness 483 

Community Species Darkness µgrowth ± SD (d
-1

) Lag time ± SD (d) µgrowth ± SD (d
-1

) 

W1 Skeletonema  

 

 

 

0 week 

6 week 

13 week 

19 week 

0.70±0.05 

0.88±0.05 

0.78±0.05 

0.65±0.09 

0.80±0.57 

2.60±0.72 

2.01±0.86 

0.78±0.99 

- 

- 

- 

- 

Thalassiosira  

 

0 week 

6 week 

13 week 

19 week 

0.63±0.06 

0.71±0.04 

0.61±0.09 

0.71±0.16 

2.68±0.30 

3.58±0.59 

3.50±0.59 

5.40±1.46 

- 

- 

- 

- 

All other species 0 week 

6 week 

13 week 

19 week 

0.12±0.04 

- 

- 

- 

1.59±1.13 

- 

- 

- 

- 

-0.05±0.06 

0.13±0.26 

0.31±0.19 

W2 Skeletonema  

 

 

0 week 

7 week 

13 week 

0.69±0.13 

0.80±0.03 

0.55±0.05 

4.76±1.35 

2.28±1.75 

0.96±1.84 

- 

- 

- 

Thalassiosira  

 

0 week 

7 week 

13 week 

0.54±0.06 

0.57±0.06 

0.55±0.18 

3.18±1.62 

3.12±1.51 

3.47±0.56 

- 

- 

- 

All other species 0 week 

7 week 

13 week 

0.17±0.03 

- 

- 

2.00±3.42 

- 

- 

- 

0.15±0.05 

0.06±0.08 

W3 Skeletonema  

 

0 week 

6 week 

0.69±0.14 

0.51±0.12 

0.99±1.17 

1.13±2.57 

- 

- 

Thalassiosira  

 

0 week 

6 week 

0.88±0.09 

0.76±0.06 

0.53±0.61 

3.53±1.62 

- 

- 

Pseudo-nitzschia  0 week 

6 week 

0.39±0.06 

0.34±0.06 

0 

5.29±1.33 

- 

- 

All other species 

 

0 week 

6 week 

0.23±0.04 

0.51±0.09 

0 

5.00±0.80 

- 

- 

 484 

  485 
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Supplementary Figure 486 

 487 


