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ABSTRACT

A simple point-vortex ‘‘heton’’ model is used to study localized ocean convection. In particular, the statisti-
cally steady state that is established when lateral buoyancy transfer, effected by baroclinic instability, offsets the
localized surface buoyancy loss is investigated. Properties of the steady state, such as the statistically steady
density anomaly of the convection region, are predicted using the hypothesis of a balance between baroclinic
eddy transfer and the localized surface buoyancy loss. These predictions compare favorably with the values
obtained through numerical integration of the heton model.

The steady state of the heton model can be related to that in other convection scenarios considered in several
recent studies by means of a generalized description of the localized convection. This leads to predictions of the
equilibrium density anomalies in these scenarios, which concur with those obtained by other authors. Advantages
of the heton model include its inviscid nature, emphasizing the independence of the fluxes affected by the
baroclinic eddies from molecular processes, and its extreme economy, allowing a very large parameter space to
be covered. This economy allows us to examine more complicated forcing scenarios: for example, forcing regions
of varying shape. By increasing the ellipticity of the forcing region, the instability is modified by the shape and,
as a result, no increase in lateral fluxes occurs despite the increased perimeter length,

The parameterization of convective mixing by a redistribution of potential vorticity, implicit in the heton
model, is corroborated; the heton model equilibrium state has analogous quantitative scaling behavior to that in
models or laboratory experiments that resolve the vertical motions. The simplified dynamics of the heton model
therefore allows the adiabatic advection resulting from baroclinic instability to be examined in isolation from
vertical mixing and diffusive processes. These results demonstrate the importance of baroclinic instability in
controlling the properties of a water mass generated by localized ocean convection. A complete parameterization
of this process must therefore account for the fluxes induced by horizontal variations in surface buoyancy loss
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and affected by baroclinic instability.

1. Introduction

A characteristic feature of open ocean deep convec-
tion is that it is highly localized, occurring in regions
only a few tens of kilometers in diameter (Killworth
1983). As a result, horizontal density gradients are en-
hanced, promoting sheared baroclinic fiow around the
convecting ‘‘chimney’” (Fig. 1). Many authors (i.e.,
Gascard 1978; Madec et al. 1991) have recognized that
this rim current, if it becomes baroclinically unstable,
must lead to lateral fluxes of fluid and buoyancy. Sev-
eral recent studies of convection forced by a continued
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surface buoyancy loss over a circular area, both in the
laboratory ( Brickman 1995; Ivey et al. 1995; Coates et
al. 1995; Hufford et al. 1996, manuscript submitted to
J. Geophys. Res.) and in numerical simulation (Send
and Marshall 1995), have found that the lateral fluxes
effected by the baroclinic instability may completely
balance the surface fluxes. This results in a quasi-equi-
librium state in which the density anomaly of the con-
vected region is prevented from further increase. These
studies have been of both convection into an initially
homogeneous fluid and an initially stably stratified
fluid. Visbeck et al. (1996a, hereafter VMJ) considered
the properties of the equilibrium state in several of
these studies and deduced scaling arguments for the
equilibrium quantities based on a simple balance be-
tween the advective fluxes and surface forcing and em-
ploying a parameterization of these fluxes.

As an alternative to laboratory experiments and high-
resolution numerical models, localized convection can
be examined using the quasigeostrophic ‘‘heton’’
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FiG. 1. A schematic diagram showing a section through a typical
region of localized ocean convection, with solid lines representing
isopycnal surfaces. Mixing by convective plumes initiated by a lo-
calized surface buoyancy loss B, generates a localized density anom-
aly (shaded region). Geostrophic adjustment leads to slumping on the
scale of the deformation radius L,, with an associated baroclinic rim
current Uy,. Subsequent baroclinic instability generates eddies of the
scale L,,.

model of Legg and Marshall (1993, hereafter LM).
The heton model provides both a conceptually elegant
parameterization of convection as a redistribution of
potential vorticity and an economical tool for numerical
integration of the buoyancy-forced circulation. LM
demonstrated the existence of the equilibrium state in
the heton model but did not attempt to investigate the
parameter space dependence of this equilibrium state
or to quantitatively relate the results with those of more
complete numerical simulations or laboratory experi-
ments of convection. Such a quantitative comparison is
necessary to calibrate the model before it can be used
to extend our understanding in more complicated re-
gimes not yet tackled by other methods. Here we will
derive the scaling arguments for the equilibrium state
properties of the heton model using a generalized
framework. This framework unifies three scenarios:
convection into a homogeneous fluid, convection into
a linearly stratified fluid, and convection represented in
a two-layer model such as the heton model. A quanti-
tative comparison of the heton model results with those
of the other scenarios can therefore be made, and the
heton model can be demonstrated to be a useful tool
for investigating localized convection. The economy of
the heton model provides a means of investigating
more complex spatial and temporal patterns of forcing
than can be readily accessed in the laboratory or more
direct numerical simulations.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 26

We begin in section 2 by reviewing features of an
idealized baroclinically unstable chimney. In section 3
we then define and compare three conceptual models
of the localized convecting region: the first appropriate
to a two-layer quasigeostrophic numerical model such
as the heton model (the two-layer model, Fig. 2a) and
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FIG. 2. Three possible convection scenarios when a surface buoy-
ancy flux B, is applied over an area of radius r. (a) In a two-layer
quasigeostrophic representation, buoyancy forcing raises the inter-
face between the two layers, equivalent to a density anomaly. The
deformation radius is given by L, = (IN2f)[glps — pi)laipol
where h,; is the layer depth, and p, and p, are the densities of the
upper and lower layers, respectively. The equilibrium state is char-
acterized by a constant density anomaly Ap(eq). (b) In an initially
homogeneous ocean, of density p, and depth H, convection penetrates
to the bottom, generating a chimney of dense water of density p; = p,
+ Ap. This chimney of dense water relaxes to a state of geostrophic
adjustment characterized by a deformation radius L, ~ (1/f Y (gHAp/
po)'%. The equilibrium state is characterized by a constant density
anomaly Ap(eq). (c) In an ocean of initial stable stratification N,
convection mixes fluid to a depth h, given in the absence of lateral
transport of fluid by h = (2Byt/N*'?. The chimney of mixed fluid
relaxes to a state of geostrophic adjustment characterized by a de-
formation radius L, ~ Nh/f. The equilibrium state is characterized by
a maximum mixed layer depth /1.
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the other two appropriate to the most common labora-
tory and numerical scenarios adopted in similar studies
by other authors, one for convection into an initially
unstratified fluid (the neutral model, Fig. 2b) and the
other relevant to convection into an initially uniform
stable stratification (the stratified model, Fig. 2¢).

Section 4 provides a brief description of the heton
model. Results from simulations performed to corrob-
orate the two-layer predictions are given in section 5.
In section 6 we consider variations in the shape of the
forcing. Finally we include a discussion of the impli-
cations of the study.

2. Baroclinic instability and ocean convection

In oceanic convection, deep vertical mixing, local-
ized through interactions between large-scale forcing
and details of the circulation, generates a ‘‘chimney’’
of dense fluid (Fig. 1). In order to examine the influ-
ence of baroclinic instability on this chimney region,
we shall assume it is unnecessary to understand the
small-scale dynamics of individual plumes. This ap-
proach to the integral properties of convection has been
proposed by Send and Marshall (1995), who argue
chimney-scale properties depend only on the mixing
effected by the plume ensemble as a whole.

Buoyancy loss at the chimney site results in an over-
all change in density there, the pool of denser water
relaxing under gravity to a state of thermal wind bal-
ance so that the edge of the chimney slumps by a hor-
izontal distance on the order of L,, the deformation
radius, and a baroclinic current Uy, is established
around the periphery. This rim current may be baro-
clinically unstable, the instability growing at a rate de-
termined by the ambient stratification, rim current ve-
locity, and rotation rate (Coates et al. 1995). Numerical
simulations and laboratory experiments have shown
that, if surface forcing persists, baroclinic instability of
the convecting chimney may lead to the establishment
of a dynamic equilibrium in which the generation of a
density anomaly through the surface forcing balances
the flux of dense fluid out of the forced region.

a. Chimney-scale properties

A number of authors have proposed scalings for the
properties of chimneys (Jones and Marshall 1993;
Maxworthy and Narimousa 1994; Send and Marshall
1995), but no consensus has yet been reached. By way
of review we outline here what is perhaps the simplest
form of these scaling arguments, following closely the
approach of Send and Marshall (1995) and VMJ in
particular.

All three of our convection scenarios are governed
by the equation for the rate of change of the density
anomaly Ap of the convecting region (assuming in-
compressibility and buoyancy conservation):
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d 0 f
— ApdV = — ApdV
dtdan p Ot Jan P

+ 95 J-ds =f Bovo ya. (1)
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where, with reference to Fig. 3, the integral on the left-
hand side is carried out over a volume, defined by the
depth of convecting fluid k and the surface area A,
undergoing buoyancy loss and the surface integral on
the right-hand side is carried out over area A;. Here p,
is a reference density, B, is the applied surface buoy-
ancy flux, g is the gravitational acceleration, and d/dt
is the full derivative, involving the time rate of change
within the volume considered, the time rate of change
of the volume itself (due to convective deepening ), and
fluxes out of that volume; J is the density flux out of
the volume and @S is the vector normal to the surface
S bounding the volume.

The dense water chimney adjusts under gravity,
slumping over a distance comparable with the defor-

mation radius
1 A 1/2
o
f Po

where fis the Coriolis parameter.

A baroclinic rim current is generated through geo-
strophic adjustment satisfying the thermal wind equa-
tion:

(2)
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- , 3
0z fPo 0y (3

A2=hl

FIG. 3. A schematic diagram showing the fluxes of anomalous den-
sity out of the volume, and generation of density anomaly within the
volume, defined by the depth of the convective region k, and the area
affected by the surface forcing A, = wr*. The density difference be-
tween the convected volume and surrounding fluid is Ap, while u*
is the effective root-mean-square flux velocity across the bounding
surface of area A, = hl,.



2254

and we estimate the magnitude of this baroclinic rim
current, Uy, :

sh Ap

Urim ~ -
fpo L,

(4)

b. A quasi-equilibrium state

Baroclinic instability of the rim current may lead to
the establishment of a quasi-equilibrium state. In all
three scenarios this quasi-equilibrium is characterized
by a constant density anomaly within the chimney re-
gion (Send and Marshall 1995; Brickman 1995; Legg
and Marshall 1993); however, in the case of convec-
tion into an initially stably stratified fluid, the constant
density anomaly is associated with an equilibrium
mixed layer depth (Ivey et al. 1995; Coates et al. 1995;
VMLI). In each case, the density changes induced by
the surface forcing are exactly balanced by the flux of
density out of the chimney region by the baroclinic
instability.

We write the flux of anomalous density out of the
forcing region as J = (u,p’)n = u*Apn, where u, is
the velocity perturbation in the radial direction, p’ is
the density perturbation, n is the unit vector normal to
the bounding surface, and the brackets imply the mean
over the surface area bounding the forcing region; u*
is a root-mean-square velocity fluctuation in the direc-
tion of n. Implicit in this formalism is the assumption
of no net mean flow when integrated in the vertical
direction and an axisymmetric basic state. This implies
no background zonal or meridional shear. However,
axisymmetric mean flow (which must from continuity
integrate to zero in the vertical ) is not excluded. Such
a flow has a root-mean-square variation compared to
the zero mean vertically integrated flow, which will be
included above.

Then we can express the statement of balance be-
tween generation and removal of anomalous density,
when 0Ap/0t = 0 within the volume considered and
the volume remains constant, as

B
f 2P0 A :f 9§ u*Apdldz,
4 & h Y

where [, is the chimney’s circumference (/; = 2rr if
forcing is in the form of a circular disc of radius r)
(Fig. 3).

Apart from the quantity we wish to deduce, the equi-
librium density anomaly or corresponding mixed layer
depth, the only unknown is u*, the root-mean-square
velocity of fluid out of the patch. If we can parameterize
u* in terms of the mean chimney properties, we will
be able to predict the equilibrium state in which this
balance of fluxes applies. ‘

Following the arguments of Stone (1972), we use a
linear stability approach to estimate «*, given an insta-
bility growing at the rate given by Eady (1949), with

(5
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the length scale of the fastest-growing mode. This leads
to an estimate of u* proportional to the rim current
velocity

(6)

where « is a constant of proportionality to be deter-
mined.

Since U, is independent of f[Eqgs. (4) and (2)],
u* must itself be independent of f. Note that this re-
lationship between u* and U, can be obtained from
energetic arguments (VMJ). If we now substitute for
u* from Egs. (6) and (4) into Eq. (5) and integrate
over the specified volumes and areas, a prediction for
the equilibrium density anomaly is obtained:

M* = aUrim’

(7)

where p, is the density difference used to define L,

= y(gAphlpy)/f. A key difference between the
quasigeostrophic model and the other scenarios is
that Ap, # Ap,, in the quasigeostrophic formulation.
Note that (7) does not include any dependance on
rotation, a property arising through the independence
of u* from f.

In addition to Ap,, a second key parameter is the
time taken for equilibrium to become established, T,
since this will dictate whether convection is essentially
vertical (closely obeying one-dimensional mixing
physics) or is sufficiently long-lived to be in this, more
unconventional, laterally advective limit. A lower limit
for the equilibrium timescale is the time at which Ap(7)
= Ap(eq), assuming one-dimensional mixing physics,
since it must take at least as long as this to achieve a
depth A, or equivalent density Ap.,. Then, given the
linear relationship between Ap and ¢ in the absence of
lateral fluxes, we have

Toy = Apeg(dDpldr). (8)

Given flux balance is achieved through chimney dis-
integration, we shall further assume the time it takes
the patch to break up 7, to be proportional to 7,,. Note
that implicit in this estimate is the assumption that the
timescale for baroclinic instability is less than T4, since
it is the development of the baroclinic instability that
allows the equilibrium to be achieved. We predict from
(8) that T, is, like Ap,, independent of rotation.

3. Three ocean convection models

We now explicitly derive these equilibrium quanti-
ties in the three different conceptual models chosen to
represent typical localized convection scenarios. The
first describes the two-layer quasigeostrophic idealiza-
tion examined numerically using the heton model by
LM, while the other two correspond to previously pub-
lished laboratory and numerical studies. The relevant
quantities are summarized in Table 1. In all three cases
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we assume that forcing takes the form of a circular disc
of radius r; a later section will describe modifications
expected for alternative shapes of forcing.

The essential differences between the three scenarios
are (i) the depth over which the buoyancy forcing is
acting, corresponding to the depth of the convective
layer h, and (ii) the density difference Ap,, which de-
termines the deformation radius L,. These differences
make it necessary to derive the appropriate quantities
separately for each scenario. Quasigeostrophic resuits
in particular cannot be applied to the real ocean without
an appreciation of the differences introduced by assum-
ing small density perturbations. Nevertheless, we will
show that the mechanisms described above apply in all
three cases, leading to analogous scaling of the equi-
librium density anomaly.

In order to facilitate the comparison between the
equilibrium quantities in the different scenarios, we
will make use of the important nondimensional param-
eters identified by VMIJ for this localized convection

problem:
B 1/2 N
Ro* = { — 02 ; L T
fH H'f

(9)

Here Ro* is the natural Rossby number of Fernando et
al. (1991), Jones and Marshall (1993), and Maxwor-
thy and Narimousa (1994} and provides a measure of
the forcing timescale as compared to the rotational
timescale; r/H is a measure of the geometry of the forc-
ing region; and N/f is the ratio of Brunt—Viisild to
inertial frequencies. Typical oceanic values of Ro*
may be close to or less than unity, in deep convection
regions, while »/H > 1 and N/fmay vary significantly
from region to region. Combining Ro* and r/H gives
another useful parameter: the ratio of the horizontal
length scale of the forcing region to the rotational
length scale [, = (Bo/f?)!"* proposed by the above
authors as the scale at which rotation influences con-
vection:

r1_r

HRo" o'
Typically r/l,, is of the order 50 — 100. We will see
that all interesting quantities can be expressed in terms

of these nondimensional parameters in all three con-
vection scenarios.

(10)

a. Buoyancy loss in a two-layer quasigeostrophic
model: Two-layer scenario

In a two-layer representation of a buoyancy anomaly
(Fig. 2a), the only possible depth scale is the layer
thickness &y, = H/2, over which the forcing applies. In
this representation the stratification is defined by N>
= g Ap, 2/ (pohay), where Ap, , is the density difference
between the layers. The effect of buoyancy loss is to
raise the interface between the layers by an amount 7
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so that some formerly upper-layer fluid has changed its
density to that of the lower layer. Hence, a density
anomaly Ap = nAp,./(2hy) results.

The deformation radius is determined by the initial
stratification and the layer thickness, defined in the
equations of motion (see appendix) as

Nhy,

L, s
that is, Ap, = Ap,,/2. Here L, is constant with time
in contrast with the ¢!/> dependence of the neutral and
stratified models we shall consider, a direct conse-
quence of the quasigeostrophic assumption that density
perturbations may be considered ‘‘small’’ (see, for ex-
ample, Charney 1947).

Hence from Eq. (7) the equilibrium density anomaly
is given by

1 po { NBor \'?

Apeq = 2”4(2a)”2 ; hﬂ'
N_Po_f”ﬁa(ﬂL
g I hy

where Ro* is expressed in terms of the layer depth hy,.
We expect equilibrium to be reached in a time

T Apeq rth, 1/2 l ]X_r_ 1 1/2
b dAp/dt Bo f f h21 Ro*? ’
(13)

Numerical verification of these results is the focus of
later sections of this paper.

1)

112
R0*2> , (12)

b. Convection into a neutral ocean: Neutral model

In this model there is no background density strati-
fication to obstruct deepening so that the chimney rap-
idly extends to the ocean floor, such that & = H, the
total ocean depth (Fig. 2b). In the absence of lateral

buoyancy fluxes
Bopoz VB()t
Ap =——; 7o

gH ’
as in Send and Marshall (1995). Note that unlike the
two-layer model, where L, is constant and Uy, pro-
portional to ¢, both are here proportional to ¢'/> and
Ap, = Ap.

Baroclinic instability leads to fluxes of dense fluid out
of the cooling region (Fig. 4), and the development of
an equilibrium state characterized by a constant density
anomaly. Substituting for A and Ap, in (7) to obtain a
relationship for Ap,,, the equilibrium density anomaly is

1 Po pof *H r\*"?

A g = —— B, 2/3 . Y 7 R w2 ,
,Dq (2&)2/3 gH( Or) g o H

(15)

L,~ Uim ~ VBot  (14)



2256

80} S ........... e 4

soL,

B
(=]
T

w
(=]
—T"

Domain Distance (km)

n
o

10 20 - 30 40 50 60
Domain Distance (km)

60F - -

B
(=]
T

w
o
L

Domain Distance (km)

N
o
L

10 20 30 40 50 60
Domain Distance (km)

FIG. 4. A horizontal section showing the structure of the density
anomaly (a) 1 day after the onset of cooling and (b) 10 days after the
onset of cooling, before and after the onset of baroclinic instability,
respectively, in the neutral model [calculated using the numerical
model described in Jones and Marshall (1993)]. The surface forcing
is confined to a disc of diameter 16 km in the center of the domain.

The contour interval is 0.001 kg m™>,

and the breakup time is

Ae 2\ 1/3 1 2/3
T,~—L () (L) (16)
dAp/dt B() f lrol

These results have previously been obtained by VMJ
and have been verified in the laboratory by Brickman
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(1995) and Narimousa ( 1996, manuscript submitted to
J. Geophys. Res.).

Although the two-layer model’s quasigeostrophy
introduces differences in time dependence when
compared with this model, features of the steady state
are similar: the equilibrium density anomaly (15) can
be obtained from Eq. ( 12) by replacing N? with
ZgAPeq/(PoH)

c. Convectwn into a stratified ocean: Stratified model

In the final convection model we consider, a preex-
isting density stratification must be eroded to achieve
chimney deepening. When convection occurs to disrupt
a stable, horizontally homogencous density profile
(Fig. 2c), then the average density anomaly of the
mixed layer

PoN h
2 k
where N? = —(g/p,)(0p/8z) is the square of the

Brunt—Viisild frequency and 4 is now the time-depen-
dent mixed layer depth:

b= ( 2Bot>”2
NZ
(Turner 1973). This presumes no turbulent entrain-
ment at the mixed layer base and that the sole effect of
convection is to mix the water column to a state of
neutral static stability.
The relevant chimney-scale quantities, obtained

by substituting Eq. (17) in Egs. (2) and (4),
are

[Ap| = (17)

(18)

(19)

that is, Ap, = Ap.
Given (18), the time dependence of L, and Uy, in
the neutral and stratified models is the same.
Substituting for Ap; and Ap in (7) in terms of 4,

2!/2 (BOI")UB 7 1/3 f
- T *2 J_
T = N H<R° H> (N) :
' (20)
implying from (17) that
i 1 N
AV :2[/2(2a)1/3'00*(30”)”3 (21)
and ‘
hmax (rz 1/3 l r 2/3
T, ~—— ~ | — ~—=— 22
b dnldr \BO) f (1 (22)

as for the neutral model and obtained and verified by VMJ.
Here hm,x and Ap, are, like Ape, in the neutral
model, independent of fand can be deduced from the
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neutral model result by replacing H by h,,,. Similarly
humax can be deduced from Eq. (12) if Ap,, is replaced
by N2pohma/(28) and hy, with k..
d. Comparison of numerical values

Introducing appropriate constants of proportionality,
the following equalities pertain at equilibrium

Ap.,(neutral model) = v, p_;] (Byr)*?  (23)
8

B, 1/3
o (stratified model) = v, 220" (24
NB 172
Ape,(two-layer model) = yz,% <7QC> , (25)
21

where v,, ¥, and vy, are numerical constants.

All the numerical constants depend only on the clo-
sure parameter «, the constant of proportionality relat-
ing the effective flux velocity u* to the rim current
velocity:

_ i . _ g1/ ' ~ 1
= (2a)’ Ys = (2a)'” Yu = (2a)"22774"
(26)

Vn

Hence a can be determined by evaluating 7y

1

Q= .
32,2
27y

(27)

For future reference, this information is summarized in
Table 1. Note that VMJ obtained y, = 3.9 from exami-
nation of several numerical and laboratory studies.

4. The heton model

Before testing our two-layer predictions we begin
with a description of the heton model, which is a par-
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ticular numerical implementation of the two-layer qua-
sigeostrophic model. We wish to model the evolution
of the density anomaly of the convected region, and
associated baroclinic flow, with nonlinear dynamics, at
low resolution, in order to study as large a parameter
space as possible, but without the usual accompanying
problem of high diffusivities. Furthermore, since the
equilibrium state involves lateral fluxes of fluid to large
distances, we do not wish to be restricted in our domain
size. A Lagrangian inviscid model with an unbounded
domain will allow us to achieve these aims but is not
possible without some discretization of the anomaly.
The discretization we choose is the heton model of
Hogg and Stommel (1985), details of which are given
in LM. A two-layer discretization is used in the vertical,
the simplest possible representation of the baroclinic
structure of the chimney. A point vortex discretization
is used in the horizontal, which has the advantage over
other available discretizations (e.g., contour dynamics )
of allowing a controllable element of randomness and
spatial variability in the density anomaly, mimicking
the local variations in surface buoyancy flux. Varia-
tions in the shape and distribution of the forcing can
also be readily incorporated.

The two-layer model is formulated in terms of qua-
sigeostrophic potential vorticity, which includes both
velocity field and density anomaly information. (For
details of the model equations, see the appendix.) The
potential vorticity anomaly is related to the density
anomaly of the region through

= gf
poN 2/?21

where ¢ is the baroclinic component of the potential
vorticity anomaly. In the two-layer discretization of
equal layer depths, the potential vorticity anomalies in
each layer are given by ¢, = ¢, g, = —¢q. As described
in LM, we have parameterized the effect of convection
by a redistribution of potential vorticity within the wa-

Ap, (28)

TABLE 1. Summary of parameters for the three scenarios.

Neutral scenario

Stratified scenario Two-layer scenario

Depth scale H
5 172
Rossby radius L, ~ ! (M)
7 Po
) gA,OH 12
Rim current speed Ui ~ | —
Po

Equilibrium value Ap = %,p—;{(Bol‘f”
&

_ 1
- (204)2’3

v, = 1.6 + 0.4

Coefficients Y

Calculated values

h hay
. AL
T T}
A
U Nh Ui ~ gDN_P
max = Vs~ _N p= 721g hiy
21/2 l
Ys = Q) Yu = 22"
v, =18 =02 yu=12=+02




2258

ter column, a concept currently being pursued in the
development of parameterizations of convection for
models that are continuous in the vertical (J. Marshall
1995, personal communication).

The baroclinic structure of the convected region is
represented by an ensemble of baroclinic point vortex
pairs of potential vorticity = s§(r — r;), where *s is
the strength of the point vortex in the upper and lower
layer, respectively, each point vortex pair being termed
a heton (Hogg and Stommel 1985). The point vortices
also act as dynamical tracers, indicating by their move-
ment the transport of convected fluid. The average po-
tential vorticity anomaly g over the convection region
is related to the number of hetons there by

fqu = gA = s, (29)
where X'is the number of hetons and A is the area over
which the average is evaluated. Substituting from Eq.
(28) into Eq. (29), the number of hetons within a re-
gion is related to the average density anomaly of the
region by

A_sgf
a=28_
A poNzl’lz]

By examining the number of vortices and their flux, we
can deduce the density anomaly and the lateral density
flux.

As shown in the appendix, the behavior of a heton
ensemble depends on three nondimensional parame-
ters:

R _ BO _ érgt 2 i 2
! AN hu) \N

Ap. (30)

_r_f _srf
A Nh21 \/zhng (32)
)
Sp =Ny (33)

where N = Nhy/(V2f), a modified deformation radius
and 2‘rot = (BO/f3)1/2~

Here R, can be considered a form of Rossby number
since it is the ratio between the potential vorticity
anomaly generated in a time 1/fcompared to the plan-
etary vorticity f. Typical parameters associated with
ocean convection give a value of R, < 1 so that the
quasigeostrophic assumption is valid.

In (32) p is the ratio of the radius over which cooling
is occurring compared to the deformation radius A. The
smallness of the deformation radius in the ocean means
that convecting regions usually have y > 1 and so are
baroclinically unstable (Pedlosky 1985).

In (33) S, is the area associated with each vortex
when the average potential vorticity of the patch g = f,
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nondimensionalized by A?. It is a measure of the
sparseness of the point vortices and is an indicator of
the degree to which the potential vorticity has been
discretized. Experiments performed in LM demon-
strated that the physical properties of the chimney show
no dependence on S,, provided it is sufficiently small
that point vortices are close enough to interact as an
ensemble. Here S, is simply an artifact of the point-
vortex discretization and would be a matter for concern
if it did, in fact, influence the large-scale dynamics.

Note that while g and R, can be expressed in terms
of the nondimensional parameters previously de-
scribed, instead of having three physical nondimen-
sional parameters we now have only two (since S, re-
fers to the model formulation rather than the physics of
the problem). This reflects the loss of a degree of free-
dom, a result of the quasigeostrophic constraint that Lp
is no longer a freely evolving parameter but is instead
a constant of the model. )

We can rewrite the equilibrium number of hetons in
the chimney region, X,, in terms of the nondimen-
sional parameters, by relating N, to Ap.,, Eq. (25),
through Eq. (30), as

)\ 2—1/4,/,r 2
Wan(CQ) = L?_L qu/./, = ')’x/'LzVRq,u s
P

where the numerical constant y, = yy,72~"*/S,.

The breakup time, Eq. (13), can similarly be ex-
pressed in terms of the nondimensional parameters of
the model:

(34)

(35)

Equations (34) and (35) allow us to compare the
results of heton model integrations with the predictions
for the three different scenarios in a straightforward
manner.

The dependence of the equilibrium properties on R,
and y are considered in the numerical integrations de-
scribed below.

5. Results of the heton model for circular geometry

In LM, a “‘reference experiment’” was performed
with values of nondimensional parameters, R, = 0.08,
u = 5.0, S, = 1.9. The hetons were introduced at a
constant rate given by Eq. (A.3b) into the disc of radius
uX. The initial coordinates of each vortex were ran-
domly chosen, but with a minimum separation 0.5\
from any other preexisting vortex. As the ensemble of
baroclinic vortices builds, a large-scale baroclinic cir-
culation develops around the edge of the chimney,
which after a time 15/f develops a mode number 4
instability. The finite-amplitude development of the in-
stability leads to heton clusters of radius about \, break-
ing out.of the forcing region. The clusters are tilted in
the vertical so as to form self-propagating dipoles,
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FiG. 5. The structure of the density anomaly (a) 1 day after the
onsct of cooling and (b) 3 days after the onset of cooling, before and
after the onset of baroclinic instability, respectively, in the two-layer
model reference experiment. The contour interval is 0.001 kg m 3,
Note the general similarity in shape between this anomaly and that
shown in Fig. 4, with lobes of dense fluid moving away from the
convection region of diameter 16 km in the center of the integration
domain.

which flux dense fluid out of the chimney (Fig. 5) and
thereby provide a lateral buoyancy flux inward. This
behavior has been noted in several other studies of the
baroclinic breakup of a circular density anomaly (for
example, Griffiths and Hopfinger 1984; Helfrich and
Send 1988) and is also seen in the other convection
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scenarios (Fig. 4). An equilibrium is established in
which the flux of hetons out of the patch due to baro-
clinic instability is equal to the rate at which they are
generated by the buoyancy forcing (Fig. 6) and the
lateral buoyancy flux is therefore sufficient to com-
pletely balance the surface buoyancy loss.

In the present study we performed two series of in-
tegrations of the heton model, the first at constant p
= 5.0, varying R,, and the second at constant R, = 0.08,
with varying i (see Fig. 7), in all cases integrating until
the properties of the equilibrium state could be deter-
mined. A total of 36 numerical integrations was per-
formed for each series described. Such a large number
was necessary in order to reduce the uncertainty with
which the scaling exponents could be deduced. Cur-
rently such a series would not be economically feasible
using a fully three-dimensional numerical model. In-
tegration of the nonhydrostatic model of Jones and
Marshall (1993) on a 132 X 132 X 20 grid, carrying
five variables, with a time step of 60 s for a period of
4 days, for example, involves a conservative 10'? float-
ing point operation (flops) and requires 35 million
bytes of memory. The heton model, when run with R,
= 0.08 and p = 5.0 for a similar time, requires a max-
imum of 0.8 million bytes while performing a total of
only 4.9 X 10° flops.

A convenient nondimensional parameter by which
to compare different studies of localized convection is
rllg = r(f*By)'"* = p/(2R,)"? because it is based

N v time
T T ettt
140 F .
120
100 |
. BOE
60;
[ T,
40 |
{ lat ,w“-\‘.{l... un’"\A v ]
20} 7 T
4 !
0+ l u_L..L..ILLL..I\il.ﬂ..|.. N j
0 10 20 30 40

time (1/£)

FiG. 6. The evolution of the heton numbers in the reference ex-
periment: A, is the total number of hetons generated at a constant
rate; X, is the number of hetons within the chimney region of radius
s Ny is the number of hetons outside of this region. Also shown
are T,f (dashed line) and ,(eq) calculated from these results and
the corresponding steady state N, (thin solid lines).
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FiG. 7. The parameter space in R, and u covered in the heton
experiments (diamonds). Also shown are the predicted values of 7, f
(dotted lines) and X,(eq) (solid lines), making use of the numerical
constants deduced through examination of the results in section 6¢.

solely on external parameters in all three scenarios. The
values of 7/l covered by the heton model are com-
pared to those investigated by other researchers in Fig.
8. The high density of results obtained for the larger,
more physically interesting values of #//, in addition
to the large range of values covered attest to the econ-
omy of the heton model.

a. The dependence of the final properties on R,

A series of experiments was performed keeping u
and S, constant at 5.0 and 1.9, respectively, and varying
R,. All experiments displayed the same qualitative be-
havior with the generation of a baroclinic rim current
around the region of surface buoyancy forcing, the
growth of a mode 4 instability, and the breakup of the
convected patch into self-propagated tilted heton clus-
ters, leading to an equilibrium state in which the num-
bers of hetons within the chimney remain approxi-
mately constant.

We use the time at which the rate of change of hetons
outside the patch (averaged over 20 time steps to elim-
inate small fluctuations) is equal to the total rate of
change of hetons as a measure of the breakup time, 7,
since after this time the number of hetons within the
patch ceases to increase further and breakup has there-
fore been established (see Fig. 6). The equilibrium
number of hetons in the chimney ;,(eq) is calculated
as the time-mean number of hetons in the patch after
the breakup. Shown in Fig. 9 is the nondimensionalized
breakup time 7, f plotted against R, in log—log form.
The large estimated uncertainty does not allow us to
distinguish whether 7, f follows the predicted R, '/
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experiments of Whitehead and Hufford (WH), numerical simulations
of Hufford and Marshall (HM), numerical simulations of Jones (J),
laboratory experiments of Ivey et al. (I), and the heton experiments
described in this paper (LJV).

scaling behavior or is, in fact, independant of R,,. None-
theless, Eq. (35) is not refuted by these results. Figure
10, showing i, plotted against R,, demonstrates the
predicted scaling behavior: X,(eq) « R;’?, Eq. (34),
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FI1G. 9. Plot of T, f vs R, at constant 4. Shown are the data points
and the best fit to these data points 7, f = A1R}, where Al and n are
found empirically to equal 6.42 and —0.23, respectively. The esti-
mated error in the calculation of n is +0.22, and this value is therefore
within two standard deviations of the predicted value n = —0.5. Also
shown is the best fit of 7, f = A2R;'” to the data, where A2 = 3.18.
As in the next three figures, each point shown is the mean of results
taken from three individual numerical integrations.
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FiG. 10. Plot of %, vs R, at constant u. Shown are the data points,
the best fit to these data points X, = AIR7, and the best fit of N,
= A2R” 10 the data. Al = 89.45, n = 048 = 0.11, and A2 = 913
+6.1. Term n therefore lies within one standard deviation of the
predicted value.

to within estimated uncertainty. The constants of pro-
portionality will be considered in a later section.

b. Dependence of properties on

A second series of experiments was performed,
keeping R, and S, fixed at 0.08 and 1.9 respectively,
and varying the radius of the cooling region . As be-
fore, the generation of a baroclinic rim current leads to
the development of an instability, now with mode num-
ber varying in proportion to the patch radius, and even-
tually an equilibrium state is reached. In Fig. 11, the
breakup time 7}f is shown plotted in log—log form
against y, showing that the approximate scaling behav-
ior T,f x/ﬁ is obtained. In Fig. 12, the equilibrium
number of hetons in the patch X, is shown plotted in
log—log form against ., demonstrating that the approx-
imate relationship N, « u'* exists. We have therefore
verified that at constant S,, Eqgs. (34) and (35) cor-
rectly predict the behavior of the dense fluid patch in
the heton model. To verify these results further we per-
formed two additional sets of experiments, at R, = 0.2,
p=3.0,and R, = 0.02, u = 12.0. The resulting X, (eq)
and T, agreed with those predicted given the scaling
exponents in (34) and (35) and the coefficients de-
duced from the previous four figures to within 20%.

c. Calculation of vy from the heton model

The success of our theory in predicting the correct
exponents seen in the heton experiments gives us some
confidence in the assumptions used in that theory; it is
after all the use of these assumptions that allows us to
gain some understanding of each model’s behavior. We
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the best fit to these data points Tyf = Aly”, and the best fit of Tpf
= A2u7"2 to the data. Al = 477, n = 0.62 = 0.17 and A2 = 5.89.
Term n lies within one standard deviation of the predicted value.

now consider the constants of proportionality. Given
the relation for %, (eq), Eq. (34), we can calculate 7y,
and hence 1, and ;. The slope at constant p (Fig. 12),
S, = v.u3?, where pg = 5.0. The slope at constant R,
(Fig. 10), S, = v.R}7, where R, = 0.08 so that

3 21/4SPS‘ 3 21/4Sp52

Yu = 52 112
0

T TR 40

Inserting the numerical values (S, = 91.3 = 6.1, 5>
=0.48 + 0.05, S, = 1.9), we obtain yy = 1.17 =
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FiG. 12. Plot of X, vs 4 at constant R,. Shown are the data points,
the best fit to these data points X, = Aly", and the best fit of X,
= A2u% to the data. A} = 0.40, 2 = 2.61 = 0.10, and A2 = 0.48
+ 0.05; n is within two standard deviations of the predicted value.
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or 1.22 + 0.13, reassuringly close in value, the differ-
ence between the two values being well within the es-
timated error. The closure parameter « relating the ef-
fective flux velocity with the geostrophic rim current is
therefore deduced to be 0.25 + 0.015.

With regard to vy, and vy, from Eq. (26), vy, = 1.56
*0.14 or 1.64 = 0.24 and y, = 1.77 = 0.07 or 1.81
+ 0.13. These should be compared with the values in
VMI, where v, = 3.9 + 0.9. While of a similar order
of magnitude, the difference between the values of v,
indicates a greater efficiency of the lateral fluxes in the
heton model as compared to the numerical simulations
and laboratory experiments studied in VMJ. This is es-
pecially evident in comparison of &’ (=a/2*?), which
can be considered an efficiency parameter, where VMJ
obtained o' = 0.008 and we obtain o' = 0.088 + 0.004,
an order of magnitude greater. An explanation for this
disparity in o’ values may be found by comparing Figs.
4 and 5. Whereas the density anomaly in the heton
model spreads out from the forcing region in a com-
pletely irrotational fashion, the density anomaly in the
primitive equation simulations is swept around the
forcing region as well as outward. In the quasigeo-
strophic formulation, the surface buoyancy forcing can-
not generate a net vorticity (integrated in the vertical ),
while this constraint does not hold in the primitive
equation case and a net cyclonic vorticity results.
Hence for a given magnitude of eddy migration, the
projection of the density transfer onto the direction
away from the forcing region is greater in the quasi-
geostrophic case than in more complete formulations,
and the effective flux velocity is therefore greater for
the quasigeostrophic model.

6. Results of the heton model for elliptic forcing

Ocean convection observations indicate that the
shape of the convecting region is often far from cir-
cular. For example, the MEDOC experiment (MEDOC
1970) observed a Mediterranean chimney much larger
in east—west extent than north—south. Motivated by

such observations, and as an example of the heton mo-

del’s ready utility and economy, we performed a series
of experiments to study the dependence of equilibrium
conditions on the geometry of the forcing.

In order to predict the effect of shape we reconsider
the equilibrium-state balance between surface forcing
and lateral fluxes:

B .
f 290 4 :fgﬁ u*Apdidh, (36)
A 8 h Vi

where A, is now an arbitrarily shaped area, and [, is the
perimeter length of that area. Then if we substitute for
u* relevant for the heton model to obtain the equilib-
rium density anomaly as before, we find a dependence
on the shape:
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Apeq = £o <—_0

1/2
2717 ¢ \ Ty ) (A1) (37)
Hence we would predict forcing shapes with larger pe-
rimeters relative to area to result in lower equilibrium
density anomalies due to the greater length over which
the fluxes can occur.

We investigate whether this is the case by examining
elliptic forcing regions. Choosing R, = 0.08, we per-
formed several series of experiments forced within an
ellipse of area mab, where a and b are the two ellipse
radii. For each series of experiments wab was fixed to
correspond to the area of a circular vortex of radius p
= 3.0, 4.0, 5.0, 7.0, 10.0. The ratio between the two
ellipse axes a/b (Fig. 13) was reduced from 1.0 (a
circle) to 0.5, 0.3, and 0.2. As the forcing becomes
more elliptical, the circumference [approximately /,

= 2m/(a® + b?)/2] increases relative to area, and so
an increase in the efficiency of the lateral fluxes might
be expected, with a corresponding decrease in the final
density anomaly and breakup time. However, contrary
to the above prediction, our results showed no signifi-
cant difference between the final density anomaly of
the circular cases, and those for the equal-area elliptic
regions (Fig. 14). This suggests that the circumference
is not as important in controlling the behavior as one
might expect, because instability development is mod-
ified by the altered shape. The elliptic shape imposes a
mode 2 perturbation on the vortex, which interferes

. with the development of the preferred mode for baro-

clinic instability for the circular vortex of this area.
As a result, fluxes do not occur across the whole of
the circumference but principally at the regions of
highest curvature of the ellipse (Fig. 15). Hence the
effective length /; over which the fluxes are occurring
is unchanged from the circular case. This suggests
that, in applying parameterizations of the baroclinic
instability lateral fluxes in the context of an isolated
region of forcing, it is sufficient to know the area over

ab=a

7 ab = Al = constant

172

=2 7 (@a*+b)2)

FiG. 13. A schematic comparing the areas and circumferences of
circular and elliptic forcing regions. All are of equal area wab, where
a and b are the lengths of the two axes, but « = a/b varies as in the
numerical study described in the text.
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FiG. 14. Plot of X,(eq) vs 4 at constant R, for ellipses of different
axis ratio o and different area mab; X;,(eq) shows negligible depen-
dence on a.

which the forcing applies and not necessary to in-
clude the details of its spatial shape. However, this
conclusion should be verified for more complex forc-
ing shapes.

7. Discussion and conclusions

In this work we have investigated a quasi-equilib-
rium state of convection in a simple point-vortex heton
model. This statistically steady state is established
when the surface buoyancy loss is balanced by the lat-
eral buoyancy fluxes achieved by the baroclinic insta-
bility associated with localized deep convection. We
have compared the heton model results with those of
other scenarios, for which other authors have investi-
gated the equilibrium: the stratified model results have
been verified by VMI using supporting data from sev-
eral studies (Ivey et al. 1995; Hufford et al. 1996, man-
uscript submitted to J. Geophys. Res.), and the neutral
scenario results have been verified by Brickman (1995)
and Narimousa (1996, manuscript submitted to J. Geo-
phys. Res.). We have shown that the properties of the
equilibrium state in the heton model can be explained
using two assumptions: 1) at equilibrium the transfer
of heat by geostrophic eddies arising through baroclinic
instability balances the surface buoyancy forcing and
2) the root-mean-square velocity of material across the
chimney boundary is proportional to the magnitude of
the rim current around the chimney. The importance of
this advective balance is confirmed by the successful
application of an identical parameterization of the lat-
eral fluxes in this model as in other scenarios, despite
the model’s very different quasigeostrophic dynamics.
The potential vorticity parameterization of convection
inherent in the heton model is also corroborated by the
agreement between the heton results and those of other
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scenarios. The conclusion that the fluxes are indepen-
dent of molecular parameters or subgrid-scale param-
eterizations is confirmed by the use of an inviscid
model. Objective comparison between the heton model
results and those of other scenarios is only possible
given the unified formulation we have described, since
as we have shown the details of the scaling ultimately
depend on the depth over which convective forcing ap-
plies and the determination of deformation radius. In
particular the quasigeostrophic model keeps the defor-
mation radius fixed and dependent on the initial strat-
ification. Hence, although an analogous scaling behav-
ior and identical mechanism for establishment of an
equilibrium apply, results from a quasigeostrophic
model cannot be applied blindly to the real ocean.
Rather they should be used to provide an understanding
of the underlying processes. This formulation can be
extended to apply to many other convection scenarios,
including, for example, nonuniform stratification or
varying buoyancy fluxes.

In the simulations described in this paper the local-
ization of the convection has been artificially imposed,
as in most of the studies of localized convection to date.
However, in many areas where open-ocean deep con-
vection occurs, it is likely that the localization is a result
of weakened stratification associated with an ambient
cyclonic flow (Swallow and Caston 1973). This pre-
existing circulation may have a significant influence on
the ability of baroclinic instability to provide a suffi-
ciently large lateral heat flux (Legg and Marshall: The
influence of ambient flow on the spreading of con-
vected water masses, in preparation). The simplified
dynamics of the heton model allows circumstances
such as these to be identified analytically. In addition,
ambient circulation will play a significant role in de-
termining how the overturned fluid mixes with its sur-
roundings, thus affecting the characteristics of the new
water mass.

This study has assumed that convection occurs in a
localized region located in an effectively infinite
ocean, allowing all mixed water to escape. If the ocean
basin is of finite extent, the flux of fluid out of the
convecting region by the baroclinic instability will not
be sufficient to prevent further deepening and cooling
of the overturned water mass since fluid may be
“‘processed’’ by the convecting region several times.
The finite size of the basin may not be important in
the real ocean, where the timescale for processing all
the water of the basin is probably greater than the sea-
sonal scale of the forcing; however, in laboratory and
numerical experiments finite domain size has a sig-
nificant influence.

Since these results have indicated the importance of
the radius of the forced region, further important ques-
tions remain concerning the spatial distribution of the
buoyancy loss. Most studies of localized convection
performed to data have assumed a top hat form of the
buoyancy forcing, constant over a circular region and
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negligible outside. Convection is usually forced by sur-
face buoyancy loss over an area that is far from circular,
with the intensity of the buoyancy loss showing a more
gradual decrease from its maximum. Our preliminary
investigations into elliptic-shaped forcing show sur-
prisingly little dependence of the density anomaly on
the shape of the forcing region; the instability is mod-
ified by the shape perturbation, compensating for the
lengthened perimeter of the forcing region, and no in-
crease in lateral fluxes therefore occurs. However, it is
not clear that this will be the case for all forcing to-
pologies. If convection occurs simultaneously at sev-
eral locations, there may be interaction and transfer of
fluid between the different regions. The heton model is
ideally suited to address these questions in future work
since its economy offers a ready means of scouting
parameter space in preparation for more costly explicit
computational and laboratory studies. We emphasize
that the heton model is best suited for examining ques-
tions determined by horizontal structure (such as the
study of forcing shape described earlier) since it in-
cludes a minimal vertical representation. In this respect
it provides a useful complement to the two-dimensional
model of Visbeck et al. (1996b), which assumes some
symmetry in one of the horizontal directions (i.e., flow
and density independent of zonal or asimuthal direc-
tion) but can resolve structure in the vertical. A limited
number of high-resolution numerical studies will al-
ways be a necessary follow up to verify any interesting
results in the context of more complete representations
of the three-dimensional structure.

In conclusion, the idealizations of the heton model —
its inviscid nature, and simplified quasigeostrophic dy-
namics—allow us to isolate the advective fluxes as-
sociated with baroclinic instability alone, as distinct
from diffusive effects and vertical mixing, which may
be present in other models and laboratory experiments.
The presence of an equilibrium in this model, with a
dependence on imposed parameters which is easily
related to that found by other researchers in more
complex scenarios, confirms that the dominant process
is indeed advective and controlled by baroclinic insta-
bility.
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APPENDIX

The Heton Model Equations

The equations governing the development of the
convection patch in the heton model are

Dql qu _Bof
—_— = - —= FH(L — Al
Dt Dt h3N? €= (Ala)
DX Dq, f Dq,
— = —dA = — —dA (Alb
g Dt A, Dt a Dt ( )

Vi - s - = S (- R (AL

i=1x

Vi b~ ) = 5 — s5(C — 1), (Ald)
2\ i=1x
where J#(x) is the Heavyside function, #(x) = 1, x
<0, H(x) =0, x > 0; N = Nhy/(J2f), the defor-
mation radius; i is the streamfunction; ¢ is the quasi-
geostrophic potential vorticity; X'is the total number of
baroclinic point vortices (hetons); B, is the surface
buoyancy forcing; &, is the depth of the layer; » and
Al = 7r? are the radius and area of the forcing region;
s and —s are the strengths of a point vortex in the upper
and lower layers, respectively; and N is the Brunt—
Viisild frequency. The subscripts 1, 2 refer to the upper
and lower layers, respectively. In Eqgs. (A1) { is the
position coordinate and r,; is the position coordinate
of the ith vortex in the nth layer. In the two-layer sys-
tem N is defined by N? = g Ap,,/(hypo), Where Ap,,
is the density difference between the layers.
We nondimensionalized these equations using 1/f
and A as the temporal and spatial scales:

t* A2
t= 7 (A2a)
L = L*\. (A2b)

Then the equation set (A1) becomes, where all param-
eters are now nondimensional,

Dg, _ _Dg,

Sl - TR RIC -0 (M%)
DX _R, .
Dr s, pomw (A3b)
Vi = W =) = T 8,6(6 - ) (A3)
Vi =5 W = 4) = £ =S,8( — 1), (A3d)

where there are three nondimensional constants:

By
R = A4
* = WLN’f (Ada)
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s
S =37 (Adb)
_r_ \/irf
w= N N, (Adc)

The equation set in its nondimensional form (A3) is
integrated forward using a fourth-order Runge—Kutta
time-differencing scheme to find the evolution of the
point-vortex positions, and hence the behavior of the
convective patch.
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