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ABSTRACT

TheLagrangian analysis of sets of particles advectedwith theflowfields of oceanmodels is used to study connectivity,

that is, exchange pathways, time scales, and volume transports, between distinct oceanic regions. One important factor

influencing the dispersion of fluid particles and, hence, connectivity is the Lagrangian eddy diffusivity, which quantifies

the influence of turbulent processes on the rate of particle dispersal. Because of spatial and temporal discretization,

turbulence is not fully resolved in modeled velocities, and the concept of eddy diffusivity is used to parameterize the

impact of unresolved processes. However, the relations between observation- and model-based Lagrangian eddy dif-

fusivity estimates, aswell as eddyparameterizations, arenot clear.This studypresents ananalysis of the spatially variable

near-surface lateral eddy diffusivity estimates obtained from Lagrangian trajectories simulated with 5-day mean ve-

locities from an eddy-resolving ocean model (INALT01) for the Agulhas system. INALT01 features diffusive regimes

for dynamically different regions, some of which exhibit strong suppression of eddy mixing by mean flow, and it is

consistent with the pattern and magnitude of drifter-based eddy diffusivity estimates. Using monthly mean velocities

decreases the estimated diffusivities less than eddy kinetic energy, supporting the idea that large and persistent eddy

features dominate eddy diffusivities. For a noneddying ocean model (ORCA05), Lagrangian eddy diffusivities

are greatly reduced, particularly when the Gent and McWilliams parameterization of mesoscale eddies is employed.

1. Motivation

Over the past decades, the Lagrangian analysis of fluid

motion by following floating instruments has been used

to investigate ocean general circulation patterns (e.g.,

Davis 1991a,b; Poulain 2001; Lumpkin and Johnson

2013; Lumpkin et al. 2017). Additionally, an increasing

number of Lagrangian analyses are performed by ad-

vecting virtual fluid particles with the simulated flow

fields of ocean models (van Sebille et al. 2018). They are

employed in large-scale oceanography to study the

sources, fates, and transformations of water masses

(Speich et al. 2001; Lique et al. 2010; Koszalka et al.

2013a,b; Gary et al. 2014; Durgadoo et al. 2017) and are

particularly suited to quantify connectivity between

different oceanic sites, that is, preferential linking

pathways (e.g., Rühs et al. 2013; van Sebille et al. 2013,

2014) and associated time scales (e.g., Blanke et al.

2002; van Sebille et al. 2011; Koszalka et al. 2013a;
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Rühs et al. 2013), as well as volume, freshwater, and

heat transports (e.g., Blanke et al. 2001; Biastoch et al.

2008b; Döös et al. 2012).
One important factor influencing large-scale (;1000km)

connectivity is the average rate at which particles disperse.

Turbulent processes, such as mesoscale (10–100 km)

eddies and jets, cause fluid particles to disperse quickly

and increase the rate of mass, momentum, and tracer

spreading, leading to accelerated mixing (LaCasce

2008). Turbulent flow is often described via Reynolds

decomposition in terms of a long-term (or slowly vary-

ing) mean velocity and the residual eddy component.

Analogously, the concept of Lagrangian eddy diffusivity

is used to quantify the rate of dispersal related to the

cumulative effect of eddies. Depending on the definition

of the mean flow, the residual eddy component may

include not only mesoscale, but also seasonal-to-

interannual (Rieck et al. 2015; Laurindo et al. 2017;

Uchida et al. 2017) or smaller-scale (if resolved but not

low-pass filtered) variability, or may specifically refer to

processes not resolved by a certain flow field (Rypina

et al. 2016). In this study, we focus primarily on meso-

scale eddy variability.

Owing to spatial and temporal discretization, tur-

bulent processes are not fully resolved in modeled ve-

locity fields, but are parameterized instead. Simulated

advective Lagrangian trajectories capture the resolved

turbulence but only implicitly include the effect of

subgrid-scale parameterizations acting on the tracer and

momentum equations, that is, by altered large-scale

circulation patterns and along-track changes of tem-

perature and salinity. This led to the notion that dis-

persal of advective Lagrangian trajectories is not

sufficiently diffusive compared to particle dispersal in

the real ocean. To circumvent this issue, Lagrangian

diffusion parameterizations were introduced (Griffa

1996; Berloff and McWilliams 2002; Monti and Leuzzi

2010; Döös et al. 2011). These add an additional

stochastic component to the advective particle dis-

placements (or velocities or accelerations) and have

already been employed in regional ocean circulation

studies (De Dominicis et al. 2012; Koszalka et al. 2013b;

Rypina et al. 2016).

However, compared to the vast number of large-scale

Lagrangian applications with ocean models, there are

few comprehensive validations of eddy diffusivities as-

sociated with the simulated particle dispersal. Numer-

ous studies presented eddy diffusivity estimates derived

from drifter data (e.g., Krauss and Böning 1987; Davis

1991a,b; Swenson and Niiler 1996; Poulain 2001;

Lumpkin and Flament 2001; Bauer et al. 2002; Zhurbas

and Oh 2004; Sallée et al. 2008; Koszalka et al. 2011;

Zhurbas et al. 2014; Peng et al. 2015). Likewise, several

studies addressed the diffusivity estimation using La-

grangian trajectories simulated with velocity fields from

eddy-resolving ocean models (e.g., McClean et al. 2002;

Koszalka and LaCasce 2010; Griesel et al. 2010, 2014;

Chen et al. 2014; Wolfram et al. 2015). Yet there are

only a handful of publications aiming at a quantitative

comparison of eddy diffusivity estimates from drifter

data and simulated trajectories (De Dominicis et al.

2012; Rypina et al. 2012, 2016). Additionally, the re-

lations between Lagrangian eddy diffusivity estimates

and the optimal choice of diffusivities to be used in

stochasticLagrangianparameterizations and in theEulerian

diffusion parameterizations employed in OGCM tracer

equations are not well understood (van Sebille et al.

2018). Unresolved issues concern the difficulty to un-

equivocally define the mean flow and residual eddy

component (Griesel et al. 2014), the spatial variability of

eddy diffusivities associated with different turbulence

regimes (Berloff and McWilliams 2002; Koszalka et al.

2011), and the sensitivity of model-based eddy diffusiv-

ity estimates to the temporal and spatial model resolu-

tion (Keating et al. 2011;Wolfram et al. 2015; van Sebille

et al. 2018).

In this study, we address this gap by jointly assessing

lateral near-surface eddy diffusivity estimates obtained

from real drifter data and trajectories simulated with the

velocity output from ocean general circulation models

(OGCMs) at varying horizontal and temporal resolu-

tions for the greater Agulhas system. The greater

Agulhas system, located around the southern tip of

Africa, is known for its vigorous eddy activity and its

importance for interbasin exchange of heat, salt, and

momentum between the Indian and Atlantic Oceans

(e.g., Beal et al. 2011). It features different dynamic

regimes in a confined region (Fig. 1): the Agulhas

Current (AC), a strong but stable western boundary

current in the Indian Ocean; the Agulhas Retroflec-

tion (AR) into the eastward-flowing Agulhas Return

Current (ARC); and associated shedding of Agulhas

eddies (Lutjeharms 2006) that travel into the eastern

South Atlantic Gyre (eSAG). Hence, it constitutes a

good test region for evaluating spatially variable eddy

diffusivity characteristics. In particular, we address

the following questions:

1) What are the characteristics of lateral near-surface

eddy diffusivities estimated from 2D trajectories

simulated with an eddy-resolving OGCM?

2) How do these diffusivity estimates compare to those

derived from surface drifter data?

3) How sensitive are the diffusivity estimates to the

temporal and horizontal resolutions of the underly-

ing Eulerian OGCM velocity fields? And what is the
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impact of the Gent and McWilliams (GM) parame-

terization for baroclinic eddies in a noneddying

OGCM on the diffusivity estimates?

This manuscript is structured as follows: In section 2,

we describe the employed OGCMs, the offline-performed

Lagrangian experiments, the applied method for eddy

diffusivity estimation, and the primary observational

reference dataset. In section 3, we present and discuss

the results: eddy diffusivity estimates obtained from

trajectories simulated with 5-day mean velocity output

of an eddy-resolving OGCM (section 3a), a comparison

of those simulation-based estimates to the observation-

based estimates (section 3b), and the sensitivity of the

simulation-based diffusivity estimates to the temporal

and lateral OGCM output resolution, including the

impact of an applied GM parameterization (section 3c).

In section 4, we further compare our diffusivity esti-

mates with eddy diffusivity estimates based on different

methods and discuss possible implications of our results

for eddy parameterization approaches. Section 5 lists

our conclusions.

2. Data and methods

One major goal of this study is to compare eddy

diffusivity estimates obtained from trajectories sim-

ulated with ocean models to those obtained from

observed surface drifter data. Therefore, we calcu-

lated 2D Lagrangian trajectories resembling sur-

face drifter tracks from the simulated flow fields of

an eddy-resolving and a noneddying global OGCM

configuration, INALT01 and ORCA05, respectively.

Subsequently, we derived eddy diffusivities from

those simulated trajectories as well as from the

Global Drifter Program (GDP; Lumpkin and Pazos

2007) data following the method employed by

Zhurbas et al. (2014). Zhurbas et al. (2014) already

presented global maps of drifter-derived eddy diffu-

sivities, and our updated version of their estimates for

FIG. 1. Eulerian fields simulated with the eddy-resolving ocean model configuration INALT01-KJD308.

(a) Snapshot of the daily mean current speed at 15-m depth (15 Jan 2005). (b) Long-term mean (1996–2006)

Eulerian velocity speed (color shading) and direction (vectors). Velocity vectors for speeds .50 cm s21 are

displayed thick and at half-length compared to vectors for speeds ,50 cm s21. (c) Long-term mean (1996–

2006) Eulerian EKE. Contours are displayed for 50, 100, 300, 700, and 1300 cm2 s22. In all plots, the red

dashed frame surrounds the region in which virtual fluid particles were released. The black dashed and solid

frames enclose the 58 3 58 and 28 3 28 bins used for the diffusivity calculations and plotting, respectively, for

the AC, AR, ARC, and eSAG.
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the Agulhas region serves as the primary observa-

tional reference in this study.

a. GDP data

The GDP array of satellite-tracked surface drifting

buoys is the highest spatial resolution ocean velocity

data currently available, and it is the cornerstone of our

knowledge of near-surface submesoscale and mesoscale

turbulence and turbulent diffusive regimes (Lumpkin

et al. 2017). Each drifter consists of a surface buoy with a

transmitter and a temperature sensor, and a subsurface

drogue, centered at 15-m depth measuring near-surface

mixed layer currents. For this study, we used the lati-

tude, longitude, and drifter velocity components at 6-h

intervals obtained by objective interpolation updated

through 2012 (http://www.aoml.noaa.gov/phod/dac/gdp.

html; Hansen and Poulain 1996). Only trajectory seg-

ments with the drogue attached were considered

(Lumpkin et al. 2013), and the trajectory data were low-

pass filtered prior to the diffusivity calculations to re-

move variability in drifter positions and velocities with

periods smaller than 2 days mostly caused by inertial

oscillations.

b. Lagrangian trajectories from ocean model
simulations

1) OCEAN MODEL SIMULATIONS

The global ocean/sea icemodel configurations INALT01

and ORCA05 were developed under the DRAKKAR

framework (Barnier et al. 2007, 2014). They were formu-

lated with the Nucleus for European Modelling of

the Ocean (NEMO, version 3.1.1; Madec 2008) and

implemented on a horizontal tripolar Arakawa C-grid

(Mesinger and Arakawa 1976), which is Mercator-type

south of 208N. Both configurations employed have 46

vertical levels, with grid spacing increasing from 6m at the

surface to 250m at depth and partially filled bottom cells.

ORCA05 is a well-validated global configuration

(e.g., Danabasoglu et al. 2014) with a nominal horizontal

resolution of 0.58 (;43 km in the Agulhas region), which

realistically represents the mean flow and interannual-

to-decadal variability of the large-scale circulation

(Biastoch et al. 2008a). It classifies as a noneddying

OGCM configuration, since to fully capture the meso-

scale variability in the Agulhas region, horizontal reso-

lutions of 0.258 and finer are needed (Hallberg 2013).

INALT01 is a two-way nested model configuration

that is based on the global ORCA05 configuration

described above, but it is regionally refined between

508S–88N and 708W–708E to its nominal horizontal

resolution of 0.18 (;9km in Agulhas region) to capture

the complex mesoscale dynamics of the greater Agulhas

system (Durgadoo et al. 2013). Figure 1a shows a

snapshot of the daily mean current speed at 15-m depth,

illustrating the ability of the model to represent, for

example, Mozambique Channel eddies and Agulhas

rings. INALT01 has been employed by a variety of

studies investigating the local dynamics (Cronin et al.

2013; Loveday et al. 2014) and large-scale impact

(Lübbecke et al. 2015; Biastoch et al. 2015) of the

greater Agulhas system.

Both ocean/sea ice models were spun up for 20 years

before the actual simulations were performed using

interannually varying (years 1948–2007) or climatolog-

ical atmospheric forcing fields from the Coordinated

Ocean–Ice Reference Experiments version 2b (CORE

v2b; Large and Yeager 2009; Griffies et al. 2009). The

evolution of tracers was simulated using a Laplacian

isoneutral diffusion operator and the total variance

dissipation (TVD; Zalesak 1979) advection scheme.

The momentum equations were formulated using a

bi-Laplacian lateral diffusion operator and the energy-

and enstrophy-conserving (EEN; Arakawa and Hsu

1990) advection scheme. Diffusivity and viscosity co-

efficients vary horizontally according to the local grid

size and are specified via their maximum valuesAht0 and

Ahm0 (Table 1), respectively. Further details of the

INALT01 and ORCA05 simulations employed in this

study are described in Durgadoo et al. (2013).

Table 1 contains a summary of the model simulations

providing velocity data used for six Lagrangian ex-

periments performed for this study. Note that 1) one

simulation with the eddying INALT01 configuration

yielded three different Lagrangian experiments that

differ only in the temporal resolution of the velocity

fields used for the trajectory integration (SIMeddy-1d,

SIMeddy-5d, and SIMeddy-1m); and 2) for the non-

eddying ORCA05 configurations, two simulations and

respective Lagrangian experiments were analyzed, one

with (SIMpareddy-5d) and one without (SIMnoeddy-5d)

GM parameterization of baroclinic eddies (Gent and

McWilliams 1990). The GM parameterization mimics

the impact of baroclinic eddies on tracer fluxes by add-

ing an extra term to the tracer equation, which repre-

sents eddy-induced advection (Gent et al. 1995; Gent

2011); it is determined by the GM coefficient, which is

computed from the growth of the baroclinic in-

stability as described in Treguier et al. (1997), and is

allowed to vary horizontally and temporally with a

cap of 1000m2 s21.

2) LAGRANGIAN TRAJECTORY INTEGRATION

The trajectory integration was performed using the

offline Lagrangian community tool ARIANE (version

178 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 48

http://www.aoml.noaa.gov/phod/dac/gdp.html
http://www.aoml.noaa.gov/phod/dac/gdp.html


2.2.6; Blanke and Raynaud 1997). Lagrangian particles

were released homogenously over the greater Agulhas

system (Fig. 1) at ;15-m depth, every 0.58 in both lat-

itudinal and longitudinal directions, every 30 days for

10 years (beginning 1200 UTC 15 January 1996), yield-

ing nearly 900 000 particles for each Lagrangian exper-

iment. Subsequently, particles were advected forward

in time for 60 days with the modeled horizontal ve-

locities (for SIMpareddy-5d, the Eulerian velocity

combined with the eddy-induced velocity from the GM

parameterization was used), whereby particle posi-

tions were stored daily. As drogued surface drifters’

behavior should be mimicked, particles were kept at

the same depth over the whole integration period. No

additional stochastic Lagrangian parameterization was

employed.

The resulting trajectories represent pathways de-

termined by the resolved Eulerian flow, or, in the case

of SIMpareddy-5d, by the resolved Eulerian flow

combined with the mesoscale eddy-induced velocity

from the GM parameterization. It has been shown

that including the mesoscale eddy-induced transport

yields a more realistic picture of the mean over-

turning circulation, particularly in the Southern

Ocean, where the eddy-induced meridional velocity

counteracts the Eulerian meridional velocity (e.g.,

Drijfhout et al. 2003). However, while parameterizing

the advective effect of baroclinic eddies where they

are not resolved by the model, GM also suppresses

the explicit generation of physical as well as numeri-

cal mesoscale variability (Hallberg 2013) by flattening

isopycnals. Thus, it is worth comparing eddy diffu-

sivity estimates from Lagrangian experiments in

noneddying ocean model simulations with and with-

out GM parameterization.

c. Lagrangian eddy diffusivity estimation

Lagrangian eddy diffusivities can be estimated from

both single-particle and particle-pair/cluster statistics

(LaCasce 2008). While particle-pair/cluster statistics are

additionally suited to infer the spatial spectra of meso-

scale currents, they also require a simultaneous de-

ployment of a large number of particles in a confined

area. Because GDP data presently fulfill this require-

ment only in a few regions and thus cannot be used to

infer spatial variability of eddy diffusivity estimates via

particle-pair or cluster statistics, we employed single-

particle statistics.

1) THEORETICAL BACKGROUND OF SINGLE-
PARTICLE DIFFUSIVITY ESTIMATION

The concept of Lagrangian diffusivity estimation

was introduced by Taylor (1922), who determined

scalar single-particle diffusivities by integrating the

ensemble-mean Lagrangian velocity autocorrelation

function:

kTaylor 5 lim
t/‘

k(t), with (1)

k(t)5 0:5
d

dt
hd(t)2i

L
5 hv

L
(t) � d(t)i

L

5

ðt
t0

hv
L
(t) � v

L
(t)i

L
dt , (2)

whereby d(t)5 x(t)2 x(t0)5
Ð t
t0
vL(t)dt represents the

particle displacement, vL(t) 5 ›x/›t is the Lagrangian

TABLE 1. Summary of the global OGCM simulations, which provided the velocity fields used for six Lagrangian experiments

performed in this study. All OGCM simulations used a Laplacian isoneutral diffusion of tracers (with different values for the

isopycnal diffusivity coefficient Aht0) and a bi-Laplacian lateral diffusion of momentum (with different values for the horizontal

viscosity coefficient Ahm0).

Lagrangian

experiment

OGCM

configuration/

simulation

Horizontal

resolution

Subgrid-scale

parameterizations

([Aht0] 5 m2 s21;

[Ahm0] 5 m4 s21) Spinup

Forcing type/

period

Temporal output

resolution/

period

SIMeddy-1d INALT01/

KJD308

Base:

1/28; Nest:

1/108

Base: Aht0 5 600,

Ahm0 5 212 3 1011;

Nest: Aht0 5 200,

Ahm0 5 22.125 3
1010

Base: Forcing

1978–97 (JD305);

Nest: No spinup,

initialized with

base model fields

Hindcast/1948–2007

(1-day mean fields

only between

1995 and 2007)

1-day mean/

1996–2007

SIMeddy-5d 5-day mean/

1996–2007

SIMeddy-1m Monthly mean/

1996–2007

SIMeddy-5d-

clim

INALT01/

KJD309

Climatological/

60 years

5-day mean/

years 49–60

SIMnoeddy-5d ORCA05/

JD308

Globally 1/28 Aht05 600,Ahm05
2123 1011

Forcing 1978–97

(JD305)

Hindcast/1948–2007 5-day mean/

1996–2007

SIMpareddy-5d ORCA05/

JD409

Aht0 5 600, Ahm0 5
212 3 1011,GM

Forcing 1978–97

(JD405)

Climatological/

60 years

5-day mean/

years 49–60
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velocity, and h�iL indicates Lagrangian averaging, that is,

averaging over an ensemble of particles at a certain time

lag t after their release at t0.

The Taylor approach was formulated in the idealized

context of statistically homogeneous, stationary, and

isotropic flows. Davis (1991b) extended the Taylor

framework for single-particle diffusivity estimation over

inhomogeneous and anisotropic flows by introducing the

eddy diffusivity tensor. The diffusivity is then calculated

for an ensemble of particles originating at a certain lo-

cation, or within a specified geographical region where

the flow can be assumed as locally homogenous, for each

tensor component kjk(x, t) individually [ j, k are the in-

dices for the horizontal dimensions in Cartesian space

with j, k 2 (1, 2)]. Instead of the absolute, only the re-

sidual velocities v0L(tjx, to) and displacements d0(tjx, to)
for each particle (passing through x at time t0) are con-

sidered. The residual velocity is defined as the departure

from the local Eulerian mean velocity; the residual dis-

placement is defined as the total displacements minus

that due to the Eulerian mean velocity. This is why,

strictly speaking, the eddy diffusivity is not a pure La-

grangian, but a mixed Eulerian–Lagrangian statistic

(LaCasce 2008).

Single-particle eddy diffusivity estimation thus

involves the following steps: 1) binning of particle

trajectories on a longitudinal–latitudinal grid, 2) es-

timation of the mean flow and subsequent calculation

of residual Lagrangian velocities and/or displace-

ments, and 3) estimation of the ensemble-mean

eddy diffusivity tensor components for each bin (ei-

ther in fixed coordinate or along- and across-flow

directions).

There are various approaches to estimate the com-

ponents of the single-particle eddy diffusivity tensor

kjk(x, t), all deriving from Taylor’s and Davis’s diffusivity

concepts but using different procedures to reduce potential

biases caused by the inhomogeneity and nonstationarity of

flows, that is, different binning techniques, mean flow

definitions, and diffusivity estimators. Lagrangian averag-

ing is performed using geographical bins (e.g., Swenson

and Niiler 1996; Sallée et al. 2008), which may additionally

overlap and/or be rotated with respect to the velocity

variance axis (e.g., Lumpkin and Garzoli 2005; Peng et al.

2015). Alternatively, trajectories may be clustered ac-

cording to the nearest neighbor distance (Koszalka and

LaCasce 2010). The mean flow is estimated either by

simple averaging or using advanced techniques such as

spline fitting or Gauss–Markov decomposition (e.g.,

Bauer et al. 2002; Laurindo et al. 2017). Finally, dif-

fusivity is estimated via the half-growth rate of the

residual dispersion tensor (e.g., de Verdiere 1983;

Oh et al. 2000; Rypina et al. 2012, 2016), the integral

of the residual velocity autocorrelation (e.g., Koszalka

et al. 2011; Peng et al. 2015), or the residual velocity dis-

placement tensor (e.g., Davis 1991b; Swenson and Niiler

1996; Oh et al. 2000).

2) SINGLE-PARTICLE EDDY DIFFUSIVITY

ESTIMATION FOLLOWING ZHURBAS ET AL.
(2014)

In this study, we follow the approach for diffusivity

estimation used by Zhurbas et al. (2014). This ap-

proach was first introduced and thoroughly tested by

random-flight simulations of Lagrangian trajectories in a

sheared flow (Oh et al. 2000) and was later employed in an

improved version accounting for themean flow suppression

of eddy diffusivities by Zhurbas et al. (2014). Assuming

isotropy in diffusivities/eddy statistics, the approach yields

one time lag– and coordinate-dependent scalar lateral eddy

diffusivity K(x, t), which is defined as the semisum of

the minor principal component of the symmetric part

of the Davis diffusivity tensor kdavis
p2 (x, t) and the half-

growth rate of the minor principal component of

the single-particle dispersion tensor k
disp
p2 (x, t), thus

combining two frequently used approaches for diffu-

sivity estimation:

K(x, t)5 [kdavis
p2 (x, t)1k

disp
p2 (x, t)]/2. (3)

The Davis diffusivity tensor kjk(x, t) is defined as

k
jk
(x, t)52hy0Lj(t0jx, t0) � d0

k(t0 2 tjx, t
0
)i

L
, (4)

whereby the notation d0
k(t0 2 tjx, t0) represents the kth

component of the residual displacement for a particle

passing through x at time t0, obtained from following its

trajectory backward in time for the period [t0 2 t, t0]; and

y0Lj(t0jx, t0) is the residual velocity of that particle at time t0.

To avoid rotational eddy fluxes, which are nondiffusive,

only the symmetric part of kjk(x, t) is considered, which is

here referred to as kdavis
jk (x, t):

kdavis
jk (x, t)5 [k

jk
(x, t)1 k

kj
(x, t)]/2. (5)

The half-growth rate of the single-particle dispersion

tensor k
disp
jk (x, t) is defined as

k
disp
jk (x, t)5 0:5

ds
jk

dt
, with (6)

s
jk
(x, t)5 hd0

j(t0 1 tjx, t
0
) � d0

k(t0 1 tjx, t
0
)i

L
, (7)

whereby the notation d0
k(t0 1 tjx, t0) represents the kth

component of the residual displacement of a parti-

cle passing through x at time t0, obtained from fol-

lowing its trajectory forward in time for the period

[t0, t0 1 t]. The dispersion tensor is symmetric by
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construction and does not include rotational and

advective eddy fluxes.

If diffusivities are estimated from ensembles of

trajectories passing through a fixed position x at different

times, kdavis
jk (x, t) yields the true time lag–dependent

diffusivity, whereas k
disp
jk (x, t) can be biased by the

shear effect. However, the limited spatial–temporal

resolution of surface drifter data only allows for

estimating diffusivities from ensembles of particles

passing through a finite vicinity of x, in which case

both measures can be positively biased by shear.

Because Oh et al. (2000) showed that the minor

principal components of k
disp
jk (x, t) and kdavis

jk (x, t),

representing across-flow diffusivities (cf. Peng et al.

2015), are less biased by shear flow, these were

chosen as (the only) representative estimates for

lateral eddy diffusivities. They were obtained ac-

cording to

k
p2
(x, t)5 k

xx
(x, t) sin2u2 k

xy
(x, t) sin2u

1k
yy
(x, t) cos2u, and (8)

tan2u5 2k
xy
(x, t)/[k

xx
(x, t)2 k

yy
(x, t)]. (9)

Consistently with Zhurbas et al. (2014), we used

this approach to estimate lateral eddy diffusivities

from all Lagrangian experiments and surface drifter

data in overlapping 58 3 58 bins with a 28 offset in

longitudinal and latitudinal direction. Residual veloc-

ities were calculated relative to climatological monthly

mean currents. That means for each bin for each month

of the year, all trajectories passing that bin in the re-

spective month were selected. Then, all trajectory

positions within the bin were considered as the ori-

gin of a pseudotrajectory (overlapping pseudotracks

were removed), and individual backward and forward

displacements d(tjx, t0), as well as the Lagrangian

velocity at the pseudo-origin vL(t0jx, t0), were calcu-

lated (for the simulated trajectories, Lagrangian ve-

locities were obtained by central time-differencing

of the discrete displacements). Ensemble averaging

yielded the mean displacement hd(t)iL and the cli-

matological monthly mean velocity hvL(t0)iL that

were used to derive the residual velocities and dis-

placements as

v0L(t0jx, t0)5 v
L
(t
0
jx, t

0
)2 hv

L
(t
0
)i

L
, and (10)

d0(tjx, t
0
)5d(tjx, t

0
)2 hd(t)i

L
. (11)

From these, for each set of pseudotrajectories starting in

the same month, kdavis
jk (x, t), kdisp

jk (x, t), and K(x, t) were

estimated; the final diffusivity estimates were obtained

as averages of the respective 12 individual estimates.

Further details of the calculation, including smoothing

details and small modifications with respect to the

original Zhurbas et al. (2014) approach, are discussed in

the appendix.

It is important to note the time-lag dependence of

diffusivity estimates. Again, following Zhurbas et al.

(2014), we distinguish the maximum diffusivity Kmax(x),

defined as the local maximum of K(x, t) within the

time lag interval 1 # t # 20 days, and the asymptotic

diffusivity Kinf(x), defined as the local mean value

of K(x, t) for the time lag interval 15 # t # 20 days

(Fig. 2). The usage of larger time lags was avoided

because the sampling error and potential biases

caused by spatial and/or temporal inhomogeneity

of the residual velocity field increase with the time

lag (Davis 1991b).

From a physical or parameterization point of view,

Kinf is the sought-after estimate of diffusivity because at

those large time lags, the mean residual distance trav-

eled by a fluid parcel in a certain time interval is ap-

proximately proportional to the square root of that

time interval, just as for a diffusive process in which

fluid parcels undergo random walks (cf. discussion of

the Lagrangian integral time scale below). Earlier

studies used Kmax (e.g., Oh et al. 2000; Lumpkin and

Flament 2001; Sallée et al. 2008), but recently it has

been shown that Kmax can largely overestimate the

‘‘true’’ diffusivity due to a suppression of mixing in

areas where eddies and mean flow propagate at dif-

ferent speeds (Griesel et al. 2010; Klocker et al. 2012a,b;

Wolfram and Ringler 2017a).

In this work, we purposefully assess both Kinf and

Kmax because the relation of the two quantifies the

strength of diffusivity suppression by mean flow

(Klocker et al. 2012a) and thus can be used to di-

agnose how well the ocean models represent these

effects (i.e., the relationship between the mean flow

and the eddy propagation speed along the mean

flow).

d. Pseudo-Eulerian EKE, Lagrangian eddy time, and
length scales

In addition to Lagrangian eddy diffusivities, the

pseudo-Eulerian mean eddy kinetic energy (EKE) and

Lagrangian eddy integral time TL and length LL scales

were calculated in overlapping 58 3 58 bins.
To be consistent with the definition of the eddy dif-

fusivity, for which we only considered the minor

principal component (i.e., the across-flow component),

the pseudo-Eulerian mean EKE is defined as the mi-

nor principal component of the Lagrangian mean

residual velocity covariance matrix at zero time lag

hy0Lj(t0jx, t0) � y0Lk(t0jx, t0)iL.
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Mixing, and thus,Kinf, can generally be represented as

scaling with EKE and the time scale TL over which

mixing occurs, or equivalently, as scaling with the dis-

tance LL a particle would travel with the characteristic

root-mean-square eddy velocity y0 (which equals

ffiffiffiffiffiffiffiffiffiffiffi
EKE

p
) before it mixes with its surroundings:

K5EKETL 5
ffiffiffiffiffiffiffiffiffiffiffi
EKE

p
LL (cf. LaCasce 2008). Analo-

gously, we estimated TL and LL using our asymptotic

diffusivity estimate Kinf and pseudo-Eulerian mean

EKE as

FIG. 2. Time lag–dependent near-surface eddy dispersion and diffusivity estimates for the four regions marked in

Fig. 1, obtained from Lagrangian experiment SIMeddy-5d. (a)–(d) Zonal sxx (dark blue line), meridional syy (light

blue line), and minor principal component sp2 (black dashed line) of the ensemble-mean single-particle dispersion

tensor. (e)–(h) Half-growth rate of the minor principal component of the single-particle dispersion tensor k
disp
p2

(black dashed lines), minor principal component of the symmetric part of the Davis diffusivity tensor kdavis
p2 (black

dotted lines), and combined lateral eddy diffusivity estimate defined as the semisum of the two diffusivity measures

K (black solid lines). Red horizontal lines indicate the asymptotic lateral eddy diffusivity estimate Kinf inferred as

the average ofK in the red shaded time lag interval 15# t# 20 days. Please note the different scaling of the y axis

in all subplots.
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T
L
5K

inf
/EKE, and (12)

L
L
5K

inf
/

ffiffiffiffiffiffiffiffiffiffiffi
EKE

p
. (13)

Quantities TL and LL represent ‘‘memory’’ scales over

which Lagrangian residual velocities stay strongly cor-

related; at time and space scales much larger than TL

and LL, respectively, residual single-particle dispersion

resembles diffusive spreading.

3. Results and discussion

a. Eddy diffusivity estimates derived from trajectories
simulated with an eddying ocean model

In this section, we present and discuss near-surface

lateral eddy diffusivity estimates obtained from residual

velocities and displacements of Lagrangian trajectories

simulatedwith the 5-daymean velocity output of the eddy

resolving INALT01 hindcast experiment (Lagrangian

experiment SIMeddy-5d).

1) TIME LAG DEPENDENCE OF EDDY DIFFUSIVITY

ESTIMATES

Figure 2 shows time lag–dependent, ensemble-mean

single-particle residual dispersion and eddy diffusivity

estimates for four selected 58 3 58 bins representing

different dynamic regimes (Fig. 1). Table 2 lists the re-

spective pseudo-Eulerian and Lagrangian statistics. The

bins are located in the eSAG, the ARC, the AR, and

the AC.

The eSAG is an open ocean region characterized by

weak mean flow and low EKE. Its dispersion and dif-

fusivity curves (Figs. 2a,e) show the characteristic as-

ymptotic behavior described in classical turbulence

theory (LaCasce 2008): at time lags larger than

;20 days, sp2(t) grows approximately linear with time

(meaning the mean residual displacement of a fluid

parcel in a certain time interval is approximately pro-

portional to the square root of that time interval), typical

for the diffusive regime. Consequently, across-flow eddy

diffusivities asymptotically approach a nearly constant

value at those time lags, andKmax’Kinf’ 1.53 103m2s21.

Because the curves for syy(t) and sp2(t) are hardly dis-

tinguishable, and even sxx(t) shows a similar behavior,

we conclude that the spreading is approximately iso-

tropic. In this particular case, with weak influence of

mean flow and nearly isotropic particle spreading, the

diffusivity estimates k
disp
p2 (t), kdavis

p2 (t), and K(t) yield

nearly the same results, with only a small spread toward

larger time lags.

The ARC is a strong alongfront current with pro-

nounced meridional excursions, supposedly related to

changes in bottom topography, and vigorous mesoscale

variability (Lutjeharms and Ansorge 2001). In the ARC

region, dispersion and diffusivity curves (Figs. 2b,f)

differ substantially from those described for the eSAG.

They can be considered typical of a region where eddies

propagate westward relative to an eastward mean flow

(Boebel et al. 2003; Chelton et al. 2011). On one hand, the

instability of the ARC introduces high EKE, leading to an

overall increased across-flow eddy diffusivity.On the other

hand, the across-flow eddy diffusivity is suppressed by the

mean flow, as shown conceptually for theACCbyKlocker

et al. (2012a). The obtained across-flow eddy dispersion

estimate sp2(t), which is nearly identical to syy(t), increases

quickly at short time lags but then levels off before finally

increasing again approximately linearly with time. This

yields across-flow eddy diffusivity curves to peak (and

slightly oscillate) at short time lags before reaching their

asymptotic values; the maximum diffusivity strongly

overestimates the asymptotic diffusivity,Kmax’ 12.23 103

andKinf’ 3.03 103m2s21. Still, the diffusivity estimates

k
disp
p2 (t) and kdavis

p2 (t) yield nearly the same results, in-

troducing only a small spread aroundK(t) toward larger

time lags.

The dispersion and diffusivity curves for the AR

(Figs. 2c,g) show a very similar behavior to that de-

scribed for the ARC, but with even higher diffusivity

TABLE 2. Statistics for four selected 58 3 58 bins centered on the listed coordinates: pseudo-Eulerian mean speed and mean EKE, as

well as asymptotic Kinf and maximum Kmax near-surface lateral eddy diffusivity estimates, and Lagrangian integral time TL and length

LL scales obtained from OBS and Lagrangian experiment SIMeddy-5d.

Region

Lagrangian

experiment Speed (cm s21) EKE (cm2 s22)

Diffusivity estimates (103m2 s21)

TL (days) LL (km)Kinf Kdavis
inf Kdisp

inf Kmax Kdavis
max Kdisp

max

eSAG; 248S, 58W SIMeddy-5d 4 15 1.46 1.51 1.41 1.53 1.59 1.47 11.6 38.2

OBS 5 42 1.95 2.02 1.89 1.96 2.03 1.91 5.4 30.2

ARC; 408S, 358E SIMeddy-5d 17 482 3.04 3.88 2.20 12.20 12.30 12.50 0.7 13.9

OBS 15 607 4.12 4.58 3.67 8.87 8.99 8.75 0.8 16.7

AR; 408S, 178E SIMeddy-5d 6 1218 11.20 14.40 8.07 21.80 22.30 21.70 1.1 32.0

OBS 12 1266 9.81 7.75 11.90 19.20 18.30 20.10 0.9 27.6

AC; 328S, 318E SIMeddy-5d 16 193 5.25 3.40 7.10 5.31 4.23 7.15 3.2 38.2

OBS 24 458 4.43 3.70 5.17 8.07 9.54 8.34 1.1 20.7
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values, related to a regional maximum in EKE (cf.

Fig. 1d). The across-flow eddy diffusivity curves peak at

short time lags before reaching their asymptotic values.

Thus, as for the ARC, the maximum diffusivity over-

estimates the asymptotic diffusivity, Kmax ’ 21.8 3 103

andKinf’ 11.23 103m2 s21. However, the result forKinf

should be interpreted with caution, because even though

k
disp
p2 (t) and kdavis

p2 (t) show a similar temporal evolution,

their spread around the combined estimate K(t) in-

creases after they reach their maximum value. Their

respective asymptotic diffusivity estimates K
disp
inf and

Kdavis
inf are 8.1 3 103 and 14.4 3 103m2 s21, respectively.

The AC, heading southwestward, is one of the stron-

gest western boundary currents of the World Ocean.

However, in contrast to other western boundary cur-

rents, such as the Kuroshio or the Gulf Stream, it is re-

markably stable (Lutjeharms 2006, 2007) and has lower

EKE. The dispersion and diffusivity curves obtained for

the AC (Figs. 2d,h) most resemble those of the eSAG,

without strong suppression of eddymixing bymean flow.

This indicates that local eddies propagate at approxi-

mately the same speed and in the same direction of the

mean flow, which is indeed the case for Natal pulses and

Mozambique eddies traveling within and at the border

of the AC (Schouten et al. 2002). In contrast to open

ocean currents like the AR/ARC, where eddies can

propagate westward separately from the mean flow,

westward drift is impossible in the AC due to topo-

graphic constraints. However, at larger time lags, sp2(t)

does not increase linearly. Consequently, k
disp
p2 (t) does

not show an asymptotic behavior but steadily increases

with increasing time lag, suggesting that the mean flow

was not successfully removed. Moreover, kdavis
p2 (t) shows

a different behavior: it reaches its maximum at a time

lag of ;5 days and afterward slowly decreases with in-

creasing time lag. Neither the asymptotic nor the maxi-

mum diffusivity can be determined unambiguously.

In general, the results for the eSAG and ARC (and,

with some limitations, also those for the AR) suggest

that even in a complex eddying flow system, as repre-

sented by the greater Agulhas system, with strong eddy–

mean flow interaction, asymptotic diffusive regimes can

be found. However, the results for the AC also highlight

the limitations of a generalized binning method to

quantify lateral eddy dispersion and diffusivity. Because

of the spatial and probably also the temporal in-

homogeneity of the residual velocity field, the eddy

dispersion does not reach a diffusive regime everywhere,

and the derived eddy diffusivity estimates are sensitive

to the applied method.

We note that the time lag interval chosen for the

calculation of asymptotic diffusivity estimates adopted

from Zhurbas et al. (2014) for their global analysis of

surface drifters is not perfectly suited for the simulated

trajectories in the greater Agulhas system because the

diffusivities do not yet converge in all cases. In partic-

ular, for the eSAG bin, the Lagrangian integral time

scale is ;11.6 days (Table 2), indicating that the diffu-

sive regime is only reached at substantially larger time

lags (section 2d; LaCasce 2008). Indeed, convergence

seems to be reached at time lags between 25 and 30 days.

Yet, as changing the averaging interval does not impact

the estimates substantially, we keep them as in Zhurbas

et al. (2014) for the sake of comparison.

2) SPATIAL PATTERN OF EDDY DIFFUSIVITY

ESTIMATES

Figures 3a, 3d, and 3g show the spatial pattern of as-

ymptotic eddy diffusivity estimates for the whole greater

Agulhas system. The individual estimates Kdavis
inf and

K
disp
inf show the same general pattern and magnitude as

the combined estimate Kinf: the highest eddy diffusiv-

ities are found around the AR region (cf. Fig. 2g), an

area with strong unstable mean flow and high EKE

(Figs. 1c, 5c). Relatively high eddy diffusivities also oc-

cur in regions with weaker background flow but still high

EKE, such as in the Cape Basin around the major

pathway for Agulhas rings (Schouten et al. 2000;

Dencausse et al. 2010), and in the region west and south

ofMadagascar, whereMozambique Channel eddies and

southeast Madagascar eddies propagate (Schouten et al.

2002). In the strong but relatively stable Agulhas Cur-

rent, eddy diffusivities are lower due to high mean ki-

netic energy but comparatively low EKE. In the vicinity

of the ARC (cf. Fig. 2f), diffusivities are further de-

creased despite locally high EKE (Figs. 1c, 5c). Lowest

diffusivities occur around the low-energy eSAG region.

The spatial pattern of the maximum diffusivity esti-

mates, as exemplarily shown for the combined estimate

Kmax in Fig. 4a, is similar to that of the asymptotic dif-

fusivity estimates. However, despite a general increase

in magnitude, the spatial pattern of Kmax better re-

sembles that of EKE. In particular, the region around

the ARC shows strongly elevated diffusivities. The pro-

nounced differences between Kmax and Kinf in this region

can be interpreted as the imprint of eddy mixing suppres-

sion bymean flow, as already discussed exemplarily for the

ARC bin (section 2a). The relation Kmax/Kinf displayed in

Fig. 4d highlights all areas where Kmax greatly over-

estimatesKinf and, thus, where eddy mixing suppression is

strong. The region around the ARC clearly stands out, but

eddy mixing suppression is also apparent in the northern

part of theAntarctic Circumpolar Current (ACC). This fits

well to the theory of eddy mixing because both regions

feature an eastward mean flow and the possibility for

westward propagation of eddies.
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Averaging over all spatial bins yields diffusivities of

;3.33 103,;3.53 103, and;3.43 103m2 s21 forKdavis
inf ,

K
disp
inf , and Kinf, respectively. Even though the spatially

averagedK
disp
inf constitutes a slightly higher estimate than

the spatially averaged Kdavis
inf , local differences between

Kdavis
inf and K

disp
inf vary in sign and magnitude. The largest

discrepancies are found in the AR and AC regions, where

diffusivities differ by up to more than 5.0 3 103m2s21

(Table 2). Furthermore, local discrepancies in Kinf are

higher than those in Kmax (not shown), highlighting the

difficulty in capturing the convergence of the diffusivity

estimates. Even though the approach introduced by Oh

et al. (2000) and formulated in its refined form by Zhurbas

et al. (2014) seems to be applicable in most regions, the

combined diffusivity estimateK(x, t) should be interpreted

with caution for areas with big discrepancies between the

two individual diffusivity estimates.

b. Comparison of eddy diffusivity estimates derived
from simulated trajectories and drifter data

In this section, we compare diffusivity estimates ob-

tained from Lagrangian experiment SIMeddy-5d with

those obtained from drifter data (OBS). A comparison

with other observation-based eddy diffusivity esti-

mates calculated with alternative techniques is given

in section 4.

Estimates of Kinf and Kmax obtained from OBS and

SIMeddy-5d show a good agreement in their spatial

pattern (Figs. 3, 4); averaging over all spatial bins yields

values for Kinf (Kmax) of ;3.4 3 103 (;5.2 3 103) and

;4.1 3 103 (;6.0 3 103) m2 s21, for SIMeddy-5d and

OBS, respectively.

For nearly the whole greater Agulhas system, pseudo-

Eulerian mean EKE (Figs. 5c,d,f and Tables 2, 3) is

lower in SIMeddy-5d than in OBS, indicating that the

on-average slightly lower diffusivity values in SIMeddy-5d

are mainly related to a weaker mesoscale variability.

Averaging over all spatial bins yields 197 and 307cm2 s22

for SIMeddy-5d and OBS, respectively. Possible reasons

for this discrepancy are the following: First, there are

known weaknesses of the model configuration. The EKE

in the open ocean is too low in most model simulations

due to unresolved or underresolved processes, and it is

further decreased in ocean model simulations forced with

FIG. 3. Spatial pattern of asymptotic near-surface eddy diffusivity estimates. Shown are results obtained from Lagrangian experiment

SIMeddy-5d (top panels) and OBS (middle panels), as well as the relative difference between simulations and observations (bottom panels).

Asymptotic eddy diffusivity estimates from (left) the half-growth rate of theminor principal component of the single-particle dispersion tensor

K
disp
inf ; (center) the minor principal component of the symmetric part of theDavis diffusivity tensorKdavis

inf ; and (right) the combined lateral eddy

diffusivity estimateKinf. The relative difference is defined as (SIMeddy-5d2OBS)/OBS; respective contours are displayed at a distance of 0.5.
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relativewinds, such as those employed in this study, due to

enhanced surface drag (Eden andDietze 2009). A limited

representation of the depth-dependent Ekman drift in

view of a too-scarce vertical grid spacing (6m at the sur-

face) of the model may have further contributed to low-

ered EKE values (this follows from the fact that the

kinetic energy of a layer with velocity shear always ex-

ceeds the kinetic energy of a layer of the same thickness

and momentum, but with uniform velocity). Second, the

discrepancy between OBS and SIM could be partially

related to the nature of surface drifters, which, despite

being drogued at 15-m depth, do not perfectly follow

the local current, but experience some additional wind-

induced drift (Lumpkin and Pazos 2007; Poulain et al.

2009). Finally, the different spatiotemporal coverage of

drifter data and simulated trajectories matters (see

online supplementary material). However, keeping in

mind that one-to-one comparisons of drifters and

simulated trajectories are of limited use for non-

assimilative models (cf. van Sebille et al. 2009), a much

better agreement between SIMeddy-5d and OBS

seems unlikely, even if the sampling of simulated tra-

jectories would be adjusted to fit the one of drifter data.

The choice of the overall time period also seems to

be of minor importance because diffusivity estimates

obtained from Lagrangian experiment SIMeddy5d

hardly differ from Lagrangian experiment SIMeddy-

5d-clim (Figs. 6a, 7 and Table 3), which is identical to

SIMeddy-5d, except for the fact that the OGCM was

forced with climatological atmospheric fields instead

of interannually varying ones. This indicates only a

minor impact of interannual-to-decadal variability on

the diffusivity estimates—at least in the region of

interest.

Despite lower mean diffusivities in SIMeddy-5d

compared to OBS, we cannot conclude that trajecto-

ries simulated with SIMeddy-5d are generally not suffi-

ciently diffusive because locally, the difference between

SIMeddy-5d and OBS strongly varies in magnitude

and sign.

FIG. 4. Spatial pattern of maximum eddy diffusivity estimates and the relation of maximum to

asymptotic eddy diffusivity estimates. Shown are results for the combined lateral eddy diffusivity

estimates obtained from Lagrangian experiment SIMeddy-5d (top panels), and OBS (middle

panels), as well as the relative difference between simulations and observations (bottom panels).

(left) Maximum eddy diffusivity estimate Kmax, included here as an approximate measure for the

unsuppresseddiffusivities. (right)RelationofKmax to the sought-after asymptotic diffusivity estimate

Kinf, quantifying the strength of eddy diffusivity suppression (color shading) and pseudo-Eulerian

mean velocity (vectors; cf. Fig. 6). The relative difference is defined as (SIMeddy-5d2OBS)/OBS,

respective contours are displayed at a distance of 0.5.
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Because the general pattern of the difference between

SIMeddy-5d and OBS is robust with respect to the

method employed for diffusivity estimation (Figs. 3c,f,i), a

closer investigation of this pattern is justified. One can

distinguish regions where 1) Kmax and Kinf are lower in

SIMeddy-5d than in OBS, such as in the eSAG (Table 2)

or south of Madagascar; 2) Kmax and Kinf are higher in

SIMeddy-5d than in OBS, such as in a broad region west

of the retroflection; 3) Kmax is lower butKinf is higher in

SIMeddy-5d than in OBS, such as northwest of the

retroflection; and 4) Kinf is lower but Kmax is higher in

SIMeddy-5d than in OBS, such as in parts of the ARC

(Table 2) and at the southern boundary of the study

region. In the third and fourth cases, the local relation

Kmax/Kinf is substantially altered (Figs. 4d–f), implying

that the local representation of eddy mixing suppression

FIG. 5. Near-surface pseudo-Eulerian mean velocity and EKE. Shown are results obtained

from experiment SIMeddy-5d (top panels) and OBS (middle panels). (a),(b) Mean speed

(contours and color shading), and direction (vectors) of the pseudo-Eulerian mean velocity.

Contours are displayed every 5 cm s21; velocity vectors for speeds .10 cm s21 are displayed

thick and at half-length compared to vectors for speeds,10 cm s21. (c),(d) Pseudo-Eulerian

EKE. Contours are displayed for 50, 100, 300, 700, and 1300 cm2 s22. (e),(f) Relative differ-

ence defined as (SIMeddy-5d 2 OBS)/OBS; contours are displayed at a distance of 0.5.

TABLE 3. Summary of spatial mean pseudo-Eulerian and Lagrangian statistics for the greater Agulhas system obtained from OBS and

the six Lagrangian experiments performed in this study: near-surface pseudo-Eulerian mean speed and EKE, as well as asymptotic Kinf

andmaximumKmax near-surface lateral eddy diffusivity, and Lagrangian integral timeTL and lengthLL scales. The spatial mean has been

calculated by averaging over all 416 spatial bins.

Lagrangian experiment Speed (cm s21) EKE (cm2 s22)

Diffusivity estimates (103m2 s21)

TL (days) LL (km)Kinf Kdavis
inf Kdisp

inf Kmax Kdavis
max Kdisp

max

OBS 11 307 4.09 3.87 4.33 6.03 5.94 6.58 2.1 24.6

SIMeddy-1d 7 200 3.42 3.29 3.56 5.10 5.04 5.28 3.8 29.0

SIMeddy-5d 7 197 3.41 3.27 3.54 5.15 5.08 5.34 3.9 29.3

SIMeddy-5d-clim 7 201 3.28 3.17 3.40 5.15 5.09 5.36 4.0 28.6

SIMeddy-1m 7 145 2.99 2.86 3.10 4.35 4.26 4.55 4.4 29.6

SIMnoeddy-5d 7 53 1.39 1.32 1.46 2.08 2.00 2.08 6.4 23.7

SIMpareddy-5d 6 6 0.28 0.27 0.29 0.31 0.31 0.33 6.2 10.3
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differs (e.g., in the region around the ARC, eddy mixing

suppression is higher in SIMeddy-5d than inOBS). This is

most likely related to the fact that the local pseudo-

Eulerian mean flow sampled by SIMeddy-5d clearly

features a coherent eastward current, whereas in OBS,

the mean flow pattern is less clear (Figs. 5a,b).

We conclude that differences in the near-surface lat-

eral eddy diffusivity estimates between SIMeddy-5d and

OBS cannot be directly linked to differences in EKE,

but they are also influenced by differences in Lagrangian

eddy length and time scales related to the suppression of

eddy mixing. Even though local differences between the

diffusivity estimates from SIMeddy-5d and OBS are

strongly nonuniform and can be relatively high, the

frequency distributions of Kinf are remarkably similar

(Fig. 7; Table 3). Moreover, differences between

SIMeddy-5d and OBS seem to fall in the uncertainty

range. Differences between the two methods to

estimate lateral diffusivities in SIMeddy-5d are of

the same magnitude as differences between SIM and

OBS (cf. section 3a; Table 2); differences between

various observational approaches estimating near-surface

lateral eddy diffusivity—for example, in the ACC re-

gion—are of comparable magnitude or even bigger

(Klocker et al. 2012b and references therein). Thus, we

conclude that the Lagrangian trajectories simulated with

the 5-day mean output of the high-resolution ocean

model INALT01 (SIMeddy-5d) capture Lagrangian eddy

diffusivity characteristics of real drifter data fairly

well, without the need for additional random-walk

diffusion.

c. Sensitivity of eddy diffusivity estimates derived
from simulated trajectories to lateral and temporal
resolution

The spatial OGCM resolution determines to which de-

gree eddies are explicitly resolved during the model sim-

ulation. The temporal model output resolution further

restricts the scale of processes captured by offline simu-

lated advective Lagrangian trajectories. In this section, we

quantify the sensitivity of the Lagrangian eddy diffusivity

estimates to the temporal (5-day mean vs daily and

monthly mean) model output resolution and spatial (1/108
vs 1/28) OGCM resolution, whereby we focus on Kinf.

1) SENSITIVITY TO TEMPORAL MODEL OUTPUT

RESOLUTION

In general, studies of oceanic features from the me-

soscale to basin scales require a temporal model output

FIG. 6. Sensitivity of the asymptotic eddy diffusivity estimates Kinf to OGCM choices.

Shown are results for the combined lateral eddy diffusivity estimates obtained from the

Lagrangian experiments performed with the eddy-resolving OGCM configuration INALT01

(a) forced with climatological atmospheric fields (SIMeddy-5d-clim), and (b) forced with

interannually varying atmospheric fields, but using monthly mean velocities (SIMeddy-1m).

Also shown are the results from the Lagrangian experiments performed with the noneddying

OGCM configuration ORCA05 (c) without (SIMnoeddy-5d), and (d) with GM parameter-

ization of baroclinic eddies (SIMpareddy-5d).
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resolution no longer than a few days. Using offline

Lagrangian analyses within a high-resolution ocean

model (1/108), Qin et al. (2014) showed that the con-

nectivity along six major currents does not significantly

change for temporal resolutions between 3- and 9-day

means. However, degradation in flow characteristics

occurs at lower temporal resolutions, resulting in

changed transit times and transports between selected

upstream and downstream sections.

The comparison of our diffusivity estimates from

SIMeddy-5d and SIMeddy-1d shows that 5-day mean out-

put is sufficient to capture the cumulative effect of eddies

on particle trajectories in the greaterAgulhas system; using

daily mean output does not substantially change the spatial

distribution (not shown) and magnitude of Kinf and the

Lagrangian integral time and length scales (Table 3).

SIMeddy-1m yields the same spatial pattern of Kinf as

SIMeddy-5d (Fig. 6b), but with a generally reduced

magnitude (exception: eddy diffusivities in the northern

part of the ACC and in near-coastal parts of the AR are

increased compared to SIMeddy-5d), resulting in lower

spatial mean values and a slightly smaller spatial vari-

ability (Fig. 7; Table 3). Even though eddy diffusivities

are reduced, the spatial mean Kinf still reaches ;3.0 3
103m2s21 (compared to;3.43 103m2s21 in SIMeddy-5d).

This suggests thatmonthlymean velocity fields do capture a

substantial amount of eddy variability—at least in the

greater Agulhas system. Yet, EKE is reduced by 26%

(spatial average of 145cm2s22 in SIMeddy-1mcompared to

197cm2s22 in SIMeddy-5d), and average TL and LL are

increased (Table 3). The disproportional reduction of Kinf

by only 12% again highlights that variability and changes in

Kinf cannot be directly explained by changes in EKE. The

results further support the idea that larger and more

persistent eddy features are the dominant factors de-

termining eddy diffusivities (Wolfram et al. 2015).

These results agree with Qin et al. (2014), who showed

that the connectivity transports in the AC and AR re-

vealed no significant changes for monthly mean fields

compared to 3-day mean fields (in contrast to other in-

vestigated regions). Likewise, Biastoch et al. (2015) and

Cheng et al. (2016) reported interannual-to-decadal var-

iability in Agulhas leakage transport to be captured by

monthly mean data. Qin et al. (2014) also noted that the

mean transit time for theACdoes change significantly for

monthly mean fields compared to 3-day mean fields. This

can be explained by the fact that in the greater Agulhas

system, connectivity transports, as well as eddy diffusiv-

ities, are dominated by the largest and most persistent

mesoscale features, which are associated with the largest

transports (and constitute some of the largest eddies of

the World Ocean), while transit time distributions are

prone to be influenced by eddy variability at all scales.

2) SENSITIVITY TO LATERALOGCMRESOLUTION

By the criteria of Hallberg (2013), the ORCA05

model configuration is noneddying in the extended

Agulhas Current system, whereas INALT01 is eddy

resolving (cf. section 2a). We already showed that

SIMeddy-5d (as well as SIMeddy-1d and, with slight

restrictions, SIMeddy-1m) captures the general features

of observed eddy diffusivities. In principle, eddy diffu-

sivities (as well as EKEs) obtained from noneddying

simulations should approach zero. In reality, the scale

separation between eddies and mean flow is imperfect.

Depending over which time and space scales the mean is

defined, some lower-frequency variance remains in the

FIG. 7. Box plots of the spatial distributions of (a) the asymptotic eddy diffusivity estimatesKinf and (b) pseudo-

Eulerian mean EKE. Shown are results for the main Lagrangian experiments employed in this study, wherebyKinf

was inferred from the combined lateral eddy diffusivity estimate. On each box, the central mark indicates the

median calculated out of the 416 overlapping 58 3 58 spatial ocean bins for the greater Agulhas system; the left and

right edges of the box indicate the 25th and 75th percentiles, respectively; and the whiskers extend to the minimum

and maximum values. The dashed vertical lines indicate the mean values (cf. Table 3).
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residual velocities and may lead to nonzero eddy diffu-

sivity estimates, even in so-called noneddying ocean

models. Furthermore, numerical noise introduces arti-

ficial high-frequency variability. Our analysis for

SIMnoeddy-5d yields a spatial mean pseudo-Eulerian

EKE of 53 cm2 s22 and corresponding Kinf of ;1.4 3
103m2 s21 (Table 3). Hence, Kinf in SIMnoeddy-5d

(Fig. 6c) is, on average, 2.0 3 103m2 s21 weaker than

in SIMeddy-5d (cf. section 3a) but still shows the rough

spatial pattern from SIMeddy-5d and does not reach

values close to zero. Again, the reduction in EKE

(;73%) is larger than that in Kinf (;58%). The re-

duction of estimated lateral eddy diffusivities is consis-

tent with the reduction of estimated isopycnal eddy

diffusivities of ;50%–60% reported by Wolfram et al.

(2015), based on simulations with an idealized ocean

model at 32-km resolution compared to simulations at

8-km resolution (their Table 2).

Using the noneddyingOGCMconfiguration with online

GM parameterization (SIMpareddy-5d) yields spatial

mean pseudo-EulerianEKEand eddy diffusivity estimates

close to zero (Fig. 6d). This is because while parameteriz-

ing the advective effect ofmesoscale eddies where they are

not resolved by themodel, GMalso suppresses the explicit

generation of physical as well as numerical mesoscale

variability (Hallberg 2013; cf. section 2b).

In summary, Lagrangian trajectories simulated with the

output from our coarse-resolution OGCM configuration

do not sufficiently capture the effect of mesoscale eddies

on particle dispersal, which results in too-low eddy diffu-

sivity values compared to estimates based on observations

and eddy-resolving model simulations. Lagrangian eddy

diffusivity estimates are further reduced by the employed

GM parameterization. Nevertheless, for Lagrangian par-

ticle simulations, the combinedEulerian and eddy-induced

velocities from a model simulation with GM may be fa-

vored over velocities from coarse-resolution model simu-

lations without GM because they are supposed to

represent large-scale circulation patterns and the advective

part of particle dispersal more realistically (cf. section 2b).

To capture the effect of mesoscale turbulence, one could

fill the gap between coarse-resolution simulations and

observations/high-resolution simulations by stochastic La-

grangian parameterizations (cf. section 4).

4. Comparison with other eddy diffusivity
estimates and implications for eddy
parameterizations

a. Comparison with other eddy diffusivity estimates
for the greater Agulhas system

Peng et al. (2015) estimated Lagrangian eddy dif-

fusivity for the Indian Ocean from surface drifter data

by using a binning technique similar to Zhurbas et al.

(2014) but deriving diffusivities from the autocorre-

lation of residual velocities, which were calculated

using the Gauss–Markov method (Lumpkin and

Johnson 2013). They concluded that their diffusivity

estimates (with seasonal effects removed) generally

agree with the asymptotic estimates of Zhurbas et al.

(2014), which can be confirmed by a closer inspection

of Fig. 7 in Peng et al. (2015) and our Figs. 3g and 3h.

In the region south of Madagascar, our estimates for

Kinf between 2.0 3 103 and 12.0 3 103m2 s21 corre-

spond well to their asymptotic minor principal com-

ponent diffusivity estimate k2 of 11.5 3 103m2 s21 for

region D7 (their Table 2).

Our results also match the Osborn–Cox diffusivity

calculated from the evolution of passive tracers (simu-

lated with surface velocities derived from AVISO sea

surface height data) by Abernathey and Marshall

(2013), who reported diffusivity values between 1.0 and

10.0 3 103m2 s21 for the greater Agulhas system (their

Fig. 2). The overall agreement in magnitude and spatial

pattern of our particle-based and their tracer-based

diffusivity estimates is encouraging. It supports the ap-

plicability of the results of Klocker et al. (2012b) and

Wolfram and Ringler (2017b), showing that particle-

and tracer-based diffusivities are similar in a simple

zonal channel flow, to the complex real oceanic circu-

lation of the greater Agulhas system.

b. Implications for stochastic parameterizations in
offline trajectory calculations

To derive more diffusive pathways capturing the

effect of unresolved turbulence even from coarse-

resolution OGCMs, stochastic Lagrangian parame-

terizations can be employed in offline trajectory

calculations (cf. section 1). However, it is still an open

question how to robustly specify an appropriate stochastic

model and how to fit the associated parameters with re-

spect to the spatial and temporal resolutions of any given

Eulerian ocean model output.

Though we did not implement a stochastic parame-

terization here, our study reveals important aspects to

be considered: 1) because asymptotic diffusive regimes

could be identified for different dynamic regimes in the

greater Agulhas system, stochastic Lagrangian param-

eterizations, as described in Griffa et al. (1995), may

indeed be appropriate to mimic the effect of mesoscale

turbulence in this region; 2) stochastic Lagrangian pa-

rameterizations should account for the spatial variability

of the diffusivity parameter, which does not necessarily

scale with variability in EKE; and 3) the choice of pa-

rameters in the stochastic Lagrangian parameteriza-

tions should not only account for the horizontal (and
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temporal) resolution of the underlying OGCM, but

should also consider possible subgrid-scale parameteri-

zations, such as GM.

Based on these considerations, we would like to em-

phasize that the application of a stochastic Lagrangian

parameterization implies changing from a pure La-

grangian analysis of the Eulerian OGCM model output

to a Lagrangian modeling approach of particle disper-

sion, which may break consistency with the underlying

OGCM physics and thus—depending on the scientific

question—may not always be desired.

c. Relation between Lagrangian eddy diffusivity
estimates and diffusivity coefficients of OGCM
diffusion parameterizations

The Lagrangian eddy diffusivity is a quantitative di-

agnostic for the cumulative effect of eddies on the La-

grangian dispersal, and, as such, it is used in this paper

to assess simulated particle dispersal. However, other

studies estimating Lagrangian eddy diffusivities from

high-resolution OGCM output or drifter data are par-

tially motivated by the desire to determine more

realistic parameter values for Eulerian diffusion pa-

rameterizations in coarse-resolution OGCMs. It is,

therefore, worthwhile to compare our Lagrangian dif-

fusivity estimates with the diffusivity coefficients used in

those parameterizations, such as the Redi coefficientAht

(Redi 1982). The coefficient Aht should quantify the

effect of scales not resolved in the OGCM (i.e., vari-

ability occurring below 0.18 and 0.58 for INALT01 and

ORCA05 experiments, respectively) on tracer mixing

rates. Important for this context, Lagrangian eddy dif-

fusivities derived from the respective OGCM represent

the effect of the (fully or partially) resolved mesoscale

on tracer mixing rates.

Following this reasoning, one would expect the dif-

ference in the Lagrangian eddy diffusivity estimates

derived from a high-resolution OGCM experiment

(e.g., SIMeddy-5d) and a coarse-resolution OGCM

experiment (e.g., SIMnoeddy-5d) to be comparable

in magnitude to the respective difference in the

employed diffusivity coefficients. Both should be

representative for the diffusive effect of mesoscale

variability at horizontal scales between 0.18 and 0.58.
This is, however, not the case: the difference in the

Lagrangian eddy diffusivities exhibit a pronounced

spatial variability at magnitudes O(103) m2 s21. Be-

cause Aht does not include spatial variability apart

from its adaptation to the changing grid sizes, the

difference in Aht also does not feature spatial vari-

ability. Evenmore strikingly, the difference inAht only

reaches magnitudes O(102) m2 s21.

This indicates that either the model coefficients are

not chosen optimally, or Eulerian diffusivity coefficients

and Lagrangian eddy diffusivity estimates are two

measures that cannot be easily compared.

One could argue that Lagrangian eddy diffusivity esti-

mates derived fromdrifter data quantify the rate of lateral

dispersal in the surface mixed layer, whereas most mod-

ern ocean models, as those employed here, use isopycnal

diffusivities for their subgrid-scale parameterizations.

Yet, mesoscale eddies mix tracers along isopycnals and

horizontally at the sea surface (Treguier et al. 1997;

Abernathey et al. 2013), so the lateral eddy diffusivities

estimated from GDP data and our simulated drifter tra-

jectories can be treated as eddy diffusivity in the surface

mixed layer. However, model diffusivities have to be

tuned not only with respect to physical, but also to nu-

merical considerations. Profound simplifications in the

OGCM diffusion parameterization may further inhibit a

direct relation between Eulerian diffusivity coefficients

andLagrangianeddydiffusivity estimates.Also to consider, as

already stated by Rypina et al. (2016), Lagrangian diffu-

sivity estimates constitute nonlocal measures, while the

diffusivity coefficient for the subgrid-scale parameteri-

zation should represent the local effect of eddies. Finally,

keeping in mind the challenges of Lagrangian eddy dif-

fusivity estimation, such as removing themean flow effect

and capturing truly asymptotic regimes, Lagrangian eddy

diffusivity estimates may not exclusively quantify the

impact of mesoscale eddies but may be additionally

influenced bymethodological choices. Therefore, tuning

coarse-resolution OGCM Eulerian eddy diffusivity co-

efficients based on Lagrangian eddy diffusivities esti-

mated from high-resolution models or observations

remains an outstanding issue that needs to be further

addressed in more dedicated studies.

5. Conclusions

In this study, we assessed spatially variable near-

surface lateral (mesoscale) eddy diffusivity estimates

obtained from both simulated Lagrangian trajectories

and real drifter data for the greater Agulhas system

following the approach of Zhurbas et al. (2014). An-

swering the three questions outlined in section 1, we

showed that in this region,

1) Using 5-day mean velocity fields from the eddy-

resolving ocean model configuration INALT01, as-

ymptotic diffusive regimes could be identified for

dynamically different sites, some of which exhibit

strong suppression of eddy mixing by mean flow.

2) The Lagrangian model-based eddy diffusivity esti-

mates agree in pattern and magnitude with the

observation-based estimates from Zhurbas et al. (2014)
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and are also comparable to the tracer-based eddy

diffusivity estimates provided by Abernathey and

Marshall (2013).

3a) Using monthly mean velocity output decreases the

EKE but decreases eddy diffusivity estimates dis-

proportionally less, supporting the idea that larger

and more persistent eddy features are the dominant

factors determining eddy diffusivities (cf. Wolfram

et al. 2015).

3b) Using 5-day mean velocity fields from the non-

eddying ocean model configuration ORCA05

greatly reduces Lagrangian lateral eddy diffusiv-

ities; if a GM parameterization is employed, diffu-

sivities further reduce to values close to zero.

These results suggest that when employing a sto-

chastic Lagrangian parameterization to derive more

diffusive trajectories from coarse-resolution model

output—particularly for large-scale applications—one

should consider the spatial variability of the diffusivity

parameter, which does not necessarily scale with vari-

ability in EKE, as well as possible subgrid-scale pa-

rameterizations, such as GM.
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APPENDIX

Details of the Eddy Diffusivity Estimation—
Smoothing Choices and Deviation from the Original

Zhurbas et al. (2014) Approach

We followed the approach by Zhurbas et al. (2014)

in all fundamental steps summarized in Fig. A1,

which were already introduced by Oh et al. (2000),

including the smoothing approaches adjusted to the

spatiotemporal coverage of drifter data. Because of

the increase of the sampling error with increasing

time lag (Davis 1991b), a time-dependent finite dif-

ferencing was applied to obtain k
disp
jk (x, t), and the

tensor components kjk(x, t) and sjk(x, t) were low-pass

filtered with a cosine filter and time-dependent filter

window length. The time increment dt was chosen to

equal the filter window [t 2 0.2t, t 1 0.2t]. Further

details can be found in Oh et al. (2000), Zhurbas and

Oh (2004), and Zhurbas et al. (2014). Note that

simulated drifter trajectories were processed identi-

cally to the drifter data for comparability reasons.

For a pure model study with a very large number of

FIG. A1. Lateral eddy diffusivity estimation following Oh et al. (2000).
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trajectories, less smoothing and nonoverlapping bins

may be sufficient and preferred, as indicated by

Fig. A2; the asymptotic diffusivity estimates inferred

from SIMeddy-5d hardly change when removing the

time-dependent filtering and differencing and also

show only small changes when changing to non-

overlapping 28 3 28 bins.
We deviated from the original Zhurbas et al. (2014)

approach by slightly altering the quality control of

drifter data to allow for speeds until 3m s21 (instead of

removing data with speeds .2ms21) because in the

region of interest, velocities reaching (exceeding)

2m s21 were reported from observations (and are ap-

parent in the modeled velocity fields). We were further

able to increase the number of considered pseudotracks

for large time lags by extending the area over which

trajectories were sampled for a certain bin (also neces-

sary due to the very high local current velocities and,

thus, large dispersion due to mean currents). Finally, we

fixed a slight inconsistency in the estimation ofKmax that

previously only considered time lags until 10 days (oc-

casionally leading to Kinf . Kmax).
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