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Abstract 

The number of introduced species, also called non-native or invasive species, has substantially 

increased in both terrestrial and aquatic ecosystems worldwide in past years. One possible 

reason for invasion success, i.e. the permanent establishment and spread after introduction, 

could be a high resistance towards biotic stressors such as herbivory. In the marine environment 

epibiosis (the colonization of living surfaces or exoskeletons by sessile organisms) is a common 

stressor and a high resistance towards fouling could explain invasion success in introduced 

species.  

    For the present doctoral thesis, I used common garden experiments to compare the 

susceptibility to fouling between native and non-native populations of the red macroalga 

Gracilaria vermiculophylla (ohmi) Papenfuss. Gracilaria vermiculophylla is native in the 

Northwest Pacific and occurs as a non-native species in other areas on the Northern hemisphere. 

For the comparative experiments, I used four native G. vermiculophylla populations (from the 

Yellow Sea and the Northwest Pacific) and five non-native populations (four from Europe: 

North Sea, Baltic Sea and the British Channel and one from North America: Northeast Pacific). 

To compare the susceptibility to fouling between these different populations, both laboratory 

and field experiments were performed. In laboratory experiments, settlement rates by diatoms 

and Ceramium filaments, both of which came from both distributional ranges of G. 

vermiculophylla, were quantified on substrata covered with G. vermiculophylla surface extracts 

as well as on living G. vermiculophylla individuals from all populations in different seasons. In 

field experiments, G. vermiculophylla individuals from all populations were individually 

enclosed in dialysis membrane tubes and exposed to the natural fouling at both sites in the 

native and non-native distributional range to assess the abundance and composition of foulers 

establishing on the tubes. In parallel to the field experiments, a monitoring was conducted in 

both distributional ranges (native and non-native) to quantify and characterize the fouling 

communities that are associated with G. vermiculophylla. Additionally, I investigated seasonal 

variations in antifouling defences against diatoms and against Ceramium in G. vermiculophylla 

from the Baltic Sea. This was done by quantifying fouling rates of these two species on 

Gracilaria surface extracts in different months of the same year as well as by correlating the 

strength of antifouling defences with the prevailing fouling pressure in the field.  

    My study revealed that fouling pressure was significantly higher at a site in the non-native 

than at a site in the native range. Florideophyceae, e.g. Ceramium and Polysiphonia, as well as 

Ciliata were the most common taxonomic groups in the natural fouling consortia that are 

associated with G. vermiculophylla in its native distributional range, while Ciliata and 
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Gymnolaemata were most common on G. vermiculophylla in its non-native range. Furthermore, 

I demonstrated that living thalli and surface extracts from non-native populations of G. 

vermiculophylla were better defended against the foulers tested (diatoms and Ceramium 

filaments) - regardless of their origin - than those from native conspecifics. Moreover, fouling 

on the outside of the membrane tubes that were filled with Gracilaria individuals was obviously 

influenced by compounds, which were released by the alga and diffused through the membrane. 

At both study sites (in the native and non-native range) dialysis membrane tubes containing 

non-native G. vermiculophylla were less fouled than those containing native conspecifics. 

Additionally, the fouling resistance of G. vermiculophylla against diatoms and Ceramium 

filaments differed clearly with season. I could show that fluctuations in fouling resistance 

mediated by dichloromethane (DCM) extracts against Ceramium, correlated with fluctuations in 

the intensity of epiphytism by this fouler on G. vermiculophylla. Finally, diatoms were 

generally deterred by Gracilaria surface extracts made with hexane, while Ceramium filaments 

were generally deterred by extracts gained with both hexane and DCM.  

    This the first study that compares the susceptibility to eukaryote microfouling, macrofouling 

and natural fouling between native and non-native populations of an aquatic species. Further, 

this work gives the first example that non-native individuals of an aquatic species are better 

defended against fouling than native conspecifics and suggests that an enhanced defence against 

fouling after introduction could explain – at least in parts - the invasion success of G. 

vermiculophylla. Additionally, this work demonstrates that the chemical antifouling defence in 

G. vermiculophylla varies with season and is based on multiple compounds that have different 

polarities. Finally, the new technique of enclosing macroalgae in dialysis tubes represents a 

simple, efficient and accurate way to test for the presence of chemical antifouling defences in 

these organisms and could possibly be applied to other algal species. The study thus provides 

new insights into the invasion ecology of macroalgae. 
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Zusammenfassung 

Weltweit hat die Anzahl von neu eingeführten Arten, auch als nicht-native oder invasive Arten 

bezeichnet, die sich in terrestrischen und in aquatischen Ökosystemen etablieren und ausbreiten 

konnten, in den letzten Jahren deutlich zugenommen. Ein möglicher Grund für den 

Invasionserfolg vieler Arten könnte deren hohe Resistenz gegenüber biotischen Stressoren, wie 

zum Beispiel Herbivorie, sein. Im Meer ist Epibiosis (auch etwas ungenauer als Aufwuchs oder 

Fouling bezeichnet), d.h. die Besiedlung lebender Oberflächen bzw. von Exoskeletten lebender 

Tiere durch sessile Organismen, ein häufiger Stressor und eine hohe Resistenz gegenüber 

Aufwuchs könnte den Invasionserfolg von eingeführten Arten zumindest in Teilen erklären.  

    Für die vorliegende Doktorarbeit habe ich eine vergleichende Studie mittels eines „common 

garden“ Ansatzes durchgeführt, um damit die Anfälligkeit gegenüber Epibiosis zwischen 

Individuen aus nativen und nicht-nativen Populationen der roten Makroalge Gracilaria 

vermiculophylla (ohmi) Papenfuss zu vergleichen. Gracilaria vermiculophylla kommt nativ im 

Nordwest-Pazifik vor und hat sich als invasive Art in weiteren Meeresgebieten auf der 

Nordhalbkugel ausgebreitet. Für das Vergleichsexperiment habe ich vier native G. 

vermiculophylla-Populationen (aus dem Gelben Meer und dem Nordwest-Pazifik) und fünf 

nicht-native Populationen (aus Europa: Nordsee, Ostsee und Ärmelkanal sowie eine Population 

aus Nordamerika: Nordost-Pazifik) beprobt. Um die Anfälligkeit dieser verschiedenen 

Populationen gegenüber Epibiosis zu vergleichen, wurden sowohl Labor- als auch 

Feldexperimente durchgeführt. In den Laborexperimenten wurde die Anzahl der 

Siedlungsereignisse von Diatomeen und Ceramium-Filamenten, beide sowohl aus dem nativen 

als auch aus dem nicht-nativen Verbreitungsgebiet von G. vermiculophylla, ermittelt. Dies 

geschah auf Oberflächen, die mit Extrakten aus G. vermiculophylla beschichtet wurden, sowie 

auf lebenden G. vermiculophylla-Individuen aus allen beprobten Populationen. Die Experimente 

wurden zusätzlich in verschiedenen Jahreszeiten wiederholt. In den Feldexperimenten wurden 

lebende Individuen von G. vermiculophylla, ebenfalls aus allen beprobten Populationen, einzeln 

in Dialysemembranschläuche eingeschlossen und an Standorten im nativen und nicht-nativen 

Verbreitungsgebiet der Art der natürlichen Besiedlung durch Epibionten ausgesetzt. Parallel zu 

den Feldexperimenten wurde an beiden Versuchsstandorten ein Monitoring durchgeführt, um 

die Abundanz und Zusammensetzung der mit G. vermiculophylla assoziierten 

Aufwuchsgemeinschaften zu erfassen. Darüber hinaus habe ich die Saisonalität in der Abwehr 

von Diatomeen und Ceramium durch G. vermiculophylla aus der Westlichen Ostsee untersucht 

und eine Korrelation zwischen der Stärke der Abwehr und dem vorherrschenden 

Besiedlungsdruck vorgenommen.  
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    Meine Studie hat gezeigt, dass der Besiedlungsdruck an den Standorten im nicht-nativen 

Verbreitungsgebiet signifikant höher war als an den Standorten im nativen Verbreitungsgebiet. 

Florideophyceae, z. B. Ceramium und Polysiphonia, sowie Ciliaten waren die häufigsten 

Aufwuchsorganismen im nativen Verbreitungsgebiet, während im nicht-nativen 

Verbreitungsgebiet Ciliata and Gymnolaemata am häufigsten auf G. vermiculophylla zu finden 

waren. Weiter habe ich gezeigt, dass lebende Thalli aus nicht-nativen Populationen bzw. 

Oberflächen, die mit Extrakten aus nicht-nativen G. vermiculophylla-Individuen beschichtet 

wurden, besser gegen die getesteten Aufwuchsorganismen (Diatomeen und Ceramium-

Filamente) verteidigt waren als solche aus dem nativen Verbreitungsgebiet. Dies war der Fall 

unabhängig davon woher die Aufwuchsorganismen stammten. Darüber hinaus stellte sich 

heraus, dass die Besiedlung der Membranschläuche, die mit Gracilaria-Individuen gefüllt 

wurden, durch Stoffe beeinflusst wurden, welche von innen durch die Membran diffundierten. 

An beiden Untersuchungsstandorten (im nativen und nicht-nativen Verbreitungsgebiet) waren 

die Dialysemembranschläuche, die nicht-native G. vermiculophylla enthielten, weniger 

besiedelt als die, die Individuen aus dem nativen Verbreitungsgebiet enthielten. Außerdem 

variierte die Resistenz von G. vermiculophylla gegenüber Bewuchs durch Diatomeen und 

Ceramium-Filamente deutlich mit den Jahreszeiten. Allerdings korrelierten nur die 

Schwankungen in der Aktivität von Dichloromethan (DCM)-Extrakten gegen Ceramium-

Filamente mit den gemessenen Fluktuationen im Besiedlungsdruck durch diese Alge. 

Gracilaria-Oberflächenextrakte, die mit Hexan hergestellt wurden, hatten einen negativen 

Effekt auf Diatomeen, während die Anheftung von Ceramium-Filamente durch Hexan und 

DCM-Extrakte reduziert wurde.  

    Dies ist die erste Studie, die die Resistenz gegenüber eukaryotischem Mikroaufwuchs und 

gegenüber Makroaufwuchs unter Labor- und Feldbedingungen zwischen nativen und nicht-

nativen Populationen einer  aquatischen Art verglichen hat. Weiter gibt diese Arbeit das erste 

Beispiel dafür, dass nicht-native Individuen einer aquatischen Art besser gegen Aufwuchs 

verteidigt sind als ihre nativen Artgenossen. Dies legt die Vermutung nahe, dass eine gesteigerte 

Abwehr gegen Aufwuchs den Invasionserfolg von G. vermiculophylla zumindest in Teilen 

erklären könnte. Zusätzlich zeigt diese Arbeit, dass die Stärke der chemischen Abwehr bei G. 

vermiculophylla mit den Jahreszeiten variiert und das verschiedene Verbindungen, mit 

unterschiedlichen Polaritäten, involviert sind. Der neue Ansatz Makroalgen in Dialyseschläuche 

einzuschließen, um sie der natürlichen Besiedlung an einem Standort auszusetzen, stellt einen 

einfachen, effizienten und verlässlichen Weg dar, um deren chemische Abwehr zu untersuchen 

und kann sicherlich auch auf andere Arten angewandt werden.  
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1. General Introduction 

An introduced species is defined as a species that has been introduced into geographic 

regions beyond its native range directly or indirectly through human activities. By this it 

overcame major geographical barriers, such as mountains, rivers and artificial canals, and 

has become successfully established in regions where it previously has been absent from 

(Boudouresque and Verlaque 2002, Williamson and Fitter 1996). An introduced species is 

considered invasive when it incurs or is likely to incur ecological and/or economic negative 

impacts (Williams and Smith 2007). However, it is difficult to predict/assess this, because 

most often studies are lacking that document the impacts of an introduced species in its new 

range. Identifying a species as invasive is therefore most often a subjective interpretation 

rather than an objective finding (Hammann 2014). 

    In this doctoral thesis, I will therefore use the term ‘non-native’ as a description for 

species that have been introduced to a new habitat through human activities and that also 

have established and spread in the new range, and will use the term ‘invasion’ as a 

description for this event. However, they do not necessarily mean that they so far also had 

negative consequences for the ecosystems to which they were introduced. 

    The amount of successful marine biological invasions worldwide increases exponentially, 

and approximately 20% of which are represented by macroalgae (Schaffelke et al. 2006). 

However, many marine non-native species cause severe ecological or economic impacts. 

Numerous studies have revealed that non-native species can have negative ecological 

consequences at both the species and the community levels. At the species level, for 

example, non-native species compete with native species for limited resources (e.g. light, 

nutrients and substrate), leading to reduced growth or reproduction of the native species 

(Thomsen et al. 2009). At the community level, non-native species can lead to changes in 

species richness, evenness and diversity (Crooks and Khim 1999). Economically, negative 

impacts can occur on local aquaculture, fisheries, marine infrastructure and tourism. For 

example, the introduced filamentous macroalgae foul on water intakes and underwater 

constructions, drifting macroalgal mats clog or even hamper fishing operations and decrease 

the recreational value of beaches and increase costs for cleanings (Freshwater et al. 2006, 

Sakai et al. 2001). To manage biological invasions and to alleviate their negative effects, the 

necessity to understand the mechanisms determining success or failure of such 
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anthropogenic introductions is a pressing task in invasion ecology (Hewitt et al. 2007, 

Schaffelke et al. 2006). 

1.1 The invasion process  

Introductions of species into new environments have been occurring for a long time and 

appear to occur with increased frequency in coastal regions of the world due to the fast and 

far-ranging transportation possibilities at the turn of the 20th to the 21st century (Carlton and 

Geller 1993). During the last two decades, there has been a surge of literature studying the 

success of introduced species and the patterns and processes behind biological invasions 

(Carlton 1996, Grosholz 2002, Mallon et al. 2015). 

    Carlton (1996) suggested six interrelated processes (changes in donor regions, emerging 

of new donor regions, changes in recipient region, occurrence of invasion windows, 

stochastic inoculation events, and dispersal vector changes) to understand the mechanisms 

behind biological invasions. The first process means that the donor region may change 

environmentally, which could lead to the fact that more populations increase in pre-existing 

species, such that more individuals would be available to interface with a transport 

mechanism (such as ballast water) or that local species expand into previously uninhabitable 

donor areas where they are then available for transport. Alternatively, the environment may 

not change, but a new species may become available for transport for the first time. This is, 

in essence, a 'hub and spoke' model, where a species enters a high-intensity transport hub 

potentially to be carried along a corridor to another transport hub, which lies at the end of the 

spoke - which in turn is another hub, and from which radiate out new corridors. The second 

process means that new donor regions become available due to new species with different 

adaptive capacities than previously-transported ones or new populations of already 

introduced species, but from other donor regions become available for transport. The third 

process means that any environmental change, such as a decline in water quality due to 

pollution in a recipient region can lead to altered ecological, biological, chemical, or physical 

states, and thus change the region’s susceptibility to invasions. Then, invasions occur when 

the proper combination of physical, chemical, biological, or ecological conditions occur to 

allow colonizing and permit the long-term establishment of reproducing populations. The 

fifth mechanism is the release of a large number of inoculants (adults, larvae, spores) into the 

recipient region what increases the potential reproductive success of the introduced species. 
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Finally, an increase in the size, the speed, and the quality of a vector, such as a ship, can lead 

to increased inoculant species diversity, increased inoculant species abundance or increased 

number of healthy and reproductive post-transport individuals. 

    Heger (2001) built a model of stages with which the invasion process can be visualized as 

a staircase. A species must overcome several steps (arrival in the new area, spontaneous 

establishment, permanent establishment and spreading in the new area) to advance from one 

stage to the next. Nyberg (2007) modified this model and suggested that the invasion process 

can be divided into three stages, i.e., introduction, establishment and invasion (Figure 1). The 

success of introduction largely depends on human activities, i.e. the species needs to be 

transported by a vector to a new area (Munro ALS 1999). To proceed from introduction to 

establishment, at least one individual of the introduced population must succeed to grow and 

reproduce independently in the new area. A species is regarded as established in the new 

area when they have developed a self-sustaining population (Boudouresque and Verlaque 

2002). Once established, the introduced species may spread naturally (e.g. by currents) or by 

human activities (Sakai et al. 2001). As said earlier, if the introduced species becomes 

abundant in the recipient region and has negative impacts on the environment and/or 

economy it is referred to as invasive (Nyberg and Wallentinus 2005). 

 

 

    Williamson and Fitter (1996) suggested a statistical regularity to predict the proportion of 

transported species that reach the different levels of the invasion process, i.e. ‘tens rule’, 

Figure 1. The different stages of the invasion process and the requirements to go from one stage to 

the next (Nyberg 2007). 

 



General Introduction 

4 

 

which states that, on average, 1 out of 10 of those that are transported become introduced, 1 

out of 10 those introduced become established, and that 1 out of 10 those established become 

invasive. Although it is generally agreed that as yet we can hardly ever predict the success of 

introduced individuals, there is no doubt that there are statistical regularities to invasions, 

while the suggested factors of the ‘tens rule’ has been critically discussed. 

1.2 Why do species become non-native? 

To manage biological invasions and to alleviate their negative effects, it is of high 

importance to understand the mechanisms that determine the success or failure of invasions: 

Why do certain species establish in new habitats successfully while others fail (Johnson and 

Chapman 2007)? Which factors facilitate the establishment and spread of introduced species 

in a new habitat (Hu and Juan 2014, Nyberg and Wallentinus 2009)? 

    In the marine environment, a large number of studies have revealed that the success of 

introduced species depends on a number of factors. For instance, most species establish in 

new suitable areas with similar climate and other abiotic conditions as their native regions 

(Wikström 2004); some species have a versatile reproductive strategy, a broad ecological 

tolerance and an enhanced resistance towards enemies (e.g. competitors, predators, fouling 

organisms and pathogens) what allows them to withstand adverse conditions in new regions 

with, e.g., climate and salinity regimes different from their native regions (Hu and Juan 

2014). 

    Hitherto, there is a variety of hypotheses that has been discussed to elucidate invasion 

mechanisms in terrestrial environments (Hierro et al. 2005, Joshi and Vrieling 2005), such as 

the enemy release hypothesis (ERH) (Keane and Crawley 2002), the evolutionarily increased 

competitive ability (EICA) hypothesis (Blossey and Nötzold 1995) and the novel weapons 

hypothesis (Callaway and Ridenour 2004). Some of these hypotheses have been tested and 

were supported also for the case of invasions by marine macroalgae. 

1.2.1 Resistance towards biotic and abiotic stressors 

Several studies have demonstrated that biotic stressors, such as grazing and fouling, can be 

determinant for macroalgal invasions (Hammann et al. 2013, Saha et al. 2016). Of these two 

stressors, grazing has been studied much more frequently. Originally, all these studies have 
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been done to compare the susceptibility of non-native and co-occurring native species only 

in the introduced range. For example, Weinberger et al. (2008) found that in the Kiel Fjord 

two local invertebrate grazers (Idotea baltica and Littorina littorea) clearly prefer Fucus 

vesiculosus, when it is present, over the non-native red macroalga Gracilaria 

vermiculophylla. Enge et al. (2012) reported that native generalist herbivores (e.g. Idotea 

granulosa and Gammarus locusta) from the Swedish west coast preferred native algae (e.g. 

Lomentaria clavellosa and Ceramium virgatum) over the non-native red macroalga 

Bonnemaisonia hamifera in pairwise feeding experiments. During the past decade, studying 

non-native species at a biogeographic scale in both their native and non-native ranges have 

been considered very crucial for understanding exotic species invasions and studies that 

investigated the relevance of herbivory for the invasion success of non-native species 

therefore have focused on comparisons of the effects of herbivory in both the native and the 

non-native range. For example, Wikström et al. (2006) revealed that the brown macroalga 

Fucus evanescens was a preferred host in its native range, and it was less preferred in its 

non-native range in laboratory choice experiments with generalist grazers - the isopod I. 

granulosa and the littorinid gastropod Littorina obtusata - than co-occurring native 

macroalgae. In addition, Hammann et al. (2013) showed that in no-choice feeding assays 

herbivorous snails from both, the native range in Asia (Littorina brevicula) and from the 

non-native range in Europe (L. littorea), consumed less non-native G. vermiculophylla 

populations than their native conspecifics. 

    Similar to herbivores, fouling organisms can also have the potential to determine the 

success or failure of macroalgal invasion. However, interactions between non-native 

macroalgae and resident fouling organisms have been very rarely studied. Comparison study 

by Strong et al. (2009) showed that in Strangford Lough, Northern Ireland, thalli of the non-

native brown macroalga Sargassum muticum were as heavily overgrown by seasonal blooms 

of ectocarpoid fouling as native macroalgal species. This suggests that non-natives are not 

always released from fouling. The observations made by Saha et al. (2016), who focused on 

seaweed-bacteria interactions, showed that non-native individuals of G. vermiculophylla are 

well defended against co-occurring bacteria from the invaded range but, at the same time, 

have a weakened capacity to defend against bacteria from the home range. The authors 

suggested that confrontation with new enemies during the invasion process may trigger a 

rapid defence adaptation in introduced seaweeds, which, in turn, could be a pre-requisite for 

invasion. 
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    The invasion success of macroalgae is also based on various physiological traits that 

mediate resistance against abiotic stress (Johnson and Chapman 2007), such as the ability to 

tolerate darkness, extreme temperatures, salinity fluctuations (Raikar et al. 2001), starvation 

(Nyberg and Wallentinus 2009), ultraviolet radiation (Roleda et al. 2012) and grazers 

(Weinberger et al. 2008). Wikström et al. (2002) found that in Swedish waters the non-native 

F. evanescens can survive and grow in a wide salinity range from 10 to 24 psu, while 

optimal salinities for marine organisms are between 30 and 35 psu. Hu and Juan (2014) 

reported that G. vermiculophylla can still survive at extreme temperatures such as 2 and 

35 ℃, while the optimum temperature range for its growth is from 11 to 30 ℃. In addition, 

they also reported that G. vermiculophylla is well adapted to low light conditions, which 

allow this seaweed to survive during transportation in dark condition, e.g. in ballast water. 

1.2.2 Mechanisms that facilitate invasion success 

The question remains why some species can invade successfully and which exact factors 

allow the spread and establishment of such non-native species. So far, various hypotheses 

have been put forward to address this question. 

    The Enemy Release hypothesis (ERH) states that when species are introduced into new 

habitats they are confronted with an abiotic and biotic environment that can be substantially 

different from the one they adapted to over evolutionary time scales. This may include the 

absence of antagonists, with which they co-evolved at their site of origin, while resident 

predators or parasites cannot use the newly introduced resource. As a consequence, non-

natives should have an advantage over indigenous species (Keane and Crawley 2002). 

    The Evolution of Increased Competitive Ability (EICA) hypothesis which is an expansion 

of ERH argues that non-native species which are released from their native enemies do not 

need to defend or, at least, do not need to invest as much energy into warding-off predators 

and parasites as in their home range. This would allow them to invest more energy into 

growth, reproduction or into the compensation of the effects of environmental stress. This 

should make them stronger competitors than the native species (Blossey and Nötzold 1995). 

    Along another lane of thought, the Novel Weapons hypothesis by Callaway and Ridenour 

(2004) suggests that non-native species should be less sensitive to enemies in the invaded 

habitat, because they possess new or stronger biochemical defence mechanisms than the 

species which are already living at the new site. 



General Introduction 

  

7 

 

    These hypotheses have already been examined in terrestrial systems with organisms such 

as spermatophytes and their feeding antagonists and competitors (Keane and Crawley 2002), 

but very little research has so far been conducted with marine species. More than this, as 

mentioned above, most studies on the interactions between non-native species and their 

enemies in terrestrial and aquatic systems considered only herbivores (Cappuccino and 

Carpenter 2005, Wikström et al. 2006), and less is known about resistance against fouling 

organisms, which only occur in aquatic systems. All hypotheses described above should also 

hold true for defences against fouling organisms and they are worth investigating, since 

putative differences in the defences against fouling organisms between non-native and native 

individuals and/or populations of the same species have so far been widely ignored. 

1.3 Marine epibiosis and its consequences for host macroalgae 

In the marine environment, in particular in benthic habitats which are located within the 

euphotic zone, competition for light, space, nutrients and other resources is high (Wahl 

1989) and sessile and even mobile organisms (‘basibionts’) are prone to colonization by 

other sessile life forms (‘epibionts’, ‘fouling organisms’ or ‘foulers’). The latter comprise 

many different taxa from both the animal (epizoan) and the plant (epiphyte) kingdom, such 

as invertebrates, epiphytic macroalgae, microalgae, protists and bacteria. This ubiquitous and 

facultative phenomenon of an association between epibionts and basibionts is known as 

epibiosis (Wahl 1989). 

    In some cases, associations between epibionts and basibionts can be beneficial to both of 

them (Egan et al. 2001). For instance, some epibiotic bacteria are known to mediate further 

colonization processes by microfoulers which contribute to the host alga’s protection system 

against macrofouling (Lachnit et al. 2009). Dobretsov and Qian (2002) isolated a Vibrio sp. 

strain from green macroalga Ulva reticulata that significantly inhibits the settlement and 

metamorphosis of polychaete larvae. Additionally, Nasrolahi et al. (2012) revealed that 

surface associated monospecies bacterial biofilms as well as natural microbial assemblages 

from the macroalga F. vesiculosus repelled barnacle larvae. However, in other cases, 

associations between epibionts and basibionts have been found to be disadvantageous for the 

host (Wahl 2008). For example, some bacteria are potential pathogens. Vairappan et al. 

(2001) showed that Alteromonas sp. isolated from the Japanese kelp Laminaria religiosa can 

cause the bleaching disease in this kelp species during spring. Furthermore, some epibionts 

could mechanically damage host tissues by anchoring and thallus penetration. For example, 
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Gonzalez and Goff (1989) found that the red epiphytic alga Microcladia coulteri penetrates 

the surface tissues of the brown alga Egregia menziesii. In addition, it has been reported that 

high densities of epibionts are harmful to macrophytic hosts because they reduce diffusion 

rates of oxygen, carbon dioxide and nutrients to the thallus and decrease the amount of light 

available for photosynthesis. They physically inhibit sporulation, decrease thallus flexibility, 

and increase the palatability of the thalli to herbivores (da Gama et al. 2008, Pereira et al. 

2003). For example, the epiphyte Polysiphonia lanosa reduced reproduction success of its 

host red macroalga Ascophyllum nodosum due to the physical blockage of receptacles 

(Kraberg and Norton 2007). Furthermore, epibiosis by the bryozoan Membranipora 

membranacea and by haplosclerid sponges increased the susceptibility of the red macroalga 

Cryptonemia seminervis to consumption by sea urchins and amphipods. This could be due to 

an increased nutritional value of fouled compared to clean algal tissue (da Gama et al. 2014). 

1.4 Antifouling mechanisms in macroalgae 

Since fouling organisms can have strong negative effects on macroalgal hosts, the latter 

should be selected for efficient physical or chemical defence that minimize colonization of 

their body surfaces by fouling organisms that confer these negative effects (da Gama et al. 

2014). 

    Periodical epithallus sloughing, the best known physical defence against epibionts, has 

been reported in numerous species of macroalgae, such as the brown alga Sargassum spp. 

(Yamamoto et al. 2013), the red alga Dilsea carnosa (Nylund and Pavia 2005), as well as the 

green alga Ulva intestinalis (McArthur and Moss 1977). Additionally, the covering of 

surfaces with gelatinous mucus that reduces adhesion strength is another common physical 

antifouling mechanism among brown, red and green macroalgae (Chapman et al. 2014). 

    It has been shown that green, brown and red macroalgae can chemically defend against 

surface colonization by the formation and emission of reactive oxygen species (ROS), 

commonly referred to as ‘oxidative burst’ (da Gama et al. 2014). For example, certain 

lipopolysaccharides (LPS) released by Salmonella arbotus equi can induce an oxidative burst 

in the brown macroalga Laminaria digitata which contributes to the host alga’s protection 

against epibacteria (Küpper et al. 2006). 



General Introduction 

  

9 

 

    In addition to this, metabolites have been isolated from macroalgae that deterred the 

settlement of fouling organisms, but most studies of this kind have focused on substances 

gained from whole-cell extracts (Amade and Lemée 1998). However, metabolites which are 

produced to reduce fouling must either be present on the surface of the algal host or must be 

released into the surrounding water at ecologically relevant concentrations (Nylund et al. 

2007). As a consequence, some studies focused only on antifouling activities in surface-

associated metabolites (Dworjanyn et al. 2006). For example, surface extracts of the red alga 

Delisea pulchra and the green alga Caulerpa filiformis inhibit the settlement of Polysiphonia 

sp. spores (Nylund et al. 2007). Studies with the brown alga F. vesiculosus identified polar 

and non-polar compounds gained from the alga’s surface that have the potential to control 

epibiotic biofilms (Saha et al. 2011, 2012). Rickert et al. (2015) showed that surface-

extracted metabolites from the brown algae F. vesiculosus and Fucus serratus deter the 

larval settlements of the barnacle Amphibalanus improvisus and the bivalve Mytilus edulis. 

1.5 Seasonality in macroalgal antifouling defences 

Seasonal fluctuations in the concentrations of bioactive antifouling metabolites (Amade and 

Lemée 1998) and in the antifouling defence strength in macroalgae have already been 

documented in several species (Hellio et al. 2004, Maréchal et al. 2004, Rickert et al. 2015). 

For instance, concentrations of caulerpenyne, which is the major antifouling secondary 

metabolite in the green alga Caulerpa taxifolia, is regulated by light intensity and water 

temperature (Amade and Lemée 1998). Further, previous studies on F. vesiculosus revealed 

that anti-settlement activities of surface extracts against microfouling vary seasonally (Saha 

and Wahl 2013, Wahl et al. 2010). If the production of active chemical compounds 

consumes energy that is then not available for other life processes (Dworjanyn et al. 2006), 

defence strength should vary with seasonal shifts in abiotic factors such as light intensity and 

water temperature (Lehvo et al. 2001) and with shifts in biotic factors such as grazing and 

fouling pressure (Rickert et al. 2015, Schauer et al. 2003). In temperate marine 

environments, fouling pressure and also the composition of the establishing fouling 

communities can vary seasonally (Wahl et al. 2010). It has been repeatedly suggested that 

the actual fouling pressure acts as a driving force in regulating fouling resistance (Hellio et 

al. 2004, Maréchal et al. 2004, Rickert et al. 2016). However, only few studies have directly 

related algal antifouling defences to the in situ fouling pressure. For example, Maréchal et al. 

(2004) showed that the antifouling activity of whole-cell extracts gained from the brown alga 
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Bifurcaria bifurcata against cypris larvae of the barnacle Balanus amphitrite fluctuated with 

season and reached a peak in in summer corresponding to the maximum in fouling pressure. 

Furthermore, Rickert et al. (2016) showed that in F. vesiculosus and F. serratus the activity 

of surface extracts against microfouling varied with season and was tend to be in phase with 

fluctuations in the fouling pressure exerted by microfouling. 

1.6 Study species: the non-native macroalga Gracilaria 

vermiculophylla 

The perennial red macroalga Gracilaria vermiculophylla (ohmi) Papenfuss is an important 

agar producing economic seaweed. In some countries, it is cultivated in industrial 

mariculture for agar production and can is also consumed by humans (Sánchez-Machado et 

al. 2004, Villanueva et al. 2010). This seaweed originates from the Northwest Pacific (Tseng 

and Xia 1999). During the last three to four decades it has invaded coastal areas in a) the 

eastern Pacific, such as California, Mexico and British Columbia, Canada (Bellorin et al. 

2004, Saunders 2009), b) the western Atlantic, such as the coasts of the US states Virginia, 

North Carolina and New England (Freshwater et al. 2006, Thomsen et al. 2006) and c) the 

eastern Atlantic, such as France, Spain, Portugal, Germany, and Sweden (Guillemin et al. 

2008, Weinberger et al. 2008), and can now be found in a considerable proportion of coastal 

habitats on the northern hemisphere. This species can grow in different kinds of habitats, 

including the intertidal zone, the upper subtidal, soft bottom sediments and hard substrata 

(small stones, shells, mussels) (Nyberg 2007). It is irregularly branched, with three to four 

Figure 2. The perennial red macroalga Gracilaria vermiculophylla in Kiel, Germany (non-native 

range) (left), and in Qingdao, China (native range) (right). 
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orders of branches and can reach a size from 10 cm to 1 m in length. Its colour varies from 

purplish brown to dark brown and sometimes to greenish or yellowish (Tseng and Xia 1999) 

(Figure 2).  

    Gracilaria vermiculophylla has been placed among the four most potent invaders out of 

114 non-native macroalgal species that occur in Europe (Nyberg 2007). This ranking goes 

back to the assessment of 13 species traits that presumably serve to facilitate dispersal and 

establishment of introduced species as well as to aggravate their ecological impacts (Nyberg 

and Wallentinus 2005). 

    During the last years, G. vermiculophylla has proven to be a particularly suitable marine 

model organism for tests of ecological theories that are related to invasion ecology. For 

example, it has been demonstrated that the invasion process of this species was associated 

with a severe loss in genetic diversity in the non-native populations (Kim et al. 2010), which, 

however, proved to be more resistant towards herbivory (Hammann et al. 2013, 2016) and 

heat stress (Hammann 2014). 

    Other empirical studies revealed that further species traits, such as a versatile reproductive 

strategy and the ability to grow also detached from a substratum, are important factors that 

promote successful invasions in G. vermiculophylla. For instance, this alga has an 

isomorphic life cycle and can reproduce sexually and asexually (vegetative fragmentation). It 

shows a rapid growth from germling (a visible cystocarp formation after 18 days and 

carpospores release after 35 days) to sexual maturity (dioecious gametophyte mature after 

three to four months) (Hu and Juan 2014, Rueness 2005). In natural habitats, a fragmentation 

of this alga even as small as 1 mm can survive and reproduce after detachment. 

1.7 Thesis outline 

The aim of the present thesis is to investigate whether individuals from native and non-native 

populations of a marine plant species differ in their susceptibility to fouling. In my study, I 

used the macroalga G. vermiculophylla as a model organism. Since seaweeds are exposed to 

fouling by invertebrates, epiphytic macroalgae, microalgae, protists and bacteria and since 

differences in the colonizer pools between the sea areas studied in here are well documented 

for invertebrates, macroalgae and microalgae, but not for protists and bacteria, I focused on 

the first three groups of fouling organisms. 
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    In common garden experiments, I examined whether fouling rates and the compositions of 

the establishing fouling communities on the algal thalli generally differ  

a) between individuals from native and non-native populations of G. 

vermiculophylla,  

b) between the native and non-native distributional range of G. vermiculophylla and  

c) between different seasons.  

    Therefore, both laboratory and field fouling experiments were performed.  

    Algal material from five non-native and four native populations was collected for this 

study. The five non-native populations were located in Northern Germany (Kiel and 

Nordstrand), Western France (Belon and Pouldouran) and in Western Canada (Port Moody), 

while the four native populations were located in Eastern China (Qingdao and Rongcheng in 

the Shandong region) and Japan (Akkeshi and Tokyo).  

    All experiments were carried out in the native range (Rongcheng/China or Akkeshi/Japan) 

as well as in the non-native range (Kiel/Germany) of this alga. 

    Both living thalli and surface extracts from G. vermiculophylla were tested in laboratory 

experiments, which compared the frequency of attachment events of epiphytic diatoms and 

Ceramium filaments on individuals from native and non-native populations of G. 

vermiculophylla. These assays were conducted in a) Kiel, Germany and b) Rongcheng, 

China in different seasons. Both types of micro- and macrofoulers were collected in Kiel and 

in Rongcheng (Paper I). 

    In parallel, living thalli from all G. vemiculophylla populations, which were enclosed in 

tubes made of dialysis membrane, were exposed for two to three weeks to natural fouling in 

a) Kiel Fjord, Germany and b) Akkeshi Bay, Japan. The new technique of enclosing G. 

vermiculophylla in dialysis membrane tubes was applied to prevent Gracilaria spores or 

alga-associated microorganisms from entering the water column and to evaluate the 

relevance of chemical compounds for the antifouling defence system of G. vermiculophylla. 

In addition to these field fouling experiments, living algal thalli and inert surfaces were 

repeatedly submerged at sites in both distributional ranges of G. vermiculophylla to quantify 

regional fouling pressure during the experiments (Paper II). 
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    In the laboratory experiments conducted in this study, antifouling defences in G. 

vemiculophylla individuals from all tested populations, regardless of their origin, were 

observed to differ in strength between summer and autumn. Thus, a further study was 

conducted to test whether the seasonal fluctuations in the antifouling activity of this alga 

correlate with the prevailing fouling pressure in the field. For this, surface extracts from 

monthly collected G. vermiculophylla in the Kiel Fjord were used in laboratory settlement 

assays with the diatom Stauroneis constricta and the red alga Ceramium tenuicorne, which 

both stem from the same site. During the same time period, living thalli and inert surfaces 

were submerged in the Kiel Fjord once a month to record natural fouling pressure (Paper 

III). 

All these were done to answer the following questions: 

    1. What species can be found in the natural fouling consortia that establish on G. 

vermiculophylla in its native and its non-native range? Do these assemblages generally differ 

in diversity and biomass? (Paper II) 

    2. Do native and non-native populations of G. vermiculophylla differ with respect to their 

susceptibility to fouling? (Paper I and II) 

    3. Does the strength of antifouling defences in G. vermiculophylla vary with season and 

do seasonal fluctuations in the strength of antifouling defences correlate with fouling 

pressure? (Paper I and III) 
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Anti-epiphyte defences in the red seaweed Gracilaria 

vermiculophylla: non-native algae are better defended than their 
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, Dapeng Bian

3
, Masahiro Nakaoka

4
 and 

Mark Lenz
1 

 

1
Department of Benthic Ecology, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 

24105, Kiel, Germany; 
2
College of Marine Life Sciences, Ocean University of China, 
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Summary  

1. Epibiosis in the marine environment is a stressor that may determine invasion success in 

introduced species. Previous comparisons showed resistance to epibionts can be higher in 

non-native than in resident seaweed species, but we do not know whether it is an intrinsic 

trait of the non-natives or it has been acquired during the invasion process. To elucidate this 

question, a comparison between native and non-native populations of the same species is 

needed.  

2. Resistance against two groups of epiphytes was assessed in living thalli and in artificial 

substrata coated with surface extracts, both gained from four Asian (native) and four 

European (non-native) populations of the red alga Gracilaria vermiculophylla. Two diatom 

species and two filamentous macroalgae were used as micro- and macro-epiphytes, and one 

of each type was collected in Asia, while the other came from Europe. Laboratory assays 

were done in both distributional ranges of G. vermiculophylla and in different seasons. We 

used G. vermiculophylla from four populations in each range and used a fully-crossed design 
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with the factors a) ‘Origin of Gracilaria’, b) ‘Origin of epiphytes’, c) ‘Season’ and d) 

‘Solvent used for extraction’.  

3. Both groups of epiphytes, regardless of their origin, attached  less to living thalli and to 

surface extracts from non-native G. vermiculophylla. Fewer diatoms attached to hexane-

based extracts, while fewer Ceramium filaments settled on extracts gained with 

dichloromethane.  

4. Synthesis. Our results show for the first time that non-native individuals of a marine 

organism are better defended against epiphytes than native conspecifics. Furthermore, we 

found evidence that at least a part of the defence is based on extractable secondary 

metabolites. We discuss several mechanisms that could explain the increased resistance to 

epiphytes in non-native individuals, including the release from enemies in the non-native 

range, which could lead to an increase in algal performance during the invasion process. We 

suggest that an enhanced defence against epiphytes after introduction is one reason for G. 

vermiculophylla’s invasion success. Our observation may also apply to other basibiont-

epibiont and host-enemy systems, including plant-plant, plant-animal and animal-animal 

interactions, in aquatic environments and could be a key feature of bioinvasions. 

 

Keywords: anti-fouling, biological invasions, chemical defence, Enemy Release 

Hypothesis, epiphytes, fouling, Gracilaria vermiculophylla, invasion ecology, non-native 

seaweeds 

 

Introduction 

Biological invasions are an important component of global change (Mack et al. 2000; 

Ricciardi 2007) and can cause severe ecological or economic problems by altering local 

biodiversity and affecting the services of ecosystems (Pimentel, Zuniga & Morrison 2005; 

Williams & Smith 2007; Vilà et al. 2011; Newton et al. 2013; Paini et al. 2016). Therefore, 

bioinvasions in the aquatic and terrestrial realm are receiving attention by scientists, 

authorities and environmental managers worldwide (Torchin & Mitchell 2004; Olenin et al. 

2014). This growing awareness is needful, since the number of successful invasions is rising 

rapidly. In the marine environment, for instance, it increases exponentially and about 20% of 

the invasions are due to the spread of macroalgae (Schaffelke, Smith & Hewitt 2006).  
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    To manage invasive species and to alleviate their negative effects, it is necessary to 

understand the mechanisms that determine the success or failure of invasions: Why do 

certain species invade new habitats successfully while others fail? Which factors allow the 

establishment and spread of introduced species? Currently, several hypotheses suggest 

explanatory concepts for these questions. Among them, the Enemy Release Hypothesis 

(ERH) is one of the most well-known (Keane & Crawley 2002). It states that when species 

are introduced into new habitats they are confronted with an abiotic and biotic environment 

that can be substantially different from the one they adapted to over evolutionary time scales. 

If co-evolved antagonists are absent in the new habitat and resident predators or parasites 

cannot recognise the newly introduced species as a resource, a release of the introduced 

species results from enemy control (Vermeij et al. 2009; Cacabelos et al. 2010). 

Furthermore, the Evolution of Increased Competitive Ability Hypothesis (EICA), which is 

an extension of the ERH, argues that non-native species that are released from their native 

enemies do not need to defend at all or, at least, less than in their home range. This release 

would allow them to invest more energy into growth, reproduction or into tolerating 

environmental stress (Hierro, Maron & Callaway 2005; Joshi & Vrieling 2005; Lenz et al. 

2011), what, in turn, should make them competitively superior to native species (Blossey & 

Nötzold 1995; Müller-Schärer, Schaffner & Steinger 2004). Finally, the “Novel Weapons”-

hypothesis by Callaway and Ridenour (2004) suggests that non-native species should be less 

susceptible to resident enemies than native ones, because they possess biochemical defence 

mechanisms to which native antagonists have not adapted to so far. 

    Most if not all marine organisms are prone to colonization by sessile life forms 

(epibionts), including bacteria, protists, microalgae, macroalgae and invertebrates. This 

phenomenon is known as epibiosis and it can severely impair the performance of the host 

organisms (basibionts) (Wahl 2008; Thomsen et al. 2012). It has been reported that epibionts 

can affect the growth and survival of macroalgal hosts by a) limiting the uptake of oxygen, 

carbon dioxide and nutrients through the thallus surface, b) reducing the amount of light 

available for photosynthesis, c) physically inhibiting sporulation, d) decreasing thallus 

flexibility, and/or e) increasing the palatability of the thallus (Wahl, Hay & Enderlein 1997; 

Hemmi et al. 2005). Macroalgae therefore need physical or chemical defences to minimize 

colonization of their surfaces. 

    All the hypotheses described above should also hold true for host-epibiont interactions, 

but have so far been widely neglected as a factor determining invasion success. So far, 

studies that tried to elucidate the relevance of host-enemy interactions for biological 



Paper I 

24 

 

invasions mainly focused on non-native spermatophytes and their antagonists as well as their 

competitors in terrestrial systems (Keane & Crawley 2002; Verhoeven et al. 2009), while 

less research has been done on marine species (Wikström et al. 2006). Furthermore, most 

studies on non-native species - resident enemy interactions in marine systems considered 

herbivory (Wikström et al. 2006; Forslund, Wikström & Pavia 2010; Engelen et al. 2011; 

Hammann et al. 2013), while little is known about the interactions between non-native 

basibionts and resident epibionts (Strong, Maggs & Johnson 2009; Baer & Stengel 2014). A 

comparison between the non-native brown alga Fucus evanescens and the native Fucus 

vesiculosus in Swedish waters revealed that resistance to epibiosis was higher in the non-

native species (Wikström & Kautsky 2004; Wikström & Pavia 2004). However, we lack 

knowledge whether this difference is based on species-specific traits or whether resistance to 

epibiosis can be gained during the invasion process. This could, for instance, be due to the 

release from other enemies that would allow the allocation of energy to defences against 

epibionts.  

    To elucidate whether non-native seaweed species are better defended against epibionts 

than their native conspecifics, we compared the susceptibility to epiphytism by microalgae 

and macroalgae between native and non-native populations of the red macroalga Gracilaria 

vermiculophylla. This perennial seaweed originates from the Northwest Pacific but during 

the last four decades it invaded many coastal habitats in the eastern Pacific (Bellorin, 

Oliveira & Oliveira 2004), the eastern Atlantic (Rueness 2005) and the western Atlantic 

(Freshwater et al. 2006; Thomsen et al. 2006) and the Mediterranean Sea (Sfriso et al. 2012). 

Gracilaria vermiculophylla has proven to be a particularly suitable marine model organism 

for the testing of theoretical concepts that predict the causes or consequences of biological 

invasions. It has, for example, been demonstrated that non-native populations of this species 

have a much lower genetic diversity than native populations (Kim, Weinberger & Boo 

2010), while, nonetheless, the former proved to be more resistant towards herbivory 

(Weinberger et al. 2008; Rempt et al. 2012; Hammann et al. 2013; Hammann et al. 2016) 

and heat stress (Hammann 2014). These findings shed light on potential reasons for the 

invasion success of G. vermiculophylla and stimulated curiosity about how this seaweed 

interacts with epibionts in its non-native range. 

    Putative differences in the resistance against micro-epiphytes between native and non-

native populations of G. vermiculophylla have been studied for bacteria (Saha et al. 2016), 

while we are not aware of studies that were done with eukaryote micro-epiphytes and macro-

epiphytes. We conducted common garden experiments, i.e. individuals of G. 
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vermiculophylla from different geographic ranges were transplanted into a common 

environment, with G. vermiculophylla from Asia and Europe and with micro- and macro-

epiphytes coming from the macroalga’s native and non-native range.   

Materials and methods 

Collection of Gracilaria vermiculophylla and of epiphytes 

Algal individuals were collected from four native and four non-native populations (Table 1). 

Sampling was conducted three times: from May to June and again from August to September 

2014 as well as from June to July 2015. Laboratory experiments were conducted in June 

(summer) and in October (autumn) 2014 at the Helmholtz Centre for Ocean Research at 

Kiel, Germany, and in September (autumn) 2014 at the Xunshan Group Co., Ltd, 

Rongcheng, China, as well as in July (summer) 2015 at the Akkeshi Marine Station, 

Akkeshi, Japan (Table 2). Prior to experiments, living algal specimens from all sampling 

sites were transferred to the respective laboratory and kept under laboratory conditions for at 

least one week to allow them to recover from the transport (see Appendix S1 in Supporting 

Information for details). 

    Two pennate diatom species of the genus Stauroneis were isolated from individuals of G. 

vermiculophylla that were collected in Rongcheng and in the Kiel Fjord, respectively. 

Individuals of Ceramium tenerrimum were collected in Rongcheng, while specimens of 

Ceramium virgatum stem from Kiel Fjord (see Appendix S2 for details). 

Algal surface extraction 

Before the extraction procedure, adherent water was removed from the algal thalli in a 

centrifuge (Eppendorf 5810 R) with 200 rpm for 30 s. Surface associated metabolites were 

extracted from 80 g algal wet mass using the ‘dipping technique’ (de Nys, Dworjanyn & 

Steinberg 1998; Nylund et al. 2007), by dipping the algal individuals into a stirred mixture of 

dichloromethane (DCM) and hexane 1:4 (v/v) for 5 s. This procedure was benign and was 

chosen after different mixtures of solvents and dipping times were tested with regard to their 

effects on the survival of epidermal cells which was verified with Evan’s blue (Figure S1). 

This was done to make sure that any damaging of cell walls, which could have led to the 

leaching of non-surface compounds, was avoided. The resulting solution was immediately 

filtered through a paper filter (Macherey Nagel, 185 mm in diameter) to remove particles and 
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Table 2. Overview of the locations and timing over the attachment assays with Gracilaria 

vermiculophylla and different epiphytes. 

 
Epiphytes Assays after first 

sampling 

Assays after second 

sampling 

Assays after third 

sampling 

Diatoms from Rongcheng Kiel,  

11.06.2014 

Kiel,  

24.10.2014 

Akkeshi, 20.07.2015 

Diatoms from Kiel Kiel,  

11.06.2014 

Kiel,  

24.10.2014 

 

Ceramium tenerrimum 

from Rongcheng 

Rongcheng, 

30.09.2014 

Rongcheng, 

30.09.2014 

 

Ceramium virgatum 

from Kiel 

Kiel,  

10.06.2014 

Kiel, 

23.10.2014 

 

 

the solvents were then evaporated under vacuum at 30 °C. The residue was re-dissolved in 

hexane to exclude non-polar compounds and this step was repeated until the hexane 

appeared colourless. The residue that remained after this first extraction step was then re-

dissolved in DCM to extract existing polar components. Finally, 4 ml of both extracts were 

collected and stored at -20 °C. 

Extracted surface area 

To identify the extracted surface area, the relationship between algal surface area and algal 

wet weight was determined. Ten algal fragments, taken haphazardly across all populations, 

were carefully dried with paper and then scanned and weighed. The imaging software Image 

J (National Institute of Health, Bethesda, Maryland, USA) was used to analyze the surface 

area of each fragment. The algal thallus was viewed as a cylinder, so the projection area = 

thallus diameter × thallus length. The surface would then be = π × thallus diameter × thallus 

length = π × projection area. We identified the average surface area per g algal material 

across all ten fragments as 46.06 ± 2.8 cm
2 

g
-1

 (mean ± SD). The total extracted surface area 

was 80 g * 46.06 ± 2.8 cm
2 
g

-1
 = 3684.8 ± 224 cm

2
. 

Defence capacity against diatoms in living Gracilaria vermiculophylla thalli   

We combined living thalli of G. vermiculophylla from both ranges (native and non-native) 

with diatoms from Kiel as well as Rongcheng, respectively. For each basibiont-epibiont 

combination, six fragments of 2 cm were cut from six randomly chosen algal individuals (n 

= 6) and were placed separately into the wells of a 6-well plate (Standard, Sarstedt AG & 
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Co.) together with 3 ml of a homogenized diatom suspension per well. The covered plate 

was then incubated for 3 h. A pilot study was done with different incubation periods (3 h, 5 h 

and 6 h), but diatom attachment did not increase any further after 3 h (Table S1). During 

incubation the plates were placed on a rotary shaker (100 rpm) that served to gently 

homogenize the suspension. Afterwards, each algal fragment was rinsed with 3 ml of sterile 

seawater. Algal pieces were then transferred to tubes containing 50 ml of sterile seawater and 

all attached diatoms were extricated by shaking the tube with a vortex shaker for 3 min. The 

shaken-off diatoms were collected on polycarbonate filters (0.2 µm pore size, 25 mm in 

diameter), which were then inspected under a fluorescence microscope and photographed. 

The photos were later used to assess the number of diatoms per algal fragment. The tested 

algal area was determined by scanning the fragments afterwards and quantifying their 

surface area with Image J. 

Defence capacity against Ceramium sp. in living Gracilaria vermiculophylla thalli    

The majority of studies about the attachment of epiphytes or epizoans to hosts focused on 

colonization by microscopic propagules and spores, which are the mobile stages of the 

otherwise sessile epibionts. However, vegetative thalli of Ceramium sp. can directly attach or 

penetrate into the host by the formation of hapteria (Leonardi et al. 2006; Lion et al. 2006; 

Michetti et al. 2016). We therefore conducted assays with C. tenerrimum and C. virgatum 

with filaments of these algae and organized them in the same way as the diatom trials 

described in the previous paragraph. For this, ten algal individuals per population of G. 

vermiculophylla were used (i.e. n = 10 per basibiont-epibiont combination). From each of 

these ten replicates we cut a fragment of 2 cm, while a Ceramium filament of the same 

length was then bound to G. vermiculophylla using colored paper clips. This was done to 

shorten the distance between the fragments and by this to increase the likelihood of 

attachment. These pairs were put into Petri dishes containing 30 ml of the modified culture 

medium of Provasoli’s enriched seawater (PES) (Bold & Wynne 1978). The covered Petri 

dishes were incubated for two weeks and attachment rates were quantified after this time. 

Chemical defence capacity against diatoms in Gracilaria vermiculophylla surface 

extracts    

These assays were organized in the same way as the ones with living thalli. For the assays 

with extracts we used an extract concentration that was five times higher than the natural 

surface concentration. This was done to compensate for the possible degradation and 
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incomplete extraction of active compounds. In one cylindrical well of a 96-well plate (flat 

bottom, Greiner bio-one), 100 µl of both, DCM and hexane, cover a total surface area of 94 

mm². Thus, 5.1 µl of surface extracts and 94.9 µl of pure solvent were then pipetted into each 

well to cover the aspired wall area. Wells loaded with pure DCM and hexane were later used 

as controls. Solvents were then evaporated overnight in a freeze-dryer. After this, 100 µl of 

the homogenized diatom suspension were transferred into the wells. Four wells of each 

experimental group received extracts and diatoms, while four wells received extracts only to 

check for extract background fluorescence. Control wells were treated in the same way. 

Afterwards, the covered 96-well plate was incubated for 3 h and then each well was rinsed 

with 200 µl of sterile seawater. Finally, fluorescence intensity per well was measured and the 

number of diatoms per well was calculated from fluorescence intensity by using the linear 

function that was established in a pilot study (Appendix S3, Figure S2). 

Chemical defence capacity against Ceramium sp. in Gracilaria vermiculophylla surface 

extracts    

These assays were organized in the same way as the ones with living thalli. In a 6-well plate, 

120 µl of solvent can cover the total surface area of the bottom of one well. A paper filter 

(Carl Roth, 3.5 cm in diameter) was put into each well to avoid erosion by solvents. For 

applying a fivefold natural surface concentration, 52 µl of surface extracts and 68 µl of pure 

solvent were then pipetted into each well, while we had five wells per population. Some 

wells received pure DCM or hexane and served as controls. The solvent was then evaporated 

overnight in a freeze-dryer. After that, 5 ml of PES medium and ten Ceramium filaments (1 

cm) were transferred to each well. The covered 6-well plate was then incubated for two 

weeks. Afterwards, the proportion of Ceramium filaments that attached to the paper filter 

was quantified. 

Statistical analyses 

All statistical and graphical analyses were done using the free statistical computing software 

R (R Development Core Team 2014). We used mixed effect-modelling to analyze the data 

from our multifactorial experimental approach. In case of the assays with living thalli, our 

experimental design included three fixed factors: 1) ‘Origin’ with the levels ‘Native’ and 

‘Non-native’ (i.e. origin of Gracilaria), 2) ‘Diatom’ / ‘Ceramium’ with the levels ‘China’ 

and ‘Germany’ (i.e. origin of epiphytes), and 3) ‘Season’ with the levels ‘Summer’ and 

‘Autumn’ (i.e. the time of the experiment). In the assays with surface extracts we had one 
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more fixed factor: ‘Solvent’ with the levels ‘DCM’ and ‘hexane’. In all analyses, the algal 

sampling sites were included as a random factor, while the two types of epiphytes 

(diatoms/Ceramium) were analyzed separately. To achieve homogeneity of variances and 

normality of errors, data from the assays with diatoms and living thalli were square root 

transformed and data from the assays with diatoms and surface extracts were log-

transformed. However, homogeneity of variances could not be achieved for all factors. We 

therefore included weights for ‘Season’ and ‘Diatom’ to account for the differences in the 

variance structures between their factor levels in the modelling. For this we used the varIdent 

function of the nlme package in R (Zuur et al. 2009). Test assumptions were checked 

graphically with residual plots (Zuur, Ieno & Elphick 2010). In addition, a mixed effect-

modelling, with the factors ‘Origin’, ‘Diatom’ / ‘Ceramium’, ‘Season’ and ‘Material’(i.e. 

thalli and surface extracts), was used to analyze the data from the two assays with diatoms 

and from the two assays with Ceramium sp., respectively, in a common approach (see results 

in Table S2, S3). To achieve homogeneity of variances and normality of errors, data from the 

two assays with diatoms were square root transformed. 

Results 

Defence capacity against diatoms in living Gracilaria vermiculophylla thalli   

After 3 h of exposure to colonization by diatoms, a three-way-interaction among the factors 

‘Diatom’, ‘Origin’ and ‘Season’ was observed: Fewer diatoms from Rongcheng attached to 

non-native than to native G. vermiculophylla in autumn, and this difference was less 

pronounced in Summer and less observed with diatoms from Kiel in both seasons (Fig. 1, 

Table 3). For both diatom species, fewer cells (by 60% less) attached
 
to non-native than to 

native G. vermiculophylla individuals (Fig. 1, Table 3) and only 4% of the unexplained 

variation was found to be covered by the random factor ‘Site’. Furthermore, for both diatom 

species, settlement rates were on average by 66% lower in summer than in autumn.  

Table 3. Influence of season, origin of Gracilaria vermiculophylla and origin of diatoms on 

the attachment rates of diatoms on living thalli. Results from mixed-effect modelling. 

 

 

 

   

Source of variation numDF denDF F - value p - value 

Season 1 220 283.691 <.0001 

Origin 1 6 138.724 <.0001 

Diatom 1 220 24.636 <.0001 

Diatom:Origin 1 220 4.429 0.0365 

Diatom:Season 1 220 2.047 0.1540 

Origin:Season 1 220 40.930 <.0001 

Diatom:Origin:Season 1 220 11.439 0.0009 
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Averaged across the two seasons, diatoms from Kiel settled by 21% less often on G. 

vermiculophylla thalli than their congeners from Rongcheng (Fig. 1, Table 3).  

 

 

Defence capacity against Ceramium sp. in living Gracilaria vermiculophylla thalli    

After two weeks of colonization by Ceramium filaments there was an interaction between 

‘Ceramium’ and ’Origin’ (Fig. 2, Table 4). Ceramium virgatum (from Kiel, Germany) 

attached less to non-native than to native G. vermiculophylla, while this difference was less 

pronounced in C. tenerrimum (from Rongcheng, China). An interaction between ‘Ceramium’ 

and ‘Season’ also emerged since attachment rates of C. tenerrimum differed between autumn 

and summer, while this was not the case for C. virgatum (Fig. 2, Table 4). Filaments of both 

Ceramium species attached, on average, by 33% less often to non-native than to native  

 

Table 4. Influence of season, origin of Gracilaria vermiculophylla and origin of Ceramium 

on filament attachment rates on living thalli. Results from mixed effect-modelling.   

 
Source of variation numDF denDF F - value p - value 

Season 1 20 8.4325 0.0088 

Origin 1 6 30.5134 0.0015 

Ceramium 1 20 2.1081 0.1620 

Ceramium:Origin 1 20 13.1757 0.0017 

Ceramium:Season 1 20 75.8923 <.0001 

Origin:Season 1 18 2.2500 0.1510 

Ceramium:Origin:Season 1 18 0.5625 0.4629 

Fig. 1. Colonization of living thalli of native and non-native Gracilaria vermiculophylla by 

diatoms from both origins. Assays were run in summer and autumn 2014 and in summer 

2015. Means and 95% CIs, n = 24–48 in each group. 
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G.vermiculophylla specimens (Fig. 2, Table 4). In this case, 37% of the unexplained 

variation was covered by ‘Site’. Furthermore, attachment rates, averaged across both 

Ceramium species, were by 10% lower in autumn than in summer, while they, when 

averaged across both seasons, did not differ between the two Ceramium species (Fig. 2, 

Table 4).  

Chemical defence capacity against diatoms in Gracilaria vermiculophylla surface 

extracts 

The results from this assay are generally in accordance with those of the diatom trials with 

living thalli. After exposing the surface extracts to diatom settlement for 3 h, an interaction 

among the factors ‘Solvent’, ‘Diatom’ and ‘Season’ was observed: Attachment rates of 

diatoms from Kiel on surfaces coated with DCM-based extracts were lower in summer than 

in autumn, but no such difference was observed on surfaces coated with hexane-based 

extracts or with diatoms from Rongcheng on any coated surfaces (Table 5). Additionally, 

fewer diatoms attached (by 9% less) to surfaces coated with extracts from non-native than 

from native G. vermiculophylla (Figs 3 and 4, Table 5) and only 2% of the unexplained 

variation was covered by ‘Site’. In general, diatom settlement rates were again by 22% lower 

in summer than in autumn (Figs 3 and 4, Table 5). Interestingly, different from the assays 

with living thalli, diatoms from Kiel settled two times more often than diatoms from 

Rongcheng (Fig. 3, Table 5). Moreover, we found fewer diatoms (by 4% less) attached to 

Fig. 2. Colonization of living thalli of native and non-native Gracilaria vermiculophylla by 

Ceramium from both origins, C. virgatum from Germany and C. tenerrimum from China. 

Assays were run in summer and autumn 2014. Means and 95% CIs, n = 40 in each group. 
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surfaces covered with non-polar compounds (extracted with hexane) than to those coated 

with polar compounds (extracted with DCM) (Fig. 4, Table 5).  

Fig. 3. Colonization of surface extracts from native and non-native Gracilaria vermiculophylla 

by diatoms from both origins. Assays were run in summer and autumn 2014. Means and 95% 

CIs, n = 32 in each group. The horizontal lines indicate mean colonization rate on controls, 

which were without extracts (n = 8). 

Fig. 4. Colonization of DCM and hexane surface extracts from native and non-native Gracilaria 

vermiculophylla by diatoms from both origins. Assays were run in summer and autumn 2014. 

Means and 95% CIs, n = 32 in each group. The horizontal lines indicate mean colonization rate 

on controls, which were without extracts (n = 8). 



Paper I 

34 

 

Table 5. Influence of season, solvent, origin of Gracilaria vermiculophylla and origin of 

diatoms on the attachment rates of diatoms on surface extracts. Results from mixed effect-

modelling.   

 
Source of variation numDF denDF F - value p - value 

Season 1 238 283.0 <.0001 

Solvent 1 238 17.4 <.0001 

Origin 1 6 11.8 0.0139 

Diatom 1 238 1772.5 <.0001 

Solvent:Season 1 238 21.9 <.0001 

Diatom:Season 1 238 648.9 <.0001 

Solvent:Diatom 1 238 0.2 0.6686 

Solvent:Origin 1 238 1.3 0.2479 

Diatom:Origin 1 238 0.1 0.7242 

Origin:Season 1 238 0.0 0.9599 

Solvent:Diatom:Season     1 238 6.0 0.0154 

Solvent:Diatom:Origin 1 234 0.1 0.8000 

Solvent:Origin:Season     1 234 0.7 0.4059 

Diatom:Origin:Season 1 234 0.3 0.6021 

Solvent:Diatom:Origin:Season 1 234 0.0 0.9073 

 

Chemical defence capacity against Ceramium sp. in Gracilaria vermiculophylla surface 

extracts    

After two weeks of exposing surface extracts to colonization by Ceramium filaments, there 

was an interaction between ‘Ceramium’ and ‘Season’: Attachment rates of C. virgatum were 

lower in autumn than in summer, while this difference was less pronounced in C. 

tenerrimum (Fig. 5, Table 6). In addition, in autumn we found that fewer (by 13% less) 

Ceramium filaments attached to surfaces coated with moderately polar compounds than on 

such covered with non-polar compounds. This was not the case in summer and this 

difference led to an interaction between ‘Solvent’ and ‘Season’ (Fig. 6, Table 6). 

Furthermore, fewer Ceramium filaments (by 10% less) attached to surfaces coated with 

extracts gained from non-native than to surfaces with extracts from native G. 

vermiculophylla (Figs 5 and 6, Table 6) and only 0.5% of the unexplained variation was 

covered by ‘Site’. In general, Ceramium filaments attached 22% less often in autumn than in 

summer (Figs 5 and 6, Table 6), but attachment rates never differed between the two 

Ceramium species (Fig. 5, Table 6).  
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Fig. 6. Colonization of DCM and hexane surface extracts from native and non-native Gracilaria 

vermiculophylla by Ceramium from both origins, C. virgatum from Germany and C. tenerrimum 

from China. Assays were run in summer and autumn 2014. Means and 95% CIs, n = 40 in each 

group. The horizontal lines indicate mean colonization rate on controls, which were without 

extracts (n = 10). 

Fig. 5. Colonization of surface extracts from native and non-native Gracilaria vermiculophylla 

by Ceramium from both origins, C. virgatum from Germany and C. tenerrimum from China. 

Assays were run in summer and autumn 2014. Means and 95% CIs, n = 40 in each group. The 

horizontal lines indicate mean colonization rate on controls, which were without extracts (n = 

10). 
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Table 6. Influence of season, solvent, origin of Gracilaria vermiculophylla and origin of 

Ceramium on filament attachment rates on surface extracts. Results from mixed effect-

modelling.   

 
Source of variation numDF denDF F - value p - value 

Season 1 307 124.418 <.0001 

Solvent 1 307 11.090 0.0010 

Origin 1 6 27.095 0.0020 

Ceramium 1 307 0.126 0.7224 

Solvent:Season 1 307 9.835 0.0019 

Ceramium:Season 1 307 20.782 <.0001 

Solvent:Ceramium 1 298 2.308 0.1297 

Solvent:Origin 1 298 0.126 0.7224 

Ceramium:Origin 1 298 0.051 0.8211 

Origin:Season 1 298 0.026 0.8717 

Solvent:Ceramium:Origin 1 298 0.001 0.9742 

Solvent:Ceramium:Season 1 298 3.395 0.0664 

Solvent:Origin:Season 1 298 0.235 0.6281 

Ceramium:Origin:Season 1 298 0.026 0.8717 

Solvent:Ceramium:Origin:Season 1 298 2.718 0.1003 

 

Discussion 

For this intra-specific comparison, we sampled individuals of G. vermiculophylla at different 

sampling locations in either the native or the non-native range of the species. Within the 

respective ranges, the different sampling sites were located in nearly the same 

biogeographical region according to the Marine Ecoregions of the World (MEOW) system 

suggested by Spalding et al. (2007). The sites in the native range were located in the Cold 

Temperate Northwest Pacific/Yellow Sea (China) and in Northeastern Honshu (Japan) as 

well as in the Warm Temperate Northwest Pacific/Central Kuroshio Current (Japan), which 

is adjacent to Northeastern Honshu. The sites in the non-native range were located in the 

Northern European Sea/Baltic & North Sea (Germany) and in the Celtic Sea as well as the 

Lusitanian/South European Atlantic Shelf (France), which is adjacent to the Celtic Sea. 

Furthermore, we took care that the distances between the various sampling sites in the native 

as well as in the non-native range were similar, in order to have the same degree of between-

site variability within the ranges. We therefore assumed that the within-range variability, 

which could be attributed to potential differences in the diversity and composition of the 

resident flora and fauna as well as to climate conditions, would be low. This assumption was 

confirmed by the low amount of unexplained variation (0.5% to 4%) that was actually 

covered by the random factor ‘Site’ in most of our statistical modellings. This was true for 

diatom attachment rates on both living thalli and on extracts and for Ceramium attachment to 

extracts. In contrast to this, Ceramium attachment rates on living thalli varied considerably 
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(37% of the unexplained variation) among sites within both ranges and we cannot plausibly 

explain this deviation from the otherwise consistent picture.  

    In our study we used two types of epiphytes to test for inter-population differences in G. 

vermiculophylla with regard to its susceptibility to epiphytes: Diatoms as a common type of 

micro-epiphytes and Ceramium filaments as a macro-epiphyte. We found that both of them, 

independent of their actual origin, attached by 60% and 33%, respectively, less to the living 

thalli of European G. vermiculophylla than to those of Asian conspecifics. In general, such a 

difference could either due to the fact that non-native G. vermiculophylla individuals are 

better defended and therefore attract fewer/repel more epiphytes or it could be due to lower 

settlement rates of native colonizers on the non-native macroalga. However, our 

experimental design excluded the latter option, since we exposed non-native macroalgae to 

epiphytes from the native as well as from the non-native range and both combinations 

showed the same trend. This finding indicates that non-native G. vermiculophylla are better 

defended against epiphytes than those that stem from the native range.  

    In macroalgae, resistance to epibiosis can be mediated by a) the thallus surface structure 

(Schumacher et al. 2007; Chapman et al. 2014), b) surface associated bacterial communities 

that repel epibionts (Boyd, Adams & Burgess 1999; Dobretsov, Dahms & Qian 2006), and c) 

surface-bound secondary metabolites that have anti-epibiont activities (Nylund et al. 2007; 

Saha et al. 2011; Thabard et al. 2011). The question is now whether one or more of these 

mechanisms changed with regard to their mode of action or with regard to their efficiency 

during the invasion process. Such a change could, inter alia, be caused by a directional 

selection of genotypes that exhibit a low susceptibility to epibionts during transport or after 

release into the new habitat. However, we cannot think of a scenario during these phases that 

would specifically select for resistance to epibiosis. Furthermore, since the non-native gene 

pool is a reduced subset of the gene pool in the donor region, it is possible, although 

presumably not very likely, that by chance an epibiosis-resistant genotype was highly 

frequent among the introduced individuals. Finally, a change in the quality of anti-epiphyte 

defences could be attributed to increased energy resources, which are a consequence of the 

release from abiotic and biotic pressures in the new environment (Joshi & Vrieling 2005). 

Under such conditions, non-native seaweeds may reduce specific defences they developed 

against enemies in their native range and shift energy resources towards more general anti-

enemy defences. An observation made at our study site in the native range hints at the 

potential relevance of the last mechanism: In Rongcheng, China, an amphipod species, 
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Caprella sp., is the main grazer of G. vermiculophylla in many habitats and it can consume 

substantial parts of this local alga during summer (S. Wang, pers. obs.). In Kiel, Germany, so 

far no herbivore makes use of this alga to such an extent and it seems that the grazing 

pressure on G. vermiculophylla is generally lower than in Rongcheng (Hammann et al. 

2013). However, we do not have information whether the picture is the same in the other 

non-native habitats that we sampled in Europe. If G. vermiculophylla is mostly ungrazed in 

coastal habitats in Europe, this could have allowed the non-native G. vermiculophylla to 

allocate a larger part of their energy budget to anti-epibiont defences and this possibly 

caused their lower attractiveness for colonizers.  

    An important aspect of our study was to identify properties of G. vermiculophylla that 

mediate its anti-epiphyte defences. For this we compared epiphyte attachment rates on living 

thalli to those on extract coated surfaces. Here we observed that the general trend in epiphyte 

attachment was the same for living thalli and extract coated substrata. However, the effect 

size, i.e. the difference in the susceptibility to epiphytes in native and non-native G. 

vermiculophylla, was consistently smaller in the latter assays: Fewer diatoms (on average 9% 

for extracts, 60% for living thalli) and fewer Ceramium filaments (on average 10% for 

extracts, 33% for living thalli) attached to substrata that were covered with extracts from 

European G. vermiculophylla than to those with extracts from Asian specimens. This, first of 

all, confirms that resistance to epiphytes in G. vermiculophylla has, at least partly, a 

chemical component. If the lower susceptibility in non-native G. vermiculophylla is due to 

this chemical component, it could either be based on an increased synthesis of active 

compounds (Forslund, Wikström & Pavia 2010) or due to the presence of some chemical 

compounds that are novel to resident enemies in these individuals (Enge et al. 2012). 

Overall, extracts exhibited a lower inhibitory activity against diatom and Ceramium 

settlement than living algae. This difference could be due to the fact that active metabolites 

were insufficiently captured by the extraction process or degraded after extraction. 

Alternatively, other non-chemical components such as surface properties - which were of 

course excluded in the assays with extracts - could also have contributed to the overall 

deterrence. Finally, the compounds which were responsible for the anti-epiphyte activity we 

observed in living G. vermiculophylla may not only have stemmed from the thallus surface 

but also from the inside of algal cells. This reason could have been relevant since some 

epibionts, including species of the genus Ceramium, penetrate into algal thalli and therefore 

also get in contact with their interior (e.g. Leonardi et al. 2006). We have no data that could 

elucidate which of the three scenarios was responsible for the picture we observed. However, 
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since we used only two solvents for the extractions (i.e. hexane and DCM) that cover a 

limited part of the polarity spectrum, it is at least likely that we missed relevant compounds 

and thereby underestimated the potential of chemical defences in G. vermiculophylla.  

    So far, no tests have been made to investigate whether the surface texture, 

microtopography or consistency of G. vermiculophylla thalli mediates a defence against 

epibionts. Such effects are known from Saccharina species (Chapman et al. 2014; da Gama, 

Plouguerné & Pereira 2014) that belong to the brown macroalgae and possess an outer cell 

wall with a mucilage consisting of alginic acid with traces of sulphated fucoidan that could, 

theoretically, act as a low-adhesion, gelatinous covering.  

    Whatever the mechanism is, a low susceptibility to epiphytes in non-native populations of 

G. vermiculophylla can, at least partly, explain the invasion success of the species. It has 

been proposed that marine algal invaders have more effective anti-epibiont defences than 

comparable resident species, e.g. in its non-native habitats in northern Europe the brown alga 

Fucus evanescens is known to get less colonized by filamentous algae and sessile 

invertebrates than its native congener Fucus vesiculosus (Wikström & Pavia 2004). When 

their surface is free of epibionts, macroalgae can take up more oxygen, carbon dioxide and 

nutrients. Furthermore, they receive more light for photosynthesis and are less prone to 

dislodgement caused by biomechanical drag. Furthermore, they may be less attractive to 

grazers (Wahl, Hay & Enderlein 1997). Therefore, algae, which are free of epibionts or show 

low degrees of epiphyte or epizoan cover, should have more energy available for 

reproduction and growth, as well as for tolerating adverse environmental conditions – what 

in turn should increase their potential to establish and spread in new environments.  

    The Enemy Release Hypothesis proposes that non-indigenous species are commonly 

released from biotic pressures, e.g. grazing, in their recipient habitat, because they leave their 

co-evolved antagonists behind while, at the same time, resident enemies fail to recognize the 

new species as a food source (Keane & Crawley 2002). In this context, Hammann et al. 

(2013) found that the periwinkle species Littorina brevicula, which lives in the native range 

of G. vermiculophylla, consumes more of this seaweed, regardless from which distributional 

range the algal material stems, than Littorina littorea, which is from its non-native range. 

This finding is presumably due to the fact that L. brevicula coevolved with G. 

vermiculophylla and can make better use of it as a food source. A somewhat comparable 

preference of native over non-native G. vermiculophylla was also shown by the diatoms we 

used in the assays with living thalli: diatoms from Rongcheng generally attached in higher 
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numbers to G. vermiculophylla from both distributional ranges than diatoms from Kiel. This 

finding may also be due to the fact that these diatoms recognize G. vermiculophylla more 

readily as a suitable settlement substratum than diatoms from the non-native range. 

Surprisingly, we observed the opposite picture when we tested the surface extracts. This 

mismatch suggests that, besides a chemical defence, other properties of the thallus surface, 

such as its structure or the presence of biofilms, play a role in the anti-diatom defence in 

living thalli. However, we did not find a difference between the attachment rates exhibited 

by the two Ceramium species for both substrata. However, it is not clear why this epiphyte 

did not show a preference. It is possible that C. virgatum – with regard to G. vermiculophylla 

as a settlement substratum - generally has the same settlement capacity as C. tenerrimum. 

The absence of a difference is somewhat surprising, because the way the Ceramium 

filaments attach to algal surfaces constitutes a very intimate connection of the two 

organisms. It is most often characterized as an infection of the basibiont, because it is 

mediated by the formation of hapteria that first attach to the thalli of the host and then 

penetrate into its tissue (Lion et al. 2006). Lion et al. (2006) found that after wounding 

Gracilaria chilensis released oxylipins, which suppressed the development of hapteria in 

Ceramium rubrum. This fact indicates that co-evolution occurs between Ceramium species 

and their hosts and hence a difference in settlement rates between C. tenerrimum and C. 

virgatum would be likely.  

    Previous studies have suggested that season (Culioli et al. 2002; Hellio et al. 2004) can 

influence the capacity of a seaweed to defend itself against epibionts. In accordance with this 

finding, we found differences in epiphyte settlement rates between summer and autumn of 

the same year of which we assume that they are attributed to differences in the anti-epiphyte 

activity of G. vermiculophylla. Fewer diatoms attached to both living fragments and extract-

coated surfaces in summer, while fewer Ceramium filaments attached to those substrates in 

autumn. Such inter-seasonal differences in anti-epiphyte defences presumably correlate with 

natural fluctuations in the overall propagule abundance in the colonizer pool (Steinberg & 

Vanaltena 1992; Amade & Lemée 1998; Wahl et al. 2010; Rickert et al. 2015), which means 

that marine macroalgae can adjust their anti-epibiont activities to quantitative or qualitative 

changes in colonization pressure. In both regions where we collected algae, diatoms are more 

abundant from April to June than from August to October (Trimonis, Vaikutiene & 

Gulbinskas 2010; Wang et al. 2014), while Ceramium is more abundant during the latter 

time span (Weinberger et al. 2014; S. Wang, pers. obs.). However, we collected our data 

only during the course of one year and we therefore do not have robust evidence for 
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seasonality in the defence capacity of G. vermiculophylla. To establish such a pattern, assays 

would need to be repeated over several years. 

    A further interesting observation that we made was that fewer diatoms attached to surfaces 

covered with non-polar compounds than to those coated with polar compounds, while the 

opposite was true for Ceramium filaments. This indicates that the defences against these two 

epiphytes are mediated by compounds that differ in polarity. A similar observation has been 

reported earlier: surface compounds extracted with a mixture of hexane and DCM from 

Caulerpa filiformis significantly inhibited spore settlement of Polysiphonia sp., while more 

polar compounds, which were extracted with DCM from surfaces of the same species, 

inhibited settlement and germling development of gametes of Ulva australis (Nylund et al. 

2007).  

    Our study is the second biogeographical comparison of defence capacities against 

epibionts between native and non-native populations of G. vermiculophylla (Saha et al. 

2016), which is now invasive in many coastal areas worldwide. However, it gives the first 

evidence that the capacity to defend against epibionts is higher in non-native individuals than 

in native – regardless of whether the epibionts originate from the native of the non-native 

range of G. vermiculophylla. Our findings therefore seemingly contradict the observations 

made by Saha et al. (2016), who focused on seaweed-bacteria interactions and showed that 

non-native G. vermiculophylla are better defended against bacterial epibionts from the non-

native range but, at the same time, have reduced their capacity to defend themselves against 

epibionts from their home range. The contradiction may be due to the use of different micro-

epibionts. Bacteria are the first colonizers of bare substrata in the marine environment (Wahl 

1989) and can regulate the production of bioactive compounds, motility, and biofilm 

formation by Quorum Sensing (QS), which is a density-dependent cell-cell signaling 

communication among bacteria (da Gama, Plouguerné & Pereira 2014). Furthermore, it is 

known that bacterial biofilm formation can mediate further colonization by eukaryote micro- 

and macro-epibionts. The differences between epibacteria and other epibionts could have led 

to the evolution of different defence strategies against them in seaweeds. Unlike compounds 

that function against eukaryote micro- and macro-epibionts through growth inhibition or 

lethality, most antimicrobial settlement and attachment defences impact the behavior of 

bacteria, such as swarming (Rasmussen & Givskov 2006).  

    Even though our study focused on macrophyte-epiphyte interactions in the marine 

environment, our findings should be applicable to all basibiont-epibiont interactions in 
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aquatic systems, including plant-plant, plant-animal and animal-animal combinations, since 

epibionts are widespread and most of them are generalists (Wahl & Mark 1999). 

Additionally, our findings may also be applicable to host-herbivore interactions in aquatic 

systems, since, similar to epibionts, many herbivores are generalists and an increased 

chemical resistance to herbivory has already been documented in non-native plants and 

seaweeds (Forslund, Wikström & Pavia 2010).  

    We conclude that the lower susceptibility to epiphytes that we observed in non-native G. 

vermiculophylla cannot be explained by a lower epibiont pressure experienced by the non-

native individuals, but is due to an elevated resistance to epibiosis that, at least partly, is 

linked to an enhanced chemical defence capacity. Our study therefore provides the first 

evidence of an increased resistance to epibiosis in introduced populations of a widely 

distributed marine species. This change in its performance during the invasion process may 

be critical for the invasion success of the macroalga.  

 

Acknowledgements 

S. Wang is supported by a scholarship from the China Scholarship Council (CSC) at 

GEOMAR - Helmholtz-Zentrum für Ozeanforschung in Kiel. We would like to thank Prof. 

Dr. Martin Wahl for his valuable support and technical advices for bioassay design and 

methods. We are grateful to Inken Kruse, Takehisa Yamakita, Haruka Yamaguchi, Carola 

Schuller, Hiromi Sugai, Myriam Perschke for collecting and sending algal samples, as well 

as to Nadja Stärck for her technical advices and help with algal surface extraction. We are 

also very grateful to two anonymous reviewers for their very valuable comments on the first 

version of the manuscript. 

 

 

 

 

 

 

 

 

 



Paper I   

 

43 
 

References 

Amade, P. & Lemée, R. (1998) Chemical defence of the Mediterranean alga Caulerpa taxifolia: 

variations in caulerpenyne production. Aquatic toxicology, 43, 287-300. 

 

Baer, J. & Stengel, D.B. (2014) Can native epiphytes affect establishment success of the alien 

seaweed Sargassum muticum (Phaeophyceae)? Biology and Environment: Proceedings of the Royal 

Irish Academy, 114B, 41-52. 

 

Bellorin, A.M., Oliveira, M.C. & Oliveira, E.C. (2004) Gracilaria vermiculophylla: A western Pacific 

species of Gracilariaceae (Rhodophyta) first recorded from the eastern Pacific. Phycological 

Research, 52, 69-79. 

 

Blossey, B. & Nötzold, R. (1995) Evolution of increased competitive ability in invasive 

nonindigenous plants: a hypothesis. Journal of Ecology, 83, 887-889. 

 

Bold, H.C. & Wynne, M.J. (1978) Introduction to the Algae: Structure and Reproduction. Prentice-

Hall, Englewood Cliffs, New Jersey. 

 

Boyd, K.G., Adams, D.R. & Burgess, J.G. (1999) Antibacterial and repellent activities of marine 

bacteria associated with algal surfaces. Biofouling, 14, 227-236. 

 

Cacabelos, E., Olabarria, C., Incera, M. & Troncoso, J.S. (2010) Do grazers prefer invasive seaweeds? 

Journal of Experimental Marine Biology and Ecology, 393, 182-187. 

 

Callaway, R.M. & Ridenour, W.M. (2004) Novel weapons: invasive success and the evolution of 

increased competitive ability. Frontiers in Ecology and the Environment, 2, 436-443. 

 

Chapman, J., Hellio, C., Sullivan, T., Brown, R., Russell, S., Kiterringham, E., Le Nor, L. & Regan, F. 

(2014) Bioinspired synthetic macroalgae: examples from nature for antifouling applications. 

International Biodeterioration & Biodegradation, 86, 6-13. 

 

Culioli, G., Ortalo-Magné, A., Richou, M., Valls, R. & Piovetti, L. (2002) Seasonal variations in the 

chemical composition of Bifurcaria bifurcata (Cystoseiraceae). Biochemical systematics and ecology, 

30, 61-64. 

 

da Gama, B.A.P., Plouguerné, E. & Pereira, R.C. (2014) The Antifouling Defence Mechanisms of 

Marine Macroalgae. Advances in Botanical Research (ed. N. Bourgougnon), pp. 413-440. Academic 

Press, Oxford. 

 

de Nys, R., Dworjanyn, S.A. & Steinberg, P.D. (1998) A new method for determining surface 

concentrations of marine natural products on seaweeds. Marine Ecology Progress Series, 162, 79-87. 

 

Dobretsov, S., Dahms, H.U. & Qian, P.Y. (2006) Inhibition of biofouling by marine microorganisms 

and their metabolites. Biofouling, 22, 43-54. 

 

Enge, S., Nylund, G.M., Harder, T. & Pavia, H. (2012) An exotic chemical weapon explains low 

herbivore damage in an invasive alga. Ecology, 93, 2736-2745. 

 

Engelen, A.H., Henriques, N., Monteiro, C. & Santos, R. (2011) Mesograzers prefer mostly native 

seaweeds over the invasive brown seaweed Sargassum muticum. Hydrobiologia, 669, 157-165. 

 

Forslund, H., Wikström, S.A. & Pavia, H. (2010) Higher resistance to herbivory in introduced 

compared to native populations of a seaweed. Oecologia, 164, 833-840. 

 



Paper I 

44 

 

Freshwater, D.W., Montgomery, F., Greene, J.K., Hamner, R.M., Williams, M. & Whitfield, P.E. 

(2006) Distribution and identification of an invasive Gracilaria species that is hampering commercial 

fishing operations in southeastern North Carolina, USA. Biological Invasions, 8, 631-637. 

 

Hammann, M. (2014) Invasion ecology of marine macroalgae: the relevance of stress resistance for 

the invasion success of Gracilaria vermiculophylla and consequences of its spread. Christian-

Albrechts-University Kiel. 

 

Hammann, M., Rempt, M., Pohnert, G., Wang, G.G., Boo, S.M. & Weinberger, F. (2016) Increased 

potential for wound activated production of Prostaglandin E-2 and related toxic compounds in non-

native populations of Gracilaria vermiculophylla. Harmful Algae, 51, 81-88. 

 

Hammann, M., Wang, G.G., Rickert, E., Boo, S.M. & Weinberger, F. (2013) Invasion success of the 

seaweed Gracilaria vermiculophylla correlates with low palatibility. Marine Ecology Progress Series, 

486, 93-103. 

 

Hellio, C., Marechal, J.P., Véron, B., Bremer, G., Clare, A.S. & Le Gal, Y. (2004) Seasonal variation 

of antifouling activities of marine algae from the Brittany coast (France). Marine Biotechnology, 6, 

67-82. 

 

Hemmi, A., Mäkinen, A., Jormalainen, V. & Honkanen, T. (2005) Responses of growth and 

phlorotannins in Fucus vesiculosus to nutrient enrichment and herbivory. Aquatic Ecology, 39, 201-

211. 

 

Hierro, J.L., Maron, J.L. & Callaway, R.M. (2005) A biogeographical approach to plant invasions: the 

importance of studying exotics in their introduced and native range. Journal of Ecology, 93, 5-15. 

 

Joshi, J. & Vrieling, K. (2005) The enemy release and EICA hypothesis revisited: incorporating the 

fundamental difference between specialist and generalist herbivores. Ecology Letters, 8, 704-714. 

 

Keane, R.M. & Crawley, M.J. (2002) Exotic plant invasions and the enemy release hypothesis. Trends 

in Ecology & Evolution, 17, 164-170. 

 

Kim, S.Y., Weinberger, F. & Boo, S.M. (2010) Genetic data hint at a common donor region for 

invasive Atlantic and Pacific populations of Gracilaria Vermiculophylla (Gracilariales, Rhodophyta). 

Journal of Phycology, 46, 1346-1349. 

 

Lenz, M., da Gama, B.A.P., Gerner, N.V., Gobin, J., Gröner, F., Harry, A., Jenkins, S.R., Kraufvelin, 

P., Mummelthei, C., Sareyka, J., Xavier, E.A. & Wahl, M. (2011) Non-native marine invertebrates are 

more tolerant towards environmental stress than taxonomically related native species: results from a 

globally replicated study. Environmental research, 111, 943-952. 

 

Leonardi, P.I., Miravalles, A.B., Faugeron, S., Flores, V., Beltrán, J. & Correa, J.A. (2006) Diversity, 

phenomenology and epidemiology of epiphytism in farmed Gracilaria chilensis (Rhodophyta) in 

northern Chile. European Journal of Phycology, 41, 247-257. 

 

Lion, U., Wiesemeier, T., Weinberger, F., Beltrán, J., Flores, V., Faugeron, S., Correa, J. & Pohnert, 

G. (2006) Phospholipases and galactolipases trigger oxylipin-mediated wound-activated defence in 

the red alga Gracilaria chilensis against epiphytes. Chembiochem, 7, 457-462. 

 

Mack, R.N., Simberloff, D., Lonsdale, W.M., Evans, H., Clout, M. & Bazzaz, F.A. (2000) Biotic 

invasions: causes, epidemiology, global consequences, and control. Ecological applications, 10, 689-

710. 

Michetti, K.M., Miravalles, A.B., Hughes, M.H. & Leonardi, P.I. (2016) Infection process of 

Ceramium rubrum (Rhodophyta, Ceramiales) on the agarophyte Gracilaria chilensis (Rhodophyta, 

Gracilariales). Botanica Marina, 59, 51-61. 

 



Paper I   

 

45 
 

Müller-Schärer, H., Schaffner, U. & Steinger, T. (2004) Evolution in invasive plants: implications for 

biological control. Trends in Ecology & Evolution, 19, 417-422. 

 

Newton, C., Bracken, M.E.S., McConville, M., Rodrigue, K. & Thornber, C.S. (2013) Invasion of the 

red seaweed Heterosiphonia japonica spans biogeographic provinces in the western North Atlantic 

Ocean. PLoS One, 8, e62261. 

 

Nylund, G.M., Gribben, P.E., de Nys, R., Steinberg, P.D. & Pavia, H. (2007) Surface chemistry versus 

whole-cell extracts: antifouling tests with seaweed metabolites. Marine Ecology Progress Series, 329, 

73-84. 

 

Olenin, S., Narščius, A., Minchin, D., David, M., Galil, B., Gollasch, S., Marchini, A., Occhipinti-

Ambrogi, A., Ojaveer, H. & Zaiko, A. (2014) Making non-indigenous species information systems 

practical for management and useful for research: An aquatic perspective. Biological Conservation, 

173, 98-107. 

 

Paini, D.R., Sheppard, A.W., Cook, D.C., De Barro, P.J., Worner, S.P. & Thomas, M.B. (2016) 

Global threat to agriculture from invasive species. Proceedings of the National Academy of Sciences 

of the United States of America, 113, 7575-7579. 

 

Pimentel, D., Zuniga, R. & Morrison, D. (2005) Update on the environmental and economic costs 

associated with alien-invasive species in the United States. Ecological economics, 52, 273-288. 

 

Rasmussen, T.B. & Givskov, M. (2006) Quorum sensing inhibitors: a bargain of effects. 

Microbiology-Sgm, 152, 895-904. 

 

Rempt, M., Weinberger, F., Grosser, K. & Pohnert, G. (2012) Conserved and species-specific oxylipin 

pathways in the wound-activated chemical defense of the noninvasive red alga Gracilaria chilensis 

and the invasive Gracilaria vermiculophylla. Beilstein Journal of Organic Chemistry, 8, 283-289. 

 

Ricciardi, A. (2007) Are modern biological invasions an unprecedented form of global change? 

Conservation Biology, 21, 329-336. 

 

Rickert, E., Karsten, U., Pohnert, G. & Wahl, M. (2015) Seasonal fluctuations in chemical defenses 

against macrofouling in Fucus vesiculosus and Fucus serratus from the Baltic Sea. Biofouling, 31, 

363-377. 

 

Rueness, J. (2005) Life history and molecular sequences of Gracilaria vermiculophylla (Gracilariales, 

Rhodophyta), a new introduction to European waters. Phycologia, 44, 120-128. 

 

Saha, M., Rempt, M., Grosser, K., Pohnert, G. & Weinberger, F. (2011) Surface-associated 

fucoxanthin mediates settlement of bacterial epiphytes on the rockweed Fucus vesiculosus. 

Biofouling, 27, 423-433. 

 

Saha, M., Wiese, J., Weinberger, F. & Wahl, M. (2016) Rapid adaptation to controlling new microbial 

epibionts in the invaded range promotes invasiveness of an exotic seaweed. Journal of Ecology, 104, 

969-978. 

 

Schaffelke, B., Smith, J.E. & Hewitt, C.L. (2006) Introduced macroalgae – a growing concern. 

Journal of Applied Phycology, 18, 529-541. 

 

Schumacher, J.F., Carman, M.L., Estes, T.G., Feinberg, A.W., Wilson, L.H., Callow, M.E., Callow, 

J.A., Finlay, J.A. & Brennan, A.B. (2007) Engineered antifouling microtopographies - effect of 

feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Biofouling, 

23, 55-62. 

 



Paper I 

46 

 

Sfriso, A., Wolf, M.A., Maistro, S., Sciuto, K. & Moro, I. (2012) Spreading and autoecology of the 

invasive species Gracilaria vermiculophylla (Gracilariales, Rhodophyta) in the lagoons of the north-

western Adriatic Sea (Mediterranean Sea, Italy). Estuarine, Coastal and Shelf Science, 114, 192-198. 

 

Spalding, M.D., Fox, H.E., Halpern, B.S., McManus, M.A., Molnar, J., Allen, G.R., Davidson, N., 

Jorge, Z.A., Lombana, A.L., Lourie, S.A., Martin, K.D., McManus, E., Molnar, J., Recchia, C.A. & 

Robertson, J. (2007) Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. 

Bioscience, 57, 573-583. 

 

Steinberg, P.D. & Vanaltena, I. (1992) Tolerance of marine invertebrate herbivores to brown algal 

phlorotannins in temperate Australasia. Ecological Monographs, 62, 189-222. 

 

Strong, J.A., Maggs, C.A. & Johnson, M.P. (2009) The extent of grazing release from epiphytism for 

Sargassum muticum (Phaeophyceae) within the invaded range. Journal of the Marine Biological 

Association of the United Kingdom, 89, 303-314. 

 

Thabard, M., Gros, O., Hellio, C. & Maréchal, J.P. (2011) Sargassum polyceratium (Phaeophyceae, 

Fucaceae) surface molecule activity towards fouling organisms and embryonic development of 

benthic species. Botanica Marina, 54, 147-157. 

 

Thomsen, M.S., Gurgel, C.F.D., Fredericq, S. & McGlathery, K.J. (2006) Gracilaria vermiculophylla 

(Rhodophyta, Gracilariales) in Hog Island Bay, Virginia: A cryptic alien and invasive macroalga and 

taxonomic correction. Journal of Phycology, 42, 139-141. 

 

Thomsen, M.S., Wernberg, T., Engelen, A.H., Tuya, F., Vanderklift, M.A., Holmer, M., McGlathery, 

K.J., Arenas, F., Kotta, J. & Sillimann, B.R. (2012) A Meta-Analysis of Seaweed Impacts on 

Seagrasses: Generalities and Knowledge Gaps. PLoS One, 7, 21-28. 

 

Torchin, M.E. & Mitchell, C.E. (2004) Parasites, pathogens, and invasions by plants and animals. 

Frontiers in Ecology and the Environment, 2, 183-190. 

 

Trimonis, E., Vaikutiene, G. & Gulbinskas, S. (2010) Seasonal and spatial variations of sedimentary 

matter and diatom transport in the Klaipeda Strait (Eastern Baltic). Baltica, 23, 127-134. 

 

Verhoeven, K.J.F., Biere, A., Harvey, J.A. & Van Der Putten, W.H. (2009) Plant invaders and their 

novel natural enemies: who is naive? Ecology Letters, 12, 107-117. 

 

Vermeij, M.J.A., Smith, T.B., Dailer, M.L. & Smith, C.M. (2009) Release from native herbivores 

facilitates the persistence of invasive marine algae: a biogeographical comparison of the relative 

contribution of nutrients and herbivory to invasion success. Biological Invasions, 11, 1463-1474. 

 

Vilà, M., Espinar, J.L., Hejda, M., Hulme, P.E., Jarošík, V., Maron, J.L., Pergl, J., Schaffner, U., Sun, 

Y. & Pyšek, P. (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on 

species, communities and ecosystems. Ecology Letters, 14, 702-708. 

 

Wahl, M. (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Marine Ecology 

Progress Series, 58, 175-189. 

 

Wahl, M. (2008) Ecological lever and interface ecology: epibiosis modulates the interactions between 

host and environment. Biofouling, 24, 427-438. 

 

Wahl, M., Hay, M.E. & Enderlein, P. (1997) Effects of epibiosis on consumer–prey interactions. 

Hydrobiologia, 355, 49-59. 

Wahl, M. & Mark, O. (1999) The predominantly facultative nature of epibiosis: experimental and 

observational evidence. Marine Ecology Progress Series, 187, 59-66. 

 



Paper I   

 

47 
 

Wahl, M., Shahnaz, L., Dobretsov, S., Saha, M., Symanowski, F., David, K., Lachnit, T., Vasel, M. & 

Weinberger, F. (2010) Ecology of antifouling resistance in the bladder wrack Fucus vesiculosus: 

patterns of microfouling and antimicrobial protection. Marine Ecology Progress Series, 411, 33-48. 

 

Wang, D., Huang, B.Q., Liu, X., Liu, G.M. & Wang, H. (2014) Seasonal variations of phytoplankton 

phosphorus stress in the Yellow Sea Cold Water Mass. Acta Oceanologica Sinica, 33, 124-135. 

 

Weinberger, F., Buchholz, B., Karez, R. & Wahl, M. (2008) The invasive red alga Gracilaria 

vermiculophylla in the Baltic Sea: adaptation to brackish water may compensate for light limitation. 

Aquatic Biology, 3, 251-264. 

 

Weinberger, F., Hammann, M., Griem, M. & Siedentopp, D. (2014) Ostsee-Makroalgenblüten. 

Helmholtz-Zentrum für Ozeanforschung Kiel, Germany. 

 

Wikström, S.A. & Kautsky, L. (2004) Invasion of a habitat-forming seaweed: effects on associated 

biota. Biological Invasions, 6, 141-150. 

 

Wikström, S.A. & Pavia, H. (2004) Chemical settlement inhibition versus post-settlement mortality as 

an explanation for differential fouling of two congeneric seaweeds. Oecologia, 138, 223-230. 

 

Wikström, S.A., Steinarsdóttir, M.B., Kautsky, L. & Pavia, H. (2006) Increased chemical resistance 

explains low herbivore colonization of introduced seaweed. Oecologia, 148, 593-601. 

 

Williams, S.L. & Smith, J.E. (2007) A global review of the distribution, taxonomy, and impacts of 

introduced seaweeds. Annual Review of Ecology, Evolution, and Systematics, 38, 327-359. 

 

Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A. & Smith, G.M. (2009) Mixed Effects Model and 

Extensions in Ecology with R. Springer, New York.  

 

Zuur, A.F., Ieno, E.N. & Elphick, C.S. (2010) A protocol for data exploration to avoid common 

statistical problems. Methods in Ecology and Evolution, 1, 3-14. 

 

 

 

 

 

 

 

 

 

 



Paper I 

48 

 

Supplementary information 

 

 

 

 

 

 

 

 

 

Figure S1. Determination of solvents and dipping times for surface extraction of Gracilaria 

vermiculophylla. (a) Healthy algal cells. The alga was extracted by: (b) Methanol-hexane 

mixture 1:9 (v/v) for 5 s. (c) Methanol-hexane mixture 1:19 (v/v) for 5 s. (d) Propanol-hexane 

mixture 1:9 (v/v) for 5 s. (e) Propanol-hexane mixture 1:19 (v/v) for 5 s. (f) dichloromethane 

(DCM)-hexane mixture 1:3 (v/v) for 5 s. (g) DCM-hexane mixture 1:4 (v/v) for 10 s. (h) DCM-

hexane mixture 1:4 (v/v) for 7 s. (i) DCM-hexane mixture 1:4 (v/v) for 5 s. Scale bars: 10 μm. 
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Table S1. Change of fluorescence intensities of attached diatoms with concentration of 

diatoms in suspensions after different incubation periods. 

 
Incubation 

period 

Concentration of diatoms in suspension 

100% 75% 50% 25% 12.5% 5% 0.5% 0 

3 h 20668 14640 8375 4258 2033 1911 1360 1373 

20019 15400 8378 3751 2271 1758 1404 1383 

21342 15253 9407 4439 2589 1809 1449 1393 

23854 16071 10672 3793 2155 2469 1384 1393 

25908 19074 9932 3242 2799 1609 1387 1379 

29522 21798 12226 3672 2432 1563 1382 1425 

26864 20774 10843 4391 1951 1531 1394 1392 

36442 18847 10802 5532 2115 2402 1417 1402 

5 h 34230 23003 13528 5613 2405 1988 1406 1398 

32111 24525 15056 4562 2015 1886 1418 1402 

35927 21609 9791 5455 2426 1590 1385 1423 

29449 23304 13606 4737 2248 1947 1427 1377 

32071 21633 12015 6166 2163 1691 1411 1405 

30148 19161 11623 7559 2287 1527 1454 1426 

28194 19156 13020 3869 2306 1915 1417 1414 

31569 22563 15299 6526 2023 1794 1407 1413 

6 h  25178 19856 9368 6210 1752 1956 1376 1420 

28924 22449 13425 4945 2062 1964 1417 1393 

28959 20431 12816 4611 2226 1756 1407 1405 

31764 22861 10340 4043 1903 1571 1406 1420 

28378 22283 12038 4722 1745 1486 1407 1421 

28810 23970 14779 4427 1767 2249 1412 1404 

30984 22791 12453 5259 1818 2402 1401 1394 

35224 19079 13110 4417 1780 1734 1418 1399 

 

 



Paper I   

 

51 
 

Table S2. Influence of season, material (ectracts vs. thalli), origin of Gracilaria 

vermiculophylla and origin of diatoms on the attachment rates of diatoms on G. 

vermiculophylla.  

 

 

 

 

Table S3. Influence of season, material (extracts vs. thalli), origin of Gracilaria 

vermiculophylla and origin of Ceramium on filament attachment rates on G. 

vermiculophylla.  

 

 

 

 

 

 

 

Source of variation numDF denDF   F - value p - value 

Diatom 1 468 495.980 <.0001 

Origin 1 6 152.626 <.0001 

Season 1 468 408.543 <.0001 

Material 1 468 2070.440 <.0001 

Diatom:Origin 1 468 6.405 0.0117 

Diatom:Season 1 468 232.220 <.0001 

Origin:Season 1 468 22.894 <.0001 

Diatom:Material 1 468 539.503 <.0001 

Origin:Material 1 468 80.879 <.0001 

Season:Material 1 468 141.771 <.0001 

Diatom:Origin:Season 1 468 5.496 0.0195 

Diatom:Origin:Material 1 468 12.505 0.0004 

Diatom:Season:Material 1 468 115.668 <.0001 

Origin:Season:Material 1 468 28.454 <.0001 

Diatom:Origin: Season:Material 1 468 12.747 0.0004 

Source of variation numDF denDF F - value p - value 

Ceramium 1 330 0.3363 0.5624 

Origin 1 6 32.2522   0.0013 

Season 1 330 121.3931   <.0001 

Material 1 330 0.0895 0.7650 

Ceramium:Origin 1 330 0.1574 0.6918 

Ceramium:Season 1 330 8.0565 0.0048 

Origin:Season 1 330 0.0084 0.9271 

Ceramium:Material 1 330 0.4435 0.5059 

Origin:Material 1 330 12.0052 0.0006 

Season:Material 1 330 3.1880 0.0751 

Ceramium:Origin:Season 1 330 0.0009 0.9757 

Ceramium:Origin:Material 1 330 3.9914 0.0466 

Ceramium:Season:Material 1 330 35.9222 <.0001 

Origin:Season:Material 1 330 0.6730 0.4126 

Ceramium:Origin: Season:Material 1 330 0.1886 0.6643 
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Appendix S1. Transport and cultivation of Gracilaria vermiculophylla. 

 

For comparing the susceptibility to pure-cultured epiphytes between native and non-native 

G. vermiculophylla populations, living G. vermiculophylla specimens from all sampling sites 

were transferred to Kiel, Rongcheng and Akkeshi. For transport, single algal individuals 

were wrapped in seawater-wetted tissue paper and then placed in cooling boxes while the 

length of transport never exceeded five days. Gracilaria vermiculophylla usually survived 

transfer under these conditions and several previous studies used this method successfully. 

For assays in Kiel, specimens from all sampling sites were transferred to Kiel directly, while 

for assays in Rongcheng and Akkeshi, individuals from all populations outside China and 

Japan were brought to Kiel first. Here they were kept under laboratory conditions for at least 

one week to allow for regeneration and were then transported to Rongcheng or Akkeshi by 

airplane. After their arrival, we did not observe any losses due to transportation stress and we 

acclimatized all specimens to laboratory conditions for at least one week prior to the assays. 

In Kiel, acclimation took place in indoor aquaria (14 L) which contained 500 g of G. 

vermiculophylla wet mass each. Algae were kept in seawater from the Kiel Fjord (salinity: 

15 - 20) at 14 to 19 °C and a light intensity of 30 μmol m
−2

 s
−1

 for 14 h per day. Furthermore, 

all aquaria were permanently aerated. The water in the aquaria was completely renewed by 

an automatic seawater flow-through every 3.5 h (flow-through rate: 50 ml/min). Seaweeds 

sampled at locations with fully marine conditions were slowly acclimatized to the salinity 

conditions prevailing in the Kiel Fjord over the course of several days. In Rongcheng and 

Akkeshi, 50 g of G. vermiculophylla wet mass were kept in separate 1 L beakers with 

aeration and stored at 15 °C with 30 μmol m
−2

 s
−1

 for 14 h per day. The seawater inside the 

containers came from the nearby Ailian Bay (Yellow Sea water, salinity: 30 - 33) and 

Akkeshi Bay (Northeastern Honshu, salinity: 32), and was exchanged manually every day. 

Seaweeds from low salinity conditions (Baltic Sea as well as Pouldouran and Belon 

estuaries) were slowly adapted to the salinity conditions of Akkeshi Bay. 
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Appendix S2. Collection, isolation, transport and cultivation of epiphytes. 

 

Two pennate diatoms Stauroneis sp. were isolated from individuals of G. vermiculophylla 

that were collected in Rongcheng and in the Kiel Fjord and transferred to 200 ml cell culture 

flasks (green cap, SARSTEDT®) filled with f/2 medium for pure culture. The flasks were 

stored in an incubator at 14 °C with 40 μmol m
−2

 s
−1

 in a 14:10 h (light/dark) photoperiod. 

The medium was changed every three weeks under sterile conditions. 

    Filaments of the red alga Ceramium sp. have already been used as epiphytes in assays 

with G. vermiculophylla and the two species of Ceramium we used for the assays commonly 

grow on G. vermiculophylla (S. Wang, pers. obs.). Individuals of Ceramium tenerrimum 

were collected in Rongcheng, while specimens of Ceramium virgatum stem from Kiel Fjord. 

Individuals of both species were collected three days before the start of the assays at sites 

where G. vermiculophylla is present. Ceramium tenerrimum individuals were kept under the 

same conditions that have been described earlier for G. vermiculophylla in Rongcheng, while 

individuals of C. virgatum were kept in the same way as G. vermiculophylla in Kiel. 

 

 

 

Appendix S3. Establishing the relationship between diatom density and fluorescence 

intensity. 

 

For this procedure, an aliquot of 100 ml of the diatom culture suspension was transferred to 

an Erlenmeyer flask, which was then placed on a shaker to homogenize the suspension. We 

then diluted it gradually 1, 1.3, 2, 4, 8, 20 and 200 times with sterile seawater that was 

previously filled into the wells of a 96-well plate (Microplates, BRAND plates
®
) to a final 

aliquot of 200 µl. The plate was then incubated at 14 °C for 3 h and after this time non-

attached diatoms were removed by rinsing each well with 200 µl of seawater. In the 

following, fluorescence intensity was measured with a multitechnology plate reader (Plate 

chameleon, Hidex, Finland) at an excitation wavelength of 485 nm and an emission 

wavelength of 677 nm. After that, the 96-well plate was inspected under an inverted 

microscope and a photo of each well was taken. The number of diatoms on each photo was 

counted to identify the number of diatoms in each well and then the latter was used to 

identify the relationship between fluorescence intensity and diatom density (Figure S2). 
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Abstract 

The susceptibility of native and non-native populations of the red alga Gracilaria 

vermiculophylla to fouling was compared in common garden experiments. Native and non-

native algae were enclosed into dialysis membrane tubes and the tubes were exposed to 

natural fouling. Fouling on the outside of the tubes was mediated by chemical compounds 

excreted by G. vermiculophylla that diffused through the membranes. Fouling pressure was 

significantly higher in the Kiel Fjord (non-native range) than in Akkeshi Bay (native range), 

but at both sites tubes containing non-native G. vermiculophylla were less fouled than those 

with native conspecifics. This is the first in situ evidence that susceptibility to fouling differs 

between native and non-native populations of an aquatic organism. The technique of 

enclosing organisms into dialysis tubes represents a simple, efficient and accurate way to test 

chemical antifouling defences and could possibly be applied to other organisms. 

Keywords: biological invasions, chemical antifouling defence, dialysis membrane, natural 

fouling, Gracilaria vermiculophylla, non-native macroalgae 
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Introduction 

Human-mediated introductions of marine non-native species constitute considerable threats 

to coastal ecosystems and related economies, such as aquaculture and fisheries, by affecting 

species diversity, ecosystem functions and services (Lubchenco et al. 1991; Schaffelke et al. 

2006; Vitousek et al. 1996; Williams and Smith 2007). To manage such problems, it is 

necessary to understand the mechanisms that allow non-native species to succeed in new 

environments (Cacabelos et al. 2010; Johnson and Chapman 2007; Vermeij et al. 2009).  

    Several hypotheses have been proposed that could explain which mechanisms promote 

bioinvasions. One of the most widely discussed ones is the Enemy Release Hypothesis 

(ERH) (Keane and Crawley 2002). This concept states that non-native species have an 

advantage over native species as resident enemies, such as predators or parasites, cannot 

recognize the newly introduced resource. The Evolution of Increased Competitive Ability 

hypothesis (EICA) (Blossey and Nötzold 1995), an amendment of ERH, suggests that non-

native species could, for the above mentioned reasons, invest more energy into growth rather 

than warding-off predators and parasites. This would make them more competitive than 

native species. Both concepts, ERH and EICA, emphasize that the successful invasions by 

non-native species may depend on the release from co-evolved enemies. In contrast, the 

Novel Weapons Hypothesis (NWH) (Callaway and Ridenour 2004) suggests that non-native 

species are less sensitive to enemies in the invaded habitat. This is because they possess 

defences which are highly efficient since the resident enemies are not adapted to them.  

    Most theories that seek to identify drivers of invasion success in plants or animals have 

been tested in terrestrial environments (Colautti et al. 2004; Keane and Crawley 2002), while 

less tests have been conducted in the marine realm (Wikström et al. 2006). Among the tested 

examples, the majority of cases are terrestrial plant-herbivore and marine seaweed-herbivore 

systems (Lake and Leishman 2004; Parker et al. 2006; Stastny et al. 2005; Vermeij et al. 

2009). In contrast, much less is known about the effect of foulers on the invasion success of 

aquatic macrophytes (but see Strong et al. 2009; Svensson et al. 2013), despite the fact that 

epibiosis can severely impair the performance of host organisms (basibionts) (Wahl 2008).  

For instance, a biofilm can alter the chemical conditions at the host interface through its 

metabolic activities (Thevanathan 2000) and even insulate the host surface from the vital 

resource light (Costerton et al. 1987). Filamentous epiphytes may increase drag, decrease 

flexibility (Hemmi et al. 2005) and compete with the host organisms for light and nutrients 

(Buschmann and Gómez 1993; Honkanen and Jormalainen 2005; Wahl 1989). Some 
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epizoans weaken the host surface and thus enhance the success of predation by crushing 

predators (Bach et al. 2006; Buschbaum et al. 2007). Therefore, the host organisms need to 

develop efficient physical or chemical defences to minimize colonization of their body 

surfaces. As a consequence, ecological theories such as ERH, EICA or NWH may possibly 

be valid for aquatic host-epibiont systems and the present study aimed at testing this in situ 

with a non-native red alga, Gracilaria vermiculophylla (Ohmi) Papenfuss. 

    Gracilaria vermiculophylla, originating from the cold and warm temperate Northwest 

Pacific Ocean (Tseng and Xia 1999), has invaded many coastal habitats in the northern 

hemisphere from the eastern Pacific (Bellorin et al. 2004; Saunders 2009) to the mid-western 

Atlantic (Freshwater et al. 2006; Thomsen et al. 2006) and the eastern Atlantic (Guillemin et 

al. 2008; Sfriso et al. 2010; Weinberger et al. 2008) during the past three decades. It has been 

suggested that the biotic and abiotic conditions in the recipient area may be critical for the 

establishment and spread of introduced marine organisms (Nyberg and Wallentinus 2009; 

Streftaris et al. 2005). Correspondingly, numerous studies have revealed that various 

intrinsic traits, such as the reproductive versatility (Abreu et al. 2011; Nettleton et al. 2013) 

and the ability to tolerate low light conditions, extreme temperatures (Hammann et al. 

2016b), starvation (Nyberg and Wallentinus 2009), salinity (Nejrup and Pedersen 2012; 

Weinberger et al. 2008), ultraviolet radiation (Roleda et al. 2012) and grazers (Hammann et 

al. 2013) are important factors that may affect the invasion success in G. vermiculophylla. 

Moreover, previous studies show that chemical defences that protect G. vermiculophylla 

from generalist herbivores might also allow the alga to invade new habitats (Hammann et al. 

2016a; Rempt et al. 2012). Further, a recent study that compared the susceptibility of native 

and non-native populations of G. vermiculophylla under identical conditions in lab bioassays 

demonstrated that non-native populations of this seaweed were better defended against two 

tested foulers than native conspecifics (Wang et al. 2016). This suggested for the first time 

that epibionts may compromise the performance of non-native seaweeds in their new 

environments to such an extent that more resistant individuals can have a selective 

advantage, similar as predicted by the NWH for resistance to grazing (Callaway and 

Ridenour 2004). However, in nature seaweeds are usually not exposed to single foulers, but 

to communities of various epibionts that are very diverse and highly dynamic and it is an 

open question whether non-native algal individuals would be also more resistant toward such 

assemblages than native individuals. Therefore, the present study focused on testing whether 

native and non-native populations of G. vermiculophylla differ in their susceptibility to 

natural fouling in situ.  
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    For this study, four native G. vermiculophylla populations were sampled in East Asia in 

two adjacent ecoprovinces (following the concept suggested by Spalding et al. (2007)): The 

cold temperate Northwest Pacific (ecozones: Yellow Sea (China) and Northeastern Honshu 

(Japan)) and the warm temperate Northwest Pacific (ecozone: Central Kuroshio Current 

(Japan)). Furthermore, algal individuals from three non-native populations were sampled 

within the Northern European Seas ecoprovince (ecozones: Baltic Sea (Germany), North Sea 

(Germany) and Celtic Seas (France)). In addition, one non-native population from outside 

Europe was included, which is located in the cold temperate Northeast Pacific (ecoprovince: 

Oregon, Washington, Vancouver coast and shelf). The objective was to expose individuals 

from all populations to the same natural fouling and to compare their resistance. So far no 

biogeographic comparisons ever tested directly whether susceptibility to natural fouling 

differs among aquatic organisms originating from different ecological zones or even realms. 

This is because the methodological challenge is considerable: To directly expose organisms 

originating from different populations to the same natural fouling pressure they need to be 

released into the same environment, which would be unethical. To overcome this difficulty, 

algal specimens of different origin were in the present study individually enclosed into 

dialysis tubes and in this form exposed in the sea. In addition, the intensity of natural fouling 

pressure in native and non-native habitats was also compared. 

Material and methods 

Experiment 1: Monitoring of fouling pressure on Gracilaria vermiculophylla and on 

artificial substrata in native and non-native habitats 

To compare the total abundance of foulers and the composition of fouling communities on 

G. vermiculophylla between native and non-native populations of the alga, exposure trials 

were conducted in the Kiel Fjord (54°19'48.5"N 10°8'58.8"E), Germany (non-native range of 

G. vermiculophylla) and in Ailian Bay (37°10'22.4"N 122°34'38.5"E), Rongcheng, China 

(native range of G. vermiculophylla), respectively, from May to July 2014. Each month 15 

intact individuals of G. vermiculophylla were collected manually from the shallow subtidal 

in both sites. During transport from the collection sites to the respective nearby laboratory, 

algal individuals were kept separately in 3 l plastic bags, which were placed in cooler boxes.  

    Prior to the trials, all visible fouling organisms were removed from the surface of G. 

vermiculophylla with a soft brush that did not damage the host. During the cleaning, the 

algae remained submersed in seawater to prevent desiccation. After that, 5 g of each algal 
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individual were put into a standardized net bag made of polypropylene with a mesh size that 

allowed foulers (such as juvenile invertebrates) to enter the bags (Novanet Kunststoff, 

maximum length: 20 cm, maximum width: 10 cm, mesh width: 9 mm). In order to assess the 

fouling pressure on non-living surfaces in the respective study area, 15 PVC panels (10 × 10 

cm) roughened with 60 grit sandpaper were exposed at the same site as the algae and 

retrieved monthly during the time of the trials.  

    For exposure, PVC panels and net bags filled with algal individuals were paired one to 

one and each pair was tied to a single rope with a distance of 5 cm between plate and bag. A 

stone was tied to each PVC panel to stabilize it in the water column and to ensure that it 

remained vertically orientated. Thereafter, each pair was deployed at a depth of 0.5 m. 

Fouling organisms that established on the panels as well as on the living algae during the 

course of one month were fixed in a 4% formalin-seawater solution and their abundance and 

composition were then identified and quantified using a stereomicroscope. Coverage by 

fouling species on the panels and on G. vermiculophylla was assessed as percentage ranging 

from zero to 100%. Foulers were identified to the lowest possible taxonomic level, but due to 

the small size of many recruits, taxonomic resolution was often restricted to the class. 

Experiment 2: Susceptibility to in situ fouling in native and non-native Gracilaria 

vermiculophylla 

Individuals of G. vermiculophylla were collected at two occasions between June and August 

2015 at eight sites located in five different countries within the native and the non-native 

range of the species (Table 1). All sampling areas were semi-exposed shallow bays and 

estuaries. Although the algal material was collected at eight different sites, the common 

garden field experiments were performed at only two locations: at the institute’s pier of  

 

Table 1 Geographic locations of the sampling sites and timing of sampling events for native 

and non-native populations of Gracilaria vermiculophylla.  

 
Origin Collection site                        Geographic Coordinate                

Native Rongcheng, China, Yellow Sea 37°9'4.29"N, 122°33'35.60"E 

Qingdao, China, Yellow Sea 36°3'0.6"N, 120°20'59.1"E 

Akkeshi, Japan, Northeastern Honshu 43°1'25.80"N, 144°52'47.20"E 

Tokyo, Japan, Central Kuroshio Current 35°19'25.72"N, 139°38'8.30"E 

Non-

native 

Kiel, Germany, Baltic Sea 54°21'9.7"N, 10°8'34.2"E 

Nordstrand, Germany, North Sea 54°29'10.0"N 8°48'44.8"E 

Pouldouran, France, Celtic Seas 48°45'57.30"N, 3°12'2.50"W 

Port Moody, Canada, Vancouver Coast 49°16'47.99"N, 122°51'6.08"W 
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GEOMAR, Kiel Fjord, Germany, in June and August and at the pier of the Akkeshi Marine 

Station, Akkeshi Bay, Japan, in July 2015 (due to technical and financial constraints, 

experiments 1 and 2 could not be conducted at the same location in the native range). To 

compare susceptibility to in situ fouling between native and non-native G. vermiculophylla 

populations, living algal specimens from all sampling sites were transferred both to Kiel and 

Akkeshi. For transport, algal individuals were individually packed in plastic bags with 

seawater-moistened paper tissue, and these bags were then placed in cooling containers. The 

length of transport, even between Kiel and Akkeshi, never exceeded 5 d. In June 2015, for 

equipping the field experiments in Kiel (conducted in June) and Akkeshi (conducted in July), 

specimens from all populations, were transferred to Kiel first. Then half of the individuals 

from all populations outside Japan were transported from there to Akkeshi by air cargo. 

After their arrival, the algae were carefully inspected, but no loss was observed due to 

transportation stress. Populations inside Japan were also sampled in June 2015 and the 

collected algal individuals were transported to Akkeshi directly. For the experiments 

conducted in Kiel in August 2015, which were not repeated in Japan, algal individuals from 

all sampling sites were transferred to the laboratory in Kiel directly. In all experiments, algal 

specimens were acclimatized to the locally prevailing abiotic conditions (water temperature 

and salinity) for at least one week prior to exposure in the field. In Kiel, this took place in a 

climate room with constant water temperature (15°C) and light (30 μmol m
−2

 s
−1

) in a 12 h 

light-dark cycle. The algal material was kept in permanently aerated 14 l aquaria filled with 

seawater from the Kiel Fjord (salinity: 15–18), which was completely renewed by an 

automatic seawater flow-through every 3.5 h (flow-through rate: 50 ml/min). Seaweeds 

sampled under high salinity conditions (e.g. in Rongcheng and Qingdao) were acclimatized 

to the salinity conditions in Kiel Fjord over the course of several days by decreasing salinity 

by two units per day over a period of one week. In Akkeshi, algae were kept individually in 

separate beakers with aeration, which were placed in a climate room at 18°C and with light 

conditions of 20 μmol m
−2

 s
−1

 in a 12 h light-dark cycle. The seawater used for algal 

cultivation was obtained from the nearby Akkeshi Bay (salinity: 30–33) and was exchanged 

daily. Seaweeds from low salinity environments (Baltic Sea and Pouldouran estuary) were 

slowly adapted to the condition in Akkeshi Bay by increasing salinity by two units per day 

over a period of one week. 

    Algae from all populations (replication n = 5 per population), as well as a control group of 

five algal mimics, i.e. bundles of cut black plastic cable ties in a size similar as the algal 

individuals, were exposed to natural colonization by epibionts. To prevent the release of 



Paper II 

61 

 

spores, fragments or microorganisms associated with G. vermiculophylla into the water 

column, algal individuals (5 g each) and algal mimics were put into dialysis membrane tubes 

(Spectra/por
® 

6 Membrance, MWCO: 1 kD) which are manufactured from natural cellulose 

reconstituted from cotton linters. The dialysis membrane allows molecules with a molecular 

weight of less than approximately 1 kD, e.g. secondary metabolites, to pass but it holds back 

the much larger G. vermiculophylla spores and microorganisms. Each of these tubes was 

then fixed at a water depth of 0.5 m to a vertically orientated rope, while a small stone was 

tied to the end of each rope to ensure vertical orientation and to stabilize it in the water 

column. A distance of 1 m was kept between the single ropes. Pretests had indicated that 

neither dialysis tubes nor G. vermiculophylla show signs of degradation when they are 

exposed under such conditions for four weeks. Exposure time during experiment 2 was 14 d 

in the Kiel Fjord and 18 d in Akkeshi Bay and again, no signs of algal stress like change in 

pigmentation or necrosis were observed.  After exposure the dialysis membrane tubes were 

retrieved from the water and unfolded for inspection under a stereomicroscope. Settlement of 

fouling organisms on the lateral area was quantified by estimating percent cover for diatoms 

and by counting the number of individuals in case of solitary foulers. These data were 

obtained from three circular plastic frames (∅ 1 cm) per tube, which were placed randomly 

on the unfolded membranes. Furthermore, the total abundance of fouler species was 

estimated as percent cover within one randomly placed frame (6 × 6 cm) that was placed on 

each membrane. 

Statistical analyses 

Compositions of fouling communities (Experiment 1) were statistically compared by one-

factorial Analysis of Similarity (ANOSIM) and by non-metric multi-dimensional scaling 

ordination (nMDS) using PRIMER 6. Prior to the analyses, data points were excluded in 

case the fouling abundance of a sample was zero and in case the average abundance of one 

fouler across all samples was smaller than 0.5%. All further statistical and graphical analyses 

were done using the free statistical computing software R (R Development Core Team 

2014). Mixed-effect modelling was used for analyzing the total fouling coverage 

(Experiment 2). The modelling included two fixed factors: (1) ‘Gracilaria origin’ with the 

levels ‘Native’ and ‘Non-native’, (2) ‘Exposure site’ with the levels ‘Japan’ and ‘Germany’. 

Furthermore, the various sampling sites of G. vermiculophylla were included as a random 

factor. The abundances of the single fouler species were analyzed in separate approaches 

using one-way designs with the factor ‘Gracilaria origin’ with the levels ‘Native’ and ‘Non-
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native’ (Experiment 2). As fouler settlement rates in Akkeshi Bay were low and, as a 

consequence, the resulting data set contained many zeros, it was analysed using Kruskal-

Wallis rank sum tests, which do not require normally distributed data. To analyse the fouling 

experiments that were done in Kiel, one-way ANOVAs (in case of normal data) or Kruskal-

Wallis rank sum tests (in case of non-normal data) were conducted. To achieve homogeneity 

of variances and normality of errors, data for Mytilus post-larvae and for diatoms that were 

obtained in June, were log-transformed prior to the one-way ANOVA, while a Welch 

adjusted one-way ANOVA was used for Ulva and for diatoms quantified in August. The t-

test was used to compare fouling on dialysis tubes containing mock substrates in both 

exposure sites. Homogeneity of variances was checked graphically on the base of residual 

plots, while normality of errors was verified by histograms of the residuals and by the 

Shapiro–Wilk test. 

Results 

Experiment 1: Monitoring of fouling organisms on Gracilaria vermiculophylla and 

artificial substrata  

Overall, in the Kiel Fjord six different taxonomic classes were identified both on living (G. 

vermiculophylla thalli) and non-living (PVC panels) substrata. In Rongcheng, four classes 

were identified on G. vermiculophylla individuals, while seven classes were recorded on 

PVC panels (Fig. 1). Also, the taxonomic groups observed on PVC panels and on G. 

vermiculophylla in the same site differed considerably (Fig. 1). Both at Kiel and Rongcheng, 

one of the two most abundant taxa on G. vermiculophylla were Ciliates. The most abundant 

group on G.vermiculophylla at Rongcheng were red algal epiphytes (Florideophyceae, 

primarily of the genera Ceramium and Polysiphonia), while the second most abundant group 

on G. vermiculophylla at Kiel were Bryozoans of the class Gymnolaemata. In contrast, PVC 

panels in Rongcheng were dominated by green algal epiphytes (primarily of the genus Ulva) 

and diatoms. These groups were also abundant on PVC panels at Kiel, but the most abundant 

groups on PVC panels at Kiel were bivalves of the genus Mytilus and barnacles of the genus 

Amphibalanus – two groups that were completely absent at Rongcheng.  

    Interestingly, averaged across both substrata, the total abundance of foulers was higher in 

Kiel than in Rongcheng (Fig. 1, 2). The total abundance of foulers was generally lower on G. 

vermiculophylla individuals than on PVC panels and this was the case at both study sites 

(Fig. 1, 2). In Kiel, this difference was 16% (Gracilaria 37 ± 25% and PVC panels 53 ± 
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30%, mean ± SD) and Bacillariophyta, Bivalvia and Maxillopoda were consistently less 

abundant on Gracilaria than on panels. In Rongcheng the difference was about 10 % 

(Gracilaria 8 ± 5% and PVC panels 18 ± 14%) and Ciliata and Florideophyceae were 

consistently more abundant, while Bryozoans of the class Gymnolaemata were consistently 

less abundant on Gracilaria than on panels.  

  

    Across both exposure sites and all months, the compositions of fouling communities on G. 

vermiculophylla and on PVC panels (factor ‘Substratum’) were significantly different, but 

there was a certain overlap as indicated by ANOSIM (R=0.312, P=0.001, Fig. 3). Across 

both substrata and all months, the picture was the same for the factor ‘Exposure site’ 

(ANOSIM: R=0.538, P=0.001, Fig. 3). Across both substrata and both exposure sites, the 

composition of fouling communities was not very different among months (ANOSIM: 

R=0.239, P=0.001, Fig. 3). In Germany, however, the composition of fouling communities 

on G. vermiculophylla in May was very different from that in June and July, and the same 

was true for fouling communities on PVC panels in China (Fig. 3). 

Fig. 1 Composition of fouling communities that established on Gracilaria individuals and 

on PVC panels at sites in the native (China) and non-native (Germany) range of Gracilaria 

vermiculophylla in May, June and July 2014. Means and 95% CIs (n = 45). 
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Fig. 2 Abundance of fouling communities that established on Gracilaria individuals and 

on PVC panels at sites in the native (China) and non-native (Germany) range of Gracilaria 

vermiculophylla in May, June and July 2014. Means and 95% CIs (n = 15). 

 

Fig. 3 Similarity between fouling communities that established on Gracilaria individuals 

and on PVC panels at sites in the native (China) and non-native (Germany) range of 

Gracilaria vermiculophylla in May, June and July 2014 (n = 15) determined by 

multidimensional scaling.  
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Experiment 2: Susceptibility to in situ fouling in native and non-native Gracilaria 

vermiculophylla 

Overall, the composition of fouling communities on dialysis tubes exposed in the Kiel Fjord 

(Fig. 4) was more similar to that observed on PVC panels than to that observed on G. 

vermiculophylla exposed at the same site in experiment 1 (Fig. 1). It consisted of diatoms, 

bivalves of the genus Mytilus, barnacles of the genus Amphibalanus, green algae of the 

genus Ulva and red algae of the genus Ceramium. This contrasted with the site in Japan, 

where Bivalves, barnacles and Ulva were absent, but sessile Polychaetes were observed in 

addition to diatoms and red algae of the genus Ceramium (Fig. 4).  

The mean abundance of foulers on dialysis tubes containing native or non-native Gracilaria 

or control mock substrates was always higher in Germany than in Japan (Fig. 4). This 

difference was not statistically significant when only tubes containing mock substrates were 

considered (t test, P = 0.2852), which was due in part to limited numbers of replication of 

such tubes (n = 5 in Japan and n = 10 in Germany). However, dialysis tubes containing G. 

vermiculophylla were significantly more fouled in Germany than in Japan (Fig. 4, Table 2). 

Further, all fouling experiments revealed that dialysis membrane tubes that contained algal 

individuals from non-native populations of G. vermiculophylla were less fouled than those 

Fig. 4 Composition of fouling communities that colonized dialysis tubes filled with mock, 

native and non-native Gracilaria vermiculophylla. Tubes were exposed to natural fouling 

in Japan (Akkeshi Bay) and in Germany (Kiel Fjord) in June to August 2015. Means and 

95% CIs (n =5 to 40).  
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filled with algae from native populations. The size of the difference was, on average, 6% and 

it was statistically significant (Fig. 4, Table 2) and less than 0.001% of the unexplained 

variation was found to be actually covered by the random factor ‘Site’. No interaction was 

detected between ‘Gracilaria origin’ and ‘Exposure site’ (Table 2).  

Table 2 Influence of the origin of Gracilaria vermiculophylla (native vs. non-native range) 

and the site of exposure (native/Japan vs. non-native/Germany) on natural fouling rates on 

dialysis membrane tubes containing living algal individuals.  

 
Source of variation numDF denDF F - value p - value 

Gracilaria origin 1 6 9.7881 0.0204 

Exposure site 1 100 38.3475 ˂.0001 

Origin : Site 1 100 0.3064 0.5811 

Results from mixed effect-modelling. numDF degrees of freedom in the numerator, denDF degrees of 

freedom in the denominator 

 

    In June, five fouling species (Mytilus edulis, Amphibalanus improvisus, Ulva sp., 

Ceramium tenuicorne, diatoms) were found on the dialysis tubes that were exposed in the 

Kiel Fjord (Fig. 5). With the exception of Ulva sp. and C. tenuicorne, the differences in 

fouling rates between tubes with native and non-native G. vermiculophylla were statistically 

significant: M. edulis, A. improvisus and diatoms settled by 56%, 73% and 8%, respectively, 

less on dialysis tubes with non-native individuals than on those with native conspecifics 

(Table 3). In August, four fouling species (A. improvisus, Ulva sp., C. tenuicorne, diatoms) 

were present on the dialysis tubes in the Kiel Fjord (Fig. 6). All of them settled significantly 

less on tubes with non-native G. vermiculophylla individuals: A. improvisus by 59%; Ulva 

sp. by 58%; C. tenuicorne by 52% and diatoms by 12% (Table 4).  

Table 3 Influence of the origin of Gracilaria vermiculophylla (native vs. non-native range) 

on natural fouling rates on dialysis membrane tubes filled with individuals of the alga 

exposed to natural fouling in Germany (Kiel Fjord) in June 2015. 

 
Fouler Test df SS MS chi-

squared 

F - 

value 

p –  

value 

Mytilus edulis one-way 

ANOVA 

num df = 1,  

den df = 103 

18.37 18.368  12.21 0.0007 

Amphibalanus 

improvisus 

Kruskal-Wallis 

rank sum test 

1   5.9353 

 

 0.01484 

Ulva sp. one-way 

ANOVA  

num df = 1,  

den df = 103 

242 241.8  0.898 0.346 

Ceramium 

tenuicorne 

Kruskal-Wallis 

rank sum test 

1   2.8974 

 

 0.0887 

Diatoms one-way 

ANOVA 

num df = 1,  

den df = 103 

9.94 9.937  17.2 6.94e-05 

df degrees of freedom, SS sums of squares, MS mean squares 
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Table 4 Influence of the origin of Gracilaria vermiculophylla (native vs. non-native range) 

on natural fouling rates on dialysis membrane tubes filled with individuals of the alga 

exposed to natural fouling in Germany (Kiel Fjord) in August 2015. 

 
Fouler Test df SS MS chi-

squared 

F - 

value 

p –  

value 

Amphibalanus 

improvisus 

one-way 

ANOVA 

num df = 1,  

den df = 118 

93.9 93.91  14.92 0.0002 

Ulva sp. Welch adjusted 

one-way 

ANOVA 

num df = 1,  

den df = 89 

   43.5808 2.893e-09 

Ceramium 

tenuicorne 

Kruskal-Wallis 

rank sum test 

1   10.6459  0.0011 

Diatoms Welch adjusted 

one-way 

ANOVA 

num df = 1, 

den df =100 

   16.4181 0.0001 

df degrees of freedom, SS sums of squares, MS mean squares 

 

 

 

Fig. 5 Abundances of different foulers that colonized dialysis tubes filled with individuals 

of Gracilaria vermiculophylla from either native or the non-native populations of the alga. 

Tubes were exposed to natural fouling in Germany (Kiel Fjord) in June 2015. The 

abundance of diatoms was determined as % of substrate surface covered, abundance of 

other groups was determined by counting. Boxplots show medians, interquartiles and 

outliers (n = 15 to 20). 
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In Akkeshi, three fouling species (Circeis spirillum, Ceramium kondoi, diatoms) were 

recorded on the dialysis membrane tubes filled with G. vermiculophylla (Fig. 7). Diatoms 

settled significantly less (by 3%) on tubes containing non-native G. vermiculophylla, while 

the differences for C. spirillum (50% less on non-native G. vermiculophylla) and C. kondoi 

(18% less on non-native G. vermiculophylla) were marginally significant (Table 5).  

Table 5 Influence of the origin of Gracilaria vermiculophylla (native vs. non-native range) 

on natural fouling rates on dialysis membrane tubes filled with individuals of the alga 

exposed to natural fouling in Japan (Akkeshi Bay) in July 2015. 

 
Fouler df chi-squared  p - value 

Circeis spirillum 1 3.4495 0.0633 

Ceramium kondoi 1 3.573 0.0587 

Diatoms 1 9.963 0.0016 

Results from Kruskal-Wallis rank sum tests. df degrees of freedom 

 

 

Fig. 6 Abundances of different foulers that colonized dialysis tubes filled with individuals 

of Gracilaria vermiculophylla from either native or the non-native populations of the alga. 

Tubes were exposed to natural fouling in Germany (Kiel Fjord) in August 2015. The 

abundance of diatoms was determined as % of substrate surface covered, abundance of 

other groups was determined by counting.  Boxplots show medians, interquartiles and 

outliers (n = 20). 
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Discussion 

Differences in fouling pressure between locations in Gracilaria’s native and non-native 

range  

The monitoring of field fouling pressure revealed that both substrata – living G. 

vermiculophylla individuals and PVC panels – were more heavily fouled in the Kiel Fjord, 

Germany (non-native range of G. vermiculophylla) than in Ailian Bay, Rongcheng, China 

(native range). Also in the field fouling experiments with dialysis tubes containing G. 

vermiculophylla, less fouling was observed in the native range (Akkeshi Bay, Japan) than in 

the non-native range (Kiel Fjord, Germany). Thus, both sets of experiments provided similar 

results, although the native study sites were located in different ecozones. This suggests that, 

at least during summer, G. vermiculophylla faces a more severe fouling pressure in its new 

environment in the Kiel Fjord.  

Fig. 7 Abundances of different foulers that colonized dialysis tubes filled with individuals 

of Gracilaria vermiculophylla from either native or the non-native populations of the alga. 

Tubes were exposed to natural fouling in Japan (Akkeshi Bay) in July 2015. The 

abundance of diatoms was determined as % of substrate surface covered, abundance of 

other groups was determined by counting. Boxplots show medians, interquartiles and 

outliers (n = 15 to 20). 
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    There are various possible explanations for the higher fouling pressure in the Kiel Fjord. 

First of all, it could be that the system there is generally more productive than the two Asian 

sites, due to higher nutrient concentrations in the eutrophic environment of the Western 

Baltic. A higher primary and secondary productivity would also mean that fouling organisms 

and their propagules occur in higher abundances and fouling rates should therefore be higher 

in eutrophic than in oligotrophic systems (Korpinen et al. 2007). However, nutrient 

concentration data available for the Kiel Fjord, Ailian Bay and Akkeshi Bay do not support 

the assumption that eutrophication is generally higher in the Kiel Fjord (suppl. Table S1). 

Much rather, the fact that the Kiel Fjord is a semi-enclosed environment without significant 

wave action and tides, while Rongcheng Bay and Akkeshi Bay are sea areas with heavy 

wave action and pronounced tidal amplitudes and turbulent stress could explain the 

difference in fouling rates. Crimaldi et al. (2002) showed that turbulent stress events 

influence larval settlement success and Koehl et al. (2013) found that wave action induced 

by ship wakes can reduce settlement rates by fouling organisms. It should be noted that the 

monitorings conducted to quantify the fouling pressure only considered one location in the 

non-native range of G. vermiculophylla. Therefore it cannot be said for sure whether sites in 

the non-native range are generally subject to more fouling pressure than sites in the native 

range of G. vermiculophylla. In any case the finding in this study certainly contradicts and 

therefore falsifies the predictions of the ERH and EICA (Blossey and Nötzold 1995; Keane 

and Crawley 2002), which both suggest that introduced species should experience a 

reduction in the diversity and the abundance of co-evolved enemies in their new range 

compared to their native range. Indeed, most marine fouling organisms are relatively 

unspecific with respect to host choice (Wahl and Mark 1999) and in this light the probability 

of release from specialized fouling organisms during invasions of aquatic organisms appears 

as relatively low.  

Gracilaria’s defence against fouling organisms is, at least partly, based on secondary 

metabolites 

A second observation while monitoring the fouling pressure in the field was that foulers at 

both testing sites were generally more abundant on PVC panels than on G. vermiculophylla 

individuals and only few groups of foulers (e.g. Ciliates) were more abundant on the alga. 

Although there are many differences, such as shape, between the two substrata, this finding 

suggests the presence of a physical and/or chemical antifouling defence in G. 

vermiculophylla against most foulers. A similar picture was reported by Rickert et al. (2015), 
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who observed higher densities of the barnacle A. improvisus on PVC panels compared to the 

thalli of two nearby Fucus species. In an experimental approach, the authors could identify 

surface-bound metabolites as the reason for the deterrent effect that Fucus showed against 

settlement of A. improvisus. Evidence of chemical defences against algal macrofoulers has 

also been reported for Gracilaria chilensis, a species that is phylogenetically relatively 

closely related with G. vermiculophylla (Lion et al. 2006). Moreover, previous studies 

revealed that extractable surface-bound metabolites from G. vermiculophylla mediate the 

defences of G. vermiculophylla against epibacteria (Saha et al. 2016), diatoms and 

Ceramium filaments (Wang et al. 2016). In contrast, physical antifouling defence strategies, 

such as epithallus sloughing and gelatinous or microstructured surfaces – that have been 

reported from some macroalgae (da Gama et al. 2014; Yamamoto et al. 2013) – were so far 

not observed in G. vermiculophylla by us or others. Nonetheless, given that absence of 

evidence is no evidence of absence it cannot be excluded with certainty that physical defence 

mechanisms contributed to the difference in fouling rates that was observed between G. 

vermiculophylla thalli and non-living surfaces. However, the inclusion of G. vermiculophylla 

into dialysis tubes in experiment 2 not only prevented algal spores or associated 

microorganisms from entering the water column, but it also excluded any impact of physical 

antifouling defence mechanisms of G. vermiculophylla on foulers. The approach thus 

permits to evaluate the extent to which algal excretion of metabolites affects fouling 

organisms. Interestingly, the fouling communities on dialysis tubes containing G. 

vermiculophylla were more similar to fouling communities on PVC panels than to fouling 

communities that developed directly on the surface of the algae, and this could suggest that 

relevant physical defence mechanisms against foulers exist in G. vermiculophylla. However, 

algal specimens that originated from different populations affected the fouling communities 

on dialysis tubes in different ways. This not only indicates that chemical defences exist, but 

it also strongly suggests that the capacity for such defences varies among populations. Using 

dialysis membranes that contained living algae instead of artificial substrata coated with 

surface extracts as in our previous study (Wang et al. 2016) allowed us to assess the capacity 

of G. vermiculophylla for chemical antifouling defences in a more accurate way. This is 

because extracted metabolites are usually subject to oxidation and other degradation 

processes, while living algae warrant for a relatively constant release of undegraded 

compounds. No signs that the algae suffered from being kept in tubes, such as a change in 

colour or necrosis, were observed during the field fouling experiment. 
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Defence strength rather than avoidance by colonizers was responsible for the observed 

inter-population differences in fouling rates  

The fouling experiments with living G. vermiculophylla thalli enclosed in dialysis 

membranes revealed that individuals from non-native populations of the alga were generally 

less susceptible to fouling than native conspecifics. This was the case in both test areas. 

Therefore, since non-native algal individuals were exposed to natural fouling in both the 

native and the non-native range of G. vermiculophylla, it could be excluded that a lower 

preference of native colonizers for the non-native macroalga was the exclusive reason for the 

observed picture. Thus, the observed picture certainly resulted from differences in the 

composition and/or concentration of bioactive metabolites that were released from the 

surface of G. vermiculophylla and leached through the dialysis membranes. This result is 

consistent with findings of a previous study (Wang et al. 2016), in which epiphytes 

originating from both distribution ranges of G. vermiculophylla exhibited less readiness to 

settle on surface extracts of non-native specimens than on surface extracts of native 

individuals.  

    However, it cannot be explained with certainty why the antifouling defence capacity of G. 

vermiculophylla changed during the invasion process. The simplest explanation is that 

fouling resistant genotypes were selected during the invasion process, i.e. during transport 

and establishment in the new habitat, and that their frequency is therefore higher in non-

native than in native populations. This scenario would be in agreement with theories that 

predict a selection of an increased defensive capacity during biological invasions, such as the 

NWH. In its non-native distribution range G. vermiculophylla is mostly found in extremely 

sheltered lagoons and estuaries (Weinberger et al. 2008). In contrast, populations in the 

native range – including Qingdao and Rongcheng - are often located on more wave exposed 

rocky shores. As outlined above wave exposure generally reduces fouling pressure and in 

this light the selection of an increased antifouling defence may have facilitated the settlement 

and spread of G. vermiculophylla in non-native environments with particularly high fouling 

pressure, such as the Kiel Fjord.  

    Alternatively, the increased antifouling capacity of non-native G. vermiculophylla could 

result from an adaptation to other biotic pressures, such as grazing. Non-native G. 

vermiculophylla populations are more strongly defended against herbivores than native 

populations (Hammann et al. 2013) and compounds that deter consumers are sometimes also 

active against epibionts. For example, in Asparagopsis armata Bromoform was shown to 
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deter not only mesograzers, but also microsettlers (Paul et al. 2006a; Paul et al. 2006b). 

Likewise, the defence of G. vermiculophylla against herbivores is at least partially due to a 

capacity for production of oxylipins from arachidonic acid after wounding (Hammann et al. 

2016a) and those compounds were shown to also deter algal epibionts of Gracilarioids (Lion 

et al. 2006). Non-native populations of G. vermiculophylla were already shown to have a 

stronger capacity for production of oxylipins than native populations (Hammann et al. 

2016a). However, oxylipin production requires activation by heavy wounding (Rempt et al. 

2012), and although certain foulers of Gracilarioids (i.e. Ceramium species) can cause tissue 

wounding when they anchor themselves in the host (Leonardi et al. 2006) such wounding 

was excluded in this experiment: Direct, immediate contact of host and foulers was 

prevented by the dialysis tubes. Therefore, other compounds than oxylipins must be 

responsible for the deterrent effects observed in this study. Nontheless, the increased 

capacity for production of those unidentified defence compounds in non-native populations 

of G. vermiculophylla could also provide additional defence strength against other biological 

enemies that are not foulers.  

    A third explanation could be that a release from other and more severe biotic pressures 

(e.g. grazing) in the new environment of the alga led to a re-allocation of resources into 

antifouling defence (Blossey and Nötzold 1995). In Akkeshi, Japan, local populations of G. 

vermiculophylla were heavily grazed by the amphipod species Caprella scaura and 

Ampithoe lacertosa during summer 2015 and in Rongcheng, China, another Caprella species 

was also intensively feeding on G. vermiculophylla during summer and autumn 2014 (S. 

Wang, pers. obs.). In contrast to this, in Kiel, Germany, the overall grazing pressure on G. 

vermiculophylla appears as generally lower than in Asia (Hammann et al. 2013). If this 

reduced feeding pressure generally applies to non-native habitats then G. vermiculophylla in 

these habitats could possibly allocate more resources to defences against generalist foulers 

than native populations (Blossey and Nötzold 1995). 

    Furthermore, it is possible that the intense fouling pressure in the non-native habitat 

stimulated the antifouling defence in G. vermiculophylla. Such a demand-driven antifouling 

defence regulation has been suggested by Saha and Wahl (2013) and Rickert et al (2016). 

Saha and Wahl (2013) found that the anti-settlement activity of F. vesiculosus at two 

geographically distinct locations in Germany (Gelting and Poel) varied temporally, reaching 

a peak in summer/autumn, which was in phase with the density of bacterial cells in the 

plankton. Rickert et al (2016) showed that in individuals of the two Fucus species F. 
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vesiculosus and F. serratus, which inhabit adjacent habitats in the Western Baltic Sea, the 

strength of a chemical defence against microfouling varied seasonally and that fluctuations 

in the defence level tend to match with fluctuations in microfouling pressure. However, such 

demand-driven defences against fouling in G. vermiculophylla would require a highly 

sensitive sensing system, as direct contact between host and foulers was excluded in the 

experiments by the dialysis tubes.   

The influence of scattering over a larger geographical scale in sampling sites on the 

within-range variability in antifouling defence 

For the intra-specific comparison presented here individuals of G. vermiculophylla were 

sampled from two different ecological realms within the non-native range of the species. 

However, antifouling defence primarily differed between ranges, while within-range 

variability of antifouling defence was low: Less than 0.001% of the unexplained variation 

went back to the random factor ‘site’. Thus, non-native populations in Europe and at Port 

Moody (E Pacific) showed a similar antifouling defence capacity. This suggests that the 

observed picture could generally apply to non-native populations of G. vermiculophylla. 

More comparative studies considering non-native populations of G. vermiculophylla in other 

parts of the world are needed to confirm this assumption. 

    In conclusion, the fouling experiments with living algae described here give the first in 

situ evidence that individuals of G. vermiculophylla from non-native populations are 

generally less susceptible to natural fouling than native conspecifics. This is true regardless 

of whether the non-native algal individuals are exposed in the native or in the non-native 

range of G. vermiculophylla. This indicates that the observed difference goes back to the 

defence properties of the algae and not to the fact that the foulers present were not able to 

recognize the algae as a suitable settlement substratum. Since all surface properties of the 

alga were excluded by enclosing them in membrane tubes, it is clear that the antifouling 

properties were mediated by chemical compounds which were released by the algae and 

which were able to pass through the membrane. However, so far there is no information 

about which chemical compounds are involved in this. Finally, this is the first study in which 

living algae enclosed in dialysis membrane tubes were exposed in the field to assess natural 

fouling rates. This technique represents a more simple, efficient and accurate way to test 

chemical antifouling defences in seaweeds than using artificial substrata coated with 

extracts.  
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Abstract 

Marine macroalgae are constantly exposed to colonization by other sessile life forms, while 

the intensity of fouling pressure and the identity of colonizing organisms fluctuate spatially 

and seasonally. We therefore hypothesized that macroalgae adjust their antifouling defences 

to fouling pressure. To test this assumption fouling pressure in the Baltic Sea and the defence 

capacity of G. vermiculophylla surface extracts against two foulers - the diatom Stauroneis 

constricta and the filamentous alga Ceramium tenuicorne - were assessed over one 

vegetation period on a monthly basis. Both hexane and DCM surface extracts inhibited C. 

tenuicorne similarly, while only hexane surface extracts deterred S. constricta. The activities 

of both surface extracts exhibited significant seasonality. However, only the fluctuations in 

deterrence strength of DCM extracts towards C. tenuicorne correlated with the intensity of 

epiphytism by C tenuicorne on G. vermiculophylla. Thus, G. vermiculophylla appears to 

adjust some of its antifouling defences to fouling pressure.  

 

 

Keywords: Ceramium tenuicorne, antifouling defence, fouling pressure, Gracilaria 

vermiculophylla, seasonal variation, Stauroneis 
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Introduction 

Epibiosis is the spatial association between an ‘epibiont’ (the fouling organism) and a 

‘basibiont’ (the fouled host organism), which is typical and ubiquitous in marine 

environments (Taylor and Wilson 2003, Wahl 1989, Wahl and Mark 1999). Seaweeds are 

photosynthetic organisms and particularly prone to colonization by epibionts, which 

comprise many different taxa from all kingdoms, as they are sessile and restricted to the 

shallow, euphotic zone where the abundance and diversity of fouling organisms is known to 

be high (da Gama et al. 2008, de Nys et al. 1995).                                                                                                                                                                                                                                                                                         

    Although epibionts have not only detrimental, but also neutral or even beneficial effects 

on the basibiont seaweeds (Costerton et al. 1987, Thevanathan 2000), they are generally 

considered harmful for the performance of the host macroalga (Duffy and Hay 2000, Wahl 

2008). These effects can be direct or indirect. A direct influence is given when epibionts 

reduce growth and photosynthesis of the host alga by competing for light and nutrients 

(Buschmann and Gómez 1993, Cebrian et al. 1999, Honkanen and Jormalainen 2005), when 

they impair the host by mechanically penetrating into the tissues (Leonardi et al. 2006), or 

when they cause mortality by increasing drag and weight (Hemmi et al. 2005). Indirect 

effects emerge when palatable epibionts raise the attractiveness of the host alga for 

consumers (Wahl et al. 1997).  

    Such negative effects on macroalgal fitness should be an important driver that leads to the 

selection of genotypes that possess efficient physical or chemical antifouling (AF) defence 

that minimizes colonization on their surfaces (Clare 1996, da Gama et al. 2014, Nylund et al. 

2008, Paul and Ritson-Williams 2008). Periodical epithallus sloughing is arguably the best 

investigated physical defence against epibionts (da Gama et al. 2014) and has been reported 

for numerous species of macroalgae, such as the brown alga Sargassum spp. (Yamamoto et 

al. 2013), the red alga Dilsea carnosa (Nylund and Pavia 2005) or the green alga Ulva 

intestinalis (McArthur and Moss 1977). Another common physical AF mechanism among 

brown, red and green macroalgae is the formation of gelatinous layers that cover surfaces 

and hinder adhesion to them (Chapman et al. 2014, Davis et al. 2003). In addition, 

metabolites have been discovered in macroalgae that chemically defend them against 

colonizers. Most of the studies that so far focused on the last type of defence studied crude 

extracts which were gained from the whole tissues of algal thalli (Amade and Lemée 1998, 

de Nys et al. 1995, Wikström and Pavia 2004). However, to affect fouling metabolites must 

either be present on the surface of the host or must be released into the surrounding water at 
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ecologically relevant natural concentrations (Nylund et al. 2007). As a consequence, some 

studies concentrated on testing the AF activity of surface-associated metabolites of seaweeds 

at ecologically relevant concentrations (Dworjanyn et al. 2006, Sudatti et al. 2008). For 

example, it has been reported that surface extracts of the red alga Delisea pulchra and the 

green alga Caulerpa filiformis at natural concentrations inhibit settlement of Polysiphonia 

sp. spores and Ulva australis gametes (Nylund et al. 2007). Studies with the brown alga 

Fucus vesiculosus identified relatively polar and non-polar compounds extracted from the 

algal surface that have the potential to impede epibiotic biofilms at natural concentrations 

(Saha et al. 2011, 2012). Rickert et al. (2015, 2016) also showed that surface-extracted 

metabolites from the brown algae F. vesiculosus and Fucus serratus deterred settlement of 

micro- and macrofoulers at two-fold natural concentrations.  

    Temperate macroalgae are almost permanently exposed to fouling pressure, which can 

spatially and seasonally fluctuate with regard to both the intensity and the composition of the 

colonizer pool (Arrontes 1990, Wahl et al. 2010). However, if the production of chemical 

defence is actually costly in terms of metabolic energy (Dworjanyn et al. 2006), algal 

defence strength should vary with factors that affect energy resources, such as temperature 

and light (Lehvo et al. 2001, Rickert et al. 2015) or with defence demand, such as fouling 

pressure (Rickert et al. 2015, Schauer et al. 2003). In accordance with this, previous studies 

of temperate macroalgae already documented a seasonal variation in AF activity (Hellio et 

al. 2004, Maréchal et al. 2004, Saha and Wahl 2013, Stirk et al. 2007).  

    Originating from East Asia, the perennial red alga G. vermiculophylla (Ohmi) Papenfuss 

has invaded many temperate coastal habitats in the Northern hemisphere, where temperature, 

light and fouling pressure undergo strong seasonal variations (Abreu et al. 2011, Hammann 

et al. 2013a, Sfriso et al. 2012, Weinberger et al. 2008). The alga was first discovered in the 

German Baltic Sea in 2005 (Schories and Selig 2006), where it can grow on soft bottom 

substrates as well as on stones in the shallow subtidal (Weinberger et al. 2008). The later are 

also an important habitat for F. vesiculosus, the most common native perennial alga in the 

Baltic Sea. Thus, in the SW Baltic both species directly compete for resources (Weinberger 

et al. 2008). Moreover, compared to F. vesiculosus, G. vermiculophylla experiences a lower 

grazing pressure in this sea area and is a preferred refuge for mesograzers and other 

invertebrates (Hammann et al. 2013b, Weinberger et al. 2008). A previous study on this alga 

has shown that surface extracts from both native and non-native populations of G. 

vermiculophylla could chemically inhibit settlement of diatoms and of Ceramium species 
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(Wang et al. 2016). Futher, oxylipins produced by a related alga, Gracilaria chilensis, were 

found to reduce colonization by algal epiphytes and can be upregulated after cell damage due 

to epiphyte penetration (Lion et al. 2006, Weinberger 2007). Lion et al. (2006) showed that 

high amounts of 8R-hydroxy eicosatetraenoic acid (8-HETE) and 7,8-dihydroxy 

eicosatetraenoic acid (7,8-di-HETE) generated by G. chilensis after wounding inhibit the 

settlement of spores of the red alga Acrochaetium sp., as well as the attachment of vegetative 

thalli of the epiphytic red alga Ceramium rubrum. However, the surface-associated 

compounds that are responsible for the observed AF activity of G. vermiculophylla so far 

remain unknown. The purpose of the present study was to investigate whether there is 

seasonal variation in this activity and whether its strength changes with the prevailing 

fouling pressure. This study intended to answer several questions: 1. is the fouling pressure 

in the field fluctuant seasonally? 2. whether the chemical AF defence in G. vermiculophylla 

varies seasonally, and 3. is the strength of chemical AF defence in G. vermiculophylla 

associated with prevailing fouling pressure?  

Material and Methods 

Sampling site and collection of Gracilaria vermiculophylla 

Individuals of Gracilaria vermiculophylla (Ohmi) Papenfuss were collected monthly from 

April to October 2015 in the shallow subtidal at Tirpitzmole, Kiel Fjord, Germany 

(54°21'9.7"N, 10°8'34.2"E). As G. vermiculophylla was often found growing tangled and 

unattached in this area (Wang, pers. obs.), algal samples were collected at five different spots 

(at a distance of 20 m from each other) to avoid the sampling of clones. Immediately after 

collection, the seaweed material was transported in a cooler box to the laboratory, where it 

was gently cleaned in sterile seawater to remove associated fouling organisms and debris.  

Collection and cultivation of foulers for bioassays 

The pennate diatom Stauroneis constricta was isolated from G. vermiculophylla individuals 

and used as a test fouler in fouling bioassays. It was cultivated in an incubator at 14 °C, at a 

light intensity of 20 μmol m
−2

 s
−1

 in a 14:10 h light:dark cycle. The f/2 medium (Guillard and 

Ryther 1962) prepared with Baltic Sea water (salinity: 15 ± 2) was used for culture and 

changed every three weeks. The diatom suspension was applied in bioassays with a 

concentration of 1500-1600 cells/µl. 
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    Filaments of Ceramium sp. have previously been described as epiphytes on Gracilaria 

species (Leonardi, Miravalles, Faugeron, Flores, Beltrán and Correa 2006, Lion, 

Wiesemeier, Weinberger, Beltran, Flores, Faugeron, Correa and Pohnert 2006, Michetti et al. 

2016) and the Ceramium species used as a test fouler in fouling bioassays are commonly 

found growing on G. vermiculophylla thalli in the Kiel Fjord (Wang et al. 2016). Three days 

before fouling bioassays, specimens of Ceramium tenuicorne were collected from the Kiel 

Fjord at sites where G. vermiculophylla was also present. They were maintained in Baltic 

Sea water (salinity: 15 ± 2) that was daily exchanged, at a temperature of 16 °C with a light 

intensity of 20 μmol m
−2

 s
−1

 in a 14:10 h light:dark photoperiod. 

Field monitoring of fouling organisms 

A monitoring of the epibionts present on G. vermiculophylla was conducted at the institute 

pier of GEOMAR (54°19'48.5"N 10°08'58.8"E) in the Kiel Fjord from April to October 

2015. Each month five freshly collected algal individuals were exposed to natural 

colonization for one month, in order to assess the total degree of fouling and the composition 

of established fouling communities at the respective time of the year. Before the exposure, 

all visible fouling organisms were removed from the surface of G. vermiculophylla with a 

soft brush to avoid any damage. After that, single algal individuals (5 g each) were placed 

into standardized net bags of polypropylene with a mesh size that allowed mesograzers to 

enter and exit the bags freely (Novanet Kunststoff, Fritzlar, maximum length: 20 cm, 

maximum width: 10 cm, mesh width: 9 mm). In order to investigate the actual fouling 

pressure during each month at the study site, five PVC panels (10 cm x 10 cm) roughened 

with 60 grit sandpaper were exposed as reference. Each pair of PVC panel and net bag filled 

with an algal individual was tied to a separate rope without overlap. Thereafter, the 

combination was deployed at 0.5 m below mean sea surface level with a stone, in order to 

remain vertically orientated. After one month of exposure, the fouling organisms that 

established on both sides of the panels and on living algae were fixed in a 4% formalin-

seawater solution and their abundance and composition were then quantified under a 

stereomicroscope (10-fold magnification). 

Surface extraction of Gracilaria vermiculophylla 

Surface extractions of 80 g of G. vermiculophylla from each of the five sampling spots were 

conducted monthly, in order to collect any compounds with anti-fouling activity. Prior to 

extraction, ten fragments of G. vermiculophylla were scanned and weighed to determine the 
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relationship between algal surface area and algal wet mass by using the imaging software 

Image J (National Institute of Health, Bethesda, Maryland, USA) for surface area 

quantification. The average surface area of 1 g algal material across all ten fragments was 

identified as 46.06 cm
2 

g
-1

. The total surface area of any given wet mass of G. 

vermiculophylla was therefore calculated by multiplying the wet mass (g) by 46.06 cm
2 
g

-1
. 

    Before extraction, the algae were spin-dried in a centrifuge (Eppendorf 5810 R, 

Eppendorf, Hamburg, Germany) at 15 °C and with 200 rpm for 30 s. Surface extraction was 

then carried out as described in detail in Wang et al. (2016). Briefly, G. vermiculophylla 

individuals were dipped for 5 s into 500 ml of a constantly stirred mix of dichloromethane 

(DCM) and hexane 1:4 (v/v), a treatment that causes no damage of epidermal cells (Wang et 

al. 2016). The resulting solution was filtered through a paper filter (∅ 185 mm, Macherey-

Nagel, Düren, Germany) into a 1000 ml Duran flask to remove particles and then evaporated 

under vacuum at 30 °C with a rotary evaporator. The residue was re-dissolved sequentially in 

pure hexane and DCM, respectively, to obtain a non-polar and a polar fraction. Both 

fractions were finally dissolved in 4 ml of the respective solvent and stored in 4 ml vials at -

20 °C. Solvent controls were also prepared by simply evaporating the same amount of 

solvents as for the surface extraction, and re-dissolving the residue in pure hexane and DCM 

as described above. 

Fouling bioassays with Stauroneis constricta 

Laboratory fouling bioassays with S. constricta that compared the AF activity of all surface 

extracts of G. vermiculophylla that were collected during the preceding seven months were 

conducted in October 2015. Prior to these bioassays a linear relationship between diatom 

density and diatom fluorescence intensity at an excitation wavelength of 485 nm and an 

emission wavelength of 677 nm was established by measuring the fluorescence intensity of 

diatoms attached in 96-well plates (flat bottom, Greiner bio-one, Frickenhausen, Germany) 

at known density with a plate reader (Chameleon IV, Hidex, Finland). Diatom densities were 

quantified by counting numbers of diatoms within eight randomly taken visible fields per 

well under an inverted microscope (10-fold magnification). 

    All surface extracts were then tested at fivefold natural surface concentration in 96-well 

plates (flat bottom, Greiner bio-one) as described in detail in Wang et al. (2016). Briefly, 

extract stock solution containing extract from an algal surface that was five times as large as 

the surface of a well containing 100 µl was transferred to a well and diluted with pure 
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solvent (either hexane or DCM) to a final volume of 100 µl. Control wells were loaded with 

pure solvent. All solvent was then evaporated in vacuo overnight and 100 µl of stirred 

diatom suspension were transferred into each well. Wells impregnated with only extracts and 

sterile seawater were prepared to check the background fluorescence. After inoculation the 

wells were incubated for 3 h under the same conditions as the diatom culture. Unattached 

diatoms were removed by rinsing each well with 200 µl of sterile seawater and the 

fluorescence intensity per well was finally recorded at an excitation wavelength of 485 nm 

and an emission wavelength of 677 nm. Numbers of settled diatoms per well could then be 

calculated based upon the linear relationship between diatom density and fluorescence 

intensity. 

Fouling bioassays with Ceramium tenuicorne  

Also laboratory fouling bioassays with the red alga C. tenuicorne were conducted in October 

2015, in order to compare the AF activity of the surface extracts of G. vermiculophylla that 

were collected during the preceding seven months. These bioassays were carried out as 

described in detail in Wang et al. (2016). Briefly, paper filters (Carl Roth, Karlsruhe, 

Germany, ∅ 35 mm, area: 9.6 cm²) were impregnated with extract obtained from 48 cm² G. 

vermiculophylla surface to obtain a fivefold natural surface concentrations and placed into 6-

well plates. Control wells received filters impregnated with control solvent residues only. 

Each well was then filled with 5 ml of Provasoli’s enriched seawater (PES) (Bold and 

Wynne 1978) and ten Ceramium filaments (1 cm in length) were transferred to each well. 

The wells were incubated at the same temperature and light conditions that had been applied 

during the maintenance of C. tenuicorne and the proportion of attached Ceramium filaments 

was quantified after two weeks. 

Statistical analyses 

For data from both field monitoring and bioassays with S. constricta and C. tenuicorne, the 

free computing software R (R Development Core Team 2014) was used for statistical and 

graphical analyses. The t test was used to analyze differences in the fouling abundance on 

field-exposed G. vermiculophylla individuals and on PVC panels. To analyze the bioassays 

with S. constricta and C. tenuicorne, t-test was employed to test differences in the mean 

settlement events on hexane and DCM surface extracts of G. vermiculophylla collected in 

different months of the year. The t-test was also used to test differences in the mean 
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settlement events on surface extracts and on solvent controls. Test assumptions were checked 

graphically by using residual plots.  

    In order to test the hypothesis that seasonal AF defences oscillate annually between a peak 

season and a minimum season, a second order polynomial regression model was applied to 

detect seasonality in AF defence strengths against S. constricta and C. tenuicorne, since this 

study only covered a part of the year. The statistical analyses were performed in R. 

    A crossed Pearson correlation analysis was conducted with the software NCSS 2007 

(NCSS.LLC, Kaysville, Utah) to identify time shifts in the correlations between bioassay 

results on one hand and field fouling pressure or actual fouling on G. vermiculophylla. 

Results 

Seasonal patterns in in situ fouling 

The overall abundance of foulers was lower on G. vermiculophylla individuals than on PVC 

panels (Figure 1), but the difference was not statistically significant (t-test, p = 0.09).  

 

 

 

Figure 1. Seasonal variability in the mean coverage (%; ± 95% CI; n = 5) of epiphytes and 

epizoans recorded on Gracilaria vermiculophylla individuals and PVC panels in the Kiel 

Fjord over 7 months of one year. No data for fouling colonization on G. vemiculophylla 

individuals in July: G. vemiculophylla individuals were largely lost due to grazing. 
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Table 1. Mean coverage (%; ± SD; n = 5) of foulers on PVC panels exposed in the Kiel 

Fjord, Germany from April to October, 2015. Empty fields indicate absence of the respective 

foulers. 

 
Species April May June July August September October 

Ceramium 

tenuicorne 

0.1±0.22 1.42±0.95 4.31±2.02 3.7±2.41 1.67±0.58 2.5±0.5 1±0.35 

Diatoms 18.1±7.77 18.1±11.18 30.9±5.59 6.5±1.37 8.33±1.44 20.5±4.47 34±8.77 

Ectocarpus 

siliculosus 

     5.8±2.56  

Pilayella sp. 0.2±0.27 3.1±0.74  0.7±1.04 20±9.01   

Porphyra sp.       0.2±0.27 

Punctaria 

tenuissima 

 0.2±0.27    0.8±1.79  

Ulva sp. 0.81±0.66 1.9±0.96 6.1±2.19 9.6±3.07 6.33±3.33 5.2±2.97 0.3±0.27 

Alcyonidium 

gelatinosum 

   1±0.35 0.17±0.29 1.1±0.65 0.2±0.27 

Amphibalanus 

improvisus 

 1.9±0.82 12.9±6.14 22.5±7.07 4.33±1.44 5.4±1.64 0.9±0.22 

Conopeum 

serati 

   1.5±1.37  0.2±0.45  

Electra pilosa  2.3±1.6      

Focculina 0.9±0.22 1.8±1.52 0.5±0 0.4±0.22  0.5±0 0.5±0.35 

Forraminifera 0.3±0.45 0.1±0.22     0.1±0.22 

Halitholus 

yoldia-arcticae 

  0.1±0.22     

Laomedea sp.      0.5±0.61 2.7±1.89 

Musculus 

marmoratus 

 3.5±2.47  0.1±0.22    

Mytilus edulis 2±0.5  65±11.73 15±6.37 0.33±0.58 2.5±1 0.7±0.67 

Nudibrachia 0.1±0.22       

Polydora sp.    0.4±0.65 0.17±0.29 0.2±0.45  

Aurelia polyps   0.2±0.27 1.2±0.91    

Ostracoda       0.6±0.22 

Cordpylophora 

caspia 

     0.1±0.22  

 

 

Specifically, the overall abundance of epiphytes on PVC panels was almost twice as much as 

on G. vermiculophylla individuals (t-test, p < 0.0001), while there were similar amounts of 

animal foulers on both substrata (t-test, p = 0.93). 

    On the PVC panels, the most intense epiphytic fouling occurred in June (41.31 ± 4.41%, 

mean coverage ± SD) (Figure 1) and overall diatoms, Ceramium tenuicorne and Ulva sp. 

were the most common epiphytic foulers. Diatoms showed a maximum in coverage in 

October, C. tenuicorne in June, and Ulva sp. in July and August (Table 1). Epifaunal 

coverage of the panels was lower than cover by epiphytes from April to May and from 

August to October, but not in June (78.7 ± 11.22%) and July (42.1 ± 10.57%) (Figure 1). In 
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these months Amphibalanus improvisus and Mytilus edulis were the most common epizoans 

and they exhibited a maximum coverage in June and July and in June, respectively (Table 1). 

    On G. vermiculophylla individuals, epiphyte fouling peaked in May (23.4 ± 4.28%) 

(Figure 1). Diatoms and C. tenuicorne were the most common epiphytes here with maximum 

covers in May and August, respectively (Table 2). In contrast with the PVC panels Ulva sp. 

was found on G. vermiculophylla only in June and only at very low abundances (Table 2). 

Similar to what observed on the PVC panels, epifaunal coverage was lower than epiphyte 

cover in all months, except of June and August (Figure 1). It exhibited a distinct peak in June 

(84.4 ± 5.59%), due to the substantial occurrence of M. edulis during this month (Table 2). 

 

 

Table 2. Mean coverage (%; ± SD; n = 5) of foulers on G. vermiculophylla individuals 

exposed in the Kiel Fjord, Germany from April to October, 2015. No data could be recorded 

in July because G. vemiculophylla individuals had disappeared due to grazing. Empty fields 

indicate absence of the respective foulers. 

 
Species April May June August September October 

Aglaothamnion 

sp. 

   1±1 1.4±0.55  

Ceramium 

tenuicorne 

 1±0 3.4±2.19 10±0 6±2.24 1.8±0.45 

Diatoms 16±5.48 22±4.47 5±0 6.67±2.89 14±5.48 4.4±1.34 

Monostroma 

grevillei 

  0.4±0.55  0.4±0.55  

Polysiphonia  

sp. 

    0.4±0.89  

Porphyra sp.  0.4±0.55    0.2±0.45 

Ulva sp.   0.2±0.45    

Amphibalanus 

improvisus 

 0.2±0.45 0.2±0.45 1.33±0.58 0.4±0.55 0.2±0.45 

Clava 

multicornis 

 0.6±0.55     

Corophium sp.  0.4±0.55     

Focculina  1.4±0.55     

Laomedea sp. 0.2±0.45 2.4±2.41 0.2±0.45 0.33±0.58 4.2±3.56 2.8±1.48 

Mytilus edulis 2.6±1.34 3±1.22 84±5.48 16.67±5.77 16±19.17 1.6±0.55 

Polydora sp.    0.33±0.58 0.6±0.55 0.4±0.55 

Aurelia polyps  0.2±0.45     

Graveia 

fransicana 

0.2±0.45      

Alcyonidium 

gelatinosum 

0.2±0.45      

 
 



Paper III 

91 

 

Seasonality in the AF activity of surface extracts against Stauroneis constricta  

Averaged across all months fewer diatoms (by 13%) attached to surfaces covered with non-

polar compounds (extracted with hexane) than to those coated with polar compounds 

(extracted with DCM) and this difference was statistically significant (t-test, p = 0.006, 

Figure 2). However, also averaged across all months neither Hexane-based nor DCM-based 

surface extracts modified the settlement of diatoms compared to solvent controls (t-test, 

hexane: p = 0.7, DCM: p = 0.33, Figure 2). Nonetheless, hexane surface extracts of G. 

vermiculophylla exhibited a seasonality in their AF activity against S. constricta. Adaptation 

of a polynomial regression function detected a minimum in the settlement of diatoms on 

surfaces coated with these extracts between July and August (p < 0.0001, Figure 3a) and the 

lowest mean diatom settlement was observed in August (Figure 3a). The activities of DCM 

surface extracts against diatoms, however, did not show a seasonal pattern (p = 0.8, Figure 

3b).  

              

Although a seasonal pattern in the AF effect of hexane extracts was detected, crossed 

Pearson correlation analysis did not find evidence that diatom deterrence by hexane-based 

surface extracts was correlated with the intensity of diatom fouling pressure (= diatom 

Figure 2. Mean numbers of diatoms settled on G. vermiculophylla surface extracts 

obtained with Hexane and DCM. Error bars: 95% CI, n = 280 in each solvent extract 

group and n = 32 in each solvent control group. 
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settlement density on PVC panels) during or preceding the sampling for extract preparation 

(Table 3). Moreover, monthly variations in the AF activity of hexane extracts were also not 

correlated with diatom settlement density on G. vermiculophylla before, during or after the 

sampling time (Table 3). Significant correlations were also not detected between diatom 

settlement on PVC panels or G. vermiculophylla and the deterrent effect on diatoms of 

DCM-based extracts (Table 3). 

Table 3. Relationships of field fouling pressure by diatoms and Ceramium tenuicorne and 

actual fouling of these organisms on the surface of Gracilaria vermiculophylla with the AF 

defense strength of surface extracts from this seaweed. Results from a crossed Pearson 

correlation analysis. Settlement of diatoms on either PVC panels or G. vermiculophylla in 

different months was cross-correlated with AF defense strength of hexane and DCM surface 

extracts against the diatom S. constricta. In the same way settlement of C. tenuicorne on 

both substrata was cross-correlated with defense strengths against this epiphyte. 

A time shift of 0 indicates that settlement on the substratum and defense strength were 

recorded at the same time. Negative time shifts indicate that settlement on the substratum 

was recorded prior to the defense strength. Positive time shifts indicate that the defense 

strength was recorded first. They were not of interest and therefore not tested in the case of 

PVC panels, since an effect of algal antifouling defenses on the subsequent settlement on 

nonliving surfaces makes ecologically no sense. Bold numbers indicate correlations with p < 

0.05, italics indicate correlations with p < 0.06.  

 
Substratum Time shift  

[months] 

Bioassays with hexane- and DCM-based surface extracts and foulers 

Hexane:Diatom DCM:Diatom Hexane:Ceramium DCM:Ceramium 

r  p r p r p r p 

PVC panels -2 -0.5850 0.3001 0.7085 0.1805 -0.1417 0.8202 0.0032 0.9960 

 -1 0.5078 0.3038 0.2486 0.6347 -0.0672 0.8993 -0.7974 0.0574 

 0 0.3820 0.3978 -0.6515 0.1129 0.0421 0.9286 -0.6656 0.1027 

          

Gracilaria -2 0.1574 0.8426 -0.1095 0.8905 0.7665 0.2335 0.7098 0.2902 

 -1 0.4371 0.4618 -0.3772 0.5314 0.8173 0.0911 0.3259 0.5925 

 0 0.4875 0.3267 -0.1980 0.7069 -0.1496 0.7772 -0.7982 0.0570 

 1 0.0693 0.9118 0.4768 0.4168 -0.1155 0.8533 -0.9177 0.0280 

 2 0.0945 0.9055 0.2039 0.7961 0.7950 0.2050 -0.1156 0.8844 

 

 

Figure 3. Mean numbers of diatoms settled on G. vermiculophylla surface extracts 

obtained with (a) Hexane and (b) DCM in different months (n = 40 in each month). 

Solvent controls are indicated as “Con” (n = 32 in each case). Lines represent best fitting 

second order polynomial regression function, dotted lines indicate 95% CI.   
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Seasonality in the AF activity of surface extracts against Ceramium tenuicorne  

Averaged across all seasons Ceramium filaments attached marginally less (by 1%) to 

surfaces coated with DCM surface extracts than to such covered with hexane surface 

extracts, but this small difference was not statistically significant (t-test, p = 0.44, Figure 4). 

Both surface extracts significantly repelled settlement of Ceramium filaments relative to the 

respective control across all monthly samples (t-test, hexane: p = 0.002, DCM: p = 0.002, 

Figure 4). Similar to findings in the bioassays with diatoms, the AF activity of hexane 

surface extracts against C. tenuicorne showed a seasonal pattern. Adaptation of a polynomial 

regression function detected the lowest Ceramium filament attachment between June and 

July (p < 0.0001, Figure 5a), although the lowest monthly mean of Ceramium attachment 

was recorded in August (Figure 5a). A significant seasonal pattern was also found in 

bioassays conducted with DCM surface extracts (p = 0.003, Figure 5b). Adaptation of a 

polynomial regression function detected the lowest number of Ceramium filaments attached 

on surfaces coated with DCM extracts that were gained between July and August, and the 

lowest monthly mean of Ceramium attachment was recorded in July.  

 

Figure 4. Relative number of C. tenuicorne individuals settled on G. vermiculophylla 

surface extracts obtained by Hexane and DCM. Error bars: 95% CI, n = 175 in each 

solvent extract group and n = 5 in each solvent control group. 
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    Crossed Pearson correlation found no evidence that monthly variations in the deterrent 

effects of hexane-based surface extracts towards C. tenuicorne were correlated with the 

fouling pressure (as settlement on PVC panels) by C. tenuicorne before or at the sampling 

time (Table 3). However, a weakly significant negative correlation was detected between the 

settlement density on DCM surface extracts and the settlement density on PVC panels one 

month before the extraction. Thus, surface extracts tended to deter C. tenuicorne strongly 

when the extraction followed a month with generally high fouling pressure by C. tenuicorne 

(Table 3, Figure 6a). Further, the settlement density on DCM surface extracts exhibited a 

significant negative correlation with the settlement density of C. tenuicorne on G. 

vermiculophylla one month after the extraction (Table 3, Figure 6b). In other words, the 

settlement density of C. tenuicorne on G. vermiculophylla became particularly low when the 

sampling followed a month with high deterrence towards C. tenuicorne. A weakly 

significant negative correlation was also detected between the settlement density on G. 

vermiculophylla extracts and the settlement density on G. vermiculophylla at the extraction 

time (Table 3, Figure 6c). In contrast, the deterrent effect of hexane extracts towards C. 

tenuicorne did not correlate with the settlement density of this epiphyte on G. 

vermiculophylla (Table 3).  

 

 

 

 

Figure 5. Relative number of C. tenuicorne individuals settled on G. vermiculophylla 

surface extracts obtained by (a) Hexane and (b) DCM in different months (n = 25 in each 

month). Solvent controls are indicated as “Con” (n = 5 in each case). Lines represent best 

fitting second order polynomial regression function, dotted lines indicate 95% CI. 
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Discussion 

Gracilaria vermiculophylla is less susceptible to fouling than non-living substrates 

In the field monitoring fouling organisms were detected across all months, and their 

abundance was consistently lower on G. vermiculophylla individuals than on PVC panels. 

Apparently G. vermiculophylla has a capacity to deter or suppress parts of the settlers. Many 

previous studies have also shown that fouling organisms preferred artificial over living 

substrata and suggested that this difference was due to host defences (Brock et al. 2007, 

Dobretsov and Wahl 2001, Rickert et al. 2015). For instance, in all given microhabitats 

larvae of the blue mussel Mytilus edulis significantly preferred artificial over living algal 

substrata (Dobretsov and Wahl 2001). Likewise, Rickert et al. (2016) observed higher 

densities of diatoms settled on a reference substrate than on two rockweeds, and suggested 

that host surface metabolites and host cuticle shedding could make the algal surface 

unattractive to diatoms. Given that extractable surface-associated metabolites from non-

native specimens of G. vermiculophylla generally have a stronger capacity to deter foulers 

than those from native individuals (Wang et al. 2016) and also given that the present study 

was conducted with non-native specimens, a priori a high level of chemical defence capacity 

against fouling should be expected. Mechanical traits such as surface shedding have so far 

not been observed in G. vermiculophylla, which is not a proof that they do not exist. 

    Interestingly, the reduced capacity to settle on G. vermiculophylla compared to PVC 

panels was only statistically significant when epiphytes were regarded. This seemingly 

contrasts with numerous studies that demonstrated the existence of efficient chemical or 

physical defences against animal foulers in seaweeds. For example, surface-associated 

metabolites from Fucus deter the settlement of barnacles (Rickert et al. 2015) and Bryozoans 

are shed off by the red alga Dilsea carnosa (Nylund and Pavia 2005). However, also in the 

present study the barnacle Amphibalanus improvisus and the Bryozoan Electra pilosa 

exhibited in all months under investigation higher mean densities on PVC panels than on G. 

vermiculophylla, while the very abundant blue mussel Mytilus edulis and Hydrozoans of the 

genus Laomedea showed an opposite trend (Tables 1 and 2). In this light it gets obvious that 

animal foulers are not generally insensitive to the AF defence of G. vermiculophylla. Much 

rather, those animal foulers that are only locally attached to the algal surface (such as 

Laomedea and Mytilus) are apparently more capable to tolerate the algal defence than those 

that attach firmly to larger connected areas of the thallus surface (such as Amphibalanus and 

Electra).  
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Fouling on Gracilaria vermiculophylla is subject to seasonal variation and correlates 

with antifouling defence 

As expected, the abundance of both epiphytes and epizoans consistently fluctuated on PVC 

panels and algal thalli seasonally and it peaked in summer. Given that important factors for 

the reproduction and/or growth of fouling organisms also shift seasonally, such dynamics are 

usually observed (Lehvo et al. 2001). Fouling pressure increased from spring toward summer 

when water temperature and light availability went up and decreased again toward autumn. 

In the preceding year a similar study had been conducted with PVC substrates in the same 

Bay and it also recorded maximal fouling pressure in summer, although the summer peak 

was less pronounced for animal settlers than in the present monitoring (Rickert et al. 2015). 

This confirms again the important impact of matching or mismatching climatic, physical and 

biological key conditions on the development of fouling communities (Patel et al. 2003. 

Prendergast 2010). 

    Similar as in a previous study (Wang et al. 2016), only non-polar compounds (extracted 

with hexane) from G. vermiculophylla surfaces had a deterring activity against S. constricta 

in bioassays, and this deterrence was only observed during parts of the year. In contrast, 

hexane and DCM surface extracts inhibited C. tenuicorne similarly. Apparently the deterrent 

activities of compounds associated with G. vermiculophylla surfaces are species-specific, i.e. 

the compounds which mediate defences against S. constricta and C. tenuicorne are different 

and have different polarities. This also gets apparent when seasonal patterns in the activities 

of these extracts were compared: the AF activity of hexane extracts peaked between July and 

August towards S. constricta, but already between June and July towards C. tenuicorne, 

suggesting that both organisms were not affected by the same compounds within these 

extracts. Further, the activity of DCM extracts towards C. tenuicorne did not peak in 

between June and July, but between July and August, which indicates that G. 

vermiculophylla employs at least two different compounds that both target this epiphyte, and 

undergo divergent seasonal cycles. Similar observations of multiple deterrents in one 

organism that target the same foulers are not rarely observed (Saha et al. 2011, 2012). For 

example, Saha et al. (2011, 2012) demonstrated that surface-associated polar and non-polar 

metabolites from Fucus vesiculosus, i.e. dimethylsulphopropionate (DMSP), proline and 

fucoxanthin all inhibited the attachment of the same bacterial strains. Given that our surface 

extracts were obtained with only two solvents (i.e. hexane and DCM) that cover a limited 
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part of the polarity spectrum, additional deterrent compounds may be present in G. 

vermiculophylla that could not be extracted, e.g. water-soluble compounds.  

    We hypothesized that the chemical AF capacity could be adjusted to seasonally shifting 

fouling pressure. However, our observations only provide limited evidence of such a 

relationship. In the case of both foulers, the deterrent effects of Hexane-based or DCM-based 

extracts were not significantly correlated with the fouling pressure (measured as fouler 

settlement on PVC panels) before or at the sampling time. However, a relatively high in situ 

abundance of C. tenuicorne tended to precede a relatively high deterrence strength of DCM 

surface extracts towards this fouler by one month with p < 0.058. Thus, a higher fouling 

pressure exerted by C. tenuicorne - but not by diatoms - may modulate an increasing AF 

defence in the host that reaches its maximum after one month. This finding is somehow 

consistent with our expectation that G. vermiculophylla should defend itself against fouling 

more efficiently in phases with intense fouling pressure. A correlation study by Rickert et al. 

(2016) similarly observed that a high in situ prokaryotic fouling pressure preceded a low 

prokaryotic settlement on Fucus serratus surface extracts by one month. Further, a relatively 

high deterrence strength of DCM surface extracts towards C. tenuicorne preceded a 

relatively low settlement density of this fouler on G. vermiculophylla by one month. 

Additionally, a weakly significant correlation was also detected between the deterrence 

strength of DCM extracts and the settlement density of C. tenuicorne on G. vermiculophylla 

at the extraction time. This confirms that the defensive capacity of DCM-soluble compounds 

on the surface of G. vermiculophylla is of ecological relevance, since it apparently influences 

C. tenuicorne settlement not only in bioassays or on impregnated non-living surfaces, but 

also on the host alga.  

    However, we found no correlational evidence that the mean level of surface colonization 

by C. tenuicorne on G. vermiculophylla affects the subsequent mean level of AF defences of 

G. vermiculophylla towards the same fouler, possibly because various other factors that were 

not controlled may also influence epibiosis. For example, C. tenuicorne probably interacted 

not only with G. vermiculophylla, but also with competing foulers and grazers, which may 

have weakened the correlation between its presence and host defences. Similarly, the 

absence of correlations between deterrence of surface extracts and diatom settlement on both 

PVC panels and on G. vermiculophylla thalli could be due to the circumstance that S. 

constricta was the only diatom species used in the bioassays, while in situ fouling pressure 

involves numerous taxa of diatoms. 
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    The data for this study were collected during only one single seasonal cycle and it cannot 

be fully excluded that a different outcome might have been observed during another year 

with different meteorological and hydrographic dynamics. Nonetheless, we may conclude 

that fouling pressure in the SW Baltic has a seasonal variation in abundance both on 

reference substrates (PVC panels) and on G. vermiculophylla thalli. Furthermore, the 

chemical AF defence against S. constricta and C. tenuicorne seemingly involves multiple 

compounds with different polarities and its strength fluctuates seasonally. Gracilaria 

vermiculophylla possibly adjusts its defence against C. tenuicorne to the in situ presence of 

C. tenuicorne, but not the defence against S. constricta to the overall presence of diatoms.  
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3. General Discussion 

The overall intension of the presented study was to test whether native and non-native 

populations of Gracilaria vermiculophylla differ in their susceptibility to fouling.  

    I observed that fouling pressure on G. vermiculophylla was higher in the non-native 

compared to the native range (Paper II). Further, I demonstrated that non-native G. 

vermiculophylla were generally better defended against fouling than native conspecifics by 

both laboratory and field evidences. Specifically, laboratory experiments showed that both 

living thalli and surface extracts from non-native G. vermiculophylla were better defended 

against both tested groups of fouling organisms, i.e. diatoms and Ceramium filaments, 

regardless of their origin, than those from their native conspecifics (Paper I). Similarly, field 

experiments showed that at native and non-native study sites, non-native individuals of G. 

vermiculophylla were more resistant to natural fouling than native conspecifics (Paper II). 

Additionally, the fouling resistance of G. vermiculophylla surface extracts against diatoms 

and Ceramium filaments varied with season (Paper I and III) and I could show that the 

seasonal fluctuations in fouling resistance against Ceramium tenuicorne mediated by 

dichloromethane (DCM)-based polar surface extracts from G. vermiculophylla correlated 

with fluctuations in the intensity of epiphytism by C tenuicorne on G. vermiculophylla 

(Paper III). Finally, diatoms were generally deterred by non-polar G. vermiculophylla 

surface extracts made with hexane, while Ceramium filaments were generally deterred by 

surface extracts gained with both hexane and DCM (Paper I and III).  

Study questions (see section 1.7) and conclusions: 

1. What species can be found in the natural fouling consortia that establish on G. 

vermiculophylla in its native and its non-native range? Do these assemblages generally differ 

in diversity and biomass? 
Florideophyceae (Ceramium and Polysiphonia) and Ciliata were most common in 

Gracilaria’s native range. Ciliata and Gymnolaemata were most common in its non-native 

range.  

Assemblages in the non-native range were more diverse and abundant. (Paper II) 

2. Do native and non-native populations of G. vermiculophylla differ with respect to their 

susceptibility to fouling? 
Non-native populations were chemically more defended. (Paper I and II) 

3. Does the strength of antifouling defences in G. vermiculophylla vary with season and do 

seasonal fluctuations in the strength of antifouling defences correlate with fouling pressure?  
Yes. (Paper I and III) 

No, but the strength of the defence against Ceramium tenuicorne tended to correlate with 

fouling pressure exerted by this species. (Paper III) 
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3.1 Non-native G. vermiculophylla are less susceptible to 

fouling 

My study showed for the first time that non-native individuals of G. vermiculophylla are 

better defended against fouling than conspecifics stemming from the native range. This was 

tested in laboratory and in field fouling experiments (Paper I and II). In general, a difference 

in fouling rates could either be due to the fact that non-native G. vermiculophylla individuals 

are better defended or due to the fact that non-native macroalgae are less colonized by native 

foulers. However, since the experiments were conducted in both the native and the non-

native range of this alga and both studies showed the same trend, the latter reason could be 

excluded. My results therefore suggest that non-native G. vermiculophylla are better 

defended against fouling than their native conspecifics.  

    Interactions between introduced species and their enemies in the new habitat have been 

considered as an important component determining invasion success (Blossey and Nötzold 

1995, Keane and Crawley 2002). However, most studies on non-native species-resident 

enemy interactions in marine systems have considered only herbivory. In several previous 

studies, herbivores from the non-native range were found to prefer native over non-native 

seaweeds (Cacabelos et al. 2010, Enge et al. 2012, Engelen et al. 2011, Weinberger et al. 

2008). A low feeding pressure in the non-native range, which potentially mediates a 

competitive advantage for the non-native species, could explain the later invasion success of 

introduced seaweeds. However, all previous studies mentioned above were conducted solely 

within the non-native range of the introduced seaweeds. This was the case until Hierro et al. 

(2005) argued that experiments that compare the performance of non-indigenous species in 

their native and in their non-native range are important for testing hypotheses that seek to 

elucidate factors that determine invasion success. After that, studies on non-native species-

enemy interactions seeking to test invasion hypotheses started to use a biogeographical 

approach. So far, most biogeographical studies on non-native species-enemy interactions 

again considered herbivory, for which an increased resistance in non-native over native 

species have been suggested. For instance, it has been confirmed that the non-native brown 

seaweed Fucus evanescens in Sweden (non-native range) was more chemically resistant to 

herbivory than native conspecifics in Iceland (native range) (Forslund et al. 2010, Wikström 

et al. 2006). It also has been corroborated that non-native populations of G. vermiculophylla 

had a higher capacity to defend against herbivory than native populations. This was the case 

in both study areas: Germany (non-native range) and China (native range) (Hammann et al. 
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2013). Similar to herbivory, epibiosis may also determine invasion success in introduced 

seaweeds. However, epibiont-basibiont interactions have been widely ignored in invasion 

ecology and almost all the interactions between non-native basibionts and resident epibionts 

have only been considered in the non-native range (Baer and Stengel 2014, Strong et al. 

2009). So far, defence capacities against fouling between native and non-native populations 

of the same marine organism have only been compared by Saha et al. (2016) who worked on 

epibacterial foulers. They suggested that non-native G. vermiculophylla are better defended 

against bacterial epibionts from the non-native range but, at the same time, had reduced their 

capacity to ward-off epibionts from their home range. My results are in direct contradiction 

to this finding, what may be due to the use of different microfouler types. Diatoms were 

employed in my study, while bacteria were used in their case. It is known that bacteria are 

the first colonizers of bare substrata in the marine environment (Wahl 1989) and bacterial 

biofilm formation can regulate the further colonization by eukaryote micro- and 

macrofoulers. The functional differences between epibacteria and other foulers could have 

led to the evolution of different defence strategies against them in seaweeds. In addition, 

presumably both, physical and chemical defences, were relevant for the warding-off of 

foulers in my study, while Saha et al. only identified chemical defence as relevant for their 

findings.  

    To my knowledge, mine is the first study to compare the susceptibility to eukaryote micro-

epiphytes, macro-epiphytes and natural fouling between native and non-native populations of 

an aquatic organism. Furthermore, it gives the first example of the scenario that non-native 

individuals of an aquatic organism are better defended against fouling organisms than native 

conspecifics and suggests that an enhanced defence against fouling organisms after 

introduction is a possible reason for the invasion success of G. vermiculophylla. 

3.2 What makes non-native G. vermiculophylla more resistant 

to fouling? 

 

During the past five to six decades, research on invasion ecology intended to elucidate 

general mechanisms that explain invasion success in introduced species (Blossey and 

Nötzold 1995, Callaway and Ridenour 2004, Elton 1958, Keane and Crawley 2002). First 

studies focused on terrestrial plants and were later followed by studies on marine organisms. 
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To date, although many studies in invasion ecology dealt with seaweeds, our general 

understanding of seaweed invasions is still poor. Here, according to my results, I will discuss 

possible reasons for the enhanced resistant to fouling in non-native over native G. 

vermiculophylla via two approaches: an enhanced antifouling defence capacity after 

introduction and the possible causes for the enhanced antifouling defence capacity.     

3.2.1 An enhanced antifouling defence capacity after introduction 

In macroalgae, antifouling defences can be mediated by physical traits, e.g. the thallus 

surface structure (Chapman et al. 2014, Schumacher et al. 2007), chemical traits. e.g. 

surface-bound secondary metabolites that have antifouling activities (Nylund et al. 2007, 

Saha et al. 2011, Thabard et al. 2011), and surface associated bacterial communities that 

repel foulers (Boyd et al. 1999, Dobretsov et al. 2006).  

    In the field monitorings in this study, fouling pressure at both native and non-native study 

sites was generally higher on PVC panels than on G. vermiculophylla individuals and only 

few groups of foulers (e.g. Ciliates) were more abundant on the alga (Paper II). This clearly 

suggests the presence of a physical, chemical and/or bacterial defence against most of the 

occurring foulers in G. vermiculophylla.  

    Previous studies showed that surface-associated metabolites of seaweeds can mediate 

chemical defence against settlement of fouling organisms (Nylund et al. 2007, Rickert et al. 

2015, 2016, Saha et al. 2011, 2012) and a chemical anti-macrofouling defence has also been 

reported for Gracilaria chilensis, a species closely related to G. vermiculophylla (Lion et al. 

2006). However, previous studies did not consider surface-metabolite-based basibiont-

epibiont interactions as relevant for our understanding of invasion success in seaweeds (but 

see Saha et al. (2016)). In my study, both laboratory and field fouling experiments, showed 

that surface-associated metabolites from non-native G. vermiculophylla populations had a 

higher antifouling capacity compared to those from native conspecifics (Paper I and II). This 

suggests that an increased level of chemical antifouling defence contributes to the lower 

susceptibility to fouling in non-native G. vermiculophylla. This would support the Novel 

Weapons hypothesis (Callaway and Ridenour 2004), which suggests that non-native species 

possess new or stronger defences against resident enemies.  

    The new technique of enclosing G. vermiculophylla in dialysis membrane tubes in field 

fouling experiments (Paper II) not only hinder Gracilaria spores or alga-associated 
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microorganisms from entering the water column, but also excludes any influence of physical 

antifouling defence properties of G. vermiculophylla. This approach thus permits to evaluate 

the relevance of chemical antifouling defence properties by means of investigating the effect 

of metabolites released by G. vermiculophylla on fouling organisms.  

    Interestingly, in the laboratory experiments, when comparing the fouling rates of two 

types of foulers - diatoms as a type of micro-foulers and Ceramium filaments as a type of 

macro-foulers - on living thalli to those on surface extracts coated surfaces, the effect size, 

i.e. differences in fouling rates, was consistently smaller in surface extracts (Paper I). This 

confirms that resistance to fouling in G. vermiculophylla has, at least partly, a chemical 

basis. The smaller effect size in the surface extracts could be due to the fact that active 

metabolites were insufficiently captured by the extraction process or degraded after 

extraction. Furthermore, it is also possible that some relevant compounds were missed, since 

only two solvents were used for the extractions (i.e. hexane and DCM). They just cover a 

limited part of the polarity spectrum. In addition, the compounds which are responsible for 

the antifouling defences in living G. vermiculophylla may not only stem from the algal 

surface but could also come from the inside of algal cells. This is not unlikely, since some 

epibionts, including Ceramium sp., penetrate into the host and therefore also get in contact 

with its interior (Leonardi et al. 2006, Martin et al. 2013, Michetti et al. 2016). Finally, other 

non-chemical traits - which were, of course, excluded in the assays with extracts - could also 

have contributed to the overall deterrence. Unfortunately, there is no data to elucidate which 

of these four scenarios was true. However, since seaweeds possess efficient physical and 

chemical defences to minimize colonization on their body surfaces (see section 1.4, da Gama 

et al. 2014), it is possible that the increased antifouling activity I observed in non-native G. 

vermiculophylla has either an exclusive chemical basis, which was insufficiently captured by 

extraction, or was mediated by a multiple (physical and chemical) defence system. 

    In the laboratory experiments, diatoms from Rongcheng (Gracilaria’s native range) 

generally attached in higher numbers to G. vermiculophylla thalli from both distributional 

ranges than diatoms from Kiel (non-native range), while the opposite was observed when the 

surface extracts were tested (Paper I). Additionally, in field fouling experiments, the fouling 

communities that established on dialysis tubes containing G. vermiculophylla were more 

similar to the fouling communities on PVC panels than to fouling communities that 

developed directly on the surface of this alga (Paper II). All these results indicate that 

besides a chemical defence, relevant physical antifouling defence mechanisms could exist in 



General Discussion 

110 

 

G. vermiculophylla. However, I cannot further tell whether the physical antifouling defence 

in non-native G. vermiculophylla is more active than in their native conspecifics. Physical 

antifouling defence strategies, such as epithallus sloughing and gelatinous or microstructured 

surfaces, have been reported from many different macroalgae species (da Gama et al. 2014, 

Nylund and Pavia 2005, Yamamoto et al. 2013), but have so far not been observed in G. 

vermiculophylla and I also did not investigate this aspect any further. 

    In my study the observed antifouling capacity cannot be exclusively ascribed to G. 

vermiculophylla. This is because the applied ‘dipping technique’ (de Nys et al. 1998) as well 

as the technique of enclosing the algal thalli into dialysis membrane tubes do not exclude the 

influence of surface-associated metabolites from surface-associated microfoulers, such as 

bacteria and diatoms. Previous studies showed that structural and chemical cues of 

epibacterial films, such as their microtopography and a range of bacterial products influence 

fouling on algal surfaces (Qian et al. 2007). Biofilms, for instance, can have inhibitory, 

inductive or neutral effects on invertebrate larvae attachment (Dobretsov and Qian 2006, 

Ganesan et al. 2010, Wieczorek et al. 1995). To investigate the role of surface-associated 

biofilms on the antifouling capacity in G. vermiculophylla, I conducted an additional test. In 

this the attachment rates of Ceramium filaments on different densities (0, 1 and 5-fold of the 

natural density) of surface-associated microfoulers (collected from the surfaces of G. 

vermiculophylla thalli from the Baltic Sea) were quantified. Here the inductive effect 

increased with the density of surface-associated microfoulers (data not shown) suggesting 

that the biofilms on Baltic Sea Gracilaria populations have a promoting effect on Ceramium 

attachment. Although, I did not assess Ceramium attachment rates on biofilms from other 

Gracilaria populations, this finding reveals that the surface-associated microfoulers also 

influence the colonization of G. vermiculophylla by epibionts. I thereby cannot conclude that 

the antifouling activity observed in surface-associated metabolites from G. vermiculophylla 

thalli is exclusively attributed to G. vermiculophylla itself. However, with regard to possible 

implications of my findings for the invasion ecology of G. vermiculophylla, it makes sense 

to apply the holobiont concept here that views a host alga and its associated microflora as a 

functional entity (Egan et al. 2013).  

3.2.2 Possible causes for the enhanced antifouling defence capacity 

Many previous studies have demonstrated that various traits of macroalgae, which mediate 

resistance against abiotic (such as, desiccation, light and salinity extremes) and biotic (such 
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as, grazers) stressors, also promote their invasion success (Johnson and Chapman 2007). In 

my study, higher antifouling defence levels were found in non-native than in native G. 

vermiculophylla populations (Paper I and II) and this indicates that the alga’s resistance 

against enemies can change after introduction. Such a change in the defence capacity after 

introduction could be caused by a directional selection of genotypes that exhibit a higher 

resistance to fouling. This could happen if the fouling pressure on the translocated organism 

during transport or after arrival in the new environment is high. When monitoring the natural 

fouling communities on G. vermiculophylla at both native and non-native sites of the alga’s 

distributional range, a lower fouling pressure (fouling colonization on PVC panels) was 

observed in Rongcheng, China (native range) than in Kiel, Germany (non-native range) 

(Paper II). I cannot tell whether the fouling pressures at the other sites in the native and the 

non-native range, at which specimens of G. vermiculophylla were collected for this study, 

followed the same pattern as those in Rongcheng and Kiel. However, in its non-native 

distributional range G. vermiculophylla is mostly found in extremely sheltered lagoons and 

estuaries (Weinberger et al. 2008), while populations in the native range are often located on 

wave exposed rocky shores (S. Wang, pers. obs.). It has been reported that wave exposure 

can generally reduce colonization rates on macroalgae (Koehl et al. 2013) and these 

environments should therefore be places with a low fouling pressure. The selection of 

genotypes with a high antifouling defence capacity could have facilitated the settlement and 

spread of G. vermiculophylla in non-native environments with particularly high fouling 

pressures.  

    It is also possible that the intense fouling pressure in the non-native habitat induced an 

increased antifouling defence in G. vermiculophylla. Such a demand-driven antifouling 

defence regulation has been suggested by Saha and Wahl (2013) and Rickert et al (2016). 

Saha and Wahl (2013) found that the anti-settlement activity of Fucus vesiculosus against 

bacteria in the Western Baltic varied temporally, reaching a peak in summer/autumn, which 

was in phase with the density of in situ bacteria. Rickert et al (2016) showed that in 

individuals of the two Fucus species F. vesiculosus and F. serratus in the Western Baltic 

Sea, the chemical defence strengths against microfouling varied seasonally and the 

fluctuations tend to match with the seasonality in microfouling pressure. In addition, such 

regulation also was found in my study: a higher fouling pressure exerted by C. tenuicorne 

tended to modulate an increasing antifouling defence in the host G. vermiculophylla that 

reaches its maximum after one month (Paper III). All these evidence therefore increases the 



General Discussion 

112 

 

possibility that a higher fouling pressure in the non-native habitat could induce an increased 

antifouling defence in G. vermiculophylla.    

    Furthermore, a change in the strength of antifouling defences could go back to increased 

energy resources, which are a consequence of the release from other abiotic and biotic 

pressures in the new environment (Blossey and Nötzold 1995). Under such conditions, non-

native seaweeds may reduce specific defences they developed against other pressures in their 

native range, such as grazing, and shift energy resources towards antifouling defences. The 

field monitorings hint at the potential relevance of this mechanism: In Rongcheng, China, the 

amphipod species Caprella sp. is the main grazer of G. vermiculophylla in many habitats and 

it can consume substantial parts of the local stock of this alga during summer (S. Wang, pers. 

obs.). Similarly, in Akkeshi, Japan, local populations of G. vermiculophylla are heavily 

grazed by the amphipod species Caprella scaura and Ampithoe lacertosa during summer (S. 

Wang, pers. obs.). However, in Kiel, Germany, so far no herbivore makes use of this alga to 

such an extent and it seems that the grazing pressure on it is generally lower than in 

Rongcheng and Akkeshi. However, I do not have information whether the pattern is the 

same in the other sampled habitats in which we sampled Gracilaria in Europe and in Asia. If 

yes, this could have allowed the non-native G. vermiculophylla to reduce the energy budget 

for anti-herbivory defence and allocate a larger part to antifouling defence. Since it has been 

reported that non-native G. vermiculophylla populations are more defended against 

herbivores than native populations (Hammann et al. 2013), this scenario is not very likely. 

    In addition, the increased antifouling capacity in non-native G. vermiculophylla could 

result from an adaptation to other biotic pressures, such as grazing. Non-native G. 

vermiculophylla populations are more defended against herbivores than native populations 

(Hammann et al. 2013) and compounds that deter consumers are sometimes also active 

against epibionts. For example, in Asparagopsis armata, Bromoform was shown to deter not 

only mesograzers but also microsettlers (Paul et al. 2006a, Paul et al. 2006b). Likewise, the 

defence of G. vermiculophylla against herbivores is at least partially due to its capacity to 

produce oxylipins from arachidonic acid after wounding (Hammann et al. 2016) and those 

compounds were shown to also deter algal epibionts of Gracilarioids (Lion et al. 2006). Non-

native populations of G. vermiculophylla were already shown to have a higher capacity for 

producing oxylipins than native populations (Hammann et al. 2016). It has been suggested 

that oxylipin production requires activation by wounding (Rempt et al. 2012). Since certain 

foulers of Gracilarioids (ie Ceramium species) can cause tissue wounding when they anchor 
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themselves in the host (Leonardi et al. 2006), compounds including oxylipins could also be 

responsible for the deterrent effects observed in this study.  

    Finally, since the non-native gene pool is a reduced subset of the gene pool in the donor 

region of an introduced species (Kim et al. 2010), it is possible that by chance a fouling 

resistant genotype was highly frequent among the introduced individuals. 

    In any case, my findings are not in line with the predictions of the ERH and EICA 

(Blossey and Nötzold 1995, Keane and Crawley 2002), which both suggest that introduced 

species should experience a reduction in the diversity and the abundance of co-evolved 

enemies in their new compared to their native range. My field monitorings revealed that the 

fouling pressure was much higher in Kiel Fjord (non-native range of G. vermiculophylla) 

than in Ailian Bay, Rongcheng (native range), and in the field fouling experiments, higher 

fouling rates were observed in Kiel Fjord than in Akkeshi Bay, Japan (native range) (Paper 

II). Interestingly, both investigations provided similar results, although the two study sites in 

Gracilara’s native range were located in different ecozones (Spalding et al. 2007). This 

suggests that G. vermiculophylla faces a more severe fouling pressure in its new 

environment in the Kiel Fjord. As a matter of fact, most marine fouling organisms are rather 

unspecific in their host choice (Wahl and Mark 1999) and therefore the probability of being 

released from specialized fouling organisms after introduction into a new habitat should be 

low for aquatic organisms. Additionally, the ERH and the EICA do not offer a plausible 

explanation why local enemies of the new habitat cannot recognize newly introduced species 

as a resource.  

3.3 What cause seasonal variability in the resistance to fouling 

in macroalgae?   

As described in section 1.5, macroalgal antifouling defences can vary seasonally when they 

are in phase with fluctuations in ambient abiotic (e.g. temperature and light) and biotic (e.g. 

grazing and fouling pressure) variables (Amade and Lemée 1998, Steinberg and Vanaltena 

1992). In my study, I showed that fouling resistance of surface extracts from Baltic Sea G. 

vermiculophylla towards diatoms and Ceramium species varied with season (Paper I and III). 

So far, the related compounds, which are responsible for these observed activities, remain to 

be determined. The antifouling activities of DCM surface extracts were weakly but 

significantly correlated with the fouling pressure (determined as Ceramium settlement rates 
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on PVC panels) that prevailed shortly before the samples were taken (Paper III). As also 

descripted in section 3.2.2, this result is somehow in accordance with previous studies, which 

confirmed that macroalgal antifouling activities exhibit seasonal variation and that such 

activities can be modulated by fouling pressure (Hellio et al. 2004, Maréchal et al. 2004, 

Rickert et al. 2015, 2016, Wahl et al. 2010). In addition to this, the listed studies also 

documented that seasonal variation in macroalgal antifouling activities can be determined by 

abiotic factors such as water temperature and light intensity. An explanation for this 

observation could be that increasing irradiance and rising water temperatures lead to an 

increase in reproduction (mainly in spring) and growth (mainly in summer) of present 

fouling organisms (Pansch et al. 2012, Wahl et al. 2010). This could, in turn, drive the 

antifouling capacities of the affected seaweeds (da Gama et al. 2014). Additionally, if the 

production of antifouling compounds competes with other energy-demanding metabolic 

functions such as reproduction and growth for the limited resources, increasing irradiance 

and water temperature could help seaweeds to fuel the production of antifouling compounds 

(Dworjanyn et al. 2006a, Wahl et al. 2010).  

    The impact of fouling pressure on antifouling defence strength of host macroalgae may be 

also reflected by stress-induced shifts of epibiont-basibiont interactions. However, I found no 

correlational evidence that the mean level of surface colonization by C. tenuicorne on G. 

vermiculophylla affected the subsequent mean level of antifouling defences of G. 

vermiculophylla towards the same fouler (Paper III). It is possibly because various other 

factors that were not controlled may also influence epibiosis, since benthic marine 

environments are characterized by immense and omnipresent competitions for light, space, 

nutrients and other resources (Wahl 2009). Macroalgae are rich in organic material and 

provide safe substrata for colonization, reproduction and habitation. Therefore, the fouling 

organisms that are present on the limited substratum, will probably interact not only with G. 

vermiculophylla, but also with competing foulers and grazers, which may weaken the 

correlation between their presence and algal defences. Nonetheless, I found correlational 

evidence that the recorded antifouling activities of DCM surface extracts from G. 

vermiculophylla against C. tenuicorne affected the subsequent settlement rates of C. 

tenuicorne on G. vermiculophylla. This is explainable since the increased antifouling 

defences in algae will reduce the surface colonization of fouling organisms (Dworjanyn et al. 

2006b, da Gama et al. 2014).  
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    Interestingly, no correlation emerged in case of resistance toward diatoms. It is possible 

that this was due to the fact that a single diatom species, i.e. S. constricta was used in the 

bioassays, while in situ microfouling pressure goes back to a large group of diatom species. 

It is also possible that other deterrents in G. vermiculophylla that were not extracted, e.g. 

water-soluble compounds, contributed to the antifouling activities against this species. 

3.4 Multiple antifouling strategies in macroalgal metabolites 

In terms of production of bioactive natural compounds, macroalgae have provided a large 

number of original metabolites with a wide range of biological and ecological properties 

(Puglisi et al. 2014). It has been investigated that macroalgae can produce various 

metabolites that are broadly defended against a variety of fouling organisms (Schmitt et al. 

1995, Othmani et al. 2016).  

    In my study, I observed that non-polar compounds (extracted with hexane) from G. 

vermiculophylla surfaces had a deterring activity against S. constricta. In contrast, both 

hexane and DCM-based surface extracts inhibited C. tenuicorne attachment (Paper I and III). 

Apparently the deterrent activities of compounds associated with G. vermiculophylla 

surfaces are species-or group-specific, i.e. the compounds which mediate defences against S. 

constricta and C. tenuicorne are different and have different polarities. The finding is 

consistent with previous studies. For example, surface compounds extracted with a mixture 

of hexane and DCM from Caulerpa filiformis significantly inhibited settlement of 

Polysiphonia sp. spores, while DCM-extracted polar compounds inhibited settlement and 

germling development of Ulva australis gametes (Nylund et al. 2007). Further, among 

several compounds isolated from the Mediterranean brown seaweed Taonia atomaria, a 

glycerol derivative, sn-3-O-(geranylgeranyl) glycerol had a significant anti-adhesion effect 

on bacteria, while a sesquiterpenoid, (-)-gleenol significantly inhibited the adhesion of 

barnacle cyprids (Othmani et al. 2016). This also becomes apparent when seasonal patterns 

in the activities of these extracts were compared: the antifouling activity against S. constricta 

of hexane extracts peaked between July and August, while the activity against C. tenuicorne 

peaked between June and July. This suggests that the two organisms were affected by 

different compounds within the same type of extract. Furthermore, the activity of DCM 

extracts towards C. tenuicorne did not peak between June and July, but between July and 

August, suggesting that G. vermiculophylla employs at least two different compounds of 
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different polarities that both target this epiphyte. Similar results were also showed by Saha et 

al. (2011, 2012), who demonstrated that surface-associated polar and non-polar metabolites 

from F. vesiculosus, i.e. dimethylsulphopropionate (DMSP), proline and fucoxanthin, have 

an ecologically relevant role as surface inhibitors against attachments of the same bacterial 

strains. Furthermore, Othmani et al. (2014, 2016) also showed that both a glycerol 

derivative, sn-3-O-(geranylgeranyl) glycerol and a germacrane, germacra-4(15),5,10(14)-

trien-9-ol isolated from the Mediterranean seaweeds had significant anti-adhesion effects on 

the same bacterial strain.  

    It is possible that different compounds act respectively and/or synergistically toward the 

targeted fouling organisms. Regarding G. vermiculophylla, at least C. tenuicorne seems to be 

deterred by multiple compounds. However, the surface extracts were obtained with only two 

solvents (i.e. hexane and DCM) that cover a limited part of the polarity spectrum. It is 

therefore very likely that there are more deterrents in G. vermiculophylla that were not 

extracted, but which also contribute to the antifouling activities of living individuals. 

Nonetheless, these results suggest that a number of compounds could, alone or in 

combination, play a critical role in controlling the fouling on macroalgal surface. 

3.5 Conclusion 

The conclusions of this thesis comprise three main facets:  

    First, it is showed for the first time that non-native individuals of a marine organism are 

better defended against fouling than native conspecifics. Then, it is confirmed that at least a 

part of the antifouling defence in G. vermiculophylla is based on surface associated 

metabolites. In general, my findings do not support the ERH and EICA, since a higher 

fouling pressure was observed at a location in the non-native range than in the native range 

of G. vermiculophylla. However, they could support the Novel Weapons hypothesis, because 

a stronger antifouling defence was observed in non-native G. vermiculophylla.  

    Second, the antifouling defences in G. vermiculophylla varied seasonally. I found some 

hints for the assumption that G. vermiculophylla can adjust its antifouling defenses to fouling 

pressure.  

    Third, the chemical antifouling defence in G. vermiculophylla involves multiple 

compounds with different polarities.  
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    The existence of multiple defence strategies against fouling in marine organisms allows a 

better understanding of basibiont-epibiont interactions and the responses of organisms to 

fluctuating environmental factors. My study gives the first example of a comparison of the 

susceptibility to eukaryote microfouling, macrofouling and natural fouling between native 

and non-native populations of an aquatic species and provides new insights into 

understanding invasion success by basibiont-epibiont interactions in invasion ecology.  

3.6 Questions and outlook for the future 

There are some questions that still need to be answered and I do not believe we have the 

answers today:  

1. Does G. vermiculophylla possess a physical antifouling defence?  

2. What is the origin of active polar and non-polar metabolites - G. vermiculophylla 

itself, surface associated biofilms, or both?  

3. Are the fouling resistance mediated by G. vermiculophylla itself and/or biofilms 

stronger on non-native or native G. vermiculophylla? 

4. What are the active metabolites served as the fouling deterrents in native and non-

native G. vermiculophylla and/or their biofilms? And what are the finally active 

metabolite(s) responsible for the enhanced antifouling activities in non-native G. 

vermiculophylla? 

    With time, more and more marine species will be introduced to habitats from which they 

were previously absent and will spread there, with potential negative impacts on ecosystems 

and economical values worldwide. A better understanding of the foundations of invasion 

success in introduced species is important to develop strategies for managing biological 

invasions. In addition to this, from an ecological perspective, similar as the relationships 

between corals and associated microbes, the resulting assemblage of the host macroalgae and 

associated microbes should be regarded as a functional entity or unit, also termed as 

‘holobiont’ which has been increasingly used in the past decade (Barott et al. 2011, Egan et 

al. 2013). Microfouling may profoundly change the mechanical, physical and chemical 

properties of the body surface of macroalgae and, consequently, all interactions potentially 

linked in some way to these properties. Numerous case studies with respect to macroalgae-
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bacteria interactions have demonstrated that associated microbes are an important functional 

interface to the physiological and ecological performance of the macroalgal host (Egan et al. 

2013, Hollants et al. 2012, Singh and Reddy 2014). Therefore, there is an increasing 

scientific interest to understand the influence of macroalga-associated microbes on micro- 

and macro-fouling. 
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