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SUMMARY	

	

Throughout	the	twentieth	and	the	beginning	of	the	twenty-first	century	technical	
advancements	 in	many	 industries	 as	well	 as	 the	 vast	 increase	 in	world	population	
have	 lead	 to	 increasing	 emissions	 of	 greenhouse	 gases	 like	 carbon	 dioxide.	 At	 the	
same	time	carbon	sinks	like	forests	have	partly	disappeared	due	to	altered	land	uses.	
The	changes	in	the	chemistry	of	the	atmosphere	not	only	result	in	retention	of	heat	
causing	 global	 warming,	 but	 also	 transfer	 to	 the	 oceans.	 The	 oceans	 take	 up	 a	
substantial	amount	of	anthropogenic	carbon	dioxide.	This	buffers	the	climate	of	the	
earth,	but	has	negative	consequences	for	marine	life.	The	world’s	oceans	are	not	only	
warming,	 but	 are	 furthermore	 acidifying	 through	 the	 reaction	 of	 seawater	 with	
carbon	dioxide,	which	releases	hydrogen	ions,	measured	in	pH.	This	process,	termed	
ocean	acidification,	threatens	many	marine	organisms.		

Evidence	of	impacts	of	acidification	on	many	marine	organisms	and	ecosystems	
has	 accumulated	 over	 the	 last	 few	 decades.	 Nevertheless	 there	 are	 still	 vast	
knowledge	gaps,	particularly	for	the	more	complex	species	or	changes	relating	to	the	
population	level.	Most	commercial	fish	species	are	near	the	top	of	the	food	web	and	
are	 therefore	 keystone	 species	 in	 the	 ecosystems.	 Even	 though	 reliable	 knowledge	
for	 these	 species	 is	 of	 particular	 importance,	 since	 they	 not	 only	 support	 the	
livelihood	of	many	people	and	assist	 in	 food	security,	but	also	need	to	be	managed	
sustainably,	 it	 is	 still	 largely	missing.	Good	management	 relies	 on	 a	 good	 scientific	
understanding	 of	 these	 species	 as	 well	 as	 dependable	 quantitative	 data	 on	
population	processes,	like	recruitment	and	growth.	

The	 aim	of	 this	 thesis	was	 to	provide	 greater	understanding	of	 the	 impact	 of	
ocean	acidification	on	one	of	the	most	important	commercial	species,	the	Atlantic	cod	
(Gadus	morhua)	 and	 to	 provide	 a	 quantitative	 foundation	 to	 evaluate	 recruitment	
processes	of	this	species.	Most	stocks	of	the	Atlantic	cod	have	been	under	substantial	
fishing	pressure	since	the	onset	of	industrialized	fishing.	Overfishing	and	even	stock	
collapses	have	occurred	in	the	past.	Recently	there	are	also	some	success	stories	of	
sustainable	management	 successes	 and	 recoveries.	 However,	 it	 remains	 unclear	 if	
these	 populations	 are	 resilient	 enough	 to	 additional	 stressors	 through	 climate	
change.	

This	thesis	has	quantified	the	effect	of	ocean	acidification	on	larval	survival	of	
two	Atlantic	cod	stocks	from	the	Western	Baltic	Sea	and	the	Barents	Sea	and	how	this	
translates	into	the	recruitment	of	these	populations.	Ocean	acidification	levels	were	
chosen	to	reflect	carbon	dioxide	concentrations	as	they	are	expected	to	occur	at	the	
end	of	the	century.	Results	for	both	stocks	show	significantly	reduced	survival	under	
ocean	acidification.	This	may	result	in	dramatically	decreased	recruitment.		
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Additionally,	the	effect	of	acidification	and	its	interaction	with	food	availability	
on	 larval	 growth	 was	 quantified	 for	 the	 Barents	 Sea	 cod.	 The	 food	 treatment	
significantly	changed	the	effect	of	the	acidification	treatment.	Larvae,	which	are	not	
energy	 limited	 through	 a	high	 food	 treatment,	 showed	no	 effect	 of	 acidification	on	
growth.	Larvae	in	the	 low	food	treatment	on	the	other	hand	showed	an	increase	 in	
growth	under	acidification.	These	larvae	also	exhibited	increased	ossification	of	the	
vertebrae,	 but	 also	 an	 increased	 amount	 of	 organ	 impairments,	 particularly	 in	 the	
liver	and	the	eyes.	

In	 order	 to	 investigate	 the	 potential	 for	 adaptation	 or	 acclimation,	 it	 was	
furthermore	 explored	 whether	 the	 acclimation	 of	 the	 parental	 generation	 to	
acidification	had	a	 significant	effect	on	 larval	 survival	 and	organ	development.	The	
effect	 of	 parental	 acclimation	 again	 depended	 on	 the	 food	 available	 to	 the	 larvae.	
Under	 ideal	conditions	 for	the	offspring,	parental	acclimation	had	a	buffering	effect	
on	larval	survival,	however	this	was	reversed	under	food	limitation.	

The	results	of	this	dissertation	demonstrate	that	ocean	acidification	may	pose	a	
severe	 threat	 to	 Atlantic	 cod	 populations.	 Nonetheless,	 the	 exact	 effects	 are	 very	
complex	 and	 rely	 on	 other	 factors,	 like	 the	 exposure	 of	 the	 parental	 generation	 to	
acidification	and	on	food	availability	to	the	larvae.	 	



	 	

ZUSAMMENFASSUNG	

Im	 Verlauf	 des	 zwanzigsten	 und	 dem	 Beginn	 des	 einundzwanzigsten	
Jahrhunderts	 haben	 der	 technische	 Fortschritt	 in	 Verbindung	 mit	 einem	 starken	
Zuwachs	 in	 der	 Weltbevölkerung	 zu	 einem	 hohen	 Anstieg	 der	 Emissionen	 von	
Treibhausgasen	 wie	 Kohlenstoffdioxid	 geführt.	 Gleichzeitig	 verschwinden	
Kohlenstoffsenken	 wie	 Wälder	 durch	 geänderte	 Landnutzungen	 zunehmend.	
Änderungen	in	der	Chemie	der	Atmosphäre	führen	nicht	nur	zu	Wärmerückhaltung	
und	Klimawandel,	 sondern	 auch	 zu	Änderungen	 in	 der	Meereschemie.	 Ozeane,	 die	
einen	substantiellen	Teil	des	anthropogenen	Kohlenstoffdioxids	aufnehmen,	puffern	
das	Weltklima.	 Dies	 hat	 jedoch	 negative	 Konsequenzen	 für	 das	marine	 Leben.	 Die	
Weltmeere	erwärmen	sich	nicht	nur	sondern	versauern	auch	durch	die	Reaktion	des	
Seewassers	 mit	 Kohlenstoffdioxid.	 Dadurch	 werden	 in	 pH	 gemessene	
Wasserstoffionen	 freigesetzt.	 Dieser	 Prozess,	 genannt	 Ozeanversauerung,	 bedroht	
marine	Organismen.			

In	 den	 letzten	 Jahrzehnten	 häufen	 sich	 die	 Hinweise	 auf	 den	 Einfluss	 von	
Ozeanversauerung	 auf	 marine	 Organismen	 und	 Ökosysteme.	 Trotzdem	 gibt	 es	
weiterhin	große	Wissenslücken,	 insbesondere	 im	Hinblick	auf	komplexe	Arten	und	
Auswirkungen	 auf	 ganze	 Populationen.	 Die	 meisten	 kommerziellen	 Fischarten	
stehen	 nahe	 der	 Spitze	 des	 Nahrungsnetzes	 und	 sind	 daher	 Schlüsselarten	 im	
Ökosystem.	Obwohl	verlässliches	Wissen	für	diese	Arten	von	besonderer	Bedeutung	
ist,	 da	 sie	 die	 Grundlage	 des	 Lebensunterhaltes	 für	 viele	 Menschen	 bilden,	 zur	
Lebensmittelsicherheit	 beitragen	 und	 nachhaltig	 gemanagt	 werden	 müssen,	 ist	
dieses	 häufig	 nicht	 verfügbar.	 Gutes	 Management	 basiert	 auf	 fundiertem,	
wissenschaftlichen	 Wissen	 so	 wie	 auf	 verlässlichen,	 quantitativen	 Daten	 zu	
Prozessen	auf	der	Populationsebene,	zum	Beispiel	Rekrutierung	und	Wachstum.	

Das	 Ziel	 dieser	 Dissertation	 ist	 ein	 besseres	 Verständnis	 des	 Einflusses	 von	
Ozeanversauerung	 auf	 eine	 der	 kommerziell	 genutztesten	 Fischarten,	 den	
Atlantischen	 Dorsch	 (Gadus	morhua),	 zu	 erreichen	 und	 eine	 quantitative	 Basis	 zu	
legen	 um	Änderungen	 in	 den	 Rekrutierungsprozessen	 dieser	 Art	 zu	 bewerten.	 Die	
meisten	Bestände	des	Atlantischen	Dorschs	unterliegen	seit	Beginn	der	industriellen	
Fischerei	 starkem	 Fischereidruck.	 In	 der	 Vergangenheit	 sind	 bereits	 Überfischung	
und	 selbst	 Zusammenbrüche	 einiger	 Bestände	 aufgetreten.	 In	 jüngster	
Vergangenheit	 gab	 es	 auch	 Erfolgsgeschichten	 von	 nachhaltigem	Management	 und	
Bestandserholungen.	Trotzdem	bleibt	es	 fraglich,	ob	Bestände	belastbar	genug	sind	
dem	zusätzlichen	Druck	durch	Klimawandel	stand	zu	halten.	

Diese	 Dissertation	 quantifiziert	 den	 Effekt	 von	 Ozeanversauerung	 auf	 das	
Überleben	 von	 Larven	 von	 zwei	 Populationen	 des	 Atlantischen	 Dorschs	 aus	 der	
westlichen	Ostsee	und	der	Barentssee	und	zeigt,	wie	sich	dieses	auf	die	Rekrutierung	
auswirkt.	 Getestet	 wurde	 eine	 Versauerung,	 wie	 sie	 bis	 zum	 Ende	 dieses	
Jahrhunderts	 zu	 erwarten	 ist.	 Die	 Ergebnisse	 für	 beide	 Bestände	 zeigen	 stark	
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verminderte	 Überlebensraten	 durch	 Versauerung,	 was	 dramatische	 Auswirkungen	
auf	die	Rekrutierung	haben	kann.	

Zusätzlich	 wurden	 die	 Auswirkungen	 von	 der	 Ozeanversauerung	 und	 die	
Wechselwirkungen	 mit	 Nahrungsverfügbarkeit	 auf	 das	 Larvenwachstum	 des	
Barentssee	 Bestandes	 quantifiziert.	 Die	 experimentelle	 Nahrungsbehandlung	
veränderte	den	Effekt	 der	Versauerung	 signifikant.	 Larven,	 die	durch	 viel	Nahrung	
nicht	 Energie	 limitiert	 waren,	 zeigten	 durch	 die	 Versauerung	 des	 Wassers	 keine	
Auswirkung	 auf	 das	 Wachstum.	 Larven,	 denen	 weniger	 Nahrung	 zur	 Verfügung	
gestellt	 wurde,	 wiesen	 ein	 stärkeres	 Wachstum	 durch	 die	 Versauerung	 auf.	 Diese	
Larven	 hatten	 darüber	 hinaus	 eine	 stärker	 ossifizierte	Wirbelsäule,	 aber	 auch	 ein	
erhöhtes	 Vorkommen	 von	Organschädigungen,	 besonders	 in	 der	 Leber	 und	 in	 den	
Augen.	

Um	 das	 Potential	 zur	 Adaptation	 oder	 Akklimatisierung	 der	 Larven	 zu	
untersuchen,	 wurden	 die	 Auswirkungen	 einer	 Akklimatisierung	 der	
Elterngeneration	 an	 die	 Versauerung	 auf	 das	 Überleben	 der	 Larven	 und	 ihrer	
Organentwicklung	 ermittelt.	 Auch	 dabei	 spielte	 die	 Nahrungsverfügbarkeit	 eine	
wesentliche	 Rolle.	 Unter	 idealen	 Bedingungen	 für	 die	 Larven	 erzeugte	 die	
Akklimatisierung	der	Eltern	einen	puffernden	Erfolg	auf	das	Überleben	der	Larven.	
Das	Gegenteil	war	allerdings	der	Fall	wenn	die	Larven	nahrungslimitiert	waren.	

Die	Ergebnisse	dieser	Dissertation	belegen,	dass	Ozeanversauerung	eine	große	
Bedrohung	 für	 die	 Bestände	 des	 Atlantischen	 Dorsches	 darstellen	 kann.	
Nichtsdestotrotz	 sind	 die	 genauen	 Auswirkungen	 sehr	 komplex	 und	 hängen	 von	
vielen	 Faktoren	 ab,	wie	 beispielsweise	 die	 Anpassung	 der	 Elterngeneration	 an	 die	
Ozeanversauerung	und	die	Nahrungsverfügbarkeit	der	Larven.	
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1.1 Climate	Change	and	Ocean	Acidification	

Worldwide	 emissions	of	 greenhouse	 gases,	 in	particular	 carbon	dioxide,	 have	
consistently	 increased	since	the	 industrialization	and	are	still	 increasing,	caused	by	
anthropogenic	processes	such	as	burning	of	fossil	fuels	and	altered	land	uses	(Sabine	
et	al.,	2004;	IPCC,	2013)	(Figure	1.1).	These	gases	are	causing	significant	changes	in	
the	physical	properties	of	the	atmosphere,	particularly	the	retention	of	heat	leading	
to	the	greenhouse	effect,	ultimately	resulting	in	global	warming.	Atmospheric	carbon	
dioxide	 concentrations	 have	 increased	 by	 40%	 since	 pre-industrial	 levels	 and	 are	
now	at	 the	highest	 concentrations	of	 at	 least	 the	past	800	000	years	 (IPCC,	2013).	
Global	 atmospheric	 CO2	 concentrations	 reached	 410	 ppm	 in	 2017	 at	 Mauna	 Loa	
Observatory	 (Keeling	 Curve,	 Scripps	 Institution	 of	 Oceanography).	 The	 process	 of	
global	warming	is	in	part	buffered	by	the	oceans,	which	absorb	about	a	quarter	to	a	
third	of	the	access	carbon	dioxide,	thereby	slowing	the	warming	of	the	atmosphere	
and	concurrently	also	the	oceans.	

	

	

However,	 the	 uptake	 of	 CO2	 by	 ocean	water	 comes	 at	 a	 price,	 namely	 ocean	
acidification,	 the	 “other	 CO2	 problem”	 (Doney	 et	 al.,	 2009).	 In	 seawater	 carbon	
dioxide	(CO2)	reacts	with	the	water	molecules	(H2O)	to	form	carbonic	acid	(H2CO3),	
which	dissociates	 further	 into	bicarbonate	 ions	 (HCO3-)	 and	 carbonate	 ions	 (CO32-)	
releasing	 hydrogen	 ions	 (H+).	 This	 increase	 in	 hydrogen	 ions	 is	 measured	 as	 a	
decrease	in	pH	(Feely	et	al.,	2004;	Caldeira	&	Wickett,	2005;	Doney	et	al.,	2009).	The	

Figure	 1.1.	 	 Multiple	
observed	 indicators	 of	 a	
changing	 global	 carbon	
cycle:	 (a)	 atmospheric	
concentrations	 of	 carbon	
dioxide	 (CO2)	 from	 Mauna	
Loa	 (19°32’N,	 155°34’W	 –	
red)	 and	 South	 Pole	
(89°59’S,	 24°48’W	 –	 black)	
since	 1958;	 (b)	 partial	
pressure	of	dissolved	CO2	at	
the	 ocean	 surface	 (blue	
curves)	 and	 in	 situ	 pH	
(green	 curves),	 a	 measure	
of	 the	 acidity	 of	 ocean	
water.	 Measurements	 are	
from	 three	 stations	 from	
the	 Atlantic	 (29°10’N,	
15°30’W	 –	 dark	 blue/dark	
green;	 31°40’N,	 64°10’W	 –	
blue/green)	and	the	Pacific	
Oceans	(22°45’N,	158°00’W	
−	 light	 blue/light	 green).		
Taken	from	(IPCC,	2013).	
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ocean	 surface	 waters	 have	 shown	 a	 decrease	 in	 pH	 of	 0.1	 since	 the	 beginning	 of	
industrialization.	 (Figure	1.1)	 	This	corresponds	 to	an	 increase	of	hydrogen	 ions	of	
26%.	 (IPCC,	2013)	Globally	 the	ocean	surface	waters	are	projected	 to	experience	a	
further	 decrease	 in	 pH	 between	 0.1	 and	 0.4	 by	 the	 year	 2100	 depending	 on	 the	
assumed	 reaction	 concentrations	 pathway	 of	 the	 Intergovernmental	 Panel	 on	
Climate	Change	(IPCC)	(Figure	1.2).		

	

In	 order	 to	 explore	 the	 biological	 effects	 of	 certain	 species	 it	 is	 important	 to	
understand	the	regional	dynamics	of	ocean	acidification.	High	latitudes	are	expected	
to	experience	lower	pH	values	than	the	global	average	and	different	seasonal	cycles.	
This	is	due	to	several	different	processes.	 	Firstly	carbon	dioxide	is	more	soluble	at	
lower	 temperatures,	 so	 the	 surface	 waters	 take	 up	 more	 carbon	 dioxide.	 This	 is	
unfortunately	positively	enforced	by	the	melting	of	sea	 ice,	which	uncovers	greater	
areas	of	the	ocean	allowing	more	interaction	with	the	atmosphere.		

At	 high	 latitudes,	 pH	values	 also	 only	 exhibit	 small	 diurnal	 cycles,	 because	 of	
stable	light	conditions,	therefore	presenting	more	constant	stress.	At	the	same	time	
seasonal	 signals	 become	 more	 significant	 with	 particularly	 low	 pH	 values	 during	
very	 early	 spring	 (Kaltin	 et	 al.,	 2002).	 Unfortunately	 this	 corresponds	 to	 the	
spawning	 time	 of	 many	 commercial	 species,	 such	 as	 the	 target	 species	 of	 my	
dissertation	 Atlantic	 cod	 (Gadus	 morhua),	 which	 spawn	 before	 the	 first	
phytoplankton	blooms	of	the	year.	

Coastal	areas,	in	which	Atlantic	cod	spawn,	are	additionally	likely	to	experience	
higher	 levels	 of	 acidification	 than	 the	 open	 ocean	 since	 the	 input	 of	 terrestrial	
organic	carbon,	which	is	oxidized	in	the	water	by	photolytic	or	microbial	oxidation,	
produces	further	CO2.	Melzner	et	al.	(2012)	show	that	coastal	areas	in	e.g.	the	Baltic	

Figure	 1.2.	 Simulated	 time	 series	 from	 1950	 to	 2100	 for	 global	 mean	 ocean	
surface	pH.	Time	series	of	projections	a	measure	of	uncertainty	(shading)	are	shown	
for	 IPCC	 scenarios	 RCP	 2.6	 (blue)	 and	 RCP	 8.5	 (red).	 Black	 (grey	 shading)	 is	 the	
modelled	 historial	 evolution	 using	 historical	 reconstructed	 forcings.	 The	 mean	 and	
associated	uncertainties	averages	over	2081-2100	are	given	 for	all	RCP	scenarios	 as	
colored	vertical	bars.	Taken	from	(IPCC,	2013)	
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may	experience	drastic	variations	and	much	 lower	pH	values	due	to	excess	oxygen	
consumption	and	local	upwellings.	

The	 Atlantic	 cod	 is	 therefore	 due	 to	 its	 natural	 distribution	 and	 spawning	
behaviour	particularly	prone	 to	 experience	acidification	 levels	 far	 exceeding	global	
averages.	This	thesis	focuses	on	two	Atlantic	cod	stocks.	The	Arcto-Norwegian	cod	is	
spawning	 along	 the	 coast	 of	 Northern	 Norway	 (Sundby	 &	 Nakken,	 2008)	 and	 is	
distributed	around	the	Southern	Barents	Sea.	Projected	changes	 in	pH	for	 this	area	
are	a	decrease	in	pH	down	to	values	around	7.75	at	the	end	of	this	century	(Figure	
1.3)	(Denman	et	al.,	2011;	AMAP,	2013).	

		

The	Western	Baltic	Stock	is	distributed	throughout	the	Western	Baltic	Sea.	It	is	
in	 the	 unfortunate	 situation	 of	 having	 a	 comparatively	 huge	 terrestrial	 catch	 area	
compared	 to	 its	 own	 water	 volume	 with	 a	 large	 human	 population	 living	 on	 its	
coasts.	Water	 exchange	with	 adjacent	 seas,	 in	 this	 case	 the	North	 Sea	 through	 the	
Skagerrak	and	Kattegat	is	minimal.	It	is	therefore	under	unparalleled	anthropogenic	
pressures.	 The	 pH	 in	 the	 Baltic	 is	 already	 lower	 than	 most	 waters	 and	 projected	
acidification	 levels	 far	 exceed	 the	 global	 predictions.	 Strong	 eutrophication	 in	 this	
region	 leads	 to	 high	 primary	 productivity,	 which	 naturally	 reduces	 the	 pH.	 The	
change	in	pH	in	the	Western	Baltic	may	reach	-0.2	to	-0.3	even	in	the	scenario	with	
lowest	emissions	(B1)	(Figure	1.4).		

Figure	1.3.	 Projected	 change	 in	 pH	 in	 the	 Arctic	 through	 the	 21st	 century	 after	
(Denman	et	al.,	2011),	taken	from	the	Arctic	Monitoring	and	Assessment	Programme	
Assessment	2013:	Arctic	Ocean	Acidification	(AMAP,	2013)	
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Figure	1.4.	Current	pH	(1971-2000)	and	scenario	pH	changes	(2069-2098)	along	

a	Baltic	Sea	transect	for	two	scenarios.	Taken	from	(Omstedt	et	al.,	2012).	Please	refer	
to	paper	for	details.	

1.2 Ocean	Acidification	effects	on	the	physiology	of	
marine	fishes	and	their	early	life	stages	

In	marine	 fishes	 acid-base	 regulation	 is	 taking	 place	mainly	 at	 the	 gill-water	
surface.	It	is	linked	to	the	excretion	of	carbon	dioxide,	since	CO2	can	be	hydrated	to	
H+	 and	 HCO3-	in	 a	 reversible	 reaction,	 which	 is	 catalyzed	 by	 the	 enzyme	 carbonic	
anhydrase	 (CA).	 Water-breathing	 fish	 are	 at	 a	 disadvantage	 to	 regulate	 their	
metabolic	 acid-base	 balance	 compared	 air-breathing	 animals,	 because	 of	 their	 low	
arterial	partial	pressure	of	CO2.	Any	environmental	conditions,	such	as	increased	CO2	
concentrations	of	the	seawater,	which	further	lower	the	CO2	excretion	potential,	will	
result	 in	 respiratory	 acidosis	 and	 the	 need	 to	 actively	 excrete	 hydrogen	 ions.	 This	
happens	 primarily	 across	 the	 gills.	 (Perry	&	Gilmour,	 2006)	The	 excretion	 of	H+	 is	
coupled	 with	 a	 Na+	 influx,	 facilitated	 by	 the	 Na+/H+	 exchanger.	 Similarly	 HCO3-	 is	
coupled	 with	 an	 efflux	 of	 Cl-.	 (Figure	 1.5)	 The	 energy	 is	 provided	 by	 the	 Na+/K+	
ATPase,	 which	 provides	 the	 necessary	 gradients	 across	 which	 the	 exchangers	 can	
function.	Cl-	is	moved	to	the	seawater	through	chloride	channels	in	order	to	maintain	
electroneutrality,	 while	 the	 bicarbonate	 is	 transferred	 to	 the	 extracellular	 fluid.	
(Perry	&	Gilmour,	2006;	Melzner	et	al.,	2009a)	
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The	buffering	of	a	decrease	 in	pH	 is	 therefore	always	 linked	to	an	 increase	 in	
bicarbonate	ions.	The	relationship	between	partial	pressure	of	CO2,	extracellular	pH,	
and	 extracellular	 HCO3-	 concentrations	 can	 be	 seen	 in	 the	 Davenport	 diagram	 in	
Figure	1.6.	The	green	line	represents	an	organism	with	full	pH	compensation	through	
active	bicarbonate	accumulation,	 like	a	marine	 fish.	Any	pCO2	represents	a	definite	
combination	of	concentrations	of	HCO3-	and	pH.	The	extracellular	pH	may	be	lowered	
in	the	short	term,	but	HCO3-	concentrations	start	to	rise	immediately	and	after	some	
time,	the	pH	is	close	to	its	initial	value.	However,	it	is	important	to	note	that	while	pH	
returns	 to	 ideal	 conditions,	 the	 bicarbonate	 concentrations	 and	 the	 pCO2	 have	
changed	dramatically.		

Figure	1.5.	Simplified	schematic	depiction	of	an	epithelial	gill	cell	(ionocyte)	of	a	
teleost	 fish	 (taken	 from	 (Melzner	 et	 al.,	 2009a)	 (adapted	 from	 (Perry	 &	 Gilmour,	
2006))	 (1)	=Na+/K+	ATPase,	 (2)=Na+/H+	exchanger,	 (3)=Cl−/HCO−	3	exchanger,	 (4)=Cl−	
channel	(e.g.	CFTR),	CAc	=	cytoplasmic	carbonic	anhydrase.		

2322 F. Melzner et al.: Physiological basis for high CO2 tolerance in marine ectothermic animals
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Fig. 4. Simplified schematic depiction of an epithelial gill cell
(ionocyte) of a teleost fish (adapted from Perry and Gilmour, 2006).
Decapod crustacean and cephalopod gill epithelia are equipped with
similar proteins. (1)=Na+/K+ ATPase, (2)=Na+/H+ exchanger,
(3)=Cl�/HCO�

3 exchanger, (4)=Cl
� channel (e.g. CFTR), CAc =

cytoplasmatic carbonic anhydrase. Na+/K+ ATPase is responsi-
ble for the low intracellular Na+ and high K+ concentration. Sec-
ondary active transporters, such as Na+/H+ exchanger can utilize
the sodium gradient to export H+. H+ are produced when CO2 is
hydrated by CAc. The resulting HCO�

3 can be transferred into the
extracellular fluid (blood, hemolymph), while Cl� is exported to the
seawater through chloride channels to maintain electroneutrality.

This plasma bicarbonate may then undergo further protona-
tion/dehydration/hydration cycles leading to a net proton ex-
trusion via the gills. In order to maintain electroneutrality in
the plasma, Cl� is typically excreted, possibly via apical Cl�
channels (e.g. CFTR; see Perry and Gilmour, 2006; Deig-
weiher et al., 2008, for an extended discussion). However,
the true mechanisms may be more complicated owing to the
large number of transporters and channels present in gill ep-
ithelia (see also Deigweiher et al., 2008). However, basic
processes can be suspected similar for decapod crustaceans
and cephalopods as well; it is known by now that similar ion
exchange proteins are also expressed in gills of these inverte-
brates (e.g. Schipp et al., 1979; Piermarini et al., 2007; Virkki
et al., 2003; Henry and Swenson, 2000; Wheatly and Henry,
1992; Hu, Lucassen and Melzner, unpublished).
As Na+/K+ ATPase activity is the main energy sink and

driving force for gill ion exchange processes in marine ec-
tothermic animals, it can serve as a useful indicator for the
overall capacity in ion and acid-base regulation. Conse-
quently, gill Na+/K+ ATPase activity has been shown to cor-
relate with metabolic rate in marine teleost species: Gibbs
and Somero (1990) found highest Na+/K+ ATPase activi-
ties in shallow water, active species, while more inactive,
deep-sea species activities were an order of magnitude lower.
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Fig. 5. Gill Na+/K+-ATPase activity measure in crude gill ho-
mogenates in two molluscs, the cephalopod S. officinalis, the
bivalve M. edulis and the crustacean Carcinus maenas, accli-
mated and measured at 14 to 15�C vs. similar measurements
on fish gill homogenates measured at 10�C. The teleost value
represented in the figure is the mean of six species of shal-
low water teleosts from Gibbs and Somero (1990, their Ta-
ble 1) and the eelpout Z. viviparus from Deigweiher et al. (2008).
The mussel, cephalopod and crustacean measurements (Melzner
and Lucassen, unpublished) were performed according to the
protocol outlined in Melzner et al. (2009; see supplemen-
tary file for details: http://www.biogeosciences.net/6/2313/2009/
bg-6-2313-2009-supplement.pdf).

These relationships correspond with lower metabolic rates
(e.g. Torres et al., 1979), lower gill surface areas (Hughes and
Iwai, 1978) and lower muscle glycolytic enzyme capacities
(Somero and Childress, 1980) in deep-sea vs. shallow wa-
ter teleost species. The latter feature suggests that deep-sea
fish rely less on aerobic as well as high-intensity, anaerobic
“burst” swimming, thus likely would experience metabolic
acidosis less often than shallow water species. Based on
similar considerations, it has already been suggested that
deep-sea marine animals might be significantly more vulner-
able with respect to ocean acidification than shallow living
species (Seibel and Walsh, 2001, 2003).
The gills of hypercapnia tolerant, shallow water marine

taxa are characterized by surprisingly similar activities of
Na+/K+ ATPase, an order of magnitude higher than those of
sessile, hypometabolic species such as the blue mussel (see
Fig. 5). While the comparison between high-power taxa and
bivalves is confounded by the fact that the mussel gill primar-
ily serves as a feeding organ, the lack of a true ion-regulatory
organ in bivalves itself illustrates a key point: The evolution

Biogeosciences, 6, 2313–2331, 2009 www.biogeosciences.net/6/2313/2009/
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Although	 pH	 compensation	 is	 possible	 in	 fish,	 it	 entails	 a	 changed	 blood	
composition.	Importantly,	since	this	is	driven	ultimately	by	the	Na+/K+	ATPase,	 it	 is	
an	 energetically	 costly	 process.	 The	 exact	 physiological	 mechanisms	 are	 still	
unknown.	 Moreover,	 how	 the	 response	 of	 early	 life	 stages	 might	 differ	 from	 the	
above-explained	mechanisms	is	yet	 largely	uncertain.	Egg	and	early	 larval	stages	of	
marine	 fish	 do	 not	 have	 fully	 functional	 gills	 yet,	 which	 might	 lower	 their	
compensatory	 potential,	 while	 they	 are	more	 vulnerable	 to	 environmental	 change	
through	 larger	 surface	 to	 volume	 relationships	 and	 more	 permeable	 surfaces.	
However,	it	is	believed	that	they	have	the	capacity,	though	possibly	less	efficient,	to	
regulate	their	internal	pH	as	well,	through	chloride	cells	and	possibly	other	channels	
across	 the	 whole	 body	 surface	 (Falk-Petersen,	 2005).	 It	 is	 reasonable	 to	 assume	
though	that	regulation	may	be	 less	efficient	and	the	stress	due	 to	changes	 in	blood	
composition	 and	 the	 increased	 energy	 demand	 weighs	 particularly	 heavy	 during	
development.	

Figure	 1.6.	 Davenport	 diagrams.	 (A)	 Schematic	 illustration	 of	 non-bicarbonate	
buffer	 line,	 dashed	 green	 line.	 Arrows	 indicate	 changes	 in	 pCO2	 and	 [HCO3-]	 during	
respiratory	 acidosis/alkalosis	 and	 metabolic	 acidosis/alkalosis.	 (B)	 Three	 different	
hypothetical	 organisms	 subjected	 to	 0.5	 kPA	 (ca.	 4900	 µatm)	 environmental	
hypercapnia.	Red	symbols:	No	active	accumulation	of	bicarbonate	in	the	extracellular	
space	 to	 compensate	 pH.	 pH	 follows	 the	 non-bicarbonate	 buffer	 line.	 Blue	 symbols,	
green	 symbols:	 partial/full	 pH	 compensation	 through	 active	 bicarbonate	
accumulation.	 Stars	 indicate	control	parameters,	numbers	 indicate	 time	 (h)	exposed	
to	elevated	pCO2	(hypothetical	time	course!).	Taken	from	Melzner	et	al.	(2009a)	

F. Melzner et al.: Physiological basis for high CO2 tolerance in marine ectothermic animals 2317
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Fig. 1. Davenport diagrams. (A): Schematic illustration of non-bicarbonate buffer line, dashed green line. Arrows indicate changes in
pCO2 and [HCO�

3 ] during respiratory acidosis/alkalosis and metabolic acidosis/alkalosis. See text for explanations. (B): Three different
hypothetical organisms subjected to 0.5 kPa (ca. 4900µatm) environmental hypercapnia. Red symbols: No active accumulation of bicar-
bonate in the extracellular space to compensate pH, pH follows the non-bicarbonate buffer line. Blue symbols, green symbols: partial/full
pH compensation through active bicarbonate accumulation. Stars indicate control parameters, numbers indicate time (h) exposed to elevated
pCO2 (hypothetical time course!). See text for a detailed discussion.

result in a 1.5-fold increase in [HCO�
3 ] to maintain extracel-

lular pH at the control level.
The main prerequisite for such a rapid and efficient bi-

carbonate accretion are high net proton equivalent fluxes
between ectothermic organisms and the surrounding sea-
water. Such data are currently only available for deca-
pod crustaceans and for teleost/elasmobranch fish as well
as an invertebrate (sipunculid) worm. Values of about
100µEq kg�1 h�1 net acid efflux have been recorded for the
crustacean Carcinus maenas exposed to a pCO2 value of
about 0.7 kPa (ca. 6900µatm; Truchot, 1979), even higher
values have been recorded in the marine teleost Conger con-
ger, where exposure to 1.3 kPaCO2 (ca. 12 800µatm) pro-
duced a net acid efflux of 920µEq kg�1 h�1 (Holeton et al.,
1983). Rates were much lower in the sipunculid and mir-
rored transiently enhanced net proton release during transi-
tion to a new steady state in acid-base status under hypercap-
nia (Pörtner et al., 1998).
In summary, it appears that a relative degree of tolerance

towards hypercapnic exposure can be found mainly in such
marine ectothermic organisms that possess the ability to ac-
tively accumulate large amounts of bicarbonate ions to sta-
bilize extracellular pH. In addition, these organisms are typ-
ically equipped with relatively high non-bicarbonate buffer-
ing capacities, which protect extracellular pH during acute
CO2 exposure. While hypercapnia typically is not a rele-
vant stressor in the natural habitat of many marine organisms
(however, see Sects. 8 and 9), high capacities for net acid
extrusion directly result from an active mode of life, high

metabolic rates and frequent as well as rapid metabolic rate
fluctuations. We will follow this line of argument in the fol-
lowing paragraphs.

4 A common denominator: metabolic rate and
metabolic rate fluctuations

Allowing for considerable intra-taxon variability, there are
strong common ties between teleost fish, brachyuran crus-
taceans and cephalopod molluscs when compared with
e.g. echinoderms and bivalve molluscs: All more tolerant
taxa are characterized by high (specific) metabolic rates and
high levels of mobility/activity. Figure 2a gives an overview
of the range of metabolic rates that can be encountered in the
aforementioned taxa, with standard/routine metabolic rates
displayed in black, and those obtained during (exhaustive)
exercise in white. For clarity sake, only subtidal and inter-
tidal species from temperate regions were considered for this
comparison. It is quite obvious that all active taxa are char-
acterized by considerably higher metabolic rates, and, maybe
even more important, higher metabolic rate fluctuations, than
members from less active taxa (for references see Fig. 2).
Maximum differences in oxygen consumption can be 100 to
200-fold between certain sessile echinoderms and exercising
cephalopods. Even more revealing is a closer look at the flip-
side of the coin: Depending on the composition of their diet,
marine animals have to excrete close to equimolar quantities,
i.e. between 0.7 (fatty acids) and 1.0 (carbohydrates) moles

www.biogeosciences.net/6/2313/2009/ Biogeosciences, 6, 2313–2331, 2009
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1.3 The	ecology	of	Atlantic	Cod	(Gadus	morhua)	and	
its	fisheries	

The	Atlantic	cod	(Gadus	morhua,	Linnaeus,	1758)	is	a	demersal	species	with	a	
geographical	 distribution	 spanning	most	 of	 the	Northern	Atlantic	Ocean.	 It	 is	most	
often	 found	 in	 depths	 between	150	 to	 200	m	on	 the	 continental	 shelf,	 but	may	be	
seen	in	depths	of	more	than	600	m.	Adult	cod	can	tolerate	a	wide	range	of	conditions	
in	terms	of	temperature	and	salinity	from	arctic	conditions	to	nearly	20°C	and	from	
nearly	freshwater	to	oceanic	waters.	However,	early	life	stages	rely	on	a	far	narrower	
niche	of	conditions.	Spawning	only	occurs	below	12°C	and	the	egg	stages	rely	on	the	
right	 salinity	 to	 stay	 buoyant	 within	 the	 water	 column.	 In	 the	 open	 ocean	 this	 is	
found	 close	 to	 the	 surface,	 while	 in	 the	 Baltic	 Sea	 eggs	 are	 found	 just	 below	 the	
halocline	 (Nissling	&	Westin,	1997).	 In	 roughly	 the	 first	week	after	hatching	 larvae	
rely	 on	 their	 yolk	 sac	 for	 nutrition	 and	 stay	 in	 the	water	 column	 (Heath	&	 Lough,	
2005).	Once	the	larvae	start	feeding	they	become	more	mobile.	Preferred	prey	items	
are	early	life	stages	of	copepods	(Seljeset	et	al.,	2010;	Ottersen	et	al.,	2014).		

Atlantic	cod	 is	one	of	 the	most	 important	commercial	species	 in	 the	Northern	
Atlantic	(FAO,	2016).	Most	stocks	are	overexploited,	including	the	Western	Baltic	cod	
stock.	Advice	from	the	International	Council	for	the	Exploration	of	the	Sea	(ICES)	has	
suggested	large	cuts	 in	total	allowable	catches	in	recent	years.	The	cod	stock	in	the	
Barents	 Sea	 is	 considered	 to	 be	 one	 of	 the	 success	 stories	 of	 sustainable	
management.	 Newly	 established	 harvest	 control	 rules	 were	 however	 also	 likely	
supported	by	favourable	temperatures	(Kjesbu	et	al.,	2014).	 	Nonetheless,	the	latest	
advice	 from	 ICES	 has	 suggested	 a	 strong	 reduction	 in	 catches	 due	 to	 very	 low	
recruitment	over	the	last	decade	(ICES,	2017).	

1.4 Atlantic	cod	and	ocean	acidification	–	the	previous	
state-of-art	

The	results	of	 few	studies	are	available	on	 the	effect	of	ocean	acidification	on	
Atlantic	cod.	Cod	larvae	from	the	Eastern	Baltic	were	shown	to	be	largely	robust	in	
terms	of	survival,	hatching,	development	and	otolith	size	even	under	very	high	CO2	
concentrations	of	4000	ppm	(Frommel	et	al.,	2013).	No	comparative	study	had	been	
done	on	the	Western	Baltic	stock.	The	Norwegian	coastal	cod	on	the	other	hand	has	
been	 shown	 to	 be	 susceptible	 to	 very	 high	 concentrations	 of	 CO2.	 Severe	 tissue	
damage	was	found	in	the	larvae	at	1800	and	4200	µatm	CO2	(Frommel	et	al.,	2012).	
Unfortunately	 this	 study	 wasn’t	 able	 to	 follow	 the	 survival	 of	 these	 larvae.	 The	
absence	 of	 impaired	 larvae	 towards	 the	 end	 of	 the	 experiment	 suggested	 an	
increased	mortality,	but	the	data	is	lacking.	The	swimming	kinematics	of	these	larvae	
were	not	shown	to	be	altered	by	the	acidification	treatment	(Maneja	et	al.,	2012),	but	
larvae	from	the	high	CO2	treatments	showed	an	increase	in	otolith	size	(Maneja	et	al.,	
2013).	 Juvenile	 Atlantic	 cod	 under	 long	 term	 carbon	 dioxide	 exposure	 showed	 no	
alterations	 in	swimming	performance,	but	at	very	 low	pH	values	of	around	7.01	an	
increase	 in	Na+/K+-ATPase	protein	expression	and	elevated	Na+/K+-ATPase	activity	
was	 shown	 (Melzner	 et	 al.,	 2009b),	 which	 proves	 that	 the	 cod	 regulated	 their	
enzymatic	capacity	to	cope	with	the	CO2	stress.		
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1.5 The	importance	of	survival	and	growth	
measurements	

This	 dissertation	 intentionally	 focused	 on	 the	 fundamental	 parameters	 of	
survival	and	growth	of	the	larvae	in	order	to	build	the	basis	for	up-scaling	efforts	to	
the	fished	population.	Survival	and	growth	form	the	basis	for	any	population	model.		

Additionally,	 samples	 to	 measure	 physiological	 impairments	 are	 most	 often	
taken	 from	 surviving	 individuals.	 These	 represent	 the	 most	 successful	 individuals	
being	able	 to	 tolerate	CO2	stress,	since	natural	mortality	 in	 these	mass	spawners	 is	
extremely	 high,	 even	 without	 taking	 predation	 into	 account.	 It	 is	 therefore	
imperative	 that	 differences	 in	 survival	 between	 treatments	 are	 taken	 into	 account,	
when	 discussing	 all	 other	 changes.	 Moreover,	 without	 measuring	 survival,	 it	 is	
impossible	 to	 judge	whether	 samples	were	 taken	 at	 significant	 periods	 of	 time	 or	
whether	 they	 signify	 some	 kind	 of	 end	 point	 in	 the	 development.	 Survival	
measurements	are	therefore	needed	as	a	general	framework	to	put	all	other	data	into	
perspective.	

Most	studies	so	far	have	been	ignoring	survival	as	a	response	measurement	or	
have	relied	on	a	final	measurement	of	survival	at	the	end	of	the	experiment.	This	is	
insufficient.	Only	regular	measurements	throughout	the	experiment,	which	allow	for	
the	calculation	of	a	survival	curve,	can	demonstrate	the	times	of	greatest	mortalities	
and	 the	 time	 when	 survival	 has	 reached	 a	 more	 stable	 state.	 Only	 survival	 curve	
allows	for	projections	on	the	quantitative	effect	of	ocean	acidification	on	recruitment	
to	the	population.		

Similarly	 growth	 parameters	 are	 fundamental	 to	 judge	 the	 general	
development	 of	 the	 organisms.	 Survival	 and	 growth	 data	 are	 needed	 to	 review	
whether	the	larvae	in	the	experimental	set-up	developed	as	needed	and	planned.		

1.6 Aim	of	this	dissertation	

The	aim	is	to	provide	a	good	quantitative	basis	for	integration	of	physiological	
effects	 into	 population	 dynamics.	 Modelling	 efforts	 to	 explore	 the	 effects	 of	
acidification	 on	 populations	 and	 stocks	 need	 to	 be	 based	 on	 reliable	 quantitative	
biological	data,	which	has	so	far	been	missing	for	the	Atlantic	cod,	as	well	as	for	most	
other	 commercial	 species.	 The	 focus	 of	 this	 thesis	 was	 therefore	 put	 on	 the	 best	
possible	quantification	of	survival	and	growth	during	the	larval	stage,	which	is	one	of	
the	most	important	bottlenecks	in	recruitment.	

Additionally,	the	aim	of	this	dissertation	is	to	further	our	understanding	of	the	
effects	 of	 ocean	 acidification	 on	 the	 physiology	 of	 cod	 larvae	 under	 realistic	
acidification	 scenarios	 and	 to	 explore	 the	 interaction	 with	 food	 availability.	
Furthermore,	the	effect	of	parental	acclimation	to	acidification	was	tested.		
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1.7 Thesis	outline	

This	 thesis	 contains	 three	 chapters,	 which	 are	 based	 on	 three	 separate	
manuscripts,	 listed	 under	 1.7.1.	 The	 first	 manuscript	 entitled	 “Ocean	 Acidification	
Effects	 on	 Atlantic	 Cod	 Larval	 Survival	 and	 recruitment	 to	 the	 fished	 population”	
describes	the	effect	of	ocean	acidification	on	survival	and	recruitment	of	two	Atlantic	
cod	stocks,	namely	from	the	Western	Baltic	and	from	the	Barents	Sea.	Carbon	dioxide	
concentrations	as	they	are	expected	to	occur	at	the	end	of	the	century	(~1000-1100	
µatm	CO2)	are	compared	to	current,	ambient	conditions	throughout	the	thesis.	

In	order	to	further	explore	the	effects	on	the	survivors	the	second	manuscript	
(“Impacts	 and	 Trade-offs	 of	 Ocean	 Acidification	 on	 Growth,	 Skeletal,	 and	 Organ	
Development	 of	 Atlantic	 Cod	 Larvae”)	 investigates	 the	 impact	 on	 growth	 and	
development	on	 the	Arcto-Norwegian	 cod	 larvae.	 It	 examines	 the	 trade-offs	due	 to	
food	 availability	 that	 the	 larvae	 have	 to	 make	 while	 coping	 with	 the	 stressor	 of	
hypercapnia.	Changes	in	skeletal	ossification	and	organ	development,	particularly	of	
the	gills,	the	liver	and	the	eyes,	are	described.	

The	 third	 manuscript	 on	 “Parental	 acclimation	 effects	 in	 response	 to	 ocean	
acidification	in	Atlantic	cod”	investigates	whether	the	larval	response	is	changed	by	
parental	 exposure	 to	 acidification.	 	 Survival	 is	measured	 in	 response	 to	 larval	 and	
parental	 exposure	 to	 high	 CO2	 as	 well	 as	 in	 response	 to	 food	 availability.	 Organ	
impairments	due	to	acidification	is	also	explored.	
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1.7.1 List	of	Manuscripts	for	Thesis	

The	 chapters	 of	 this	 doctoral	 thesis	 are	 based	 on	 the	 following	
manuscripts:	

	

I	 Stiasny,	 M.H.,	 Mittermayer,	 F.H.,	 Sswat,	 M.,	 Voss,	 R.,	 Jutfelt,	 F.,	
Chierici,	 M.,	 Puvanendran,	 V.,	 Mortensen,	 A.,	 Reusch,	 T.B.H.,	
Clemmesen,	 C.	 (2016)	Ocean	 Acidification	 Effects	 on	 Atlantic	
Cod	 Larval	 Survival	 and	 Recruitment	 to	 the	 Fished	
Population,	PLoS	ONE,	11	(8)	

	

II	 Stiasny,	 M.H.,	 Sswat,	 M.,	 Mittermayer,	 F.H.,	 Falk-Petersen,	 I.-B.,	
Schnell,	 N.K.,	 Puvanendran,	 V.,	 Mortensen,	 A.,	 Reusch,	 T.B.H.,	
Clemmesen,	 C.,	 Impacts	and	Trade-offs	of	Ocean	Acidification	
on	Growth,	Skeletal,	and	Organ	Development	of	Atlantic	Cod	
Larvae,	to	be	submitted	to	Global	Change	Biology	

	
III	 Stiasny,	 M.H.,	 Mittermayer,	 F.H.,	 Göttler,	 G.,	 Bridges,	 C.	 R.,	 Falk-

Petersen,	 I-B.,	 Puvanendran,	 V.,	 Mortensen,	 A.,	 Reusch,	 T.B.H.,	
Clemmesen,	 C.,	 Parental	 Acclimation	 Effects	 in	 Response	 to	
Ocean	 Acidification	 in	 Atlantic	 Cod,	 submitted	 to	 Scientific	
Reports	
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2.1 Abstract	

How	fisheries	will	be	impacted	by	climate	change	is	far	from	understood.	While	
some	 fish	populations	may	be	able	 to	escape	global	warming	via	 range	 shifts,	 they	
cannot	escape	ocean	acidification	(OA),	an	inevitable	consequence	of	the	dissolution	
of	 anthropogenic	 carbon	 dioxide	 (CO2)	 emissions	 in	 marine	 waters.	 How	 ocean	
acidification	 affects	 population	 dynamics	 of	 commercially	 important	 fish	 species	 is	
critical	 for	 adapting	 management	 practices	 of	 exploited	 fish	 populations.	 Ocean	
acidification	 has	 been	 shown	 to	 impair	 fish	 larvae’s	 sensory	 abilities,	 affect	 the	
morphology	of	 otoliths,	 cause	 tissue	damage	 and	 cause	behavioural	 changes.	Here,	
we	 obtain	 first	 experimental	mortality	 estimates	 for	 Atlantic	 cod	 larvae	 under	 OA	
and	incorporate	these	effects	into	recruitment	models.	End-of-century	levels	of	ocean	
acidification	(~1100	µatm	according	to	 the	 IPCC	RCP	8.5)	resulted	 in	a	doubling	of	
daily	mortality	rates	compared	to	present-day	CO2	concentrations	during	the	first	25	
days	post	hatching	(dph),	a	critical	phase	 for	population	recruitment.	These	results	
were	consistent	under	different	 feeding	regimes,	 stocking	densities	and	 in	 two	cod	
populations	 (Western	 Baltic	 and	 Barents	 Sea	 stock).	 When	 mortality	 data	 were	
included	into	Ricker-type	stock-recruitment	models,	recruitment	was	reduced	to	an	
average	of	8	and	24%	of	 current	 recruitment	 for	 the	 two	populations	 respectively.	
Our	 results	highlight	 the	 importance	of	 including	vulnerable	early	 life	 stages	when	
addressing	effects	of	climate	change	on	fish	stocks.		
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2.2 Introduction	

The	understanding	of	the	effect	of	global	change	on	fish	populations	is	critical	
for	 sustainable	 exploitation	 and	 management	 of	 fisheries	 (MacNeil	 et	 al.,	 2010).	
Ocean	 warming	 has	 already	 triggered	 poleward	 range	 shifts	 of	 many	 marine	 fish	
populations	 caused	 by	 their	 thermal	 tolerance	 (Perry	 et	 al.,	 2005;	 Pörtner,	 2010;	
Poloczanska	et	al.,	2013).	However,	higher	 latitudes	provide	no	refuge	with	respect	
to	the	concomitant	pH	decline,	caused	by	the	dissolution	of	the	major	greenhouse	gas	
CO2	in	ocean	waters.	This	“other	CO2	problem”,	also	dubbed	ocean	acidification	(OA)	
(Doney	et	al.,	 2009),	 is	 an	 inevitable	 consequence	 of	 anthropogenic	 release	 of	 CO2.	
The	 potential	 consequences	 of	 ocean	 acidification	 on	 commercially	 important	 fish	
populations	 are	 intensely	 debated	 (Baumann	 et	 al.,	 2012;	 Lam	 et	 al.,	 2014),	 but	
currently	unresolved	since	data	on	population-level	processes,	e.g.	recruitment	to	the	
stock,	are	almost	entirely	lacking	(Denman	et	al.,	2011;	Cheung	et	al.,	2012;	Haigh	et	
al.,	2015).			

Adult	fishes	have	been	shown	to	tolerate	extreme	CO2	concentrations	of	up	to	
16,000	 µatm	 (Ishimatsu	 et	al.,	 2008),	 which	 led	 to	 the	 premature	 conclusion	 that	
fishes	 are	 less	 vulnerable	 to	 ocean	 acidification	 than	 for	 example	 calcifying	
organisms	(Kroeker	et	al.,	2013).	However,	 it	 is	becoming	 increasingly	evident	 that	
early	life	stages	such	as	eggs	and	larvae	are	more	susceptible	to	decreased	ocean	pH	
(7,13).	This	is	partly	due	to	insufficient	acid-base	regulation	prior	to	the	formation	of	
gills	(Falk-Petersen,	2005).	Recent	studies	have	shown	a	diverse	range	of	impacts	of	
predicted	 future	CO2	 concentrations	on	 larval	 fish,	 particularly	on	 sensory	 abilities	
like	olfaction	 (Munday	et	al.,	 2009a),	 behaviour	 (Munday	et	al.,	 2010;	Dixson	et	al.,	
2012),	 otoliths	 (Checkley	 et	 al.,	 2009;	 Bignami	 et	 al.,	 2013;	 Maneja	 et	 al.,	 2013),	
development,	 tissue	and	organ	structure	 (Frommel	et	al.,	 2012,	2014).	Studies	also	
found	effects	on	survival	of	eggs,	more	specifically	hatching	success	(Chambers	et	al.,	
2013),	 and	survival	of	very	early	 larval	 stages	 (Baumann	et	al.,	2012;	Bromhead	et	
al.,	 2015).	Other	 studies	were	not	 able	 to	 find	an	effect	 on	 survival	 (Munday	et	al.,	
2009b,	2015).	

Survival,	however,	is	the	most	important	parameter	to	assess	recruitment,	thus	
of	 paramount	 importance	 for	 stock	management.	 Recruitment	 to	 an	 exploited	 fish	
stock	is	defined	as	that	point	of	time	when	a	year-class	enters	the	fished	population,	
i.e.	at	an	age	of	1	year	in	the	case	of	Western	Baltic	cod,	and	at	an	age	of	3	years	in	
Barents	 Sea	 cod.	 Here	 we	 assess	 larval	 mortality	 as	 a	 key	 variable	 to	 predict	
population	growth	and	size	(Houde,	2008;	Llopiz	et	al.,	2014)	in	Atlantic	cod	(Gadus	
morhua,	 L.)	 under	 end-of-century	 CO2	 concentrations.	 This	 is	 one	 of	 the	 most	
important	 species	 for	 commercial	 fisheries	of	 the	North	Atlantic,.	 It	 is	of	particular	
importance	 since	 landings	 of	many	 cod	 stocks	 have	 decreased	 in	 the	 past	 decades	
with	some	stocks	collapsing	(Pauly	et	al.,	2002).	Any	additional	source	of	mortality,	
particularly	 one	 with	 a	 trend,	 should	 therefore	 be	 closely	 monitored	 and	
incorporated	into	management	strategies.	

We	 designed	 two	 experiments,	 in	 which	 the	 survival	 of	 cod	 larvae	 was	
quantified	in	direct	response	to	increased	pCO2	levels	as	predicted	for	the	end	of	the	
century.	 Atmospheric	 CO2	 concentrations	 have	 been	 continuously	 rising	 since	 the	
beginning	of	 industrialisation	and	are	currently	exceeding	400	µatm.	A	 third	of	 the	
excess	CO2	is	absorbed	by	the	world’s	oceans,	resulting	in	ocean	acidification,	leading	
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to	an	estimated	decrease	 in	pH	of	0.4	units	 (pCO2	~	1,000	µatm)	by	 the	end	of	 the	
century	(5,29,30).		Eggs	and	larvae	from	the	Western	Baltic	cod	stock,	caught	in	the	
Øresund,	 and	 from	 the	 Arcto-Norwegian	 Barents	 Sea	 cod	 stock	 were	 kept	 under	
control	 (~400-500	 µatm)	 and	 high	 CO2	 (~1100	 µatm)	 concentrations	 in	 two	
separate	 experiments	 until	 25	 and	 22	 days	 post-hatching	 (dph)	 respectively	 and	
survival	was	monitored	closely.		

2.3 Methods	and	Materials	

For	 the	 Western	 Baltic	 experiment,	 adult	 cod	 were	 caught	 in	 the	 Øresund	
(55°58’N,	12°38’E)	in	March	2013	and	strip-spawned.	An	equal	volume	of	eggs	was	
placed	in	90	L	rearing	tanks	at	the	Sven	Lovén	Centre,	Kristineberg,	Sweden.	Three	
tanks	were	kept	under	ambient	CO2	concentrations	of	426	±	47	µatm	and	three	tanks	
were	kept	under	increased	CO2	conditions	of	1033	±	255	µatm.	The	temperature	was	
kept	 constant	 at	7°C	and	 the	 light	 regime	was	matched	weekly	 to	 the	ambient	 sun	
rise	and	sun	set.	After	hatching	the	 larvae	were	fed	with	natural	plankton	from	the	
Gullmars	 Fjord	 under	 green	water	 conditions	with	Nannochloropsis.	 (Food	 density	
estimates	are	given	in	Supporting	Information	SI	Table	2.1).	Survival	was	measured	
daily	by	collecting	and	counting	all	dead	larvae	from	the	bottom	of	the	tanks.	Initial	
number	 of	 larvae	 (on	 average	 ~800	 larvae	 per	 tank)	 was	 then	 back-calculated	 to	
calculate	 survival	 in	 percentage.	 It	 was	 shown	 in	 separate	 experiments	 that	 dead	
larvae	were	easily	found	even	after	more	than	24	hours	post	mortem	in	the	tanks.	

For	the	Barents	Sea	cod	experiment	adult	fish	were	caught	alive	in	the	Barents	
Sea	(70°15’N,	19°00’E)	in	March	2014	and	transferred	to	the	National	Cod	Breeding	
Centre,	Tromsø.	They	were	kept	 in	 large	breeding	tanks	(25	m3)	with	flow-through	
from	the	fjord	and	at	weekly	matched	ambient	light	regimes.	All	naturally	produced	
eggs	were	collected	using	collectors	behind	the	surface	skimmer	outflow.	These	were	
transferred	to	incubators	with	either	ambient	(503	±	89	µatm	CO2)	or	increased	CO2	
(1179	±	87	µatm)	concentrations.	After	peak	hatch	(more	than	50%	eggs	hatched),	
11,000	 larvae	 were	 transferred	 into	 each	 of	 twelve	 190	 L	 rearing	 tanks	 with	 a	
constant	flow-through	of	water	from	a	common	header	tank.	For	the	egg	incubation	
and	the	start	of	the	experiment	the	temperature	was	set	to	6°C	and	was	later	raised	
to	 10°C	 in	 all	 tanks	 at	 constant	 light	 conditions	 (24h).	 Larvae	 were	 fed	 with	
Nannochloropsis	and	Brachionus	at	different	 intervals	 for	the	high	and	the	 low	food	
treatment	(seven	compared	to	three	times	daily),	while	the	prey	concentrations	per	
feeding	 remained	 the	 same	 for	 both	 treatments.	 (For	 information	 on	 the	 feeding	
conditions,	 see	 Supporting	 Information	 SI	 Table	 2.2).	 Larvae	 in	 one	 tank	 in	 the	
ambient	 CO2	 treatment	 were	 abruptly	 lost	 over	 night,	 due	 to	 an	 unknown	 factor,	
resulting	 in	 six	 replicates	 for	 the	 high	 CO2	 treatment	 and	 five	 for	 the	 ambient	
treatment,	each	divided	equally	into	the	high	and	low	food	treatment.	Starting	on	8	
dph	survival	was	measured	every	 four	 to	six	days	by	calculating	 the	density	of	 the	
larvae	 in	 the	 tanks.	Five	 times	0.8	 l	of	water	was	sampled	 from	each	 tank	over	 the	
whole	water	column	using	a	pipe	that	could	be	closed	at	the	bottom	and	the	larvae	
contained	 in	 the	 pipe	 were	 subsequently	 counted	 in	 each	 sub	 sample.	 Prior	 to	
sampling	 an	 even	 distribution	 of	 larvae	 in	 the	 rearing	 tanks	 was	 achieved	 by	
increasing	the	aeration.		
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For	both	experiments	the	mean	mortality	coefficient	was	calculated	after	non-
linear	curve	 fitting	of	a	negative	exponential	 function	 for	each	replicate	 tank.	Mean	
daily	mortality	 rates	 (in	 percentage	 per	 day)	 were	 compared	 between	 treatments	
using	a	t-test	(Western	Baltic	stock)	and	a	two-way	ANOVA	(Barents	Sea	stock)	after	
appropriate	data	transformation	to	achieve	homogeneity	of	variances.		

Ambient	and	increased	CO2	levels	were	achieved	by	controlling	the	pH	values	in	
a	header	 tank	with	pH	sensors	connected	 to	an	 IKS	computer	system.	 If	 the	values	
deviated	 from	 the	 set	 target	 pH	 a	 magnetic	 valve	 opened	 automatically,	 which	
allowed	 a	 pulse	 of	 CO2	 from	 a	 CO2	 bottle	 to	 be	 injected	 into	 the	 header	 tank.	 The	
volume	 of	 the	 header	 tank	 ensured	 a	 thorough	 mixing	 and	 equilibration	 of	 CO2	
before	 the	water	 entered	 the	 rearing	 tank	 thereby	 assuring	 constant	 conditions	 in	
the	 rearing	 tanks.	 The	 pH	 was	 furthermore	 manually	 checked	 every	 day	 in	 the	
rearing	 tanks	 with	 a	 separate	 pH	 sensor	 (WTW	 pH/Cond	 340i/3320).	 Water	
chemistry,	 including	DIC	and	alkalinity,	was	 tested	at	 the	beginning	and	 the	end	of	
the	 experiment	 for	 the	Western	Baltic	 cod	 experiment	 and	weekly	 for	 the	Barents	
Sea	cod	experiment	based	on	the	Best	Practices	Guide	(Riebesell	et	al.,	2010).	Further	
details	 regarding	 methods	 and	 carbon	 chemistry	 analysis	 are	 available	 in	 the	
Supporting	Information.		

All	 experiments	 were	 carried	 out	 in	 accordance	 to	 the	 national	 rules	 and	
regulations	 at	 the	 site	 of	 the	 experiments	 and	 all	 efforts	 where	 undertaken	 to	
minimize	stress	and	suffering	of	the	animals.	Issues	for	work	on	vertebrate	animals	
were	obtained	for	each	experiment	and	location.	For	the	experiment	in	Kristineberg	
with	 the	Western	 Baltic	 cod	 the	 ethics	 permit	 number	 is	 332-2012	 issued	 by	 the	
Swedish	Board	of	Agriculture	 (Jordbruksverket).	 For	 the	 experiment	 in	Tromsø	on	
the	 Barents	 Sea	 cod	 the	 ethics	 permit	 number	 is	 FOTS	 ID	 6382,	 issued	 by	 the	
Norwegian	 Animal	 Research	 Authority	 (Forsøksdyrutvalget).	 In	 accordance	 with	
these	permits	animals	were	euthanized	after	the	experiment	or	whenever	some	were	
taken	out	 for	density	measurements	using	Tricaine	methanesulfonate	 (MS222).	No	
endangered	 or	 protected	 species	 were	 used	 in	 these	 experiments	 and	 no	 other	
special	permits	for	necessary.	

Population	level	effects	

Considering	 the	 potential	 impact	 of	 ocean	 acidification	 on	 fisheries	 requires	
scaling	from	physiological	responses	to	population-level	processes.	A	simple	way	is	
to	 consider	 how	 ocean	 acidification	 could	 modify	 the	 parameters	 of	 growth,	
mortality	 and	 reproduction	 in	 a	 single-species.	 Here	 we	 concentrate	 on	 the	
modification	 of	 the	 parameters	 of	 the	 stock-recruitment	 relationship	 in	 an	 age-
structured	fishery	model.	

The	 effect	 of	 ocean	 acidification	 was	 assessed	 by	 modifying	 the	 density-
independent	 parameter	 ɑ	 of	 a	 Ricker	 type	 stock	 recruitment	 relationship.	 Ocean	
acidification	 causes	 a	 higher	 larval	 mortality	 rate.	 This	 leads	 to	 a	 density-
independent	 mortality	 rate	 a	 caused	 by	 acidification.	 In	 the	 baseline	 scenario	 (no	
acidification)	 a=0,	 while	 in	 the	 acidification	 scenarios,	 e-a	 is	 the	 fraction	 of	 larvae	
surviving	the	effect	of	acidification.	We	used	our	experimental	data	to	quantify	this	
effect,	 and	 to	 compare	 scenarios	 (See	 Supporting	 Information).	We	used	 ICES	data	
for	Western	Baltic	cod	for	the	years	1970	to	2014	and	for	Arcto-Norwegian	cod	for	
the	years	1946-2014	to	estimate	the	stock-recruitment	relationship	for	the	baseline	
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scenario.	We	 assume	 log-normal	 auto-correlated	 errors,	 and	 estimated	 the	model.	
(Further	 details	 regarding	 the	 recruitment	 models	 are	 available	 as	 Supporting	
Information.)	 Because	 the	 severity	 of	 ocean	 acidification	 induced	 mortality	 on	
recruitment	depends	on	the	duration	of	the	additional	mortality,	two	developmental	
stages	 were	 chosen	 as	 termination	 for	 the	 enhanced	 mortality.	 Based	 on	 the	
experimental	temperatures	at	day	23	days	post	hatching	the	larval	gut	has	reached	
its	typical	spiral	form	(and	potentially	altered	function)	while	at	30	dph	gills	become	
visible	on	the	gill	arches.	These	two	time	points	were	used	to	evaluate	the	effect	of	
increased	mortality	on	recruitment	success	assuming	 the	same	mortality	estimates	
until	30	dph	as	shown	in	the	experiments	until	22	dph	and	25	dph.	Mortality	during	
the	 recruitment	 process	 consists	 of	 both	 density-independent	 and	 density-
dependent	effects.	For	simplicity	we	assume	that	the	effect	of	ocean	acidification	on	
the	 survival	 will	 only	 influence	 the	 density-independent	 mortality	 during	 the	
recruitment	phase	potentially	biasing	the	data	to	be	on	the	conservative	side.	

2.4 Results	

The	effect	of	CO2	was	consistent	among	stocks	and	experimental	conditions,	i.e.	
different	 feeding	 conditions.	 At	 increased	 CO2	 concentrations	 the	 daily	 mortality	
rates	had	approximately	doubled	in	both	experiments,	from	7	to	13%	in	the	Barents	
Sea	stock	(Figure	2.1a)	and	from	9.2	to	20.4%	in	the	Western	Baltic	Sea	stock	(Figure	
2.1b)	 (Western	 Baltic	 experiment,	 T-test,	 t=-3.749,	 df=2.41,	 p=0.024;	 Barents	 Sea	
experiment	 Two-way	 ANOVA	 F=8.434,	 df=	 1,	 p=0.023).	 In	 the	 Barents	 Sea	
experiment	 the	 food	 density	 had	 no	 detectable	 effect	 on	mortality	 rate,	 neither	 as	
main	 effect	 nor	 in	 interaction	with	 the	CO2-treatment	 (for	 additional	 statistics,	 see	
Supporting	 Information	 SI	 Tables	 2.3	 and	 2.4).	 Cod	 larvae	 therefore	 appear	 to	 be	
negatively	affected	by	ocean	acidification	even	when	ad	libitum	prey	densities	should	
ensure	that	energy	is	available	for	potential	acid-base	regulation	mechanisms.		
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Figure	 2.1.	 Effect	 of	 increased	 CO2	 on	 early	 life	 survival	 of	 Gadus	
morhua	 from	 a)	 Barents	 Sea	 cod	 b)	 Western	 Baltic	 cod.	 	 Each	 symbol	
represents	 the	 value	 of	 one	 replicate	 tank.	 	 Lines	 depict	 the	 number	 of	
survivors	according	to	the	fitted	negative	exponential	function.	
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Next,	the	experimentally	assessed	larval	mortality	rates	were	incorporated	into	
a	Ricker-type	stock-recruitment	model	 that	was	parameterized	 for	 the	 two	studied	
cod	 populations.	 	 We	 concentrated	 on	 altering	 the	 larval	 mortality	 in	 order	 to	
evaluate	 the	 overall	 stock-recruitment	 relationship	 to	 assess	 their	 effects	 on	
population	 dynamics	 (for	 details	 see	 Supporting	 Information).	 The	 model	 results	
show	 that	 for	 both	 mortality	 scenarios	 increased	 larval	 mortality	 due	 to	 ocean	
acidification	 will	 reduce	 recruitment	 substantially.	 Recruitment	 levels	 will	 be	
reduced	on	average	to	only	8%	of	the	baseline	scenario	in	the	case	of	Western	Baltic	
cod	 for	 ocean	 acidification-induced	 mortality	 periods	 of	 23	 days	 (and	 4%	 for	 a	
mortality	 period	 of	 30	 days),	 and	 to	 24.5%	 (and	 17%	 respectively)	 in	 Arcto-
Norwegian	cod	(Figures	2.2	and	2.3).		

Figure	 2.2.	 Recruitment	 functions	 under	 baseline	 and	 under	 ocean	
acidification	scenarios	for	(a)	the	Barents	Sea	cod	and	(b)	the	Baltic	Sea	cod.	The	
baseline	 scenario	 is	 based	 on	 no	 OA	 and	 spawning	 stock	 biomass	 at	 ICES	
precautionary	biomass	levels	 (BPA)	in	dependence	of	 the	duration	of	OA-induced	
mortality.	For	better	 visualization	 is	 the	recruitment	under	OA	on	 the	second	y-
axes	with	different	ranges.	



MANUSCRIPT	I	

	

	 27	

	 	

Figure	 2.3.	 Population	 recruitment	 under	 ocean	 acidification	 (OA)	 for	
Western	Baltic	 cod	 (black	 line	and	symbols)	 and	Barents	 Sea	 cod	 (grey	 line	 and	
symbols).	 Recruitment	 is	 given	 relative	 to	 a	 baseline	 scenario	 of	 no	 OA	 and	
spawning	stock	biomass	at	ICES	precautionary	biomass	levels	(BPA)	in	dependence	
of	 the	 duration	 of	 OA-induced	 mortality.	 Two	 important	 points	 in	 larval	
development	 are	 highlighted.	 Standard	 deviations	 displayed	 only	 for	 selected	
days	to	improve	readability.	
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2.5 Discussion	

Under	 realistic	 scenarios	 of	 end-of-century	 ocean	 acidification,	 early	 larval	
survival	 of	 cod	 was	 significantly	 reduced	 in	 two	 separate	 experiments	 with	 two	
different	Atlantic	cod	stocks.	Results	were	consistent	under	different	feeding	regimes	
and	 strongly	 suggest	 that	 there	 is	 a	 severe	 effect	 of	 ocean	 acidification	 on	Atlantic	
cod	larvae	and	recruitment.	

Mass	 spawning	 fishes	 such	 as	 cod	 have	 many	 offspring	 with	 low	 survival	
probability	 in	 nature.	 The	 salient	 question	 is	whether	 our	 experimental	 conditions	
provide	 appropriate	 controls	 with	 reasonable	 natural	 mortality	 levels.	 Larval	
survival	rates	are	naturally	low	even	under	ambient	CO2	concentrations	and	optimal	
feeding	 conditions.	 The	mortality	 is	mainly	 caused	 by	 the	 difficulty	 in	 a	 successful	
first	feeding	once	the	yolk	sac	is	absorbed	(Houde,	2008).	Other	studies	find	similar	
mortality	 rates	 as	 our	 control	 values	 in	 the	 two	 experiments	 during	 early	 larval	
development	(Puvanendran	&	Brown,	1999;	van	der	Meeren	et	al.,	2007).	Survival	of	
larvae	 in	 our	 experiment	 from	 the	 Western	 Baltic	 stock	 was	 lower	 than	 for	 the	
Barents	 Sea	 stock,	 since	 they	were	 fed	with	 natural	 plankton	 in	 concentrations	 as	
provided	by	the	fjord,	while	the	larvae	from	the	Barents	Sea	stock	were	kept	under	
aquaculture	 conditions	 aiming	 for	 the	 production	 of	 the	 highest	 numbers	 of	
fingerlings	for	stocking	of	industrial	scale	production	net	pens.		

Larval	fish	survival	under	ocean	acidification	has	so	far	been	shown	in	only	one	
other	 study	by	Baumann	et	al.	 (2012),	 albeit	 in	 a	 non-commercial	 fish	 species,	 the	
Atlantic	 silverside	 (Menidia	 menidia).	 In	 their	 study	 reduced	 larval	 survival	 was	
observed	at	1100	ppm	during	the	first	week	post	hatch,	a	level	of	ocean	acidification,	
which	 is	predicted	to	occur	globally	at	 the	start	of	 the	next	century	under	the	IPCC	
RCP	 8.5.	 Chambers	 et	 al.	 (2013)	 found	 a	 decreased	 hatching	 success	 (reflecting	
embryonic	 development)	 of	 the	 summer	 flounder	 by	 50%	 under	 1860	 ppm,	 a	
realistic	 ocean	 acidification	 level	 for	 the	 environment	 of	 this	 species	 within	 this	
century,	even	though	values	on	a	global	average	are	predicted	to	be	lower.	Munday	et	
al.	(2015)	found	no	effect	on	the	survival	of	yellowtail	kingfish	larvae.		Other	studies,	
like	 Munday	 et	 al.	 (2009b);	 Franke	 &	 Clemmesen	 (2011);	 Frommel	 et	 al.	 (2013);	
Hurst	 et	al.	 (2013,	 2015),	 have	 addressed	 hatching	 success	 and	 have	 not	 seen	 any	
effects	of	ocean	acidification.	We	are	confident	that	this	does	not	necessarily	indicate	
that	these	species	will	not	be	affected	or	that	our	results	present	a	contradiction.	It	is	
well	known	that	early	life	stages	of	marine	fish	go	through	several	bottlenecks	with	
high	 mortalities	 during	 development	 and	 that	 different	 populations	 of	 the	 same	
species	can	react	differently	 to	CO2	stress	 (Frommel	et	al.,	2013).	Our	results	show	
that	 the	 first	 days	 and	 weeks	 after	 hatching	 are	 a	 vulnerable	 phase	 to	 ocean	
acidification.	So	far	studies	on	tropical	fish	have	not	seen	an	ocean	acidification	effect	
on	survival	(Munday	et	al.,	2011).	This	is	not	surprising,	since	early	development	in	
the	studied	species	 is	very	different	 from	temperate	 fish	and	newly	hatched	 larvae	
are	 further	 developed	 and	 physiologically	more	 competent	 thus	 less	 vulnerable	 to	
physiological	 stressors.	 Furthermore	 the	 study	 by	Munday	 et	al.	 (2011),	 and	 other	
studies	 like	Hurst	et	al.	 (2013),	only	quantified	survival	at	a	 single	day,	which	may	
not	have	been	the	final	day	of	any	additional	mortality.	Additionally,	even	if	this	was	
an	end-point	measurement,	it	does	not	allow	for	calculations	of	mortality	rates.	
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One	factor	that	this	study	is	not	taking	into	account	is	possibility	that	parental	
exposure	 to	 the	 high	 CO2	 environment	 could	 limit	 the	 adverse	 effects	 of	 ocean	
acidification.	This	kind	of	 transgenerational	adaptation	has	been	shown	 to	mediate	
negative	growth	effects	of	OA	in	tropical	reef	fish	(Miller	et	al.,	2012).	However	since	
most	commercially	important	fish	species	are	quite	large	and	temperate	fish	species	
reach	 sexual	 maturity	 late,	 it	 will	 be	 difficult	 to	 perform	 experiments	 with	 long	
parental	exposure	time.	Furthermore	it	cannot	be	ruled	out,	that	ocean	acidification	
might	also	have	an	additional	negative	effect	on	gonadal	development	in	adult	fishes,	
which	might	further	reduce	recruitment	potential.	

Range	 shifts	 are	 responses	 of	 many	 fish	 populations	 to	 track	 the	 poleward	
movement	 of	 their	 thermal	 range	 (Perry	 et	 al.,	 2005).	 Unfortunately,	 this	 may	
exacerbate	direct	CO2	effects	identified	here,	since	oceanic	waters	in	higher	latitudes	
will	 take	 up	 more	 CO2	 due	 to	 higher	 solubility	 and	 experience	 lower	 carbonate	
saturation	(Orr	et	al.,	2005).	Previously,	ocean	acidification	has	been	shown	to	affect	
marine	 fish	 larvae’s	 sensory	 abilities,	 morphology	 of	 the	 otoliths,	 cause	 tissue	
damage	 and	 behavioural	 differences	 (Checkley	 et	 al.,	 2009;	 Munday	 et	 al.,	 2010;	
Frommel	et	al.,	2012,	2014;	Bignami	et	al.,	2013).	

Here	we	 give	 the	 first	 demographic	 estimates	 for	Atlantic	 cod	under	 realistic	
end-of-century	 ocean	 acidification	 levels	 which	 are	 urgently	 needed	 to	 estimate	
whether	 these	 exploited	 fish	 populations	 could	 potentially	 expect	 population	
declines	 as	 a	 direct	 consequence	 of	 ocean	 acidification.	 The	 estimated	 recruitment	
declines	 shown	 are	 severe,	 of	 similar	 magnitude	 as	 population	 collapses	 due	 to	
overfishing	 (Pinsky	 et	 al.,	 2011)	 and	 have	 highly	 significant	 implications	 for	 the	
governance	of	exploited	fish	populations.	We	show	that	indeed,	increased	mortality	
will	 affect	 recruitment	 at	 the	 population	 level,	 demonstrating	 that	 any	 future	
management	of	exploitation	must	directly	consider	effects	induced	by	global	change.	
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2.7 Supporting	Information	

Experimental	set-up	

For	 the	 Western	 Baltic	 experiment,	 adult	 cod	 were	 caught	 in	 the	 Øresund	
(55°58’N,	 12°38’E)	 in	 March	 2013	 and	 strip-spawned	 to	 create	 fifteen	 families	 (3	
females	x	5	males).	An	equal	volume	of	eggs	was	placed	in	90	L	rearing	tanks	at	the	
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Sven	Lovén	Centre,	Kristineberg,	Sweden.	Three	tanks	were	kept	under	ambient	CO2	
concentrations	 of	 426	 ±	 47	 µatm	 and	 three	 tanks	were	 kept	 under	 increased	 CO2	
conditions	of	1033	±	255	µatm.	The	 temperature	was	kept	constant	at	7°C	and	 the	
light	regime	was	matched	weekly	to	the	ambient	sun	rise	and	sun	set.	After	hatching	
the	 larvae	 were	 fed	 with	 natural	 plankton	 from	 the	 Gullmars	 Fjord	 (daily	
concentrations	are	shown	in	SI	Table	2.1)	and	with	Nannochloropsis.		

SI	Table	2.1.	Feeding	densities	for	the	Western	Baltic	stock.	

	 Kristineberg	Natural	Plankton	

dph	
Nannochloropsis	

added	

First	Daily	
Feeding	(prey	org	
ml-1	feeding-1)	

Second	Daily	
Feeding	(prey	org	
ml-1	feeding-1)	

Third	Daily	
Feeding	(prey	org	
ml-1	feeding-1)	

1	 yes	 0	 0	 0	
2	 yes	 0	 0	 0	
3	 yes	 0	 0	 0	
4	 yes	 0	 0	 0	
5	 yes	 0.18	 0	 0	
6	 yes	 0	 0	 0	
7	 yes	 0.34	 0	 0	
8	 yes	 0.51	 0	 0	
9	 yes	 0.20	 0.18	 0	
10	 yes	 0.18	 0.34	 0	
11	 yes	 0.70	 0	 0	
12	 yes	 0.70	 0.67	 0	
13	 yes	 0.37	 0.34	 0	
14	 yes	 0.43	 0.48	 0	
15	 yes	 0.65	 0.55	 0.44	
16	 yes	 0.18	 0.40	 0	
17	 yes	 0.12	 0.17	 0.20	
18	 yes	 0.24	 0.34	 0	
19	 yes	 0.13	 0.19	 0	
20	 yes	 0.28	 0.15	 0.18	
21	 yes	 0.11	 0.08	 0	
22	 yes	 0.17	 0.12	 0.15	
23	 yes	 0.21	 0.08	 0	
24	 yes	 0.12	 0	 0	
25	 yes	 0.27	 0.86	 0	

	

Survival	was	measured	daily	by	 collecting	all	dead	 larvae	 from	 the	bottom	of	
the	 tanks	 and	 counting	 these.	 Initial	 number	of	 larvae	was	 then	back-calculated	 to	
calculate	 survival	 in	 percentage.	 It	 was	 shown	 in	 separate	 experiments	 that	 dead	
larvae	were	easily	found	even	after	more	than	24	hours	in	the	tanks.	
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For	the	Barents	Sea	cod	experiment	adult	fish	were	caught	alive	in	the	Barents	
Sea	(70°15’N,	19°00’E)	in	March	2014	and	transferred	to	the	National	Cod	Breeding	
Centre,	 Tromsø.	 They	were	 kept	 in	 large	 breeding	 tanks	 (25	m3)	 and	 all	 produced	
eggs	 were	 collected	 from	 the	 outflow.	 These	 were	 transferred	 to	 incubators	 with	
either	ambient	(503	±	89	µatm)	or	increased	CO2	(1179	±	87	µatm)	concentrations.	
After	peak	hatch	(more	than	50%	eggs	hatched),	11,000	larvae	were	transferred	into	
each	 of	 twelve	 190	 L	 rearing	 tanks	with	 a	 constant	 flow-through	 of	 water	 from	 a	
common	 header	 tank.	 For	 the	 egg	 incubation	 and	 the	 start	 of	 the	 experiment	 the	
temperature	was	set	to	6°C	and	was	later	raised	to	10°C	in	all	tanks	at	constant	light	
conditions	 (24h).	 Larvae	were	 fed	with	 enriched	 rotifers.	Densities	 and	 number	 of	
daily	feedings	can	be	found	in	SI	Table	2.2.	

	

SI	Table	2.2.	Feeding	densities	for	the	Barents	Sea	stock.	

	 Tromsø	Low	Food	 Tromsø	High	Food	

dph	
Nannochloropsis	
added	

prey	org		
ml-1		
feeding-1	

number	of	
daily	
feedings	

Nannochloropsis	
added	

prey	org		
ml-1		
feeding-1	

number	
of	daily	
feedings	

1	 yes	 3.2	 7	 yes	 3.2	 7	
2	 yes	 3.2	 7	 yes	 3.2	 7	
3	 yes	 3.2	 7	 yes	 3.2	 7	
4	 yes	 3.2	 7	 yes	 5.5	 7	
5	 yes	 5.5	 7	 yes	 5.5	 7	
6	 yes	 5.5	 7	 yes	 5.5	 7	
7	 yes	 5.5	 7	 yes	 5.5	 7	
8	 yes	 5.5	 7	 yes	 5.5	 7	
9	 yes	 5.5	 7	 yes	 5.5	 7	
10	 yes	 5.5	 7	 yes	 5.5	 7	
11	 yes	 5.5	 7	 yes	 5.5	 7	
12	 yes	 5.5	 7	 yes	 5.5	 7	
13	 	 5.5	 7	 	 5.5	 7	
14	 	 5.5	 3	 	 5.5	 7	
15	 	 5.5	 3	 	 5.5	 7	
16	 	 5.5	 3	 	 5.5	 7	
17	 	 5.5	 3	 	 5.5	 7	
18	 	 5.5	 3	 	 5.5	 7	
19	 	 5.5	 3	 	 5.5	 7	
20	 	 5.5	 3	 	 5.5	 7	
21	 	 5.5	 3	 	 5.5	 7	
22	 	 5.5	 3	 	 5.5	 7	

	

Larvae	in	one	tank	in	the	ambient	CO2	treatment	were	abruptly	lost	over	night,	
due	to	an	unknown	factor,	resulting	in	six	replicates	for	the	high	CO2	treatment	and	
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five	 for	 the	ambient	 treatment.	Starting	on	8	dph	 the	survival	was	measured	every	
four	 to	 six	days	by	 calculating	 the	density	of	 the	 larvae	 in	 the	 tanks,	 sampling	 five	
times	0.8	L	of	water	from	the	tanks	over	the	whole	water	column	using	a	pipe	that	
could	be	closed	at	the	bottom	and	then	counting	larvae	in	this	sub	sample.	An	even	
distribution	was	achieved	by	increasing	the	air	inflow	through	the	aeration	stones.		

Set-up	and	determination	of	the	CO2-system		

Ambient	 and	high	CO2	 levels	were	achieved	by	 controlling	 the	pH	values	 in	a	
header	 tank	 with	 pH	 probes	 connected	 to	 a	 computer	 monitoring	 system	 (IKS-
aquastar).	If	the	values	deviated	from	the	set	target	pH	a	magnetic	valve	was	opened,	
which	 allowed	 a	 pulse	 of	 CO2	 from	 a	 CO2	 bottle	 to	 go	 into	 the	 header	 tank.	 The	
volume	 of	 the	 header	 tank	 ensured	 a	 thorough	 mixing	 and	 equilibration	 of	 CO2	
before	 the	water	 entered	 the	 rearing	 tank	 thereby	 assuring	 constant	 conditions	 in	
the	 rearing	 tanks.	 The	 pH	 was	 furthermore	 manually	 checked	 every	 day	 in	 the	
rearing	 tanks	 with	 a	 separate	 pH	 probe	 (WTW	 pH/Cond	 340i/3320).	 Water	
chemistry,	 including	 CT	 (total	 carbon)	 and	 AT	 (total	 alkalinity),	 was	 tested	 at	 the	
beginning	and	the	end	of	the	experiment	for	the	Western	Baltic	cod	experiment	and	
weekly	 for	 the	 Barents	 Sea	 cod	 experiment	 based	 on	 the	 Best	 Practices	 Guide	
(Riebesell	et	al.,	2010).			

Analytical	methods	for	CT	(total	carbon)	and	AT	(total	alkalinity)	determination	
in	 seawater	 samples	 are	 fully	 described	 in	Dickson	 et	 al.	 (2007).	 Briefly,	 CT	 was	
determined	using	gas	extraction	of	acidified	sample	followed	by	coulometric	titration	
and	 photometric	 detection	 using	 a	 Versatile	 Instrument	 for	 the	 Determination	 of	
Titration	carbonate	(VINDTA	3C,	Marianda,	Germany).	AT	was	determined	 in	water	
column	samples	 from	potentiometric	 titration	with	0.1	N	hydrochloric	acid	using	a	
Versatile	 Instrument	 for	 the	 Determination	 of	 Titration	 Alkalinity	 (VINDTA	 3C,	
Marianda).	The	average	standard	deviation	for	CT	and	AT,	determined	from	replicate	
sample	 analyses	 from	 one	 sample,	 was	 within	 ±1	 μmol	 kg-1.	 The	 accuracy	 of	 the	
measurements	 were	 ensured	 by	 routine	 analyses	 of	 Certified	 Reference	 Materials	
(CRM,	provided	by	A.	G.	Dickson,	Scripps	Institution	of	Oceanography,	USA)	and	was	
better	than	±1	μmol	kg−1	and	±2	μmol	kg−1	for	CT	and	AT,	respectively.		

We	 used	 CT,	 AT,	 salinity,	 and	 temperature,	 for	 each	 sample	 as	 input	
parameters	 in	 a	 CO2-chemical	 speciation	 model	 (CO2SYS	 program	 (Pierrot	 et	 al.,	
2006))	to	calculate	all	the	other	parameters	in	the	CO2-system	such	as	pH	in	situ,	CO2	
fugacity	and	partial	pressure	(fCO2,	pCO2),	carbon	dioxide	concentration	([CO2])	and	
carbonate-ion	concentration	([CO32-]),	and	calcium-carbonate	saturation	states	in	the	
water	column	(Ω)	for	aragonite	(ΩAr)	and	calcite	(ΩCa),		We	used	the	total	hydrogen-
ion	 scale	 (pHT),	 the	 HSO4-	 dissociation	 constant	 of	 Dickson	 (1990)	 and	 the	 CO2-
system	dissociation	constants	(K*1	and	K*2)	estimated	by	Mehrbach	et	al.	(1973)	refit	
by	 Dickson	 &	 Millero	 (1987).	 Mean	 values	 and	 standard	 deviation	 of	 pCO2	 in	 the	
Western	Baltic	cod	experiment	were	1033	+-	255	µatm	 for	 the	high	and	426	+-	47	
µatm	for	 the	ambient	 treatment	which	 is	equivalent	 to	a	pH	value	(total	scale	at	 in	
situ	temperature)	of	7.76	+-	0.09	for	the	high	and	8.17	+-	0.03	at	ambient	conditions.	
Mean	values	and	standard	deviation	of	pCO2	in	the	Barents	Sea	cod	experiment	were	
1179	+-	87	µatm	for	the	high	and	503	+-	89	µatm	for	the	ambient	treatment	which	is	
equivalent	 to	a	pH	value	 (total	 scale	at	 in	 situ	 temperature)	of	7.61	+-	0.03	 for	 the	
high	and	7.90	+-	0.15	at	ambient	conditions.		

	 	



MANUSCRIPT	I	

	

	 33	

Statistics	

Data	were	 cubic-root	 transformed	 to	 achieve	 variance	homogeneity,	 assessed	
with	Bartlett’s	test.	Results	are	shown	in	SI		5.3	and	SI		5.4.	

SI		5.3.	Statistics	for	the	Western	Baltic	cod	stock.	

Source	of	variation	 Degrees	of	freedom	 t-ratio	 p-value	

CO2	 2.41	 -3.749	 0.024	

	

SI		5.4.	Statistics	for	the	Barents	Sea	cod	stock.	

Source	of	variation	 Degrees	of	freedom	 F	 p-value	

CO2	 1	 8.434	 0.023	

Food	 1	 0.06	 0.814	

CO2*Food	 1	 2.325	 0.171	

	

Recruitment	model	

Experimental	 studies,	 like	 the	 one	 presented	 here,	 mostly	 refer	 to	 effects	 of	
ocean	 acidification	 on	 physiological	 processes.	 Considering	 the	 potential	 impact	 of	
ocean	 acidification	 on	 fisheries	 requires	 scaling	 from	 physiological	 responses	 to	
population-	and	ecosystem-level	processes.	A	simple	way	 is	 to	consider	how	ocean	
acidification	could	modify	the	parameters	of	growth,	mortality	and	reproduction	in	a	
single-species	 model(Le	 Quesne	 &	 Pinnegar,	 2012).	 Here	 we	 concentrate	 on	 the	
modification	 of	 the	 parameters	 of	 the	 stock-recruitment	 relationship	 in	 an	 age-
structured	 fishery	model.	 For	 visualization	purposes	we	 choose	 recruitment	 at	 the	
management	 target	 of	 precautionary	 biomass	 levels	 (BPA)	 as	 given	 by	 ICES	 (ICES,	
2014a,	2014b).	

We	 assume	 that	 egg	 production	 in	 0N ,	 is	 proportional	 to	 spawning	 stock	

biomass,	SSB,	i.e. 0 SSB=N f ,	where	f	is	the	net	fecundity	in	the	population	(Hilborn	
&	 Walters,	 1992).	 We	 assume	 that	 the	 stock-recruitment	 relationship	 is	 of	 the	
Ricker(Ricker,	 1954)	 type.	 Such	 a	 type	 of	 stock-recruitment	 relationship	 is	 an	
appropriate	description	of	recruitment	biology	of	cod	(Cook	et	al.,	1997).	According	
to	 the	Ricker	model	 (Ricker,	 1954;	Quinn	&	Deriso,	 1999),	 the	development	of	 the	

early-life	history	 follows	 dN (τ ) / dτ = − (a+b+φ2 SSB)
T N (τ ) ,	where	 0(0) =N N ,	 and	recruits	

enter	 the	 fish	 stock	 at	T =1,3 	years,	 respectively,	 depending	 on	 the	 fish	 stock.	

Natural	mortality	
a+b+φ2 SSB

T
is	made	up	of	three	components.	Ocean	acidification	

causes	a	higher	 larval	mortality	 rate. This	 leads	 to	a	density-independent	mortality	
rate	 a/T	 caused	 by	 acidification.	 Furthermore,	 b/T	 is	 the	 density-independent	
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mortality	 rate	 at	 baseline	 conditions,	 and	
φ2 SSB
T

	is	 the	 density-dependent	 which	

increases	 with	 the	 spawning	 stock,	 e.g.	 because	 of	 cannibalism.	 Solving	 the	
differential	equation,	we	obtain	

 2 2
1

- - - --== SSB SSBa b aR f SSBe S B ee Sf ff  

Where	R	denotes	recruits	 in	numbers,	and	 1
bf ef -= .	 In	 the	baseline-scenario,	

we	have	 0a = ,	in	the	acidification	scenarios,	 ae- is	the	fraction	of	cod	in	the	early	life	
history	 stages	 that	 survives	 the	 effect	 of	 acidification.	 We	 use	 the	 data	 from	
experiments	to	quantify	this	effect.		

To	estimate	the	stock-recruitment	relationship	for	the	baseline	scenario	we	use	
ICES	data	for	Western	Baltic	cod	for	the	years	1970	to	2014	and	for	the	Barents	Sea	
cod	 for	 the	 years	 1946-2014.	 We	 assume	 log-normal	 auto-correlated	 errors,	 and	
estimate	the	model	

1 2ln( ) ln( )= - + tSSR B SSBf f x ,	

where	 1t t tx nx e+ = + ,	 and	 te 	is	 a	 series	 of	 iid	 random	 variables.	 We	 obtain	
estimates 1ln( ) 0.487f = -=	 0.929	 with	 95%	 confidence	 interval	 [1.05;	 0.808]	 and	 2f = 	-
1.219/million	 tons	 with	 95%	 confidence	 interval	 [-0.999;	 -1.439]/million	 tons	 for	
the	 Barents	 Sea	 cod	 as	well	 as	 1ln( ) 0.487f = -=	 0.888	with	 95%	 confidence	 interval	 [1.224;	
0.553]	 and	 2f = 	4.762/million	 tons	 with	 95%	 confidence	 interval	 [-4.672;	
14.196]/million	tons	for	Western	Baltic	cod.	
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3.1 Abstract	

In	order	to	understand	the	effect	of	global	change	on	marine	fish	populations,	it	
is	imperative	to	quantify	the	effects	on	fundamental	parameters	such	as	survival	and	
growth.	 It	 has	 been	 previously	 shown	 that	 larval	 survival	 and	 recruitment	 of	 the	
Arcto-Norwegian	cod	may	be	heavily	 impaired	by	realistic,	end-of-century	 levels	of	
ocean	acidification.	Here,	we	show	that	larval	growth	among	the	surviving	larvae	is	
affected,	along	with	organ	development	and	the	ossification	of	the	skeleton.	We	also	
manipulated	food	availability	 in	order	to	evaluate	the	effect	of	energy	 limitation	on	
acidification	 effects.	 Acidification	 showed	 a	 significant	 interaction	 with	 food	
treatment	 with	 size	 and	 skeletogenesis	 being	 generally	 positively	 affected	 by	
increased	food	availability.	Larvae	fed	ad	libitum	showed	little	difference	in	growth	
and	skeletogenesis	between	the	ambient	and	high	CO2	treatment,	while	larvae,	which	
were	 energy	 limited,	 were	 significantly	 larger	 and	 had	 further	 developed	 skeletal	
structures	in	the	acidified	treatment	versus	the	ambient	CO2	treatment.	However,	the	
latter	 group	 revealed	 impairments	 in	 certain	 organs,	 such	 as	 the	 liver,	 and	 had	
comparatively	smaller	functional	gills.	It	is	therefore	likely	that	individual	larvae	that	
had	 survived	 acidification	 treatments,	 will	 suffer	 from	 impairments	 later	 during	
ontogeny.	This	may	be	due	to	an	allocation	trade-off,	which	the	larvae	have	to	make	
between	growth	and	other	more	specific	developmental	processes.		
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3.2 Introduction	

Fish	 populations	 are	 progressively	 subjected	 to	 global	 change,	 for	 example	
through	increasing	temperatures	and	ocean	acidification.	A	thorough	understanding	
of	 these	 effects	 on	 individuals	 and	 populations	 therefore	 becomes	 increasingly	
important,	 particularly	 for	 species	 that	 are	 commercially	 exploited	 and	 therefore	
need	 to	 be	 managed	 accordingly.	 Studies	 on	 the	 effects	 of	 ocean	 acidification	 on	
larval	fish	growth	have	shown	pronounced	interspecies	variability.	For	example,	no	
effect	on	growth	rate	was	observed	for	walleye	Pollack	(Hurst	et	al.,	2013),	whereas	
a	 decrease	 in	 growth	 rate	 under	 high	 pCO2	 was	 observed	 in	 Atlantic	 silverside	
(Baumann	et	al.,	2012)	and	summer	flounder	(Chambers	et	al.,	2013)	compared	to	an	
increase	 in	 growth	 rate	 under	 high	pCO2	 levels	 in	 cod	 (Frommel	 et	al.,	 2012)	 and	
sand	smelt	larvae	(Silva	et	al.,	2016).	

No	generalizations	are	currently	possible	among	species,	possibly	even	among	
stocks	 of	 the	 same	 species.	 Generally	 it	 is	 believed	 that	 enhanced	 growth	 leads	 to	
higher	survival	 in	eaerly-life-stages,	due	to	 less	predation,	since	larvae	outgrow	the	
predator	 field	 faster	 (Bailey	 &	 Houde,	 1989).	 Therefore	 there	 is	 evolutionary	
pressure	for	fast	growth	(Houde,	1997).	This	has	been	shown	for	certain	Atlantic	cod	
stocks	(Meekan	&	Fortier,	1996).	It	is	therefore	increasingly	important	to	understand	
the	 underlying	mechanisms	 of	 ocean	 acidification	 leading	 to	 the	 effect	 on	 size	 and	
how	trade-offs,	made	by	the	larvae,	may	manifest	in	changed	growth	patterns.	

The	 Atlantic	 cod	 (Gadus	morhua)	 is	 one	 of	 the	 most	 important	 commercial	
species	 and	 the	 Arcto-Norwegian	 cod	 stock	 in	 particular	 supports	 a	 large	 fishery,	
whose	 management	 effects	 are	 already	 affected	 by	 climate	 change	 (Kjesbu	 et	 al.,	
2014).	Using	 laboratory	experiments	we	were	able	 to	 show	 in	Stiasny	et	al.	 (2016)	
that	 larvae	 of	 the	 North-East	 Arctic	 cod	 stock	 showed	 significantly	 increased	
mortality	 rates	 after	 hatch	 under	 end-of-the-century	 acidification.	 This	 can	 have	
significant	effects	on	recruitment	of	this	population	(Stiasny	et	al.,	2016;	Königstein	
et	 al.,	 2017).	 In	 this	 study	 we	 aim	 to	 further	 explore	 whether	 the	 remaining	
individual	 larvae	 that	 had	 survived	 the	 treatment	 at	 35	 to	 36	 days	 post-hatching	
were	nevertheless	affected	by	acidification.	To	do	so	we	compared	 the	whole	body	
and	 the	 organ	 response	 at	 two	 different	 prey	 densities	 and	measured	 	 changes	 in	
size,	dry	weight,	skeletal	and	organ	development	(liver,	eyes,	pancreas,	kidney,	gills)	
in	relation	to	energy	limitation	were	analyzed	for	the	evaluation	of	potential	 trade-
offs	in	growth	and	development	responses	caused	by	ocean	acidification.	

3.3 Methodology	

The	 experiment	 was	 performed	 in	 2014	 at	 the	 then	 Norwegian	 National	 Cod	
Breeding	Centre,	now	named	Centre	for	Marine	Aquaculture,	in	Tromsø,	Norway.	In	
order	 to	 obtain	 eggs	 and	 larvae,	 adult	 cod	were	 caught	 alive	 in	 the	Barents	 Sea	 at	
roughly	 70°15’N,	 19°00’E	 in	 March	 2014	 and	 were	 transferred	 to	 the	 Centre	 in	
Tromsø.	 They	were	 kept	 in	 large	 breeding	 tanks	 (25	m3)	 at	 ambient	 temperature,	
light	and	CO2	conditions.	Spawning	occurred	naturally	in	the	breeding	tanks	and	all	
eggs	 were	 collected	 from	 the	 outflow.	 These	 were	 transferred	 to	 incubators	 with	
either	 ambient	 (503	 ±	 89	 µatm	 CO2)	 or	 increased	 CO2	 (1179	 ±	 87	 µatm)	
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concentrations.	Egg	developmental	stages	were	examined	under	a	stereomicroscope	
to	ensure	that	several	 females	participated	 in	these	spawning	events	(Fridgeirsson,	
1978).	At	100%	hatch	occurring	at	112	degree-days,	11,000	larvae	were	transferred	
into	 each	of	 the	 twelve	190	L	 rearing	 tanks	with	 a	 constant	 flow-through	of	water	
from	 two	 header	 tanks,	 six	 tanks	 each	 were	 supplied	 from	 a	 header	 tank	 with	
ambient	 water	 and	 from	 a	 header	 tank	 containing	 water	 with	 increased	 CO2	
concentrations.	 For	 the	 egg	 incubation	 and	 the	 start	 of	 the	 experiment	 the	
temperature	was	 set	 to	6°C	and	was	 later,	 in	 the	 larval	 tanks,	 raised	 to	10°C	 in	 all	
tanks	at	constant	 light	conditions	(24h).	Larvae	were	fed	with	Nannochloropsis	and	
Brachionus	 until	 day	 29	 after	which	 feeding	was	 switched	 to	 Artemia	 nauplii.	 The	
high	 food	 treatment	 tanks	were	 fed	 seven	 times	a	day	and	 the	 low	 food	 treatment	
were	 fed	three	times	a	day.	Prey	concentrations	 fed	at	each	 feeding	were	the	same	
for	both	treatments		(Table	3.5).	

Larvae	in	one	tank	in	the	ambient	CO2	treatment	were	abruptly	lost	over	night,	
due	to	an	unknown	factor,	resulting	in	six	replicates	for	the	high	CO2	treatment	and	
five	for	the	ambient	treatment.	This	study	was	carried	out	in	strict	accordance	with	
the	 laboratory	 regulations	 applicable	 in	Norway.	 The	 application	was	 approved	by	
the	 National	 Regulatory	 Committee	 on	 the	 Ethics	 of	 Animal	 Experiments	 (Permit	
FOTS	id	6382).	All	conditions	and	sampling	were	conducted	to	minimize	suffering.	

Ambient	(pCO2:	503	±	89	µatm;	pH	7.9	±	0.15)	and	increased	CO2	(pCO2:	1179	±	
87	 µatm;	 pH	 7.61	 ±	 0.03)	 levels	 were	 achieved	 by	 controlling	 the	 pH	 values	 in	 a	
header	 tank	 with	 pH	 probes	 connected	 to	 an	 IKS	 computer	 system.	 If	 the	 values	
deviated	from	the	set	target	pH,	a	magnetic	valve	was	opened,	which	allowed	a	pulse	
of	CO2	from	a	storage	bottle	to	go	into	the	inflow	of	the	header	tank.	The	volume	of	
the	header	tank	ensured	a	thorough	mixing	and	equilibration	of	CO2	before	the	water	
entered	the	rearing	 tank	thereby	assuring	constant	conditions	 in	 the	rearing	 tanks.	
The	pH	and	temperature	was	furthermore	manually	checked	every	day	in	the	rearing	
tanks	 with	 a	 separate	 pH/temperature	 probe	 (WTW	 pH/Cond	 340i/3320).	Water	
chemistry,	 including	 DIC	 and	 alkalinity,	 was	 tested	 weekly	 based	 on	 the	 Best	
Practices	 Guide	 (Riebesell	 et	 al.,	 2010).	 For	 further	 details	 please	 consult	 the	
Supplementary	Information	of	Stiasny	et	al.	(2016).	

For	 the	 growth	measurements	 larvae	were	 sampled	 alive,	 anaesthetized	with	
MS222	(Ethyl	3-aminobenzoate	methanesulfonate)	and	frozen	at	-20°C.	The	sampled	
larvae	 were	 later	 photographed	 under	 a	 stereomicroscope	 next	 to	 a	 micrometer	
scaling	 bar.	 The	 photographs	 were	 then	 used	 to	 measure	 the	 larvae	 using	 the	
software	 ImageJ.	 In	 order	 to	measure	 dry	weight,	 larvae	were	 freeze-dried	 (Christ	
Alpha	 1-4	 freeze	 dryer,	 Martin	 Christ	 Gefriertrocknungsanlagen	 GmbH,	 Osterrode,	
Germany)	 before	 being	 weighed	 (Sartorius	 SC2	 microbalance,	 Sartorius	 AG,	
Göttingen,	Germany,	precision	0.1µg).		
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Table	3.5.	Details	&	concentrations	of	feeding	schedule	of	both	food	treatments.	
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1	 yes	 4.27 7     yes	 4.27 7     
2	 yes	 4.27 7     yes	 4.27 7     
3	 yes	 4.27 7     yes	 4.27 7     
4	 yes	 4.27 7     yes	 4.27 7     
5	 yes	 7.35 7     yes	 7.35 7     
6	 yes	 7.35 7     yes	 7.35 7     
7	 yes	 7.35 7     yes	 7.35 7     
8	 yes	 7.35 7     yes	 7.35 7     
9	 yes	 7.35 7     yes	 7.35 7     
10	 yes	 7.35 7     yes	 7.35 7     
11	 yes	 7.35 7     yes	 7.35 7     
12	 yes	 7.35 7     yes	 7.35 7     
13	 		 7.35 7     		 7.35 7     
14	 		 3.15 3     		 7.35 7     
15	 		 3.15 3     		 7.35 7     
16	 		 3.15 3     		 7.35 7     
17	 		 3.15 3     		 7.35 7     
18	 		 3.15 3     		 7.35 7     
19	 		 3.15 3     		 7.35 7     
20	 		 3.15 3     		 7.35 7     
21	 		 3.15 3     		 7.35 7     
22	 		 3.15 3     		 7.35 7     
23	 		 3.15 3     		 7.35 7     
24	 		 3.15 3     		 7.35 7     
25	 		 2.28 3 0.51 3 		 5.35 7 1.19 7 
26	 		 2.28 3 0.51 3 		 5.35 7 1.19 7 
27	 		 2.28 3 0.51 3 		 5.35 7 1.19 7 
28	 		 2.28 3 0.51 3 		 5.35 7 1.19 7 
29	 		 2.28 3 0.51 3 		 5.35 7 1.19 7 
30	 		     0.53 1 		     0.80 3 
31	 		     0.53 1 		     0.80 3 
32	 		     0.53 1 		     0.80 3 
33	 		     0.53 1 		     0.80 3 
34	 		     0.53 1 		     0.80 3 
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For	the	ossification	analysis,	all	specimens	were	fixed	in	70%	ethanol	(Schnell	
et	 al.,	 2016).	 For	 the	 investigation	 of	 the	 skeletal	 development,	 the	 larvae	 were	
cleared	and	double	 stained	 (c&s)	 in	 an	 acid-free	 c&s	method,	 following	 a	modified	
protocol	 of	 Walker	 &	 Kimmel	 (2007).	 After	 fixation	 specimens	 were	 stained	 for	
cartilage	in	6	ml	of	an	acid-free	alcian	blue	staining	solution	corresponding	to	Part	A	
of	Walker	&	Kimmel	 (2007).	After	24	hours	 the	 specimens	were	washed	 in	 a	70%	
ethanol	 solution	 to	 remove	 excessive	 alcian	 blue	 and	 transferred	 for	 another	 24	
hours	 into	 6	 ml	 of	 a	 0,5%	 KOH	 solution	 containing	 four	 droplets	 of	 a	 3%	 H2O2	
solution	and	alizarin	red	powder.	The	solution	should	have	a	dark	purple	coloration	
in	 order	 to	 obtain	 good	 staining	 results.	 During	 these	 24	 hours	 the	 tissues	 of	 the	
larvae	were	cleared	by	KOH,	bleached	by	H2O2	and	stained	for	calcified	structures	by	
alizarin	red.	Finally	the	specimens	were	transferred	into	a	70%	glycerin	solution	for	
dissection	 and	 digital	 documentation.	 All	 specimens	 were	 digitally	 photographed	
with	 an	 Axiocam	 microscope	 camera	 attached	 to	 a	 ZEISS	 Discovery	 V20	
stereomicroscope	 and	 processed	 with	 the	 Zeiss	 ZEN	 software.	 The	 number	 of	
ossified	vertebrae	was	counted	on	these	photographs.	The	branchial	basket	of	each	
larva	 was	 removed	 and	 the	 third	 ceratobranchial	 was	 dissected	 out	 and	
photographed	in	order	to	measure	the	ossified	structure	(the	pink	stained	structure	
in	Figure	3.1)	in	length	(horizontal	line	in	Figure	3.1a),	the	length	of	the	longest	gill	
filament	(vertical	line	in	Figure	3.1a)	and	the	area	of	gill	filaments	above	the	ossified	
part	of	the	ceratobranchial	(as	shown	in	red	in	Figure	3.1b).		

	

	
Figure	 3.1	 Third	 gill	 branchiale	 with	 gill	 filaments	 showing	 the	 (a)	 measured	

lengths	 of	 the	 ossified	 gill	 arch	 (horizontal	 line),	 which	 is	 stained	 in	 pink,	 and	 the	
longest	 gill	 filament	 (vertical	 line)	 and	 (b)	 the	 measured	 gill	 filament	 area	 (shown	
encircled	in	red).	

Larvae	for	the	histological	analysis	were	fixed	in	4%	buffered	formaldehyde	at	

35	dph,	embedded	in	Technovit®	or	paraffin,	sectioned	transversely	or	longitudinally	
respectively	at	3µm,	followed	by	staining	with	methylene	blue	or	haematoxylin	and	
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eosin	respectively.	Technovit-sections	from	head	region	(with	eyes,	gills	and	heart),	
front	 part	 of	 gut	 (with	 liver,	 pancreatic	 tissue,	 kidney	 tissue)	 as	 well	 as	 paraffin	
sections	were	studied	and	photographed	with	the	microscope	(Leitz	Aristoplan	with	
a	Leica	DFC295	camera).	Moderate	or	numerous	amounts	of	vacuoles	in	the	pigment	
layer	 of	 the	 retina	were	 noted	 and	 given	 a	 subjective	 score	 from	 +	 to	 +++	 (some-
several-many).	A	similar	score	was	used	for	registrations	of	lipid	vacuoles	in	the	cod	
larvae	livers.	

RNA/DNA	 ratios	 reflect	 the	 relative	 condition	 and	 growth	 potential	 of	 fish	
larvae,	due	to	the	fact	that	while	DNA	content	is	stable	in	the	cell,	the	RNA	content,	
representing	 the	 protein	 biosynthesis	 machinery	 of	 the	 cell,	 varies	 with	 the	
nutritional	 state	of	 the	 larvae	 (Clemmesen,	1994).	Prior	 to	RNA/DNA	analyses	and	
lipid	 determination	 all	 larvae	 previously	 stores	 at	 -80°C	 were	 freeze	 dried	 for	 16	
hours	(Christ	Alpha	1-4	freeze	dryer,	Martin	Christ	Gefriertrocknungsanlagen	GmbH,	
Osterrode,	 Germany)	 and	 weighed	 (Sartorius	 SC2	 microbalance,	 Sartorius	 AG,	
Göttingen,	Germany;	precision	0.1	µg).	Measurements	of	RNA	and	DNA	were	made	
using	 the	 fluorometric	 method	 described	 by	 Clemmesen	 (1993)	 and	 modified	 by	
Malzahn	 et	 al.	 (2007).	 5	 larvae	 from	 3	 replicate	 tanks	 each	 were	 freeze	 dried,	
weighed	and	the	tissue	was	homogenized	in	400	µl	or	800	µl	0.01%	sodiumdodecyl	
sulfate	 Tris	 buffer	 (TE	 SDS),	 depending	 on	 the	 dry	 mass.	 When	 necessary,	 the	
homogenate	 was	 diluted	 up	 to	 10-fold	 with	 0.01%	 TE-SDS	 prior	 to	 fluorimetric	
determination.	Ethidium	bromide	was	used	as	a	specific	nucleic	acid	fluorescent	dye	
for	both	RNA	and	DNA,	and	the	total	fluorescence	was	measured	(Fluoroskan	Ascent,	
Thermo	Scientific,	Waltham,	Massachusetts,USA).	RNAse	was	then	used	to	digest	all	
RNA	 enzymatically.	 The	 RNA	 fluorescence	 was	 calculated	 by	 subtracting	 the	 DNA	
fluorescence	from	the	total	fluorescence.	By	using	the	calibration	curve	fitted	to	the	
standard	 measurements	 (23	 s	 r-RNA	 Boehringer,	 Boehringer	 Ingelheim	 GmbH,	
Ingelheim	am	Rhein,	Germany)	the	amount	of	RNA	was	calculated.	Following	Le	Pecq	
&	 Paoletti	 (1966),	 the	 DNA	 concentration	 was	 calculated	 using	 the	 relationship	
between	RNA	and	DNA	fluorescence	with	a	slope	ratio	of	standard	DNA	to	standard	
RNA	of	 2.2,	which	 adjusts	 for	 the	 relative	 fluorescence	 intensity	 difference	 of	RNA	
and	DNA.	

Total	 lipids	 were	 extracted	 from	 individual	 freeze-dried	 and	 weighted	 cod	
larvae	(5	additional	larvae	from	each	tank)	using	a	modification	of	the	Folch	method	
(Folch	et	al.,	1957)	with	dichlormethan/methanol/chloroform	(1:1:1	v/v/v).	Freeze	
dried	larvae	were	individually	placed	in	1.5	ml	of	the	solution	in	a	glass	vial,	securely	
capped	with	Teflon	 lined	screwcaps	and	stored	at	 -80°C	 for	72	hours.	The	defatted	
carcasses	 were	 transferred	 into	 Eppendorf	 vials	 and	 placed	 with	 open	 lids	 in	 a	
desiccator	 for	 48	 hours	 to	 allow	 for	 evaporation	 of	 the	 remaining	 lipid	 solvents	
before	 determining	 the	 defatted	 dry	 weight	 on	 a	 microscale	 (Sartorius	 SC2	
microbalance).	By	subtracting	 the	dry	weight	of	 the	defatted	carcass	 from	the	 total	
larval	 dry	 weight,	 the	 amount	 of	 lipids	 could	 be	 gravimetrically	 determined	 and	
presented	as	lipids	in	%	of	dry	weight	or	as	µg	lipids/mg	dry	weight.		

All	 statistical	 analyses	 were	 run	 in	 the	 programs	 R	 (Version	 3.3.2)	 (R	 Core	
Team	 (2016).	 R:	 A	 language	 and	 environmental	 for	 statistical	 computing.	 R	
Foundation	 for	 Statistical	 Computing,	 Vienna,	 Austria.	 www.R-project.org)	 and	
RStudio	(Version	1.0.136)	(RStudio	Team	(2015).	RStudio:	 Integrated	Development	
for	R.	RStudio,	Inc.,	Boston,	MA,	USA,	www.rstudio.com).	Graphics	were	done	in	the	R	
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package	ggplot2	(H.Wickham.	ggplot2:	Elegant	Graphics	 for	Data	Analysis.	Springer	
Verlag	New	York,	2009).	

For	 the	analysis	 two-way	ANOVAs	were	used	 to	 test	 for	 interactions	between	
the	CO2	and	the	food	treatment.	Transformations	were	used	to	achieve	normality	of	
the	 residuals	 whenever	 necessary	 and	 appropriate.	 Since	 several	 larvae	 per	 tank	
were	 used	 for	 analyses,	 the	 tank	 effect	 was	 checked	 for	 before	 every	 analysis.	
However,	the	tank	never	had	a	significant	effect	on	the	parameters.		

3.4 Results	

Averaged	over	acidification	treatments,	larvae	in	the	high	food	treatment	were	
significantly	 longer	 (df=1,	 F=156.3,	 p<0.001)	 and	heavier	 (df=1,	 F=277.6,	 p<0.001)	
than	those	in	the	low	food	treatment.	Additionally	there	was	a	significant	interaction	
with	 the	 CO2	 treatment	 (SL:	 df=1,	 F=27.4,	 p<0.001;	 DW:	 df:1,	 F=16.99,	 p<0.001).	
While	 larval	 size	 under	 high	 food	 availability	was	not	 affected	by	 the	 acidification,	
larvae	in	the	low	food	treatment	were	significantly	larger	under	high	CO2	compared	
to	control	CO2	levels	(Figure	3.2).	

	
Figure	3.2.	(a)	Standard	length	in	mm	and	(b)	Dry	weight	in	mg.	Shown	are	mean	

values	+/-	 standard	deviation.	The	darker	 circles	 show	 the	high	 food	 treatment	 and	
lighter	triangles	the	low	food	treatment.	(N=11-26	per	treatment)	

Under	ambient	CO2	 larvae	 in	 the	high	 food	 treatment	had	nearly	400%	more	
fully	ossified	vertebrae	than	those	in	the	low	food	treatment.	However,	larvae	in	the	
low	 food,	 high	 CO2	 treatment	 had	 significantly	 more	 fully	 ossified	 vertebrae	 than	
those	in	the	low	food,	ambient	CO2	treatment.	In	the	high	CO2	treatment,	the	number	
of	 fully	ossified	vertebrae	was	highly	similar	between	high	and	 low	food	treatment	
larvae.	 (CO2:	 df=1,	 F=13.1,	 p=0.001;	 food:	 df=1,	 F=21.2,	 p<0.0001;	 CO2*food:	 df=1,	
F=26.3,	p<0.0001)	(Figure	3.3)	
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Figure	 3.3.	 Schematic	 of	 number	 of	 ossified	 vertebrae	 (coloured	 in	 red)	 on	 36	

days-post-hatching	 in	 (a)	 ambient	 CO2,	 high	 food	 (b)	 acidification,	 high	 food	 (c)	
ambient	 CO2,	 low	 food	 (d)	 acidification,	 low	 food.	 Mean	 number	 of	 fully	 ossified	
vertebrae	per	treatment	shown	in	(e).	Shown	are	mean	values	+/-	standard	deviation.	
The	 darker	 circles	 show	 the	 high	 food	 treatment	 and	 lighter	 triangles	 the	 low	 food	
treatment.	(N=7-12	per	treatment)	

The	RNA/DNA	ratio	and	the	 lipid	content	were	also	not	significantly	different	
between	the	CO2	treatments	in	the	high	food	treatment,	but	did	differ	between	food	
treatments	(df=1,	F=244.4,	p<0.0001)	with	overall	lower	RNA/DNA	ratios	in	the	low	
food	 treatment.	 The	 interaction	 between	 treatments	 was	 also	 significant	 (df=1,	
F=5.4,	 p=0.02).	 Larvae	 in	 the	 acidified	 treatment	 showed	 higher	 RNA/DNA	 than	
those	 in	 the	 ambient	 CO2	 treatment	 under	 low	 food	 conditions	 (Figure	 3.4a).	 The	
lipid	content	 (Figure	3.4b)	was	on	average	between	18	and	19%	 in	all	 larvae	 from	
the	high	CO2	treatment	and	in	those	from	the	ambient	CO2,	high	food	treatment,	but	
significantly	 higher	 in	 the	 larvae	 from	 the	 ambient	 CO2,	 low	 food	 treatment	
(CO2*food:	df=1,	F=13.6,	p<0.001).		

	
Figure	3.4.	(a)	RNA/DNA	content	(N=10-18	per	treatment)	and	(b)	Lipid	content	

of	the	larvae	(N=11-19	per	treatment).	Shown	are	mean	values	+/-	standard	deviation.	
The	 darker	 circles	 show	 the	 high	 food	 treatment	 and	 lighter	 triangles	 the	 low	 food	
treatment.		

The	 length	 of	 the	 ossified	 gill	 arch	 was	 significantly	 affected	 by	 the	 food	
treatment	 (df=1,	 F=21.9,	 p<0.001)	 with	 longer	 ossified	 arches	 in	 the	 high	 food	
treatment	 (Figure	3.5a).	 The	CO2	 treatment	 showed	 a	 significant	 interaction	 (df=1,	
F=8.1,	p<0.01)	with	the	food	treatment.	Larvae	in	the	low	food	treatment	have	longer	
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ossified	arches	 in	 the	high	CO2	treatment	than	those	 in	the	ambient	 treatment.	The	
length	of	the	longest	gill	filament	was	significantly	affected	by	both	treatments	(CO2:	
df=1,	 F=22.1,	 p<0.001;	 food:	 df=1,	 F=5.9,	 p=0.02)	 and	 there	 was	 no	 significant	
interaction.	The	gill	filament	was	always	longer	in	the	ambient	CO2	treatment	and	in	
the	high	food	treatment.	(Figure	3.5b)	The	gill	area	was	significantly	affected	by	both	
treatments	 and	 their	 interaction	 (CO2:	 df=1,	 F=11.3,	 p<0.01;	 food:	 df=1,	 F=14.9,	
p<0.001;	CO2*food:	df=1,	F=8.8,	p<0.01)	with	larger	gill	areas	shown	by	the	larvae	in	
the	high	food	compared	to	the	low	food	treatment	in	the	larvae	in	the	ambient	CO2	
treatment.	 Larvae	 in	 the	 high	 CO2	 treatment	 were	 always	 similar	 to	 those	 in	 the	
ambient	CO2,	 low	food	treatment	 independent	of	 their	own	food	treatment.	 (Figure	
3.5c)	

	
Figure	3.5.	(a)	Length	of	the	ossified	gill	arch	(mm)	(b)	length	of	the	longest	gill	

filament	(mm)	(c)	gill	area	(mm2).	Shown	are	mean	values	+/-	standard	deviation.	The	
darker	 circles	 show	 the	 high	 food	 treatment	 and	 lighter	 triangles	 the	 low	 food	
treatment.	(N=5-8	per	treatment)	

The	 histological	 samples	 show	 different	 severities	 of	 impairments	 in	 the	
organs.	While	vacuoles	in	the	eyes	were	found	across	all	treatments,	vacuoles	in	the	
pancreas,	the	kidneys	and	particularly	in	the	liver	were	found	most	commonly	in	the	
acidified,	 low	 food	 treatment.	 Impairments	 in	 the	 pancreas	 and	 the	 kidneys	 were	
mild,	but	larvae	from	the	acidified,	low	food	treatment	showed	partly	severe	to	very	
severe	vacuolization.	(Figure	3.6)	



MANUSCRIPT	II	

	

	 51	

	
Figure	3.6.	Frequency	of	organ	 impairments	 in	 (a)	 liver,	 (b)	eyes,	 (c)	pancreas,	

and	(d)	kidney	of	the	cod	larvae	in	a	subjective	scale	from	0	(no	impairments)	to	+++	
(very	severe/many	impairments).	(N=3-9	per	treatment)	

3.5 Discussion	

Under	 realistic	 end-of-the-century	 CO2	 concentrations	 (Denman	 et	 al.,	 2011;	
AMAP,	2013)	a	significant	interaction	between	prey	availability	and	acidification	on	
the	 growth	 and	development	 of	 the	Arcto-Norwegian	 cod	 larvae	became	apparent.	
The	 high	 food	 treatment	 provided	 prey	 organisms	 ad	 libitum,	 which	 resulted	 in	
larger	 larvae	 in	 better	 higher	 nutritional	 condition,	 as	 evident	 in	 the	 higher	
RNA/DNA	 ratios.	 Nearly	 all	 vertebrae	 were	 ossified	 at	 36	 days	 post-hatching.	 In	
larvae	 in	 the	 high	 food	 treatment	 increased	 CO2	 concentration	 did	 not	 result	 in	
significant	differences	for	these	parameters,	nor	for	lipid	content	in	the	larvae	or	the	
length	of	the	ossified	gill	arch.		

However,	 larvae	 in	 the	 low	 food	 treatment	 showed	 significant	 differences	
according	 to	 the	CO2	 treatment.	Larvae	were	heavier,	 longer,	had	higher	RNA/DNA	
ratios,	 lower	lipid	contents	and	longer	ossified	gill	arches	in	the	acidified	treatment	
compared	 to	 the	 ambient	 CO2	 treatment,	when	kept	 in	 low	 food	 in	 contrast	 to	 the	
expectation	since	 these	 larvae	should	be	more	energy	 limited.	 In	 fact,	 larvae	 in	 the	
acidified	treatment	showed	less	difference	between	food	treatments	compared	to	the	
ambient	CO2	treatment.	Larvae	from	the	low	food	treatment	exhibited	similar	growth	
and	 skeletal	 development	 than	 those	 raised	 under	 high	 food	 treatment	 when	
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experiencing	 high	 CO2	 concentrations.	 The	 noticeable	 exception	 is	 found	 in	 organ	
development.	Other	organs,	particularly	the	 liver,	were	heavily	 impaired	 in	the	 low	
food,	acidified	treatment,	but	not	in	the	high	food,	acidified	treatment.	One	possible	
explanation	is	the	trade-off	that	the	larvae	in	the	low	food	treatment	ultimately	have	
to	make	 since	 they	 are	 energy	 limited.	 It	 appears	 that	 they	 spend	more	 energy	on	
growth	and	ossification	of	skeletal	elements	in	the	acidified	treatment	compared	to	
those	 larvae	 in	the	ambient	treatment.	The	 lower	 lipid	content	might	be	due	to	the	
process	of	ossification,	since	dietary	lipids	are	important	for	skeletal	development	in	
marine	 fish	 (Lall	 &	 Lewis-McCrea,	 2007;	 Kjørsvik	 et	al.,	 2009).	 Additionally	 these	
lipid	levels	might	indicate	that	larvae	in	the	low	food,	ambient	treatment	are	still	in	
an	earlier	developmental	stage	than	the	other	treatments.	This	is	also	supported	by	
the	 smaller	 larval	 size	 and	 fewer	 ossified	 vertebrae	 in	 this	 treatment.	 The	 organ	
impairments	 of	 liver	 and	 gills	 reflecting	 observations	 already	 shown	 by	 in	 cod,	
herring,	tuna	and	summer	flounders	(Frommel	et	al.,	2012,	2014,	2016;	Chambers	et	
al.,	2013)	may	show	the	downside	of	the	trade-off.	The	gill	size	was	always	smaller	in	
the	acidified	 treatment,	 independently	 from	the	 food	 treatment,	even	 though	 larval	
size	was	increased	in	the	low	food	treatment.	Considering	that	the	active	surface	of	
the	 gill	 is	 a	 complex	 three	 dimensional	 structure	 and	 therefore	 several	 fold	 larger	
than	the	dimensional	area	that	was	measured	(Lefevre	et	al.,	2017),	these	differences	
likely	result	in	a	very	significant	difference	in	functionality.	The	apparent	decoupling	
of	 larval	 size	 to	 gill	 size	may	have	 a	 huge	 effect	 on	 the	 fitness	 of	 the	 larvae	 in	 the	
following	weeks	to	months.	

Increased	 calcification	of	 the	otoliths	due	 to	 acidification	has	been	 shown	 for	
some	species	(Hurst	et	al.,	2012;	Bignami	et	al.,	2013;	Maneja	et	al.,	2013;	Pimentel	et	
al.,	2014;	Réveillac	et	al.,	2015).	This	 is	 likely	due	to	the	 increased	concentration	of	
bicarbonate	 ions	 in	 the	 blood,	 which	 is	 elevated	 as	 a	 buffering	mechanism	 during	
hypercapnia	or	pH	 stress	 (Melzner	et	al.,	 2009a).	The	 skeleton	of	marine	 fishes	on	
the	other	hand	is	made	of	calcium	phosphate,	not	calcium	carbonate	like	the	otoliths.	
The	 exact	 interaction	 remains	 unknown,	 but	 it	 appears	 that	 the	 ossification	 of	
skeletal	 elements	 is	 also	 affected	 by	 pH	 stress.	 Pimentel	 et	 al.	 (2014)	 found	
skeletogenesis	 to	 be	 defected	 in	 the	 larvae	 of	Solea	senegalensis.	 In	 contrast	 to	 the	
cod	 larvae	 in	 this	 study,	 a	 large	 proportion	 of	 larvae	 of	 Solea	senegalensis	 showed	
severe	deformities	under	increased	CO2	concentrations	of	a	similar	level.	

While	 our	 study	 confirms	 larval	 size	 may	 increase	 under	 certain	 conditions	
under	 ocean	 acidification,	 it	 is	 premature	 to	 associate	 this	 finding	 with	 increased	
fitness	 of	 larvae.	 To	 the	 contrary,	 we	 found	 that	 the	 full	 picture	 of	 developmental	
processes	is	far	more	complicated,	and	larger	larvae	may	carry	more	subtle	bone	and	
organ	 damaged.	 Increased	 larval	 size	 may	 through	 energetic	 trade-offs	 results	 in	
developmental	 patterns	 that	 can	 possibly	 decrease	 fitness	 of	 the	 larvae	 through	
decreased	functionality	of	the	organs	or	even	impairments.	Is	so	far	remains	unclear,	
what	drives	this	trade-off	and	pushes	the	larvae	to	invest	so	heavily	in	growth.	

To	this	day	many	studies	have	found	negative	effects	of	ocean	acidification	on	
fish	 larval	 size.	Only	 few	studies	have	 looked	at	 the	effect	of	ocean	acidification	on	
whole	body	and	organ	level	in	relation	to	prey	density.	Baumann	et	al.	(2012)	found	
reduced	 standard	 lengths	 in	 the	 Atlantic	 silverside	 larvae	 (Menidia	beryllina)	 with	
increasing	 acidification	 levels.	 A	 similar	 negative	 correlation	 between	 CO2	
concentration	and	 larval	size	was	 found	 for	 the	yellowfin	 tuna	(Thunnus	albacares)	
(Bromhead	 et	 al.,	 2015)	 and	 Atlantic	 herring	 (Clupea	 harengus)	 (Frommel	 et	 al.,	
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2014).	Other	species,	like	juvenile	scup	(Stenotomus	chrysops)	(Perry	et	al.,	2015)	or	
walleye	pollock	larvae	(Theragra	chalcogramma)	(Hurst	et	al.,	2013)	showed	little	to	
no	effect	of	CO2	on	growth.	Frommel	et	al.	(2012)	showed	increased	larval	growth	in	
Atlantic	 cod	 during	 some	 period	 of	 development,	 though	 at	 much	 higher	 CO2	
concentrations	 of	 above	 4000	 µatm.	 The	 orange	 clownfish	 Amphiprion	 percula	
similarly	 showed	 increased	 larval	 growth	 until	 settlement	 under	 increased	 CO2	
concentrations,	although	this	effect	differed	between	the	larvae	of	different	parents	
(Munday	et	al.,	2009b).	

Although	the	number	of	studies	on	ocean	acidification	effects	on	marine	fishes	
has	steadily	increased,	the	available	data	does	not	allow	for	a	general	conclusion	on	
the	responses	relating	to	growth	and	development	in	marine	temperate	fish	species	
due	to	very	different	experimental	setups,	life	stages	(often	limited	to	very	early	life	
stages,	like	embryos,	non-feeding	larvae)	analyzed	and	short	term	versus	long	term	
effects.	Evaluations	of	benefits	and	trade-offs	need	a	wide	suite	of	different	response	
parameters	not	always	available.		
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4.1 Abstract	

Ocean	acidification,	 the	dissolution	of	excess	anthropogenic	carbon	dioxide	 in	
ocean	 waters,	 poses	 a	 threat	 to	 many	 marine	 fish	 species	 (Dixson	 et	 al.,	 2010;	
Munday	 et	al.,	 2010;	 Baumann	 et	al.,	 2012;	 Frommel	 et	al.,	 2012;	 Chambers	 et	al.,	
2013;	Stiasny	et	al.,	2016).	Whether	species	have	potential	to	acclimate	and	adapt	to	
changes	 in	 the	 seawater	 carbonate	 chemistry	 is	 still	 largely	 unanswered.	
Experiments	 across	 several	 generations	 are	 challenging	 for	 large	 commercially	
exploited	fish	species	because	of	their	long	generation	times.	For	Atlantic	cod	(Gadus	
morhua),	we	present	first	data	on	the	effects	of	parental	acclimation	to	enhanced	CO2	
on	 larval	 survival	 in	 the	 F1	 generation,	 a	 fundamental	 parameter	 determining	
population	 growth.	 The	 parental	 generation	 was	 exposed	 to	 either	 ambient	 or	
elevated	 CO2	 levels	 simulating	 end-of-century	 OA	 levels	 (~1100	 µatm	 CO2)	 for	 six	
weeks	 prior	 to	 spawning.	 Upon	 fully	 reciprocal	 exposure	 of	 the	 F1	 generation,	we	
quantified	larval	survival,	combined	with	two	feeding	regimes	in	order	to	investigate	
the	 potential	 effect	 of	 energy	 limitation.	We	 found	 a	 significant	 reduction	 in	 larval	
survival	 due	 to	 acidification	 that	 was,	 however,	 partly	 compensated	 by	 parental	
acclimation	 to	 ocean	 acidification.	 Such	 compensation	 was	 only	 observed	 in	 the	
treatment	with	high	 food	availability	 to	 the	 larvae.	This	 complex	3-way	 interaction	
indicates	 that	 surplus	 metabolic	 resources	 need	 to	 be	 available	 to	 realize	 a	
transgenerational	alleviation	response	to	ocean	acidification.	
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4.2 Article	

Atlantic	 cod	 (Gadus	 morhua)	 supports	 large,	 commercial	 fisheries	 in	 many	
areas	around	the	Northern	Atlantic.	The	different	stocks	already	span	a	wide	range	of	
environments	 in	 terms	 of	 temperature	 and	 are	 predicted	 to	 react	 differently	 to	
changing	 temperatures,	 depending	on	where	 they	 already	 exist	 in	 relation	 to	 their	
thermal	optimum.	The	most	Northern	stocks	are	believed	 to	benefit	 from	warming	
(Drinkwater,	 2005)	 at	 least	 to	 a	 certain	 degree,	 through	 range	 expansion	 and	
through	 direct	 positive	 effects	 of	 slightly	 increasing	 temperatures	 on	 recruitment	
and	 growth.	 However,	 these	 populations	 will	 likely	 be	 most	 vulnerable	 to	 ocean	
acidification	since	changes	in	seawater	pH	are	predicted	to	be	greatest	in	the	Arctic	
(Steinacher	et	al.,	 2008).	Hopes	 that	global	warming	might	have	positive	effects	on	
the	 fisheries	 in	 these	 areas,	 as	might	 have	 previously	 been	 the	 case	 (Kjesbu	 et	al.,	
2014),	 might	 therefore	 be	 ill	 placed,	 considering	 the	 accumulating	 evidence	 that	
ocean	acidification	negatively	effects	many	species	(Baumann	et	al.,	2012;	Frommel	
et	al.,	2012,	2014;	Stiasny	et	al.,	2016).	Progress	has	been	made	on	research	on	the	
potential	 for	 acclimation	 and	 adaptation	 of	 other	 populations	 to	 acidification	
(Sunday	 et	 al.,	 2014),	 but	 the	 role	 of	 non-genetic	 transfer	 of	 information	 via	
transgenerational	effects	is	still	under	debate.		

To	 this	 day,	 only	 few	 studies	 have	 addressed,	 whether	 and	 how	 much	
transgenerational	acclimation	might	affect	fitness-relevant	traits	or	population	vital	
rates	 of	 offspring.	 Most	 evidence	 comes	 from	 tropical	 reef	 fish,	 namely	 the	 Spiny	
Chromis	(Acanthochromis	polyacanthus)	 (Miller	et	al.,	2012;	Welch	et	al.,	2014),	 the	
Fire	 Clownfish	 (Amphiprion	 melanopus)	 (Allan	 et	 al.,	 2014),	 or	 the	 stickleback	
(Gasterosteus	aculeatus)	 (Schade	et	al.,	 2014;	 Shama	&	Wegner,	 2014;	 Shama	et	al.,	
2016).	 The	 results	 on	 the	 effect	 of	 transgenerational	 acclimation	 to	 ocean	
acidification	from	these	studies	cannot	be	generalized	at	the	moment.	Exploring	the	
potential	 of	 fish	 populations	 to	 adapt	 to	 ocean	 acidification	 through	 multi-
generational	experiments,	as	it	has	been	done	with	coral	reef	fishes	(Donelson	et	al.,	
2011),	 is	 unfeasible	 for	 most	 temperate	 and	 commercial	 species,	 because	 of	 their	
long	generation	times,	 larger	body	size	and	 low	survival	of	eggs	and	 larvae	 in	each	
generation	 (e.g.	 Atlantic	 cod	 3-5	 years).	 Rummer	 &	Munday	 (2016)	 conclude	 that	
there	 is	 evidence	 for	 potential	 acclimation	 and	 adaptation	 in	 coral	 reef	 fishes,	
because	 even	 though	 experimental	 data	 suggests	 a	 negative	 effect	 of	 temperature	
and	 acidification,	 reef	 fish	 populations	 already	 exist	 at	 temperatures	 above	 those	
predicted	by	climate	change.	Similarly	hopeful	information	is	not	available	for	most	
commercial,	 temperate	 species.	 On	 the	 contrary,	 we	 have	 shown	 in	 Stiasny	 et	 al.	
(2016)	 that	 Atlantic	 cod	 populations	 from	 the	Western	 Baltic	 and	 the	 Barents	 Sea	
reacted	 surprisingly	 similar	 to	ocean	acidification.	Daily	mortality	 rates	doubled	 in	
both	populations,	even	though	the	Baltic	stock	has	a	history	of	already	experiencing	
low	 pH	 due	 to	 upwelling	 events	 in	 the	Western	 Baltic	 (Melzner	 et	al.,	 2012).	 The	
hypothesis	that	Baltic	species	might	be	able	to	cope	since	they	had	time	to	adapt	was	
therefore	falsified.		

In	this	study	we	exposed	adult	cod	to	either	ambient	seawater	or	seawater	with	
increased	 CO2	 concentrations	 as	 they	might	 be	 expected	 globally	 around	 the	 year	
2100	following	the	IPCC	RCP	8.5	(IPCC,	2013)	(~1100	µatm)	for	six	weeks	prior	to	
spawning.	 This	 coincides	 with	 the	 last	 stages	 of	 gonadal	 development	 and	 egg	
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maturation.	 Resulting	 eggs	 and	 larvae	 were	 reared	 either	 in	 the	 parental	 CO2	
concentrations	 or	 the	 opposite	 treatment.	 Larval	 survival	 and	 growth	 were	
measured	and	histological	samples	of	certain	organs,	including	the	eyes	and	the	liver,	
were	 taken	and	analyzed.	The	 tested	hypothesis	was	 that	 larvae,	which	came	 from	
parents,	who	already	experienced	ocean	acidification	during	gonadal	development,	
might	 cope	better	with	 these	 conditions	due	 to	possible	acclimation	of	 the	parents	
and	transgenerational	effects.		

Ocean	 acidification	 treatments	 were	 combined	 with	 two	 different	 feeding	
treatments	–	ad	libitum	vs.	limited	food	availability	-	in	a	full	factorial	design	with	the	
acidification	 treatments.	 In	 order	 to	 test	 for	 the	 effects	 of	 energy	 limitations	 a	 low	
food	 treatment	was	 chosen	with	 the	 same	 prey	 densities	 in	 the	 tanks,	 in	 order	 to	
avoid	effects	due	to	different	larval	densities,	but	with	significantly	less	feedings	per	
day	to	investigate	whether	coping	with	CO2	stress	was	energy	dependent	(for	more	
information	on	the	feeding	regimes,	please	consult	the	methodology	in	SI).		

In	a	completely	independent	data	set,	we	were	able	to	confirm	enhanced	larval	
mortality	 by	 experimental	 ocean	 acidification	 (Stiasny	 et	 al.,	 2016).	 However,	 as	
hypothesized,	 the	parental	 exposure	 to	ocean	acidification	modified	 the	 immediate	
reaction	 of	 larvae.	 The	 transgenerational	 effect	 was	 buffering	 with	 high	 food	
availability,	 i.e.	 offspring	 of	 parents	 exposed	 to	 ocean	 acidification	 survived	 better	
under	high	food,	and	vice	versa	under	low	food,	indicated	by	a	significant	three-way	
interaction	(Figure	4.1).	Larvae	of	parents	acclimated	to	high	CO2	under	high	food/	
high	 CO2	 showed	 survival	 rates	 intermediate	 between	 larvae	 in	 ambient	 seawater	
and	 those	 without	 prior	 exposure	 in	 the	 parental	 generation	 to	 increased	
acidification.	 This	 shows	 some	 compensatory	 mechanism	 of	 parental	 acclimation	
since	 survival	 improved	compared	 to	 the	direct,	 sudden	exposure	 to	CO2	of	 larvae.	
However,	 the	 effect	 was	 not	 large	 enough	 to	 completely	 counteract	 the	 effect	 of	
acidification	 back	 to	 survival	 rates	 in	 the	 ambient	 treatment.	 Furthermore	 this	
compensatory	effect	was	completely	absent	 in	 the	 low	 food	 treatment.	Here	 larvae	
exposed	 to	 high	 CO2	 coming	 from	 CO2	 acclimated	 parents	 showed	 even	 lower	
survival	 on	 day	 16	 post-hatching	 than	 those	 from	 non-acclimated	 parents.	 (Figure	
4.1).		

 

 

Figure	4.1.	Survival	of	cod	larvae	from	hatching	to	16	days	post-hatching	in	the	
high	 food	 treatment	 (a)	 and	 the	 low	 food	 treatment	 (b)	 depending	 on	 parental	 (1st	
letter,	Ambient	(A),	high	CO2	(C)),	larval	(2nd	letter)	treatment	and	food	(3rd	letter,	High	
(H),	Low	(L))	Shown	are	mean	values	and	standard	error	across	three	replicates	per	
treatment.	
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Considering	 that	 the	 low	 food	 treatment	 is	 likely	 still	 above	 natural	 prey	
concentrations	 in	 the	 field	 and	 match-mismatch	 situations	 of	 larvae	 hatching	 and	
prey	 concentrations	might	 also	 increase	due	 to	 climate	 change,	 this	 does	not	 bode	
well	for	the	future	of	cod	larvae.		

Larval	 growth	 in	 terms	 of	 dry	 weight	 and	 standard	 length	 at	 day	 36	 post-
hatching	 was	 not	 affected	 by	 the	 CO2	 treatment	 of	 parents	 nor	 the	 offspring,	 but	
larvae	in	the	low	food	treatment	grew	less	(F=43.795,	p<0.0001),	indicating	that	they	
were	 indeed	energy	 limited	(Figure	4.2).	Since	experimental	animals	came	 from	an	
aquaculture	stock,	bred	for	optimal	growth,	it	is	unlikely	that	this	absence	of	an	effect	
on	the	vulnerability	to	acidification	is	easily	transferable	to	wild	populations.	

 
Figure	4.2.	 (a)	Dry	weight	(in	mg)	and	(b)	Standard	 length	(in	mm)	on	36	days	

post-hatching	depending	on	parental	 (1st	 letter	Ambient	 (A),	high	CO2	(C))	and	 larval	
treatment	 (2nd	 letter)	 and	 food	 availability	 (high	 (dark	 circles)	 and	 low	 (lighter	
triangles).	 Shown	are	mean	values	 and	 standard	deviation	of	 ten	 larvae	 times	 three	
replicates.	

Under	realistic	end-of	century	ocean	acidification	levels,	we	found	widespread	
histological	damage	suggesting	impairments	of	major	organ	functioning.	Particularly	
the	 larvae	 in	the	high	CO2	treatment,	which	came	from	acclimated	parents,	showed	
strong	impairments	more	frequently	independently	of	the	food	treatment	(Figure	4.3	
and	4.4).	Vacuoles	in	the	pigment	layer	of	the	retina	of	the	35	days	old	larvae	were	
registered	in	all	treatments,	but	were	apparently	more	frequent	in	larvae	from	tanks	
with	 elevated	 CO2	 concentrations	 (Figure	 4.3).	 Gill	 structure	 looked	 similar	 in	 all	
investigated	larvae.	Cartilage	made	up	the	supporting	skeleton	in	both	gill	arches	and	
filaments.	Apparent	similar	heart	morphology	was	also	notes	in	all	larvae.	Pancreatic	
tissue	was	difficult	to	evaluate,	but	no	common	abnormalities	were	registered.	A	few	
larvae	 from	 both	 treatments	 had	 vacuoles	 in	 the	 tissue.	 Kidney	 tissue	 showed	
apparently	 normal	 tubuli	 and	 glomeruli	 in	 all	 groups.	 Liver	 morphology	 varied	
between	 individual	 samples	 and	 CO2	 regimes	 (Figure	 4.4	 D-L).	 Glycogen	 granules	
were	noted	in	all	livers	sectioned	(H),	while	numerous	empty	vacuoles	(representing	
lipid	 inclusions)	 of	 variable	 sizes	 were	 characteristic	 of	 some	 of	 the	 CO2	 treated	
larvae	(D-F,	L).	This	phenomenon	was	also	registered	in	some	of	the	control	larvae.	
But	generally	 larvae	 from	 the	ambient	 treatment	had	 smaller	and	 regular	vacuoles	
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(G,	H,	 I,	 K).	 Abnormal	 vacuolation	 in	 the	 liver	may	 represent	 a	 functional	 problem	
(Frommel	 et	 al.,	 2012,	 2014).	 Hepatocyte	 vacuolation	 was	 not	 more	 frequently	
registered	in	the	larval	group	in	the	high	food	compared	to	the	low	food	treatment.		

	

 

Figure	 4.3. Frequency of (a) liver and (b) eye lipid vacuolization in subjective scores 
from 0 to +++ depending on parental treatment (1st letter (A-Ambient, C-high CO2)), larval 
CO2 treatment (2nd letter (A-Ambient, C-high CO2)) and food treatment (3rd letter, H – high 
food, L – low food). (N=1-7) 

	

	

Figure	 4.4. Examples	 of	 histological	 eye	 (A-C)	 and	 liver	 (D-L)	 samples	 from	
various	treatments.	A:	Eye,CCH;	B:	Eye	AAL;	C:	Eye	AAH;	D:	Liver,	CCL;	E:	Liver,	CCH;	F:	
Liver	CCL;	G:	Liver,	AAH;	H:	Liver,	AAL;	I	Liver,	AAL;	K:	Liver,	AAH	;	L:	Liver,	CCL 
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The	 histological	 results	 show	 clearly	 that	 in	 the	 high	 food	 treatment,	 where	
larval	 survival	 was	 partly	 compensated	 by	 the	 parental	 acclimation,	 larvae	 still	
suffered	 developmental	 impairments	 and	 organ	 damage	 under	 ocean	 acidification.	
The	 histological	 impairments	 due	 to	 acidification	 in	 this	 experiment	 were	 less	
pronounced	than	those	found	by	Frommel	et	al.	(2012,	2014).	This	is	likely	due	to	the	
more	realistic,	lower	levels	of	carbon	dioxide	used	in	this	experiment.		

In	 this	 study	 on	 parental	 acclimation	 and	 transgenerational	 effects	 to	 ocean	
acidification	 on	 a	 commercial	 fish	 species,	 results	 show	 that	 under	 optimal	 food	
conditions,	 parental	 acclimation	 can	 have	 a	 compensatory	 effect	 on	 survival,	
however	organ	damages	are	not	compensated,	possibly	even	amplified.	Additionally	
the	 compensation	 on	 survival	 is	 not	 strong	 enough	 to	 completely	 counteract	 the	
effect	of	ocean	acidification	and	larval	survival	is	still	significantly	lower	than	under	
ambient	conditions.	One	reason	for	the	incomplete	compensation	may	be	the	limited	
timespan	 of	 parental	 acclimation	 of	 only	 6	 weeks.	 It	 is	 possible	 that	 a	 longer	
acclimation	 period	 or	 effects	 across	 several	 generations	might	 produce	 a	 stronger	
transgenerational	 effect.	 Nonetheless	 the	 compensation	 appears	 to	 depend	 on	 the	
availability	 of	 prey	 and	 therefore	 energy.	 It	 is	 therefore	 unclear	 whether	 this	 is	 a	
mechanism	 that	 is	 likely	 to	 improve	 the	 situation	 for	 cod	 larvae	 in	 the	 wild.	 This	
study	clearly	demonstrates	the	complexity	of	acidification	effects	on	physiology	and	
on	 the	 potential	 for	 acclimation.	 The	 three	 included	 parameters	 of	 parental	 and	
larval	 treatments	 as	well	 as	 food	 treatment	 show	 strong	 interactions,	 proving	 that	
predictions	of	exact	effects	will	be	extremely	difficult	to	give.	Nonetheless,	even	the	
most	beneficial	combination	of	the	treatments	results	in	strong	impairments	on	the	
larval	phase	if	these	are	exposed	to	ocean	acidification.		 	
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4.3 Supplementary	Information	

4.3.1 Methodology	

Parental	treatment	

Adult	cod	from	the	aquaculture	stock	of	the	company	Nofima	AS	at	the	Centre	
for	 Marine	 Aquaculture	 (Senter	 for	marin	akvakultur,	 formerly	 the	 Norwegian	 Cod	
Breeding	Centre	Nasjonal	avlsstasjon	for	torsk)	in	Tromsø,	Norway	were	transferred	
from	the	sea	cages	to	the	Centre	on	16th	January	2014	to	start	the	incubation.	These	
aquaculture	stocks	were	a	mixture	of	two	wild	stocks,	the	Norwegian	coastal	cod	and	
the	 North-East-Arctic	 (NEA)	 cod	 from	 the	 Barents	 Sea.	 These	 cod	 were	 third	
generation	aquaculture	organisms.	They	were	kept	in	net	cages	in	the	fjord	and	were	
transferred	 using	 a	 well	 boat	 and	 transfer	 tanks.	 They	 were	 split	 into	 the	 two	
treatments	in	large	storage	tanks	with	a	diameter	of	4	m,	filled	with	18	m3	seawater.	
They	were	kept	in	a	constant	seawater	flow	through	of	225	l/m.	The	light	regime	was	
matched	weekly	to	outside	conditions.	

Deep-water	 from	 the	Tromsø	Fjord	was	pumped	directly	 from	 in	 front	of	 the	
station	 and	 then	 filtered.	 Carbon	 dioxide	 concentrations	 in	 the	 acidified	 treatment	
were	controlled	by	an	IKS	Aquastar	System.	CO2	influx	from	a	bottle	is	controlled	via	
magnetic	valves.	The	pH	was	additionally	checked	daily	with	a	WTW	pH	3310	hand	

probe	with	a	SenTix®	H	pH-electrode.	Water	samples	for	carbonate	chemistry	were	
taken	 and	 analyzed	 at	 the	University	 of	 Tromsø	 (See	 Stiasny	 et	 al.,	 2016	 for	more	
details	on	the	carbonate	chemistry	in	the	experiment).	

The	 adult	 cod	 were	 regularly	 checked	 for	 running	 eggs	 and	 sperm.	 When	
mature	and	running,	 they	were	strip-spawned	and	 fertilized	eggs	were	 transferred	
into	 incubators.	Larvae	 in	each	experimental	 treatment	consisted	of	at	 least	 five	 to	
seven	different	families.	

Egg	and	larval	treatment	

Fertilized	 eggs	 were	 transferred	 to	 incubators,	 which	 were	 kept	 at	 6°C	 and	
were	 constantly	 aerated.	 After	 hatching	 the	 larval	 density	 was	 counted	 in	 the	
incubators	 and	 11	 000	 larvae	 were	 transferred	 into	 each	 tank	 and	 the	 larval	
experiment	was	started.	This	day	was	set	as	0	days	post-hatching	(dph),	even	though	
larvae	had	hatched	over	several	days	before.		

The	larval	tanks	were	started	at	6°C,	but	were	later	raised	to	10°C	in	all	tanks.	
Light	was	kept	on	constant	at	24	hours	a	day.	Larvae	were	fed	with	Nannochloropsis	
and	Brachionus	at	different	intervals	for	the	different	food	treatments	(seven	in	the	
high	compared	to	 three	times	daily	 in	 the	 low	food	treatment	at	 the	beginning	and	
five	 times	compared	to	one	time	daily	 later	on).	The	prey	concentrations	given	per	
feeding	remained	constant	and	the	same	for	both	treatments.		

An	 IKS	computer	system	and	a	pH	sensor	 in	 the	header	 tank,	 from	which	 the	
water	 would	 flow	 to	 the	 rearing	 tanks	 after	 mixing,	 controlled	 the	 CO2	
concentrations.	The	pH	was	checked	manually	in	the	rearing	tanks	every	day	using	a	
pH	 sensor	 (WTW	 pH/Cond	 340i/3320)	 Water	 chemistry,	 including	 DIC	 and	
alkalinity,	 was	 tested	 weekly	 based	 on	 the	 Best	 Practices	 Guide	 (Riebesell	 et	 al.,	
2010).	
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For	 more	 information	 on	 feeding	 concentrations	 and	 carbonate	 chemistry,	
please	consult	the	article	and	the	SI	of	(Stiasny	et	al.,	2016).		

Survival	measurements	

Survival	was	measured	three	times	in	the	larval	tanks,	starting	on	day	8	post-
hatching,	 by	 measuring	 the	 density	 of	 remaining	 larvae.	 Five	 subsamples	 of	 0.8	 l	
were	taken	across	the	whole	water	column	using	a	pipe,	which	could	be	closed	at	the	
bottom,	and	the	number	of	living	larvae	in	the	subsamples	was	counted.	An	increased	
aeration	during	 the	sampling	process	ensured	an	even	distribution	of	 larvae	 in	 the	
rearing	tanks.	The	accuracy	of	the	method	was	repeatedly	checked	in	separate	tanks.	
After	 day	 16	 post-hatching	 of	 the	 experiment,	 the	method	 became	 inaccurate	 and	
imprecise.	 This	 is	 likely	 due	 to	 the	 increased	 swimming	 ability	 of	 the	 larvae,	
combined	with	 improving	 sensory	 abilities,	 which	 probably	 resulted	 in	 an	 uneven	
distribution	of	larvae	in	the	tanks	due	to	avoidance	behaviour	towards	the	pipe	and	
the	 increased	 aeration.	 Survival	 data	 was	 therefore	 not	 usable	 after	 16	 dph,	 but	
larvae	were	sampled	for	growth	and	histology	measurements	until	36	and	35	dph.		

Growth	

Ten	 larvae	per	 tank	were	 sampled	alive	 from	each	 rearing	 tank.	 Larvae	were	
euthanized	 using	 Tricaine	 methanesulfonate	 (Ethyl	 3-aminobenzoate	
methanesulfonate,	 MS222)	 before	 being	 frozen.	 Later	 larvae	 were	 thawed	 and	
photographed	next	to	a	scale	through	a	microscope.	The	photographs	with	the	scales	
were	 used	 to	measure	 the	 Standard	 Length	 of	 the	 larvae	 by	measuring	 the	 length	
from	 the	 tip	 of	 the	 vertebrae,	 following	 the	 vertebrae	 and	 then	 an	 imaginary	 line	
from	the	front	of	the	vertebrae	through	the	eyes	to	the	tip	of	the	lower	jaw.	In	order	
to	measure	dry	weight,	larvae	were	freeze	dried	before	being	weighed.		

Statistical	analysis	

All	statistical	analyses	were	run	in	the	program	R	(Version	3.3.2)	and	RStudio	
(Version	 1.0.136).	 For	 growth	measurements	 ten	 larvae	 per	 tank	were	 sampled	 in	
order	 to	 get	 an	 accurate	 assessment	 of	 the	 variance	 and	 a	 larger	 sample	 size	 than	
N=3.	To	include	the	possibility	of	tank	effects	a	linear	mixed	effects	model	was	run	to	
test	for	differences	and	interactions	between	the	treatments,	but	also	including	tank	
as	 a	 random	 factor.	 Transformations	 were	 performed	 if	 necessary	 to	 achieve	
homogeneity	of	variance	and	normality	of	residuals.		
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Table	4.1.	Results	of	the	Statistical	Analyses.	

Tested	parameter	 Factor	 F	value	 p	value	

Standard	Length	 Parental	CO2	treatment	 0.475	 0.4996	

Larval	CO2	treatment	 1.115	 0.3049	

Food	treatment	 40.940	 <.	0001	

Dry	Weight	 Parental	CO2	treatment	 0.145	 0.708	

Larval	CO2	treatment	 0.424	 0.523	

Food	treatment	 43.795	 <.0001	

Survival	Day	16	 Parental	CO2	treatment	 2.816	 0.114	

Larval	CO2	treatment	 11.48	 0.004	

Food	treatment	 0.001	 0.976	

Parental*Larval	
Treatment	

7.197	 0.017	

Parental*Food	
Treatment	

0.003	 0.955	

Larval*Food	Treatment	 0.003	 0.960	

Parental*Larval*Food	
Treatment	

7.837	 0.013	

Histology	

Larvae	 were	 fixed	 in	 4%	 buffered	 formaldehyde	 at	 35	 dph,	 embedded	 in	

Technovit®	or	paraffin,	sectioned	transversely	or	longitudinally	respectively	at	3µm,	
followed	 by	 staining	with	methylene	 blue	 or	 haematoxylin	 and	 eosin	 respectively.	
Technovit-sections	 from	 head	 region	 (with	 eyes,	 gills	 and	 heart),	 front	 part	 of	 gut	
(with	liver,	pancreatic	tissue,	kidney	tissue)	as	well	as	paraffin	sections	were	studied	
and	photographed	in	the	microscope	(Leitz	Aristoplan	with	a	Leica	DFC295	camera).	
Moderate	or	numerous	amounts	of	vacuoles	in	the	pigment	layer	of	the	retina	were	
noted	 and	 given	 a	 subjective	 score	 from	 +	 to	 +++	 (some-several-many).	 A	 similar	
score	was	used	for	registrations	of	lipid	vacuoles	in	the	cod	larvae	livers.	
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5.1 Physiological	effects	of	ocean	acidification	on	
Atlantic	cod	larvae	

The	 results	 of	my	dissertation	quantify	 for	 the	 first	 time	 the	 impact	 of	 ocean	
acidification	on	Atlantic	cod	larval	survival	and	resulting	changes	in	recruitment.	The	
data	 reveal	 that	 acidification	 effects	 may	 be	 strong	 enough	 to	 significantly	 alter	
population	 dynamics	 and	 therefore	 affect	 entire	 stocks	 and	 fisheries.	 The	 results	
were	remarkably	similar	for	two	cod	stocks,	the	Baltic	Sea	stock	and	the	Barents	Sea	
stock.		

Moreover,	we	were	able	to	show	that	carbon	dioxide	concentrations	predicted	
in	 the	 study	 areas	 within	 this	 century	 will	 have	 significant	 effects	 on	 larval	
physiology	in	terms	of	growth,	as	well	as	skeletal	and	organ	development.	The	effects	
of	food	limitation	on	the	capacity	of	the	larvae	to	cope	with	the	stress	of	hypercapnia	
had	never	been	explored	so	far.	It	furthermore	demonstrates	that	even	when	larvae	
are	 able	 to	 regulate	 their	 own	 pH	 and	 buffer	 acidification	 to	 a	 certain	 extent,	 this	
comes	with	a	cost,	most	likely	via	an	allocation	trade-off,	which	seems	to	manifest	for	
example	in	organ	development.		

The	 results	 on	 parental	 acclimation	 are	 the	 first	 to	 explore	 effects	 of	 ocean	
acidification	across	generations	 for	a	 temperate,	commercial	species.	We	were	able	
to	 demonstrate	 that	 parental	 acclimation	 has	 a	 significant	 effect	 on	 larval	 survival	
and	 organ	 development.	 However,	 it	 did	 not	 result	 in	 a	 complete	 offset	 of	 the	
impairments	 due	 to	 acidification	 in	 the	 larval	 generation,	 even	 under	 no	 food	
limitation	and	aggravated	results	when	larvae	were	energy	limited.		

5.2 Integration	into	modelling	efforts	to	explore	
changes	in	population	dynamics,	management	
strategies	and	economic	impacts	

The	 survival	data	 in	 this	dissertation	 are	 the	 first	 that	 offer	 the	possibility	 to	
integrate	 ecophysiological	 responses	 to	 ocean	 acidification	 with	 population	
dynamics.	The	recruitment	data	from	Manuscript	I	form	the	basis	for	several	studies	
and	papers,	which	are	in	the	process	of	being	published.	Königstein,	Dahlke,	Stiasny,	
Storch,	Clemmesen	and	Pörtner	(2017)	have	developed	an	integrative	model	for	the	
effects	of	ocean	warming	and	acidification	on	the	early	 life	stages	of	Atlantic	cod	in	
the	Barents	Sea,	termed	SCREI	–	Simulator	of	Cod	Recruitment	under	Environmental	
Influences.	 The	 survival	 data	 under	 direct	 ocean	 acidification	 exposure	 during	 the	
larval	stage	from	this	thesis	are	combined	with	data	on	egg	fertilization	and	survival	
during	 the	 egg	 stage	 under	 increased	 temperatures	 and	 acidification	 from	 other	
partners	 within	 the	 project	 BIOAcid.	 Time	 series	 data	 on	 egg	 production,	
temperature,	 food	and	predator	abundance	are	used	 for	 the	calibration	 in	order	 to	
project	the	recruitment	success	under	different	scenarios.	The	SCREI	model	enables	
estimations	 of	 uncertainties	 based	 on	 variation	 within	 the	 ecosystem	 and	 also	
between	 individuals	 and	 even	 although	 stochasticity	 is	 high	 in	 the	 population,	 the	
model	 predicts	 severe	 reductions	 in	 recruitment	 towards	 the	middle	 to	 end	of	 the	
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century	 in	 the	Barents	Sea.	Potential	 for	adaptation	would	need	to	be	quite	high	to	
counteract	the	impacts	on	the	recruitment.	

A	population	model	on	the	Arcto-Norwegian	Arctic	cod,	under	development	by	
Stiasny	and	Winter,	 integrates	 the	direct	effect	of	acidification	and	warming	on	 the	
recruitment	as	well	as	temperature	effects	on	the	growth	of	the	adult	population	in	
order	to	test	the	robustness	of	the	management	plan	in	terms	of	the	harvest	control	
rules,	which	are	currently	used	for	this	stock.	The	negative	effect	of	acidification	on	
recruitment	 is	 initially	buffered	by	a	positive	effect	of	 temperature	on	recruitment,	
since	 the	 stock	 currently	 exists	 below	 the	 temperature	 optimum.	 However,	 the	
temperature	optimum	will	be	 reached	and	 likely	 crossed	within	 this	 century.	After	
this	point	 temperature	and	acidification	will	both	negatively	affect	 the	recruitment.	
Precautionary	 fishing	 levels	 are	 therefore	 highly	 likely	 to	 be	 lower	 than	 they	
currently	are.	

A	study	lead	by	Voss,	Quaas,	Stiasny	et	al.	(submitted	to	the	Journal	of	Applied	
Ecology)	 explores	 the	 effect	 of	 ocean	 acidification	 and	 temperature	 on	 the	
recruitment	 and	 economic	 viability	 of	 the	 Western	 Baltic	 cod	 stock.	 Temperature	
effects	 are	 taken	 from	 time-series	 data	 for	 this	 region.	 An	 ecological-economic	
optimization	model	was	used	 to	 investigate	 the	effect	of	acidification	and	warming	
on	ecological	(stock	size),	economic	(profits),	consumer-related	(harvest)	and	social	
(fishing	 effort)	 indicators,	 ranging	 from	 present	 day	 conditions	 to	 future	 climate	
scenarios.	Temperature	and	acidification	both	have	a	negative	effect	on	the	fishery	in	
the	 Western	 Baltic	 and	 if	 both	 effects	 are	 combined,	 a	 viable	 fishery	 becomes	
impossible	 at	 a	 more	 than	 1.5°C	 increase	 in	 temperature,	 even	 under	 optimal	
management.	 	A	main	conclusion	of	this	study	is	that	current	fisheries	management	
and	stock	conditions	are	not	sustainable	and	that	fishing	must	be	reduced	in	order	to	
increase	the	spawning	stock	biomass.	However,	meeting	of	global	climate	targets	 is	
also	vital.	

5.3 Perspectives	for	future	research	

5.3.1 Open	questions	on	ecophysiology	responses	

This	dissertation	has	revealed	further	knowledge	gaps	in	our	understanding	of	
ocean	 acidification	 on	 fish	 larval	 physiology.	 We	 were	 able	 to	 demonstrate	 that	
skeletal	 ossification	 is	 affected	 by	 the	 decrease	 in	 pH.	 This	 had	 previously	 been	
shown	 for	 the	 otoliths	 of	 fish	 larvae	 (Checkley	 et	 al.,	 2009;	 Maneja	 et	 al.,	 2013;	
Pimentel	et	al.,	2014).		The	hyper-calcification	in	otoliths	is	likely	due	to	the	increase	
in	bicarbonate	ions	in	the	blood	due	to	the	buffering	efforts	of	the	organisms	to	keep	
the	pH	constant	(Melzner	et	al.,	2009a).	The	effect	on	the	ossification	of	the	skeleton	
is	not	as	directly	linked	to	pH	buffering,	since	it	consists	of	calcium	phosphate,	rather	
than	calcium	carbonate.	The	current	literature	cannot	resolve	the	link	of	hypercapnia	
to	skeletal	ossification.	

Similarly	it	is	unclear	what	the	underlying	physiological	effects	of	acidification	
on	 organ	 development	 are.	 Manuscript	 II	 and	 III	 show	 impairments	 of	 particular	
organs	via	 increased	 lipid	vacuolization,	particularly	 in	 the	eyes	and	the	 liver.	How	
hypercapnia	is	linked	to	the	lipid	metabolism	remains	unknown.	In	future	studies	it	
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would	be	 important	 to	measure	hormones,	 like	 cortisol,	 in	 the	 living	 larvae	during	
the	 experiments	 in	 order	 to	 investigate	 possible	 mechanisms	 of	 the	 organisms	 to	
deal	with	the	pH	stress,	which	may	explain	differences	in	the	metabolic	processes.	

The	potential	for	acclimation	and	adaptation	to	ocean	acidification	is	a	rapidly	
expanding	 area	 of	 research	 and	 currently	 not	much	 is	 known	 for	 long-lived	 fishes	
such	 as	 Atlantic	 cod.	 Manuscript	 III	 offers	 a	 first	 look	 into	 the	 effect	 of	 parental	
acclimation.	The	results	show	that	larvae	are	affected	by	the	exposure	of	the	parental	
generation	 to	 acidification,	 however	 this	 also	 depended	 on	 their	 own	 food	
availability.	 Ideally	 Atlantic	 cod	 would	 need	 to	 be	 raised	 under	 high	 CO2	
concentrations	 for	 several	 generations	 in	 order	 to	 explore	 the	 long-term	 effect	 as	
well	as	transgenerational	effects.	This	is	practically	very	hard	to	manifest	for	such	a	
large	 species	 with	 long	 generation	 times.	 Furthermore,	 it	 may	 be	 possible	 that	
husbandry	effects	could	interact	with	the	effects	of	acidification.		

A	separate	PhD	dissertation	by	Felix	Mittermayer	is	currently	looking	into	the	
transcriptome	 of	 the	 cod	 larvae	 during	 these	 experiments.	 So	 far	 the	 underlying	
mechanisms	of	how	parental	acclimation	may	affect	the	offspring	remain	unknown.	
This	will	provide	some	insights,	which	cellular	and	molecular	processes	are	behind	
the	physiological	and	histological	effects	that	are	shown	in	this	dissertation.	

5.4 Conclusion	

The	world’s	ocean	is	undergoing	a	series	of	fundamental	changes	and	is	facing	a	
variety	 of	 threats,	 including	 increasing	 temperatures,	 pollution,	 deoxygenation,	
overfishing,	 and	 ocean	 acidification.	 At	 the	 same	 time	 the	 oceans	 are	 intrinsically	
linked	 to	 food	security,	human	health	and	all	other	Sustainable	Development	Goals	
that	 the	 United	 Nations	 have	 set	 (United	 Nations	 General	 Assembly,	 2015).	 Fish	
populations	 are	 one	 of	 the	 key	 links	 between	 the	 ecosystems,	 anthropogenic	
pressures	 and	 human	 welfare.	 They	 may	 be	 part	 of	 the	 answers	 to	 questions	 of	
sustainability,	 food	 security,	 development	 in	 third	 world	 countries,	 human	 health,	
and	many	more	(International	Council	for	Science,	2017).	At	the	same	time	evidence	
is	 accumulating	 that	 they	 are	 themselves	 threatened	 by	 anthropogenic	 stressors,	
creating	 a	 vicious	 circle	 in	 the	 future	 world,	 which	 we	 need	 to	 break	 as	 soon	 as	
possible	before	it	spirals	out	of	control.	

This	dissertation	has	advanced	our	understanding	of	ocean	acidification	effects	
on	larval	physiology	and	population	recruitment	in	Atlantic	cod	(Gadus	morhua).	The	
results	have	implications	for	the	sustainable	management	of	commercial	fish	stocks.	
While	 sustainability	 of	 fishing	 practices	 has	 always	 been	 imperative,	 the	 pre-
cautionary	 principle	 is	 gaining	 significance	 in	 the	 light	 of	 climate	 change,	 since	
additional	pressures	such	as	ocean	acidification	are	now	acting	on	the	stocks.		
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