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INTRODUCTION

Ocean acidification effects on marine organisms

Elevated environmental CO2 concentrations (hyper-
capnia) are a stressor that has lately received considerable 
attention in the context of climate change. Anthropogenic 
CO2 emissions are predicted to lead to a rise in surface 
ocean pCO2 from 0.04 kPa up to 0.08-0.14 kPa within 
this century (Orr et al. 2005, Cao & Caldeira 2008). The 
increased hydration of CO2 changes seawater chemistry, 
causing a drop in ocean pH, a phenomenon termed “ocean 
acidification”. Elevations in aquatic pCO2 and the associ-
ated increase in seawater H+ concentration affect the phys-
iology of water breathing animals as the pCO2 in body 
fluids must increase as well in order to maintain a suf-
ficient diffusion gradient for CO2 from the animal to the 
seawater (Melzner et al. 2009b). However, an increased 
hydration of CO2 in body fluids generates protons which 
can cause an acidosis if not actively compensated (Heisler 
1986). Among the aquatic taxa some have been identified 
as more sensitive (e.g. less active calcifying species such 
as corals or echinoderms) whereas others (many active 
species such as adult fish, crustaceans and cephalopods) 
can seemingly tolerate high CO2 concentrations over long 
exposure times (e.g. Spicer et al. 2007, Gutowska et al. 
2008, Melzner et al. 2009a, Ries et al. 2009, Dupont et 
al. 2010). Sensitivity of marine organisms towards envi-
ronmental hypercapnia was mainly reflected in reduced 

growth and development as well as altered calcification 
rates and energy re-allocations (Fabry et al. 2008, Stumpp 
et al. 2012). It has been suggested that the degree of tol-
erance correlates with the ability to compensate for a 
hypercapnia-induced acidosis by actively accumulating 
bicarbonate and eliminating protons from body fluids 
(Melzner et al. 2009b). Such regulatory abilities require 
the presence of an acid-base regulating machinery con-
sisting of ion transporters and channels located in cells 
of specialized epithelia. However, regulatory capaci-
ties and the structure of regulatory epithelia may change 
along ontogeny leading to a broad range of sensitivities in 
response to seawater hypercapnia even within one species 
(Dupont et al. 2008, Walther et al. 2010, Hu et al. 2011b, 
Stumpp et al. 2011, 2012, Tseng et al. 2013). In these 
studies, larval stages were identified as the weakest onto-
genetic link in many species including fish, crustaceans, 
cephalopods and echinoderms. Even if adults can tolerate 
elevated water pCO2, ecological fitness of larval stages 
may be compromised, and thus can negatively affect the 
survival of the species. 

Sepia officinalis in a changing environment

Cephalopods have occupied ecological niches in many 
marine habitats ranging from tropical to polar regions and 
have a vertical distribution range from surface waters to 
the deep sea (Nesis 2003). Very different lifestyles have 
evolved in this animal class with highly active pelagic 
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forms to sluggish slow moving benthic species. The cut-
tlefish Sepia officinalis has a demersal lifestyle and has 
evolved a decoupled swimming mode by either using 
undulatory movements of the lateral fins running along 
the whole length of the mantle or energetically more 
expensive jet propulsion (O’Dor 2002). Moreover, in 
contrast to squids which are negatively buoyant, Sepia 
spp. have a gas filled cuttlebone enabling these animals to 
control their buoyancy. These features enable S. officina-
lis to have an energetically favorable lifestyle, compared 
to most pelagic squids, but restricts their life to benthic, 
coastal habitats (O’Dor 2002).

Already today, many benthic habitats in coastal areas 
are characterized by strong fluctuations in temperature, as 
well as pO2 and pCO2 due to the microbial degradation of 
organic matter, leading to naturally acidified and hyper-
capnic conditions (Feely et al. 2008, Thomsen et al. 2010, 
Melzner et al. 2013). Accordingly, due to its benthic life-
style in coastal habitats, it can be hypothesized that S. 
officinalis is probably pre-adapted to environmental fluc-
tuations in pO2 and pCO2 to a certain degree compared 
to most pelagic cephalopods. Particularly during early 
development, the embryo may experience strong varia-
tions in environmental pO2, pCO2 as the eggs of S. offi-
cinalis are spawned in shallow coastal areas attached to 
hard substrate. Similar to many other molluscs, the eggs 
of S. officinalis are laid in dense clusters with up to sev-
eral hundred eggs generating steep oxygen gradients into 
egg masses (Cohen & Strathmann 1996). Furthermore 
hypercapnic and hypoxic conditions naturally occur in 
eggs of cephalopods and have led to physiological adap-
tation in early life stages (Gutowska & Melzner 2009, 
Hu et al. 2013, Thonig et al. 2014). Despite a potential 
pre-adaptation of S. officinalis to fluctuations in pCO2, 
ocean acidification has been proposed to constitute a sig-
nificant stressor in benthic systems due to an amplifica-
tion of hypercapnia by ocean acidification in naturally 
acidified and hypoxic habitats (Melzner et al. 2013). 
However, the relatively short lifecycle of Sepia officina-
lis (i.e. 1-2 years) offers this species a substantial chance 
for evolutionary adaptation in times of rapid environmen-
tal change. The present review aims at summarizing our 
present knowledge regarding the effects of climate change 
relevant hypercapnia levels on different ontogenetic stag-
es and at different levels of physiological organization in 
the cuttlefish S. officinalis.   

Early life stages

Effects of sea water acidification on the embryonic 
micro-environment

The early development of the cuttlefish embryo takes 
place inside an egg capsule that protects from biotic and 
abiotic environmental stressors. Egg capsules from marine 
species typically have diffusion coefficients of only 

10-20 % compared to that of pure seawater (Wickett 1975, 
Cronin & Seymour 2000, Brante 2006). Due to this lim-
ited diffusion permeability for gases, the egg capsule of 
cephalopods, including that of S. officinalis, constitutes a 
diffusion barrier, leading to hypoxic (low pO2) and hyper-
capnic (high pCO2) conditions inside the egg. The degree 
of hypoxia and hypercapnia correlates with the aerobic 
metabolism of the embryo, and increases during develop-
ment until hatch. For example, studies using Sepia apama 
could demonstrate that towards hatch, pO2 decreased to 
5-6 kPa despite a thinning of the egg capsule to improve 
gas permeability (Cronin & Seymour 2000). Furthermore, 
pCO2 values increase up to 0.3-0.4 kPa in late stage S. 
officinalis embryos due to an enhanced release of meta-
bolic CO2 (Gutowska & Melzner 2009). CO2 perturbation 
experiments demonstrated that environmental hypercapnia 
is additive to the already high pCO2 inside the egg capsule 
of cuttlefish and squid embryos to maintain a sufficient 
diffusion gradient of CO2 (Hu et al. 2011b, 2013, Dorey 
et al. 2013, Rosa et al. 2013). The maintenance of this 
diffusion gradient of approximately 0.2-0.3 kPa is essen-
tial in order to excrete CO2 from the perivitelline fluid 
(PVF). For example, the PVF pCO2 under control condi-
tions (0.04 kPa pCO2) is about 0.2-0.3 kPa (pH 7.4) in late 
stage embryos and increases to 0.4-0.5 kPa (pH 7.1) when 
exposed to environmental hypercapnia (0.14 kPa) (Hu et 
al. 2011b, Dorey et al. 2013). The cuttlefish embryo seems 
to be capable of actively controlling the swelling pro-
cess of the egg enabling a tuning of the egg capsule dif-
fusion permeability. In this respect, two studies (Lacoue-
Labarthe et al. 2009, Dorey et al. 2013) have demonstrat-
ed an increased swelling of S. officinalis eggs exposed to 
hypercapnic conditions of 0.14 kPa; a process that could 
improve CO2 permeability and reduces partial pressure 
gradients during environmental hypercapnia. The effects 
of increased seawater pCO2 on important abiotic variables 
in the seawater, inside the perivitelline fluid (PVF) and 
within the embryo, are summarized in Fig. 1.

Growth and development

Particularly in early life stages of marine vertebrates 
and invertebrates, CO2 induced seawater acidification has 
been demonstrated to elicit reductions in developmen-
tal rates (Dupont et al. 2010, Walther et al. 2010, Hu et 
al. 2011b, Stumpp et al. 2011, Tseng et al. 2013). This 
phenomenon was also observed in squid and cuttlefish 
embryonic stages with reductions in developmental rate 
(indicated by the embryo wet mass) by 16 % (S. offici-
nalis) and 28 % (Sepioteuthis lessoniana) at an ambient 
pCO2 of 0.4 kPa (pH 7.3 to 7.4) compared to animals kept 
under control conditions at 0.04 kPa (pH 8.1) (Hu et al. 
2011b, 2013). In S. officinalis, no effects on growth and 
development were observed for moderate hypercapnia 
levels below 0.14 kPa pCO2 (Hu et al. 2011b, Dorey et 
al. 2013). Interestingly, reductions in growth and devel-
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opment were less pronounced using the dry or wet mass 
but were more evident when using the mantle length of 
the developing embryo (Hu et al. 2011b). This suggests 
that elevated pCO2 affects the size, in particular length, 
of the embryo, but to a lesser extent the total mass. In 
this respect, it needs to be mentioned that the aragonit-
ic cuttlebone contributes approximately 4 % to the total 
body mass (Gutowska et al. 2010b, Dorey et al. 2013). 
As hypercalcifcation (for more details refer to section 
Growth and calcification) of the cuttlebone upon environ-
mental hypercapnia significantly increased the weight of 
this internal calcified structure (Gutowska et al. 2010b), 
it is likely that reductions in body mass are partly masked 
by a heavier cuttlebone.

Although the phenomenon of reduced growth and 
development is very evident in cuttlefish and squid early 
life stages, the reasons for this phenomenon remain less 
well explored. It has been suggested that a hypercapnia 
induced developmental delay can be caused through dif-
ferent ways, including i) metabolic depression or ii) 
energy allocations or iii) a combination of both (Hu et al. 
2011b, 2013, Stumpp et al. 2012, Pan et al. 2015). 

On one hand, an uncompensated acidosis has been 
suggested to induce metabolic depression, and thus, 
hypercapnia-born reductions in growth and development 
in aquatic organisms (Langenbuch & Pörtner 2002, Pört-

ner et al. 2004). On the other hand, it was proposed that 
a higher fraction of energy is spent on acid-base regula-
tion during environmental hypercapnia, leading to less 
energy available for growth and developmental processes 
(Stumpp et al. 2011, 2012, Hu et al. 2013). 

A study by Rosa et al. (2013) could demonstrate sig-
nificant reductions in metabolic rate at pH 7.5 and 22 °C 
in S. officinalis late stage embryos compared to animals 
kept under control conditions (pH 8.1). Furthermore, 
S. officinalis embryos exposed to hypercapnia levels 
of 0.4 kPa for 5 weeks responded with a general down 
regulation pattern of genes involved in energy consuming 
(e.g. acid-base genes) as well as energy providing (meta-
bolic genes) processes in gill tissues (Hu et al. 2011b). 
Such a reduction of protein synthesis and down regula-
tion of energy providing processes has been described 
as a general feature of organisms undergoing metabolic 
depression (Guppy & Withers 1999). These observations 
indicated that metabolic depression might play a role in 
developmental alterations during environmental hyper-
capnia in the cuttlefish Sepia officinalis. Nevertheless, 
more sensitive respiration measurements in combination 
with activity determinations of metabolic enzymes (e.g. 
citrate synthase) will be essential further research targets 
in order to provide a more definitive conclusion.

Fig. 1. – Abiotic changes in the microenvironment of Sepia officinalis embryos upon near-future seawater acidification scenarios. 
Acidification levels of pH 7.6 until the end of the century are predicted in the “worst-case” scenarios for ocean surface waters but can 
be already today experienced temporarily in coastal habitats. Due to the logarithmic pH scale a drop in seawater pH from 8.1 to 7.6 will 
already lead to a three-fold increase in hydrogen ions. The embryonic micro-environment is characterized by hypoxia, hypercapnia and 
high ammonia levels caused by a limited diffusion permeability of the protective egg capsule. Although increases in seawater pCO2 are 
additive to the already high pCO2 inside the egg capsule, the relative change in acidity  [H+] and pCO2 experienced by the embryo is 
smaller in the perivitelline fluid (PVF) compared to changes of surrounding seawater. It should be noted that the abiotic conditions of 
the PVF are influenced by environmental changes but also by the developing embryo itself. Depending on the physiological state of the 
embryo, metabolic end-products (e.g. NH4

+/NH3) and protons will be excreted at higher rates and will accumulate in the PVF. A modu-
lation of the swelling process leading to a thinner egg capsule may further improve gas permeability in response to hypercapnic condi-
tions. A smaller embryo in the near-future scenario indicates a developmental delay under elevated pCO2 conditions. This figure also 
indicates growth. Seawater: SW; Blood: BL.
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Epidermal ionocytes: embryonic sites for acid-base 
regulation 

During embryonic development of Sepia officina-
lis, rudimentary gill structures progressively develop 
and become complete when the organism has reached 
an adult-type morphology (Schipp et al. 1979, Hu et al. 
2010). During cephalopod organogenesis, before system-
ic and branchial hearts are developed, contractile muscles 
of the yolk sac are responsible for convective circulation 
of hemolymph around the yolk syncytium and into the 
extensive lacunar blood system of the embryo (Portmann 
1926). These blood sinuses are occupying large volumes 
of the embryonic body, particularly in the head region 
(von Boletzky 1987a, b). These morphological features 
prompted us to formulate the hypothesis that these epi-
thelia are probably major sites for acid-base regulation, 
excretion and gas exchange in cephalopods prior to gill 
development. 

Using immunohistochemical and in situ hybridization 
techniques, it has been demonstrated that in S. officinalis 
exactly these regions are characterized by Na+/K+-ATPase 
(NKA) rich, ion-regulatory cells that are scattered over 
the outer yolk epithelium (Hu et al. 2011a, Bonnaud et 
al. 2013). These ionocytes are further characterized by 
secondary active transporters involved in the secretion of 
protons such as Na+/H+-exchangers (NHEs) energized by 
the electrochemical gradient generated by the basolateral 
NKA (Hu et al. 2011a). Similar to the situation in Sepia 
officinalis, another cephalopod species, Sepioteuthis les-
soniana has been demonstrated to exhibit epidermal iono-
cytes as well. These ionocytes were characterized in great-
er detail and have a basolateral orientation of NKA and 
V-type H+-ATPase (VHA) and express Na+/H+-exchanger 
3 (NHE3) in apical membranes (Hu et al. 2013). Using 
scanning selective microelectrode technique in combina-
tion with the NHE specific inhibitor ethylisopropylam-
iloride (EIPA) a dose dependent decrease of proton gra-
dients on the yolk epithelium has been demonstrated. 
These findings indicate the importance of NHE-based 
proton secretion in these animals (Hu et al. 2011a). More-
over, acidified conditions (pH 7.3) triggered an increase 
in transcript levels of genes coding for transporters such 
as NHE3, VHA and a Na+/HCO3

- co-transporter (NBC) 
compared to animals kept under control conditions of pH 
8.1 (Hu et al. 2013). These experiments indicated a role 
of these ion transporters and pumps in mediating acid-
base homeostasis in cephalopod embryos during short-
term acclimation to environmental acidification. How-
ever, it can be speculated that cephalopod embryos may 
not rely on a tight regulation of extracellular pH homeo-
stasis to the same extent as adults do. Strong pH regula-
tory abilities of cephalopods were associated with oxygen 
transport efficiencies by the highly pH sensitive respira-
tory pigment, hemocyanin. However, embryonic stages 
were demonstrated to utilize a different composition of 

hemocyanin isoforms, which are expressed differentially 
upon seawater acidification, indicating an adjustment of 
oxygen transport despite potential changes in blood pH 
(Strobel et al. 2012, Thonig et al. 2014). Unfortunately 
there is no study that measured blood pH in cuttlefish 
embryos exposed to different seawater pH to date. This 
information together with studies addressing the costs of 
acid-base regulation in early life stages would be highly 
relevant to investigate the concept of energy allocation 
during environmental hypercapnia in S. officinalis.   

Juveniles and adults

Growth and calcification

In contrast to early developmental stages of S. officina-
lis, juveniles and adults have been identified as relatively 
tolerant towards CO2 driven seawater acidification. For 
example, juvenile S. officinalis exposed to 0.6 kPa pCO2 
(pH 7.1) maintained growth rates of approximately 4 % 
per day similar to control animals (Gutowska et al. 2008). 
This relative tolerance was accompanied by unchanged 
metabolic rates during short-term (24 h) exposure to the 
same acidification level (Gutowska et al. 2008). Also on 
the molecular level, no changes in gene expression of 
acid-base and metabolic genes has been observed in gill 
epithelia in response to short-term (2-11 days) as well as 
long-term (42 days) exposure to elevated seawater pCO2 
levels of 0.4 kPa (pH 7.4) (Hu et al. 2011b). Although no 
changes in growth, metabolism and gene expression were 
observed, two studies demonstrated that calcification of 
the cuttlebone was impacted. 45Ca uptake increased and 
lamellar spacing decreased in response to environmental 
hypercapnia leading to a higher density of the chambered 
aragonitic cuttlebone in CO2 treated animals (Gutowska et 
al. 2010b, Dorey et al. 2013). The phenomenon of hyper-
calcification of internal CaCO3 structures in response to 
environmental hypercapnia has been also observed for 
fish otoliths and crustacean carapaces (Checkley et al. 
2009, Ries et al. 2009) and was speculated to be the con-
sequence of a chronic elevation of HCO3

- levels in body 
fluids (Checkley et al. 2009, Gutowska et al. 2010b). 
Also in squid Doryteuthis opalescens the statoliths, which 
are essential for acceleration detection were found to be 
abnormally developed in high pCO2 (pH 7.55) treated ani-
mals (Navarro et al. 2014). It has been suggested that an 
altered density of the cuttlebone might negatively influ-
ence swimming behavior, active metabolism and prey 
capture. Preliminary studies could demonstrate that after 
an embryonic phase (63 days) hypercapnic conditions of 
0.4 kPa CO2 evoked a reduced ability to catch prey and 
to launch attacks against prey organisms (Maneja et al. 
2011). Similar behavioural defects in response to elevated 
seawater pCO2 levels were observed in the squid Idiose-
pius pygmaeus (Spady et al. 2014). Thus, future studies 
addressing the behavior of Sepia officinalis will represent 
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a fruitful research field in order to clarify the question 
regarding hyper-calcification-born behavioral defects 
under acidified conditions. 

Acid-base physiology

Sepia officinalis has been described to have significant 
acid-base regulatory abilities to stabilize extra-cellular 
pH during environmental hypercapnia (Gutowska et al. 
2010a). For example, in response to seawater hypercap-
nia of 0.6 kPa pCO2, adult S. officinalis elevate their blood 
HCO3

- levels from 3.4 mM to 10.4 mM within 48 h in 
order to buffer the excess of protons generated through the 
increased hydration of CO2 (Gutowska et al. 2010a). The 
cephalopod gill has been identified as the major organ that 
mediates this powerful compensation reaction, by actively 
pumping HCO3

- into the blood and excreting protons or 
proton equivalents (Potts 1965, Hu et al. 2011b, 2014b). 
The cephalopod gill has evolved an acid-base regulatory 
machinery, that consists of ion transporters and pumps 
homologous to those found in vertebrate systems (Hu et 
al. 2010, 2011b, 2014b). A recent study demonstrated that 
similar to the situation in early life stages, the gill of adult 
cephalopods uses apical NHE proteins in order to secrete 
protons from the animal. The employment of NHEs can 
be regarded as an energetically favorable pathway for the 
secretion of protons due to high environmental and low 
intracellular Na+ concentrations, providing a natural driv-
ing force for the exchange of Na+ against H+ ions in marine 
species (Robertson 1949, Potts 1994). Furthermore, pio-
neer studies (Potts 1965, Schipp et al. 1979, Donaubauer 
1981) already proposed that the gill of S. officinalis rep-
resents an important site for the excretion of nitrogenous 
waste products driven by the NKA. Recent studies using 
molecular and immunohistochemical techniques under-
lined these hypotheses and demonstrated the importance 
of NH4

+ -based proton secretion mechanisms in cephalo-
pods. In this context, a special focus has been dedicated 
to the identification and involvement of Rhesus proteins 
in cephalopods, a group of channel proteins that were 
demonstrated to mediate NH3 transport in vertebrate and 
invertebrate systems (Gruswitz et al. 2010, Wu et al. 2010, 
Wagner et al. 2011, Henry et al. 2012, Hu et al. 2014b). 
Interestingly, a range of marine invertebrates including 
molluscs and echinoderms respond with increased NH4

+ 
secretion rates in response to simulated ocean acidifica-
tion (Thomsen & Melzner 2010, Stumpp et al. 2012, Feh-
senfeld & Weihrauch 2013, Hu et al. 2014a). As acid-base 
regulatory and excretory processes are directly linked (Hu 
et al. 2014b) it can be hypothesized that NH4

+-based pH 
regulatory mechanisms represent an evolutionary ancient 
and conserved mechanism in many marine invertebrates. 

Summary and future perspectives

The present review summarized the current find-

ings regarding the effects of ocean acidification on the 
cephalopod Sepia officinalis, and highlights the large 
difference in terms of sensitivity between ontogenetic 
stages. While adult cuttlefish seem to be relatively toler-
ant towards CO2 induced seawater acidification early life 
stages were demonstrated to be more vulnerable. Low 
pH, hypercapnia and high ammonia inside the egg cap-
sule amplified by CO2 driven seawater acidification are 
probably the major abiotic stressors that negatively affect 
the development of the cuttlefish embryo. Here it should 
be noted that the abiotic conditions of the PVF are con-
trolled by environmental factors as well as the embryo 
itself. Thus, future studies are needed to better under-
stand the interplay of exogenous (by the environment) 
vs. endogenous (by the embryo) processes that affect the 
PVF chemistry. In particular the research on physiologi-
cal responses of the embryo during exposure to hypercap-
nia, high ammonia concentrations and low pH represent 
important future tasks to fill important knowledge gaps. 
Although the recent advances in understanding the physi-
ological responses of S. officinalis and other cephalopod 
species towards environmental hypercapnia shed light on 
some major questions, even more remains to be discov-
ered.

I strongly believe that the application of new and pow-
erful molecular techniques including the generation of 
transcriptomes, gene knock-down and in situ hybridiza-
tion, etc., will quickly improve our understanding regard-
ing regulatory mechanisms controlling the functional 
formation of regulatory epithelia. These epithelia enable 
S. officinalis to tolerate CO2 induced fluctuations in pH 
and allow for an embryonic development in an extreme 
microenvironment. This knowledge will help to better 
understand how environmental factors have shaped and 
will affect the physiology of S. officinalis in past and 
future oceans. 
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