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Abstract

Ocean acidification (OA) has been dubbed as the “evil twin” of climate change.
Studies suggest that OA has dramatic impacts on marine phytoplankton. Meso-
cosm facilities allow investigations on effects of changes in the carbonate chem-
istry of sea water on plankton communities in the vicinity of their natural
habitats, e.g. Pelagic ecosystem CO2 enrichment (PeECE) studies. Marine
ecosystem models serve as an efficient tool to analyse and interpret mesocosm
data, as they use mathematical equations to describe processes controlling dy-
namics of planktonic ecosystems.

The goal of this thesis is to investigate the effects of OA on phytoplankton
growth dynamics by analysing data from an ocean acidification mesocosm ex-
periment using different model approaches. To achieve this data assimilation
(DA) methods are applied. These methods yield the optimised model solutions
(with optimised parameter values) that maximize the likelihood probability of
models explaining mesocosm data. In addition, DA methods estimate the
ranges of uncertainty in optimised model parameter values.

In the first study (Chapter 2), the performance of different metrics (cost
functions) that maximize the predictive capability of a plankton model are
evaluated. Next, an optimality-based model is applied to investigate the large
observed variability in calcification and total alkalinity during the PeECE-I
experiment (Chapter 3). The model considers an explicit CO2 dependency of
calcification. Three model experiments are set up to simulate growth of bulk
phytoplankton and coccolithophores in mesocosms with high, medium and low
observed calcification rates.

Skills of two plankton models (OBM and CN-REcoM) that differ in their
mechanistic description of nutrient uptake and algal growth are assessed against
mesocosm data in the last study (Chapter 4) of this thesis. In contrast to the
calcification study, the plankton models that are applied in Chapter 4 do not
resolve any CO2 effects on phytoplankton growth dynamics. The idea is to test
whether this neglect of CO2 dependencies is revealed in differences of model
parameter estimates between different CO2 treatments.

According to DA results, the cost function that is derived from a proba-
bilistic approach and accounts for changes in correlations between observations
performs better as metric for model calibration than other types of cost func-
tions (e.g. Root mean squared errors). The model-based data analysis of
the PeECE-I experiment suggests that the large variability that was observed
in calcification could have been generated due to small differences in initial
abundance of coccolithophores during initialisation (filling) of mesocosms. A
pattern is seen in the estimates of two physiological parameters, the poten-
tial carbon fixation rate (V C

0 ) and the subsistence quota (Qmin), between the
CO2 treatments for the OBM. It predicts high estimates of V C

0 and Qmin for
phytoplankton in mesocosms treated with high CO2 concentrations and vice
versa for those in mesocosms with low CO2. The OBM seems to suggest that
OA may enhance carbon fixation rates in phytoplankton, but at the cost of
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elevated metabolic stress. However, it is suggested to include mechanistic CO2

dependencies of nutrient uptake and phytoplankton growth in the OBM for
future studies on OA.
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Zusammenfassung

Ozeanversauerung wurde bereits als der “böse Zwilling” des Klimawandels
bezeichnet. Studien zeigen, dass Ozeanversauerung dramatische Auswirkun-
gen auf marines Phytoplankton hat. Mesokosmen ermöglichen Untersuchun-
gen des Effekts von Änderungen im Karbonatsystem des Meerwassers auf
natürliche Planktongemeinschaften in ihrer natürlichen Umgebung, z.B. CO2-
Anreicherungsstudien im pelagischen Ökosystem (PeECE). Marine Ökosystem-
modelle dienen als ein effizientes Werkzeug, um Mesokosmosdaten zu analysieren
und zu interpretieren, da sie mit mathematischen Gleichungen die Prozesse
beschreiben, die die Dynamik in Planktonökosystemen bestimmen.

Das Ziel dieser Dissertation ist die Untersuchung der Effekte von Ozean-
versauerung auf die Planktonwachstumsdynamik, indem Daten eines Mesokos-
mosexperiments mit unterschiedlichen Modellansätzen analysiert werden. Um
dies zu erreichen werden Datenassimilationsmethoden (DA) angewendet. Diese
Methoden liefern die optimale Modelllösungen (mit optimisierten Parameter-
schätzungen), die die Likelihood der Modelle maximieren, die die Mesokos-
mendaten erklären. Darüber hinaus schätzen die DA Methoden den Unsicher-
heitsbereich der optimierten Modellparameterwerte ab.

In der ersten Studie (Kapitel 2) wird die Performance von unterschiedlichen
Metriken (Kostenfunktionen) bewertet, die die Voraussagefähigkeit des Plank-
tonmodells maximieren. Anschließend wird ein optimalitätsbasiertes Mod-
ell verwendet, um die große beobachtete Variabilität der Kalzifizierung und
Gesamtalkalinität während des PeECE-I-Experiments zu untersuchen (Kapi-
tel 3). Das Modell berücksichtigt eine explizite CO2-Abhängigkeit der Kalzi-
fizierung. Drei Modellexperimente werden durchgeführt, um die Phytoplank-
tonwachstumsdynamik in Mesokosmen mit der beobachteten hohen, mittleren
und geringen Kalzifizierungsrate zu simulieren.

Die Fähigkeit zweier Planktonmodelle (OBM und CN-REcoM), die sich
in ihrer mechanischen Beschreibung der Nährstoffaufnahme und des Phyto-
planktonwachstums unterscheiden, wird in der letzten Studie dieser Disser-
tation mittels Mesokosmosdaten bewertet (Kapitel 4). Im Gegensatz zu der
Kalzifizierungsstudie lösen die Planktonmodelle, die in Kapitel 4 verwendet
werden, nicht CO2-Effekte auf die Phytoplanktonwachstumsdynamik auf. Die
Idee ist, zu testen, ob diese Vernachlässigung der CO2-Abhängigkeiten sich
in Unterschieden der Parameterschätzungen für die unterschiedlichen CO2-
Behandlungen zeigen.

Die DA-Ergebnisse zeigen, dass die Kostenfunktion, die von einem proba-
bilistischem Ansatz abgeleitet ist und die Änderungen der Korrelationen zwis-
chen Beobachtungen berücksichtigt, besser als Metrik für Modellkalibration
geeignet ist als andere Arten von Kostenfunktionen (z.B. RMSEs). Die mod-
ellbasierte Datenanalyse des PeECE-I-Experiments legt nahe, dass die große
Variabilität, die in der Kalzifizierung beobachtet wurde, durch kleine Unter-
schiede der anfänglichen Konzentration von Coccolithophoriden während der
Auffüllung der Mesokosmen verursacht worden sein könnte. Im OBM gibt es
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eine Beziehung zwischen den CO2-Behandlungen und den Schätzwerten zweier
physiologischer Parameter, der potentiellen Kohlenstofffixierungsrate (V C

0 ) und
der Subsistenzquote (Qmin). Es sagt hohe Schätzwerte für V C

0 und Qmin in
Mesokosmen mit hoher CO2-Konzentration voraus und niedrige für Mesokos-
men mit niedriger CO2-Konzentration. Das OBM deutet darauf hin, dass
Ozeanversauerung die Kohlenstofffixierungsrate des Phytoplanktons erhöhen
könnte, allerdings einhergehend mit erhöhtem metabolischen Stress. Für zukünftige
Studien wird angeregt, auch die mechanistische CO2-Abhängigkeiten der Nährstof-
faufnahme und des Phytoplanktonwachstums im OBM zu berücksichtigen.
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Chapter 1

Introduction

The overall goal of the thesis is to better understand phytoplankton growth
dynamics in a changing climate. This is achieved by a combination of numer-
ical models with observations from a mesocosm experiment on ocean acidi-
fication (OA). In the following, typical stressors in marine environments are
introduced and their potential effects are explained (Sections 1.1 and 1.2).
Subsequently, marine plankton ecosystem models are introduced and major
modelling approaches of phytoplankton growth are described (1.3 ). In the
end, data assimilation methods to calibrate models with mesocosm data are
explained (Section 1.5).

services, which are generally steady and predictable in
healthy ecosystems (Figure 1a). In contrast, where strong
multiple stressors reduce the quantity, quality, and stability
of ecosystem services and increase variability in their
delivery, the area of optimal support for human health and
well-being is likely to be reduced and less stable, resulting
in increased specific impacts to the physical and social
health of both individuals and communities (Figure 1b). We
explore this conceptual model via examples of how some
environmental stressors may degrade coastal and marine
ecosystem services, and in turn potentially impact human
health and well-being, to illustrate the need to keep
consideration of human impacts at the center of
environmental management discussions.

Human health effects can be the result of the direct
impact of a single stressor, such as a large storm, but, more
typically, multiple stressors impact ecosystems more or less
simultaneously and cumulatively lead to compounded
impacts on human health and well-being. Most, but not all,
of the examples we present are from coastal and marine
ecosystems (herein just called marine ecosystems) of the
US; however, the challenges facing US marine ecosystems
are very similar to those marine ecosystems around the
world are facing. Because it is impossible to deal with all
marine environmental stressors in this brief paper, we chose
to examine five: rising temperatures, nutrient enrichment,

ocean acidification, habitat destruction and its
accompanying loss of biodiversity, and extreme weather
events (Figure 2). Our synthesis focuses primarily on
literature of the last decade and is illustrative rather than
exhaustive. We conclude with recommendations for
research to better understand relationships among stressors,
ecosystem services, and human health, as well as other
opportunities to reduce the human health impacts of marine
environmental stressors through stronger cross-disciplinary
interactions among ecological, biomedical, and public
health researchers and improved engagement with
decision-makers.

2. Stressors

2.1. Rising temperatures

Global climate change is affecting the world’s oceans in
numerous ways (see Doney et al., 2012, Howard et al.,
2013 for detailed reviews). The oceans store more than 90%
of the excess heat generated by climate change (Bindoff
et al., 2007) and rising ocean temperatures affect numerous
ocean ecosystem services such as fishery production.
Globally, fisheries and aquaculture are crucial sources of
protein nutrition, employment, recreation and cultural

a) Healthy Ecosystem b) Ecosystem with Multiple Stressors 
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Figure 1. Conceptual representation of human health and well-being as the focal point of cumulative ecosystem services in healthy and
heavily stressed ecosystems.

Note: In a healthy ecosystem (a), the area that provides optimal ecosystem services of all kinds for the support of human health and well-being is large,
regular and more or less stable. In highly stressed ecosystems (b), multiple stressors simultaneously and cumulatively impact numerous ecosystem

services, resulting in reduced amount, quality, and stability of services for humans.
Source: Authors’ elaboration.

158 Paul A. Sandifer and Ariana E. Sutton-Grier / Natural Resources Forum 38 (2014) 157–167

Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

Figure 1.1: Comparison of a healthy marine ecosystem with the one that is stressed. Picture
illustrates ecological and socio-economic ill effects of marine stressors. Taken from Sandifer
and Sutton-Grier, 2014.

The Greek philosopher Heraclitus of Ephesus said, “nothing endures but
change”. Indeed, this is true for our planet Earth. Since the beginning of the
Anthropocene, Earth’s major ecosystems are dramatically changing. Anthro-
pogenic pressures on the global ocean are believed to increase globally (Fig.
1.1). Nearly 66 % of the global ocean is impacted by abiotic stressors, e.g.,
abnormal salinities, hypoxia, ultraviolet radiation, pollutants, anomalous high
temperatures, and OA (Halpern et al., 2015). Observed ecological responses
of marine ecosystems to these multiple stressors are associated with a number
of physiological, adaptive and behavioural responses of diverse species. Cu-
mulative effects of environmental stressors on marine biota and habitats are
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Chapter 1. Introduction

variable (additive, synergetic and antagonistic effects). In the following, major
physiological and ecological impacts of marine stressors on aquatic organisms
and their responses are highlighted.

1.1 Stressors not directly related to OA

Homeostases of cellular ionic composition is key to survival and growth in
aquatic species. Changes in environmental salinity is believed to disrupt op-
timal ion regulation, and hence affecting cellular osmotic potential, protein
phosphorylation, active transport across membranes and enzyme activity. In
general, majority of the marine invertebrates cannot tolerate a wide fluctuation
in salinity (stenohaline). Direct impact of changes in salinity at the cellular
level triggers two subsequent responses: 1) cellular stress response (CSR), and
2) cellular homeostatic response (CHR). The role of CSR across the wide spec-
trum of marine species is to repair or compensate for the damage due to pro-
tein degradation caused by salinity stress. This is done by activating families
of heat shock proteins. Following CSR, CHR prepares the cell to acclimatize
to the new physical environment. It restores the ionic balance and cell volume
by adjusting concentration of the free amino acid pool. However, pathways
within the CSR and CHR are energy demanding and could have implications
on cellular physiology and growth. In higher organisms, such as echinoderms,
molluscs and crustaceans, impacts of salinity stress on larval development have
been widely reported (Cowart et al., 2009; Anger, 2003).

The term Hypoxia refers to a physical condition in aquatic environments
when the oxygen concentration falls below 2 mgO2 L−1(Vaquer-Sunyer and
Duarte, 2008). Hypoxia (low O2) is a naturally occurring phenomenon in ma-
rine ecosystems, e.g., tide pools and oxygen minimum zones (OMZs). However,
anthropogenic perturbations intensify the severity of hypoxia in these environ-
ments with subsequent ecological impacts that affect survival. Marine organ-
isms have developed defence mechanisms to tackle environmental hypoxia, e.g.,
phytoplankton can migrate vertically to escape OMZs, zooplankton enhance
activity of anaerobic enzymes (e.g. lactic dehydrogenase), and increased affin-
ity for oxygen in circulatory fluid in crustaceans and fishes. But, exposure to
severe hypoxic conditions cause significant reduction in growth in fishes and
molluscs and also has negative effects on their reproductive health (Ekau et al.,
2010).

Recent changes in ozone layer due to climate change have increase the irra-
diance of ultra violet radiations(UV-R) reaching earth’s surface. Studies have
shown that absorption of UV rays cause damage to nucleic acids (e.g. DNA)
and proteins in marine organisms (Sinha and Häder, 2002; Van De Poll et al.,
2001). When exposed to UV-R photosynthetic pigments in photoautotrophs
can overproduce reactive oxygen species that can cause oxidative stress and
can have detrimental effects on cellular macromolecules (Lesser, 2010).

Another stressors of concern is the impact due to pollutants. Anthropogenic
and natural pollutants in marine ecosystems are increasing and can have harm-
ful effects on organisms. Although species have some form of immune system
to eliminate foreign substances from their body, higher concentrations of con-
taminants have adverse effects on physiology of marine biota. Severe immuno-
toxicological impacts of environmental pollutants (e.g., toxic metals, benzene,
polycyclic aromatic hydrocarbons, and pesticides) have been demonstrated in

2



1.2. Ocean acidification as stressor

variety of marine organisms (Galloway and Depledge, 2001; Segner et al., 2012).
Exposure to metal pollutants has a negative effect on the functioning of immune
system in fishes. More recently, studies show that lower-trophic level marine
organisms (e.g., zooplankton and invertebrates) are susceptible to microplastics
(size less than 5 mm) as these pollutants can cause blockage in their digestive
systems and may lead to reduced growth and reproductive output (Browne
et al., 2008; Graham and Thompson, 2009). Bradshaw et al. (2015) observed
changes in plankton community structure and a decline in biomass of Macoma
balthica (a mollusc) in mesocosms enriched with a chemical pollutant.

The threat of increasing sea surface temperature due to global climate
change has increased our interest to investigate impacts of thermal stress on
marine organisms. Thermal tolerance limit in ectotherms and their physiolog-
ical responses to changes in ocean temperature varies spatially. Species from
temperate latitudes are adapted to variations in temperature and have broader
ranges of thermal tolerances. Whereas, polar and tropical marine species have
smaller phenotypic plasticity and seem vulnerable to thermal stress. In ma-
rine phytoplankton the rate of protein synthesis increases at high temperatures
while number of phosphate-rich ribosomes decreases. Consequently, N:P ratio
of algal cells increases in warmer oceans which in turn raises the demand for
inorganic nitrogen, and hence affecting marine nitrogen cycle (Toseland et al.,
2013).

1.2 Ocean acidification as stressor

The fifth assessment report of the Intergovernmental Panel on Climate Change
states with 95 % confidence that global warming is the product of human activ-
ity. The report predicts an increase of 40 % in concentrations of anthropogenic
carbon dioxide (CO2) since pre-industrial times (18th century). During the last
two decades, the oceans have absorbed about one-third of the CO2 emitted due
to human activities. This resulted in decline of surface ocean total pH by ≈ 0.1
units from 8.2 to 8.1. Furthermore, it is predicted that “if CO2 emissions are
not mitigated” then surface ocean pH could decline by 0.7 units by the year
2300 (Zeebe et al., 2008). Ocean acidification refers to a reduction in the pH of
the global ocean over an extended period, on timescale of decades, in response
to rising levels of atmospheric CO2. At the equilibrium, the carbonate system
of sea water depends on six variables: dissolved inorganic carbon (DIC), total
alkalinity (TA), bicarbonate (HCO−1

3 ), carbonate (CO−2
3 ) and protons (H+).

The variables of the ocean carbonate system are quantified over the period
of last three decades using state-of-the-art measurement techniques at three
sub-tropical ocean-time series stations. DIC and TA have been observed since
year 1989 at the station ALOHA of Hawai Ocean Time-Series (HOT). Same
variables are measured at the Bermuda Atlantic Time-Series (BATS) station
in North Atlantic since 1983, and at European Time-Series station (ESTOC)
in Eastern Atlantic between year 1995 to 2004. Data collected at three ocean-
time series stations reveal that the decline in surface ocean pH is approximately
0.0017 units every year. In addition, data also exhibit the mean reduction by
0.5 units in concentration of [CO−2

3 ] every year. Future trends suggest that as
anthropogenic DIC increases, it will cause a reduction in the buffering capacity
of the global ocean. Furthermore, predictions by sophisticated ocean models
suggest that by 2100 the ocean’s buffering capacity would drop to 40 % of

3



Chapter 1. Introduction

what it was in pre-industrial period. Changes in the carbonate chemistry of
the seawater can have wide range of effects on marine flora and fauna.

1.2.1 Ocean productivity

Marine primary producers encapsulate diverse phylogenetic groups, ranging
from prokaryotes to angiosperms (Falkowski et al., 2004). These organisms
differ widely in their light harvesting and carbon enrichment systems (Gior-
dano et al., 2005). For photosynthesis, an algal cell requires sunlight, inorganic
carbon, macronutrients (eg. Nitrogen and Phosphorus) and micronutrients
(e.g. Iron ). Amongst the species in DIC pool of the global ocean, HCO−1

3 and
CO−2

3 ions are more abundant than CO2. However, an important substrate for
the process of photosynthesis is CO2 that is catalyzed by the enzyme ribulose-
1,5-biphosphate carboxylase oxygenase (RubisCo). But, RubisCO has a low
affinity for CO2. Therefore, many photoautotrophs employ carbon concen-
trating mechanisms (CCMs) that use energy to direct inorganic carbon to the
proximity of RubisCO (Giordano et al., 2005). Species with effective CCMs are
apparently less sensitive to increased CO2 levels (Raven et al., 2011). Under
high CO2 concentrations many algae are able to downregulate CCM activity.
The impact of this will be that less energy is required for the transport of
inorganic carbon and more will be available for photosynthesis (Beardall and
Giordano, 2002).

A variety of phytoplankton taxa, e.g., diatoms, coccolithophores, cyanobac-
teria, and dinoflagellates, show enhanced carbon fixation rates and primary
production when exposed to elevated pCO2 levels (Burkhardt and Riebesell,
1997; Barcelos e Ramos et al., 2010; Rost et al., 2006; Hutchins et al., 2009).
Investigations of OA on the plankton community also show increase in net
community production under high CO2 levels (Egge et al., 2007). However,
with respect to cell division rate (growth rates), responses of phytoplankton to
OA are variable. For instance, some negative response was observed on growth
rates of coccolithophores in a low pH environment by Barcelos e Ramos et al.
(2010) and Iglesias-Rodriguez et al. (2008). But, Burkhardt and Riebesell
(1997) and Gervais and Riebesell (2001) found positive effect on cell division
rates of diatoms on decreasing the pH.

1.2.2 Calcification

Many marine organisms, including molluscs, echinoderms, corals and a variety
of algae, produce exoskeletons, shells and other structures to protect them-
selves primarily from predation and from photodamage. Calcium carbonate
(CaCO3) is the most common building material used in the building of pro-
tective structures. The precipitation of CaCO3 is supported by high pH and
abundant supply of CO−2

3 ions, decreasing DIC and TA in ratio of 1:2 and in-
creasing concentration of CO2 (see the reaction below).

Ca2+ + 2 HCO –
3 CaCO3 + CO2 + H2O

Thus, production of CaCO3 in the ocean is always accompanied by a reduced
uptake of atmospheric CO2 (Ridgwell et al., 2007; Zondervan et al., 2002). This
process serves as counter to Ocean’s “biological pump” and termed as “CaCO3

counter pump” (Gattuso and Hansson, 2011).
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At taxonomic level, studies have shown differences in the sensitivity of cal-
cification to changes in carbonate chemistry, e.g., between molluscs, corals,
foraminifera, and coccolithophores (Lombard et al., 2009; Comeau et al., 2009;
Gao et al., 2012; Engel et al., 2005). However, there is consensus that with
decrease in the pH due to OA, energetic cost of calcification is expected to rise
(Waldbusser et al., 2010; Monteiro et al., 2016).

Laboratory experiments suggest that unicellular calcifying algae (e.g. coc-
colithphores) are more vulnerable to OA than multicellular organisms showing
a tendency towards reduced CaCO3 precipitation rates under elevated CO2

concentrations (Findlay et al., 2011; Meyer and Riebesell, 2015). However, it
is not understood whether a decreased calcification rate will impact the com-
petitive fitness of calcifying organisms relative to non-calcifying ones (Gattuso
and Hansson, 2011).

1.2.3 Nitrogen fixation

A mechanistic understanding of effects of OA on diazotrophy is limited. Since
iron (Fe) and phosphorus (P) are essential nutrients for nitrogen fixation, the
impacts of OA on nitrogen fixers are expected to depend on Fe and P avail-
ability. In general, an enhanced response in carbon and nitrogen fixation is
observed under elevated pCO2 in majority of diazotrophs, e.g. Trichodesmium
(Barcelos e Ramos et al., 2007).

1.2.4 Cellular stoichiometry of autotrophs

Only few studies have focussed on effects of CO2 on algal C:N:P ratios, mainly
because of long-standing notion that CO2 is not limited in marine ecosystems
due to rapid diffusion from the atmosphere (Schindler, 1977). In the light of
multiple effects of OA on important metabolic processes, e.g., photosynthesis,
calcification and nitrogen fixation, it is possible that cellular composition of
photoautotrophs alter with strong changes in the carbonate chemistry of sea-
water. Studies (e.g., Burkhardt and Riebesell 1997; Iglesias-Rodriguez et al.
2008; Bellerby et al. 2008; Hutchins et al. 2009 ) showed a large variations
in cellular C:N and N:P ratios under high CO2 concentrations. For exam-
ple, coccolithophores and cyanobacteria consistently showed positive response
of OA on cellular C:N:P ratios, whereas cellular composition of dinoflagellates
and diatoms remained unaffected under elevated pCO2 (Leonardos and Geider,
2005; Iglesias-Rodriguez et al., 2008; Fu et al., 2007; Burkhardt et al., 1999).
This likely depends on the actual growth conditions (e.g. light availability and
nutrient supply).

1.2.5 Zooplankton

Little is known about OA effects on zooplankton relative to phytoplankton.
Few studies have focussed on pteropods and foraminifera and they showed de-
creased calcification under high CO2 conditions (Fabry et al., 2008; Ellis et al.,
2009). Several studies have reported increase in cost of metabolic activities
for zooplankton when exposed to high pCO2 levels (Carotenuto et al., 2007;
Edmunds, 2011; Lischka et al., 2011). Furthermore, OA could lead to mobil-
ity impairment in many microzooplankton (Caron and Hutchins, 2012). In
contrast, no inferable CO2 effects on zooplankton grazing were observed in a
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mesocosms CO2 perturbation study (Suffrian et al., 2008).

1.2.6 Marine biodiversity, habitat and food web dynamics

Organisms that lack mechanisms to cope up with internal acid-base disrup-
tions are at the greater risk to OA. Mostly lower invertebrates, e.g., sponges,
cnidarians, and ctenophores are vulnerable to changes in chemistry of seawater
(Gattuso and Hansson, 2011). Amongst invertebrates, echinoderms appear to
be least tolerable to low pH. This is evident by their absence from habitats
with naturally high CO2 levels, e.g., hydrothermal vents. Furthermore, it is
speculated that many sponges and cnidarians may not be able to survive un-
der OA levels projected for year 2100 under RCP6.0 scenario that predicts
an increase in global mean temperature by ≈ 2.2◦C. For calcifying taxa, the
magnitude of susceptibility to OA depends on the type of carbonate mineral
used for building skeletal structures. High-magnesium calcite organisms are
believed to be at highest risk to elevated CO2 levels. Many coral reef species
are perceived to be vulnerable to decrease in pH of seawater. OA may slow
down corals’ growth by reducing calcification rates and reproduction. Fur-
thermore acidification may also corrode the pre-existing coral skeletons. Since
coral reefs are the most ecologically diverse and productive marine ecosystems,
decline of such habitats would lead to loss of diverse flora and fauna.

OA is expected to disrupt trophic linkages of food webs, resulting in trophic
cascades. An interesting mesocosm study on three-level food web dynamics
reveals that under elevated CO2 primary production and the biomass of top
predator may increase, but secondary production would decline (Goldenberg
et al., 2017). This is a significant finding as it suggests that OA may knock out
some intermediate trophic levels of food web pyramids in marine ecosystems.

In summary, to predict synergistic impacts of OA on dynamics of marine
ecosystems and their feedbacks to climate system is a challenging task, and
therefore increasing experimental and modelling efforts are required.

1.3 Plankton ecosystem models

One of the key methodologies for predicting responses of aquatic ecosystems to
environmental stressors, such as OA, warming and deoxygenation, is to develop
mathematical models. Changes of ecosystems can be quantitatively assessed
spatially and temporally from prognostic variables, e.g., primary production,
grazing pressure, pH of the seawater and the saturation state of aragonite
(Blackford, 2010). Furthermore, biogeochemical models can be applied to in-
vestigate how physiological-level responses of species to stressors in the marine
environment may scale up to community and ecosystem levels. Models provide
mathematical tools to describe, elucidate and quantify nutrient fluxes through
marine food webs and can help to explain interactions with the atmosphere
and ocean sediments. However, these models still contain some considerable
degree of uncertainty, particularly since they depend on poorly known model
parameters. Models are calibrated with diverse observational data sets. In
practice, calibration of models boils down to fitting data by adjusting param-
eters. It is advisable to limit the number of adjustable parameters, as models
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with many fitted parameters can lose their predictive power, which is a funda-
mental mathematical problem. How complex a model needs to be depends on
the scientific question that is being addressed. Essentially, a model should ex-
plain data in its simplest form (Occam’s razor). As William of Occam famously
said, “It is vain to do with more what can be done with fewer” and “A plural-
ity is not to be posited without necessity”. Conversely, over-simplification in
ecosystem models can lead to biases in parameter estimates. Thus, it is critical
to find a balance between unwanted details and over-simplification in a marine
ecosystem model (Ward et al., 2013).

Today a multitude of models with varying complexity exist to study marine
food web dynamics. Simplest example of an aquatic food web model is a NPZD-
type model that estimates fluxes of nutrients (N) between phytoplankton (P),
zooplankton (Z) and bulk detritus (D) (Fasham et al., 1990). Phytoplankton
are the basis of marine food chain as they are the source of food for higher
trophic level organisms. Therefore, it is critical for models to represent phyto-
plankton growth dynamics appropriately when predicting impacts of stressors
on marine ecosystem dynamics. In the following two typical approaches to
modelling phytoplankton growth are described that differ in their assumptions
for nutrient uptake.

1.3.1 Monod-type models

Monod-type models (MMs) relate growth of phytoplankton to external re-
sources (Morel, 1987). MMs define growth rate (µ) of phytoplankton as:

µ = µmax ·
( N

kµ +N

)
(1.1)

where µmax is the maximum specific growth rate and N is the concentration
of the limiting external nutrient. kµ is the half-saturation constant for growth
(the nutrient concentration at which growth is half of its maximum). The
growth rate becomes zero at zero resource concentration and when N gets
very large, µ approaches µmax. Thus, concentration of nutrients in external
medium mechanistically regulates the growth of photoautotrophs.

In the last few decades, several MMs for phytoplankton growth have been
proposed (Fasham et al., 1990). Amongst them, many first-generation models
(e.g. Dugdale 1967 ) are based on nitrogen and assume constant C:N ratios
for estimating mass flux within the ecosystem. These models are known as
Redfield–Monod-type models (Ayata et al., 2013). Some global marine ecosys-
tem models (e.g., Faugeras et al. 2004; Aumont and Bopp 2006; Dutkiewicz
et al. 2009) employ Monod kinetics for describing nutrient uptake and use
the classical Redfield ratio to convert the nitrogen fluxes computed from the
phytoplankton compartment to carbon fluxes.

A considerable drawback of the Monod equation describing nutrient lim-
ited growth is that values of kµ have to be retrieved from measurements and
they can change from one plankton species to another (Droop, 1983). Fur-
thermore, studies have revealed that MMs have limitations when simulating
plankton growth in unbalanced growth conditions (Flynn, 2003; Smith et al.,
2009; Franks, 2009)
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1.3.2 Quota-type models

A major advance in coupling phytoplankton growth with intracellular nutrient-
to-carbon ratio (Q) came when it was noticed that µ was linearly related to
1/Q, also known as the Droop equation (Droop, 1974). This gave birth to
Quota-type plankton models (QMs) that define the growth rate of an algal cell
as:

µ = µmax ·
(

1− Qmin
Q

)
, (1.2)

Where Qmin is the subsistence quota of a cell. The success of QMs in connect-
ing growth rate to intracellular nitrogen, carbon, and/or phosphorus pool has
motivated a variety of additional theoretical developments (e.g. Optimality-
based models). These models have refined the Droop equation to consider
the plasticity of cellular allocation of resources in different conditions, while
investigating changes in C:N:P stoichiometry as adaptive responses to environ-
mental forcing factors (e.g., Armstrong 2006; Pahlow 2005; Smith et al. 2011;
Pahlow et al. 2013).

Shuter (1979) proposed one of the first optimality-based models for unicel-
lular algal growth. Pahlow (2005) developed a carbon and nitrogen regulatory
model that maximizes phytoplankton growth by optimally allocating resources
among competing metabolic requirements for nutrient uptake, light-harvesting
and growth. Pahlow and Oschlies (2009) extended the optimality-based for-
mulations of Pahlow (2005) to include multi-nutrient (P and N) and light co-
limitation of phytoplankton growth. In contrast to independent limitations by
P and N as proposed by Flynn (2001), the model of Pahlow and Oschlies (2009)

Nutrient	acquisition					
(DIN	uptake)

fv

Light	harvesting
(Chlorophyll	
synthesis)

1- fv- Qs/QN Qs/QN

Structural	
protein
synthesis

QN (cellular	nitrogen)

Figure 1.2: Schematic representation of allocation of cellular nitrogen (QN ) for nutrient acqui-
sition, light harvesting and protein synthesis functions of a cell. Fraction of QN assigned for DIN
uptake is denoted by fv. Whereas, QS/QN is the fraction allocated for synthesis of structural
proteins. Finally, 1− fv −QS/QN accounts for the cellular N designated for light harvesting and
carbon fixation. The red dotted arrow indicates that photosynthesis is limited by N exhaustion in
the model. This figure is modified from Pahlow et al. (2013).
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links C, Chl, N and P through a limitation chain in which P limits N acquisition
and N limits photosynthesis, and photosynthesis limits growth. Pahlow et al.
(2013) refined the chain model of Pahlow and Oschlies (2009) and introduced
an orthogonal hierarchy for an optimal allocation of resources between cellular
functions to maximimise the growth rate. At the top level, the cellular N is
allocated between nutrient acquisition, light harvesting and structural protein
synthesis functions of a cell (Fig 1.2). Subsequently, on the second level, the
fraction allocated for nutrient uptake is again distributed between P- and N-
acquisition compartments. At the lowest level, the resource for N acquisition is
sub-divided to optimise energy demands for nitrogen fixation and DIN uptake
in an algal cell. Predictions by the model of Pahlow et al. (2013) are consistent
with major observed patterns in diazotrophy in the global ocean.

It is note that the optimality-based model (OBM) applied for the studies
in this thesis do not resolve P limitation and N fixation, and hence accounts
only for optimal allocation of resources devoted to nutrient acquisition, light
harvesting and structural proteins in a cell.

1.4 Making inference from experimental studies

Experimental data are vital for the holistic understanding of effects of ma-
rine stressors on marine food web dynamics. They provide information about
biological and physical processes over different temporal and spatial scales. Ob-
servations of biogeochemical variables are complex data types, coming from a
variety of sources, e.g., laboratory experiments, mesocosm experiments, satel-
lites, and in situ cruise observations. Some observational variables are cor-
related in space and time, e.g. measurements of dissolved inorganic nitrogen
(DIN) and Chlorophyll (Chl) concentrations of phytoplankton. Field experi-
ments, e.g. ship-borne measurements, are considered to provide most accurate
representation of natural variables, but their availability are limited by poor
coverage spatially and temporally (Gregg et al., 2009). Furthermore, these
observations include strong seasonal signals, especially at high latitudes where
harsh conditions limit accessibility. In addition, field observations are generally
characterized by variability that originates from instrumental, environmental
and sampling noise. Whereas, laboratory and mesocoms data are less noisy
and easier to sample than collecting in situ measurements.

1.4.1 Laboratory experiments

Laboratory cultures often contain genetically identical species of phytoplankton
that are grown under ideal conditions. Controlled, manipulative experiments in
laboratories allow an investigation of impacts of stressors on individual species.
They can help determining responses on cellular level to environmental per-
turbations (e.g., Sunda et al. 2002; Iglesias-Rodriguez et al. 2008; Lohbeck
et al. 2012). Hence, laboratory experiments are an effective way of addressing
questions like: Which species and communities are at risk? Will organisms
adapt to a particular stressed environment? How evolution of an organism is
effected by long term changes in physical environment? The major drawback
of laboratory data is its representativeness for scaling up to the real world. In
removing an organism from its real habitat it is difficult to obtain a natural and
normal response to a stressor. Furthermore, these data sets do not provide any
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information about changes on community level to variations in environmental
conditions.

1.4.2 Mesocosm experiments

Mesocosms enclose a natural plankton community and expose it to environ-
mental perturbations. Data from mesocosm experiments are considered to be
more representative of natural situations. By keeping organisms in a more
natural environment they may be less vulnerable to stressors than those in
small laboratory experiments. Since mesocosms contain variety of biota, in-
vestigations on changes in food web dynamics in response to single or multiple
stressors can easily be conducted. It has been demonstrated that mesocosm
experiments can facilitate rigorous data-model comparisons and data assimila-
tion (Vallino, 2000). The advantages of mesocosm experiments are: (1) They
reduce system dimensions from space and time to only time or, if available,
to 1D (vertically resolved), and hence greater effort can be placed on develop-
ment and validation of the model; (2) Typically, mass is conserved in mesocosm
experiments, which makes estimation of mass flux easier. (3) Environmental
conditions in mesocosms can be better controlled, therefore these experiments
prove to be an excellent method to investigate effects of changes in physical
and chemical conditions on phytoplankton growth dynamics. Drawbacks of
mesocosm experiments are variations and uncertainties in initial conditions
that affect the plankton growth dynamics (Krishna and Schartau, 2017).

1.4.3 Analyses and interpretation of mesocosm data

The simplest qualitative method to interpret mesocosm data is graphical anal-
ysis. Time-series plots of observations provide useful information on the mag-
nitude and timing of key biological processes, e.g., peak of chlorophyll bloom
and exhaustion of nutrients, and also on the variability in the system derived
(inferred from standard deviations in data). Line plots, bar charts, boxplots,
contour maps and 2D images are some of the popular graphical methods to
represent data sets of this kind. Quantitative data analyses include statistical
methods, but also dynamical model approaches.

Some of the popular statistical analyses to extract information from meso-
cosm data are ANOVA (Engel et al., 2005; Egge et al., 2007; Jokiel et al., 2008;
Kuffner et al., 2008), Linear regression (Short et al., 1995; Agawin et al., 2000;
Findlay et al., 2011), p- and t-tests (Lancaster and Drenner, 1990; Engel et al.,
2005; Tanaka et al., 2008) and F-statistics (Strecker et al., 2004; Roy et al.,
2006). ANOVA test is conducted to examine the dependency of a particular
variable on a certain factor. For example, Jokiel et al. (2008) performed an
ANOVA test on their mesocosm data and found a significant negative impact
of OA on calcifying coral reef organisms. Findlay et al. (2011) proposed a re-
gression model to quantify the CO2 effect on calcification by coccolithophores.
Statistical significance test is done by computing t- and p-values to demonstrate
whether the difference between two groups’ means reflects the real difference
in populations. A p value less than 0.05 indicates that there is a difference
between the means and statistical significance does exists. Tanaka et al. (2008)
measured higher concentration of particulate organic matter (POM) in meso-
cosms treated with high CO2 concentration than the ones with low CO2. Their
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test statistic (p <0.05) confirmed this result to be significant, indicating posi-
tive effect ocean acidification on POM. Engel et al. (2005) tested the influence
of CO2 on biological variables measured during a mesocosm experiment by
computing p values. Their results show no effect of CO2 on early picoplankton
bloom (p = 0.51), but for calcifying algae (coccolithophores) they observed
a significant CO2 dependency (p <0.001). The average coccosphere size was
larger in mesocosms perturbed with low CO2 concentrations. F-statistics are
also employed two find if means of two populations are significantly different.
However, F-value gives information on group of variables that are jointly sig-
nificant. Strecker et al. (2004) applied F-statistics on their results and reported
time-dependent negative impact of warming on total zooplankton biomass in
their mesocosm experiment.

A different but complementary approach to statistical methods is applica-
tion of dynamical models. Most models, describing phytoplankton acclimation
and growth, have been calibrated with laboratory measurements (Geider et al.,
1998; Flynn, 2001; Pahlow and Oschlies, 2009; Armstrong, 2006). On the one
hand, Schartau et al. (2017) stressed that laboratory data are good for testing
physiological mechanistic behaviour of the model, but inferences on parameter
uncertainties remain difficult. On the other hand, ship-borne measurements
are temporally and spatially sparse and provide limited information to con-
strain all the processes resolved in a marine ecosystem model. As mesocosm
experiments overcome shortcomings of laboratory and ship-based measure-
ments, configuration of plankton models with data from mesocosms has some
advantages. Models are applied to interpret data collected from mesocosms, re-
solve nutrient and food web dynamics, and estimate mass fluxes in mesocosms
(Baretta-Bekker et al., 1998; Vallino, 2000; Dueri et al., 2009; Joassin et al.,
2011; Krishna and Schartau, 2017). Baretta-Bekker et al. (1998) calibrated
their model with data from mesocosm experiments to study mixotrophy by
bacterioplankton. Phosphorus budget estimated by their model suggests that
bacteria competed with picoplankton for orthophosphate in nutrient depleted
mesocosms. Baretta-Bekker et al. (1998) validated their food web model with
mesocosm data and obtained good fits between observations and model results.
However, they highlighted the problem of robustness in their model due to
sensitivity of parameters on environmental conditions and species abundances.
The modelling study of Joassin et al. (2011) classified three stages of coccol-
ithophore (Emiliania huxleyi ) bloom in mesocosms treated with present-day
CO2 concentrations. During the first phase, increase in biomass of Emiliania
huxleyi by luxury consumption of nutrients is observed. The second phase
is marked by phosphorus exhaustion and decoupling of carbon and nitrogen
uptake takes place increasing C:N ratio of algal cells. The last phase is char-
acterised by sharp decline in biomass of Emiliania huxleyi as a result of high
phytoplankton mortality, which is in their study attributed to viral lysis. Kr-
ishna and Schartau (2017) configured an optimality-based model (Pahlow et al.,
2013) with data from a mesocosm experiment on ocean acidification. Their re-
sults suggest that large variations in calcification seen between the mesocosms
of the same CO2 treatment are mainly due to small differences in initial con-
centrations of phytoplankton and photoacclimation states at the time of filling
of mesocosms.
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1.5 Combining mesocosm data with models

1.5.1 Data assimilation

Data assimilation (DA) is a method to combine the information in observations
with dynamical models to predict state variables and to estimate model pa-
rameters (Dowd, 2007). Data assimilation can provide estimates of prognostic
variables that combine strengths of observations and models while reducing
their misfits and uncertainties in model results and observations (Fig. 1.3).

T
P

O

Observational	
error

Residual	error
(O	– P)

Predictive	error

P

O

T

Mesocosm data

Model

Observational	
uncertainty

Model	
uncertainty

a)	Before	Data	
assimilation

b)	After	Data	
assimilation

Figure 1.3: Schematic representations of model prediction (P), mesocosm observations (O), and
true state (T). P and O are enclosed by their respective uncertainties. a) depicts situation before
data assimilation when residual and prediction errors are large. b) shows the case after data
assimilation when model has been calibrated by observations and model uncertainty has been
significantly reduced. This figure has been modified from the one in Stow et al. (2009).

There are different types of data assimilation methods that have been ap-
plied. In general, we can distinguish two methodological classes of DA methods
(Gregg et al., 2009). The first class typically assures that the models’ solutions
remain consistent with the dynamical equations imposed, and model parame-
ter values are constant. In this case, only forcing data and model parameters
are adjusted (optimised) to provide a model solution that gives a best repre-
sentation of the data. The second class accounts for the fact that all models
are imperfect and these data assimilation method introduce corrections to the
models’ solutions and sometimes also parameter values at locations and dates
of observations (see e.g. Dowd et al. 2014). These “state” corrections not only
depend on the misfit between model results and data but also include updated
(and sophisticated) error information of the previous corrections. The correc-
tions of model results occur in a temporal sequence at times of available data,
and these methods are therefore referred to as sequential methods. Sequential
methods are the basis for forecasting systems, e.g. in operational oceanography
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or in meteorology (weather forecasts). If only the parameter values of a model
are corrected sequentially, then a sequential method can provide temporally
variable parameter values while model solutions are consistent with the model
dynamics, i.e. assuring mass conservation.

1.5.2 The cost function

The cost function (J ) quantifies the discrepancy between model outputs and
corresponding observations (Schartau et al., 2017). There are different ways
to evaluate model-data misfits, e.g., the root mean squared error (RMSE), the
reliability index (RI) and the average error (AE) for univariate analyses (Stow
et al., 2009), and weighted “least squares” for multivariate cases (Matear, 1995;
Schartau and Oschlies, 2003).

For N number of observations, the residual vector (~d) at any point of time
is given by the difference between vectors of observations (~y) and its model
counterpart (H(~x):

~d = (~y −H(~x)) (1.3)

A non-probabilistic cost function is one that does not account for error infor-
mation of observations (e.g. RMSE) and it is defined as a function of ~d and
N :

J = f(~d,N) (1.4)

Whereas, a cost function based on a probabilistic approach (e.g. Negative
Loglikelihood) considers errors in data (denoted by the vector ~ε) and described
as a function of ~d, N and ~ε:

J = f(~d,~ε,N) (1.5)

Furthermore, when a probabilistic based cost function is applied to estimate a
set of model parameters (θ) then it is defined as:

J(θ) = f(~d(θ),~ε,N) (1.6)

1.5.3 Parameter optimisations

The optimal set of parameters (θ∗) is the one that yields the lowest value for
the cost function (J ) in the np dimensional parameter space. An optimum
occurs when the gradient of the cost function becomes zero,

∂J(~θ)

∂~θ

∣∣∣∣
~θ=~θ∗

= 0
(
or ∇~θJ(~θ)

∣∣∣∣
~θ=~θ∗

= 0
)

; (1.7)

and the parameter Hessian matrix (Hθ) that contains second-order derivatives
of J(~θ∗) is positive definite (Vallino, 2000):

Hθ =
∂2J(~θ)

∂ ~θ2

∣∣∣∣
~θ=~θ∗

(1.8)

The landscape of the cost function is determined by changes in J(~θ) in response
to variations in parameter values (θ). A simple example would be a convex
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landscape where the minimum of the cost function lies at the bottom of a sin-
gle valley. However, for a multi-dimensional parameter space the shape of the
cost function is typically multi-modal or noisy (Fonseca and Fleming, 1995),
indicating occurrence of many local minima, and it is difficult to determine
the global minima of the cost function. There are numerous parameter opti-
misation algorithms, employing different methods to approximate the global
minimum of the cost function. These algorithms can broadly be classified into
two categories:

1.5.3.1 Gradient-based algorithms

Gradient-based algorithms make use of the gradient information to minimize
the cost function (Gauthier et al., 1986; Snyman, 2005; Fennel et al., 2001).
They compute the negative gradient of the cost function at every time step
and descent in the direction of decreasing value of J(~θ) until ∇~θJ(~θ) becomes
zero, and the minimum is located. Gradient-based algorithms are well suited
for convex error functions (cost functions). A simple, but common example
of a gradient-based algorithm is one that uses the steepest-descent approach
(Lawson et al., 1995). The disadvantage of the steepest-descent approach is
that they have tendency to get trapped in a local minimum (e.g. when observa-
tions are very noisy). More advanced, the conjugate-gradient (CG) algorithm
(Gilbert and Nocedal, 1992) finds an optimal search direction by combination
of negative gradients of J(~θ) at the current iteration step and the previous
direction. Several studies, e.g., Matear (1995), Fennel et al. (2001), Lawson
et al. (1995), have employed gradient-based optimisation techniques to estimate
parameters for regional and global marine ecosystem models.

Another example of gradient-based algorithms are Newton and quasi-newton
optimisation algorithms (also known as second order optimisation algorithms)
that use the curvature (second-derivative) information stored in the Hessian
matrix to approximate the global minimum. The Hessian matrix is constructed
from gradient evaluations of the cost function. The optimal search direction
is given by a vector describing the angle of the direction according to the in-
verse of Hθ. Newton and quasi-Newton algorithms are well-suited for finding
the global optimum of convex non-linear cost functions. In theory, these algo-
rithms fit a quadratic approximation to J(~θ) at a given θ using both gradient
and second derivative information. A Taylor expansion of J(~θ) around the
optimum (θ∗) is given as:

J(~θ) = J(~θ∗) +
∂J(~θ)

∂~θ
δθ +

∂2J(~θ)

∂ ~θ2
δθ2 +O(δθ2) (1.9)

Where δθ is a step size computed from the first and second derivatives of the
cost function:

δθ = −∇~θJ(~θ)

∇2
~θ
J(~θ)

(1.10)

The convergence criterion is to find the δθ that minimizes the above described
quadratic approximation. Some of the popular Newton and quasi-Newton
methods applied in inverse data assimilation approaches are: Levenberg-Marquardt
(LM) algorithm (Ranganathan, 2004; Marquardt, 1963), Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm (Broyden, 1970; Fletcher, 1970; Goldfarb,
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1970; Shannon, 1970) and Davidon-Fletcher-Powell (DVP) algorithm (Leggett,
2013). Lawson et al. (1995) and Spitz et al. (1998) used Newton and quasi-
Newton methods to fit their marine ecosystem models to observations collected
from the Bermuda Atlantic Time-Series Study (BATS) site. Likewise, Fennel
et al. (2001) applied a quasi-Newton method to optimize model parameters in
their model sensitivity analysis. Rose et al. (2007) used a gradient-based op-
timization technique (Levenberg-Marquardt method) to calibrate their ocean
food web model.

1.5.3.2 Stochastic algorithms

Gradient-based technique is usually considered to be not efficient for noisy
cost functions (Todorov, 2005; Raupach et al., 2005), primarily because com-
putations of the gradients and Hessian of the cost function are not exact.
Many stochastic techniques for parameter optimization have been proposed
that apply probabilistic techniques for approximating the global optimum. One
stochastic technique that has been often used by ecosystem modellers is sim-
ulated annealing (SA) method (Bélisle, 1992). The name of this algorithm
comes from annealing in metallurgy, a technique in which successive heating
and slow cooling of a material increases size of its crystals with a low energy
state. The SA method randomly selects a parameter set and evaluates the cost
function value. It employs an acceptance probability function that decides
whether to accept a particular parameter set or not. This process is iterated
in the direction of decreasing cost function values until the global minimum is
approximated. Although it is not guaranteed that the SA method will find the
global optimum, it has been shown to provide good solutions (Matear, 1995).

Another class of stochastic search strategies are genetic algorithms (GAs).
GAs are a heuristic optimisation technique inspired by Darwin’s principle of
natural evolution. A GA algorithm randomly selects a population of model
evaluations on a fitness-based criteria (representing cost function values) and
then carries out a process of recombination of parameter vectors to generate
a successor population (new sets of parameter vectors). As this process is
iterated a sequence of successive generations evolve and average fitness tends
to increase (McCall, 2005). Increase in fitness of a population of parameter sets
corresponds to lower cost function values. The recursive process of selection
and recombination continues until a pre-determined convergence threshold is
reached, and this way a GA algorithm finds a best solution to the problem.
Schartau and Oschlies (2003) applied a Micro-genetic algorithm (µGA), a small
population size variant of GA, to optimise 13 parameters of a simple NPZD
model at three locations in the North Atlantic. Their results show significant
reduction in the model-data misfit.

More recently, Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) optimisation algorithms are becoming popular (Hansen et al., 2003). These
algorithms make use of an approximated covariance matrix to generate a suc-
cessor population with increased fitness. Kriest et al. (2017) calibrated a
global 3D biogeochemical ocean model against global mean observations us-
ing a CMA-ES algorithm. They found that the optimised model produces a
better fit to observed global biogeochemical fluxes.
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1.5.4 Uncertainty estimation

Uncertainties in optimised model solutions can be estimated by finding all
those parameter vectors that yield model-data misfit costs that are statistically
indistinguishable from the global minimum of the misfit function (e.g. Schartau
et al. 2017), and the distribution of these optimised parameters is called the
posterior distribution or the posterior (e.g. Harmon and Challenor 1997). An
inference on identifiability of a model parameter can be made by the spread of
its posterior distribution (in the vicinity of the global optimum).

θi

θj

θj

θi

!i

*

*

! j

Figure 1.4: Graphical illustration of marginal errors (σi and σj) in posterior estimates
of parameters θi and θj . Contours represent the cost function (or misfit) values while
varying θi and θj . The inner most contour (depicted in yellow) encloses the optimum
(minimum) approximated by optimisation algorithms. Whereas, θ∗i and θ∗j are the “best”
optimised estimates for θi and θj . The idea of this figure has been taken from Sivia
(1996).

The larger the spread of the posterior distribution, the higher the uncer-
tainty associated with the parameter estimate. Uncertainties in parameter
estimates are quantified by their marginal error-bars (e.g. σi and σj in Fig.
1.4). The innermost cost function contour (shaded in yellow) in Figure 1.4
represents the credible region of parameter uncertainties (that includes the
optimum). All parameter combinations between θi and θj in this region are
statistically indistinguishable.

Markov Chain Monte Carlo (MCMC) methods are considered as an ef-
ficient tool to determine the posterior distribution of parameter estimates
(Harmon and Challenor, 1997). These algorithms employ Bayesian selective
(acceptance/rejection) sampling schemes, e.g., Metropolis-Hastings (MH) al-
gorithm (Metropolis et al., 1953; Hastings, 1970) and Metropolis-Hastings-
Delayed-rejection algorithm (Haario et al., 2006), to subsample the posterior
and identify a credible region of random distribution of parameter values, which
is interpreted as uncertainties in model solutions (Dowd et al., 2014; Schartau
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et al., 2017). Fiechter et al. (2013) have demonstrated the success of a MCMC
method in separating the uncertainties in parameters estimates due to sam-
pling issues and uncertain ecosystem dynamics for a regional marine ecosystem
model. Smith and Yamanaka (2007) applied the MH algorithm for a maximum
likelihood estimation while comparing two photoacclimation models against
culture experiment data of Flynn et al. (1994).

1.6 Thesis overview and contributions of authors

The ultimate scientific objective of this thesis is to test and apply different
model approaches to investigate effects of changes in CO2 concentrations on
phytoplankton growth dynamics. A major focus is put on understanding phys-
iological acclimation (e.g. variable stoichiometry) of phytoplankton to changes
in physical environment and some mean cellular state. To answer these overar-
ching questions, a workbench in R (RDevelopment, 2012) has been set up that
facilitates data-model syntheses. In this modelling framework it is possible
to test different model versions against mesocosm experimental data. Models
are calibrated with data from a mesocosm experiment on ocean acidification.
Data assimilation is one of the key aspects of this thesis as a lot of empha-
sis is put on identification of metrics that maximise predictive capability of
models. All analyses in this thesis were carried out using an optimality-based
model (OBM) and Carbon-Nitrogen regulated ecosystem model (CN-REcoM)
that includes parameterisations of Geider et al. (1998). The second chapter
of the thesis addresses problems with respect to parameter identification in
the OBM. Different metrics to quantify discrepancy between data and model
results have been evaluated. Eventually, an inference on the most dominat-
ing sink pathway of phytoplankton biomass has been made. The best metric
identified for the OBM from the chapter two is then applied to understand
the cause of observed variability in calcification by coccolithophores between
mesocosms treated with identical CO2 concentrations (Chapter 3). The last
chapter of the thesis provides the comprehensive overview of skill assessment
of the OBM and CN-REcoM with mesocosm data. This study focusses on CO2

effects on phytoplankton growth dynamics. Finally, thesis ends with discussion
of main results obtained and providing some prospects for future research.

Chapter 2. Metrics for estimation of loss parameters of plankton ecosystem
model with data from an ocean acidification mesocosm experiment. Shubham
Krishna (SK) and Markus Schartau (MS). Original idea was jointly developed
by MS and SK. MS provided insight into the experimental design. All model
experiments and analyses were performed by SK. The chapter was prepared
by SK with the help of comments by MS. The study focusses on the estimation
of major loss parameters of phytoplankton biomass for the OBM set up. A
comprehensive overview of performances of probabilistic and non-probabilistic
based metrics to configure the model with mesocosm data is presented. The
best model performance is obtained when it is calibrated with a metric that
considers data covariances. According to the optimisation results, the exuda-
tion rate of photoautotrophs is the best constrained loss parameters by the
data available. Model predicts phytoplankton exudation as some major sink
pathway, as a large fraction of phytoplankton carbon is lost via production of
labile dissolved organic carbon.
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Chapter 3. A data – model synthesis to explain variability in calcifica-
tion observed during a CO2 perturbation mesocosm experiment. Shubham Kr-
ishna and Markus Schartau. The idea for this work and experimental design
were developed by MS. All model experiments and data – model analyses
were performed by SK. The chapter was prepared by SK which eventually
got published after major revision by MS. In this study, data from an ocean
acidification mesocosm experiment are reanalysed with the OBM to resolve
observed differences in total alkalinity and particulate inorganic carbon (PIC)
between mesocosms. The model suggests that small variations in initial abun-
dance of coccolithophores and initial photoacclimation states generate differ-
ences in calcification that are larger than those induced by ocean acidification.
Data assimilation results also reveal collinearities between initial conditions
and physiological model parameters.

Chapter 4. Comparison of two carbon-nitrogen regulatory models calibrated
with mesocosms data. Shubham Krishna, Markus Pahlow (MP) and Markus
Schartau. The scientific question was initiated by MP and MS. The idea for
experimental design was developed by MP and SK. All model simulations and
analyses were carried out by SK. In this study, skills of OBM and CN-REcoM
were assessed with major focus on potential CO2 effects on plankton growth
dynamics that can be interpreted from mesocosm data on ocean acidification.
Here it is important to stress that no CO2 effect was considered in the model
approach, which is in contrast to the calcification study. The idea is to check
whether this “neglect” becomes visible (or expressed) in differences between
parameter estimates. The OBM reveals a systematic dependency of maximum
photosynthesis rates and subsistence quota of phytoplankton on pCO2 levels.
Their estimates increase with the rise of CO2 concentrations. According to
the OBM, although carbon fixation rates of algal cells were stimulated in high
CO2 conditions, they face the challenge of high energetic costs for maintenance
simultaneously. On the other hand, no such relationship was captured by CN-
REcoM, mainly because it remained unconstrained by the data.

Please note, SK also performed some model simulations and optimisations
for Schartau et al. (2017) which is not shown here. However, these optimisation
results were used in studies described in this thesis.
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Chapter 2

Metrics for the estimation of
parameters of a plankton
ecosystem model with mesocosm
data

2.1 Introduction

The complex nature of plankton interaction makes it difficult to correctly inter-
pret experimental data. This is particularly true for the outcomes of mesocosm
experiments that typically comprise a natural plankton community, in contrast
to e.g. batch experiments with plankton monocultures. To devise and apply
dynamical plankton ecosystem models can be particularly helpful in this re-
spect. A plankton ecosystem model resolves mass flux and these models are
typically constructed to provide a coherent picture of the prevailing processes
that are responsible for the observed changes, e.g. in nutrient and chlorophyll
a concentrations. However, plankton ecosystem models are far from being
perfect. These models include parameterisations whose parameter values need
to be calibrated. This is typically achieved by comparing model results with
observational data and by an evaluation of the data-model misfit. For the
quantification of a data-model misfit some metric has to be defined, which
expresses the deviation (or distance) between model solution and the data.
Metrics are thus important to find those model solutions that can represent
the observational data best.

2.1.1 Constraining parameter values of a plankton ecosys-
tem model

The identification of parameter values for a plankton ecosystem model is a
central aspect of model calibration (Schartau et al., 2017). The values that
are assigned to the parameters eventually determine model solutions, as they
control a variety of physio-ecological processes described in a dynamical plank-
ton model, e.g., nutrient assimilation, photosynthesis, grazing, aggregation
and mortality. Hence the choice of model parameter values strongly affects
a model’s performance. An optimal parameter estimate is the one that yields
the minimum of data-model misfit that is quantified by the metric, a distance
measure between data and the model results, also referred to as objective
function or cost function. The values of many model parameters are usually
unknown and difficult to determine as they may actually vary temporally and
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spatially (Weir et al., 2013). For instance, optimised parameter values at one
location might not be appropriate for the same model to reproduce observa-
tions at a different location (Friedrichs et al., 2006; Schartau and Oschlies,
2003). Likewise, parameter estimates that provide a single best model fit to
data of some mesocosms of an experiment may not produce similarly good so-
lutions to describe data of other mesoscosms of the same experiment. This is
why it is important to determine an ensemble of model solutions that represent
uncertainty ranges in estimates of model parameters.

A well-constrained parameter is the one that shows small uncertainty in its
estimates obtain from model calibrations with diverse data sets. The predictive
capability of a model depends on how well its parameters can be constrained
by the given data (Baretta et al., 1995; Spitz et al., 1998; Fulton et al., 2004;
Schartau et al., 2017). Poorly known model parameters could produce esti-
mates of physical and biological variables that are unacceptable. Models with
a large number of unconstrained parameters have lower skills as they are likely
to fit noise in data (Friedrichs et al., 2006). Thus, producing erroneous and
unreliable model results. Model parameters may remain poorly identified due
to several reasons. Often in situ data are sparse in space and time, and not
powerful enough to calibrate a model and constrain all its parameters (Matear,
1995). For example, Friedrichs et al. (2007) assimilated primary productivity,
chlorophyll and nitrate data in models of varying complexity, and found that
models fitted data well but predicted different balances of primary productivity
and grazing. Furthermore, they discussed if zooplankton data were available,
models would have demonstrated greater skills. When observations are sparse
then parameter estimation becomes sensitive to the “prior uncertainty”, and
the prior knowledge about parameter values becomes vital. In such cases, a
good practice is to gather best estimates of parameters from previous studies
that employed similar parameterisations, and use them for prior information
in a cost function (Schartau et al., 2017).

Uncertainty in model formulation and structure is another limitation with
respect to the identifiability of parameters. Inappropriate physics, aggregation
of diverse species in broad functional groups, and finite limitation of spatial and
temporal resolution are some factors that contribute to structural errors or bi-
ases in marine biogeochemical models, which may affect parameter estimation
(e.g. Hood et al. 2006; Schartau et al. 2017). On the one hand, overly simple
models usually fail to capture key biological processes of a marine ecosystem,
leading to some misrepresentation of the truth. In addition, parameter esti-
mates of these models are not credible. On the other hand, models with high
complexity tend to have a large number of unconstrained parameters, and
hence may yield larger uncertainties in model results. Therefore, it is critical
to find a right balance between model complexity and the degree to which pa-
rameters are constrainable (Matear, 1995; Ward et al., 2013; Friedrichs et al.,
2007).

Usually, models describe dynamics of marine ecosystems by differential
equations that require initial conditions (IC). Some model setups, like those
used for simulations of mesocosms, are typically sensitive to initial conditions.
Therefore large errors in ICs can cause problems in identification of parame-
ters and model divergence from the true state (Vallino, 2000). Schartau et al.
(2017) stressed that small absolute errors in IC are large relative errors that
may affect model predictions, e.g. magnitude and timing of phytoplankton
bloom. Furthermore, collinearity exists between values of IC and biological
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parameters (Gibson and Spitz, 2011), and hence noise in IC of state variables
could introduce uncertainties in parameter estimates.

Typically, inverse methods have been used for parameter estimation (Gregg
et al., 2009). These methods minimise a cost function that quantifies the dis-
crepancy between model output and data. Depending on the underlying sta-
tistical and probabilistic assumptions, cost functions can have different forms
(Stow et al., 2009), e.g., root mean squared errors (RMSEs), or based on a
maximum likelihood (ML) estimator, or a the maximum a posteriori (MAP)
estimator. While computing RMSEs no assumptions about probability dis-
tributions of the variables of interest are made. Although RMSE is a simple
quantitative metric, it is informative, and therefore several studies (e.g., Os-
chlies and Schartau 2005; Allen et al. 2007; Nerger and Gregg 2007; Doney
et al. 2009) have evaluated the model performance by computing RMSEs. ML
and MAP estimators are two well known probabilistic based methods to esti-
mate model parameters (Weir et al., 2013). In ML estimation we seek to obtain
a set of parameter values that maximises the likelihood probability (Lehmann
and Casella, 2006), the probability of the data being described by a model
and its parameters. In the Bayesian approach, we treat parameters as ran-
dom variables and include some prior information about them as an additional
probability. The conditional probability of the parameter values given the data
(posterior) is then given by the product of a likelihood and a prior probability,
and the mode of the posterior leads to a MAP estimate. Ward et al. (2010)
have shown that a Bayesian approach to data assimilation (which includes prior
information about parameters) generates more reliable model results than the
ML estimation. From the optimisation perspective, the only difference be-
tween ML and MAP estimates is the cost function that is minimised. Lawson
et al. (1996) applied a ML estimator in an adjoint method to estimate param-
eters of two ecological models calibrated with twin data. Likewise, Spitz et al.
(2001) configured their ecosystem model with data from the Bermuda Atlantic
Time Series (BATS) using a ML method. Matear (1995) computed the MAP
estimates of the parameters for three different models of increasing complexity
with data from the station Papa in the North Pacific. In this study he also
determined uncertainty ranges of his parameter estimates, and collinearities
were identified.

2.1.2 Parameters of phytoplankton losses

Several studies have focussed on the estimation and sensitivity analysis of loss
parameters of phytoplankton biomass, while assimilating in situ observations
(e.g., Hurtt and Armstrong 1996; Gunson et al. 1999; Moore et al. 2001; Losa
et al. 2004; Schartau et al. 2017). Losa et al. (2004) calibrated their 0-D model
with the data from a Bermuda station in the North Atlantic, and found that
parameterisations for phytoplankton and zooplankton losses in the model make
the major contribution to the model uncertainties. Ward et al. (2013) have
demonstrated that processes corresponding to unconstrained parameters in the
model can be removed with no significant reduction in the model’s ability to
fit the data. The parameters related to zooplankton (maximum grazing rate,
the half saturation constant for ingestion and the zooplankton mortality) were
poorly identified in the sensitivity experiment of Fennel et al. (2001) when
they configured their model with only nitrate and phytoplankton data. Schar-
tau et al. (2017) calibrated a model with data from a mesocosm experiment
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and obtained large posterior errors in estimates of the parameter that deter-
mines the aggregation rate of phytoplankton. Gibson and Spitz (2011) reported
collinearities between the phytoplankton loss parameters and IC in a regional
model. They stressed that ignorance of parameter correlations in sensitivity
experiments could generate spurious parameter sets, and hence vague model
results.

In this study, we investigate how the identification of phytoplankton loss pa-
rameters of an optimality-based (OB) is affected when it is calibrated with
data using different metrics. For our data assimilation (DA) approach we set
up four sets of simulations that employ different cost functions to configure
the OB model with data from a mesocosm experiment. We seek to disentangle
phytoplankton losses due to the export of aggregated cells and the loss because
of grazing in the experiment. We assess uncertainties and collinearities in the
estimates of plankton sink parameters in the absence of explicit zooplankton
observations like microzooplankton and mesozooplankton abundance or graz-
ing rates. Based on a rigorous assessment of credible values of parameters
and their uncertainty ranges obtained in each case we can identify the metric
that yields small uncertainties in parameter estimates while showing credible
model performance. Eventually, we make inference on the most dominant sink
pathway of phytoplankton losses in the mesocosms.

2.2 Theory and methods

We apply an OB model based on phytoplankton growth parameterisations of
Pahlow et al. (2013) that resolves variations in the uptake of carbon (C) and
nitrogen (N) (with variable N:C). Another major benefit is the formulation of
photoacclimation by the phytoplankton in the model. The idea of the study
presented here is to evaluate differences in the estimation of the critical phy-
toplankton loss parameters between different cost function formulations. Two
common cost functions are used that do not rely on explicit assumptions about
observational errors. The other two cost functions do include error assump-
tions with respect to the data: i) one that imposes all data to be independent,
and ii) another that considers correlations between the different types of ob-
servations. We apply the OB model to provide insight on dynamics of phy-
toplankton losses under temporally varying conditions (nutrients and light).
We calibrate our model with data of six selected mesocosms. We designed four
model experiments where we minimise four different cost functions to estimate
the maximum grazing rate (gmax), aggregation rate of phytoplankton (φ) and
exudation rate (γ) parameters of the model. Of particular interest are differ-
ences in the identified ranges of uncertainty of these estimates as well as the
correlations between the parameter estimates (collinearities). This analysis is
based on some preceding parameter optimisations (Chapter 3 of this thesis).
It means that all other parameters have been optimised before, based on a ML
estimator.

2.2.1 Data

We consider data from the first experiment of Pelagic Ecosystem CO2 En-
richment studies (PeECE-I) (Engel et al., 2005; Delille et al., 2005), a study
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conducted in the large-scale mesocosm facilities at the Marine field station of
University of Bergen (Raunefjorden) in year 2001. The objective of this study
was to investigate effects of ocean acidification (OA) on plankton community
dynamics. Nine mesocosms were filled with post-bloom, nutrient-depleted fjord
water and grouped into three replicates (“Glacial”, “Present” and “Future”)
that were subject to different dissolved inorganic carbon (DIC) concentrations
mimicking past, present and 21st century levels of CO2 in the atmosphere
(Engel et al., 2005; Delille et al., 2005). All nine mesocosms were enriched
with similar dissolved inorganic nitrogen (DIN) concentration, approximately
15 mmol m−3. Daily physical measurements of temperature and salinity are
available for the entire period (23 days) of the PeECE-I experiment. We in-
terpolate these daily measurements to obtain hourly values and use them as
environmental forcing for our model simulations. Hourly photosynthetically ac-
tive radiation (PAR) data were derived from meteorological global irradiance
measurements of by the Geophysical Institute of the University of Bergen,
Norway (Skartveit et al., 2001).

Since we do not resolve CO2 effects and calcification, we exclude total alka-
linity (TA) and particulate inorganic carbon (PIC) data from our DA method.
In principle, we could have used data from one treatment or replicate (three
mesocosms) for our analysis. But we realised that data sets for a single CO2

treatment (exposed to similar CO2 levels) are insufficient to provide sufficient
information about the observational error (i.e. standard deviation). There-
fore, we decided to assimilate mean data of six mesocosms from “Glacial” and
“Future” treatments in the model. Observational standard errors could then
be computed for these mean data at dates of sampling.

2.2.2 The model

An OB model is applied for simulation. As noted before we do not resolve
calcification by coccolithophores, therefore only a single model compartment
of all phytoplankton is used. The model estimates carbon (C) and nitrogen (N)
fluxes between phytoplankton (PhyC, PhyN, Chl), zooplankton (ZooC, ZooN),
detritus (DetC and DetN), labile dissolved organic compounds (lDOC, lDON)
and dissolved combined carbohydrates (dCCHO) compartments. dCCHO acts
as a precursor for transparent exopolymer particles (TEP). Figure 2.1 depicts
a schematic representation of the general structure of the model and various
physio-ecological processes connecting different compartments.

We do not include any vertical export of particulate organic matter in our
model (0-D model approach). Furthermore, we assume light gradients in meso-
cosms. The attenuation of the irradiance with depth is represented by an ex-
ponential function. The mean irradiance is thus derived by integrating this
function over depth (divided by depth of the mesocosm, d = 4.5 m).

Since the model employs optimality-based parameterisations of Pahlow et al.
(2013) to describe phytoplankton growth, an optimal allocation is assumed for
the resources between light harvesting and nutrient acquisition functions of a
cell. The resource allocation depends on the cell quota (N :C ratio). In the
following, source-minus-sink (sms) equations of mass flux of C and N for the
temporal evolution of the respective prognostic variable are described.
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Coagulation
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TEPCHydrolysis

Figure 2.1: Schematic representation of different model compartments and processes connecting
them.

2.2.2.1 Phytoplankton

The net growth rate of photoautotrophs depends on assimilated C and N, and
losses due to aggregation, grazing by zooplankton and exudation of dissolved
organic matter (DOM).

d

dt
PhyC = (µ − γ) · PhyC − 1

QN
(A+G) (2.1)

d

dt
PhyN = V N

C ·PhyC − γ ·PhyN − A− G (2.2)

Where µ and V N
C are the net growth and nitrogen uptake rates in units d−1 and

mol N (mol C)−1 d−1. γ is the exudation rate given in d−1 and QN is the cell
quota in mol N (mol C)−1. G and A are the nitrogen loss rates due to grazing
by zooplankton and aggregation in mmol N m−3 d−1. Parameterisations of
aggregation and grazing are described in Krishna and Schartau (2017).
Chlorophyll synthesis: Chlorophyll synthesis of photoautotrophs depends on
the optimised size of the chloroplast, the rate of change in QN , light conditions,
A and G (Pahlow et al., 2013).

d

dt
Chl =

(
µ +

θ̇

θ

)
·Chl − θN (A+G) (2.3)

Where θ is the chlorophyll a-to-carbon ratio in units g Chl (mol C)−1.
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2.2.2.2 Zooplankton

Any gain and loss in zooplankton biomass is attributed to Holling type III
grazing on phytoplankton and quadratic mortality.

d

dt
ZooC =

G

QN
− rzoo −

Mzoo

Qzoo
(2.4)

d

dt
ZooN = G − γNzoo − Mzoo (2.5)

Where rzoo is the zooplankton respiration in unit mmol C m3 d−1 and Qzoo
is the N:C ratio of zooplankton in mol N (mol C)−1. γNzoo and Mzoo is the
nitrogen-specific zooplankton excretion and mortality in mmol N m3 d−1.

2.2.2.3 Detritus

Phytoplankton aggregation and zooplankton mortality are sources for detrital
C and N biomass, whereas hydrolysis of detritus is the primary sink.

d

dt
DetC =

A

QN
+
Mzoo

Qzoo
− ωdet · Tf ·DetC (2.6)

d

dt
DetN = A+Mzoo − ωdet · Tf ·DetN (2.7)

With ωdet as the hydrolysis/degradation rate of detritus in d−1 and the term
Tf is a function for the temperature dependence of metabolic rates.

2.2.2.4 Dissolved inorganic compounds

Dissolved inorganic carbon (DIC): The source for DIC comprises of respiration
by Zooplankton, remineralisation of labile dissolved organic carbon (l DOC)
compounds and sugars, and gas exchange with the atmosphere. The carbon
assimilated for growth by photoautotrophs is the only sink for DIC.

d

dt
DIC = −µ ·PhyC + rzoo + ρ · Tf · (LDOC + dCCHO) + FDIC (2.8)

Where ρ is the remineralisation rate of dissolved organic matter in d−1 and
FDIC is the flux due to air-sea gas exchange and has unit mmol C m−3d−1.
Dissolved inorganic nitrogen (DIN): Zooplankton excretion and remineralisa-
tion of labile dissolved organic nitrogen compounds are the sources for DIN
pool. Nitrogen utilisation by photoautotrophs is the main sink of DIN.

d

dt
DIN = −(V N

C ·PhyC) + γNzoo + ρ · Tf · LDON (2.9)

2.2.2.5 Labile dissolved organic compounds

Sinks for LDOM are exudation of by phytoplankton, hydrolysis of detrital mat-
ter and hydrolysis of TEP, and the temperature-dependent remineralisation of
LDOC) constitute the sink for LDOC.
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Labile dissolved organic carbon (LDOC):

d

dt
LDOC = γ · (1− fdCCHO) ·PhyC + ωdet · Tf ·DetC

+ ωgel · Tf ·TEPC− ρ · Tf · LDOC (2.10)

Where fdCCHO is the fraction of exudates assigned to dCCHO and ωgel is the
hydrolysis/degradation rate of TEPC in d−1.
Labile dissolved organic nitrogen (LDON):

d

dt
LDON = γ ·PhyN + ωdet · Tf ·DetN− ρ · Tf · LDON (2.11)

2.2.2.6 dCCHO

Formation of dCCHOs depend on carbon exudation by phytoplankton and the
rate of formation of TEPs.

d

dt
dCCHO = γ · fdCCHO ·PhyC− φdCCHO · dCCHO2

− φTEP · dCCHO ·TEPC− ρ · Tf · dCCHO (2.12)

2.2.2.7 Carbon content of transparent exopolymer particles (TEPC)

Sources for TEPC are coagulation of dCCHOs and aggregation of dCCHO with
TEPC (Engel et al., 2004a) and the sink is the hydrolysis or degradation of
TEPC.

d

dt
TEPC = φdCCHO ·dCCHO2 + φTEPC ·dCCHO ·TEPC−ωgel · Tf ·TEPC (2.13)

Detailed description of auxiliary variables and parameters introduced in
above equations is listed in Table 2.1.

2.2.2.8 Initial conditions

The total initial biomass is our model is given by the parameter PON0. We
assume 10% of PON0 is assigned for initial N concentration of detritus. The
remaining fraction (90%) of PON0 is assigned to living biomass and distributed
between zooplankton and phytoplankton. The parameter fzoo determines the
fraction of PON0 that is assigned to initial zooplankton concentration. The
remaining is allocated to initial phytoplankton.

PON0 = DetN0 + ZooN0 + PhyN0 (2.14)

with the individual fractions:

DetN0 = 0.1 · PON0 (2.15)

ZooN0 = fzoo · (PON0 −DetN0) (2.16)

PhyN0 = (1− fzoo) · (PON0 −DetN0) (2.17)

We compute initial C biomass of detritus, zooplankton and photoautotrophs
from their respective N biomasses by applying a constant C:N ratio of 6.625.
Initial conditions of DIC, TA, TEPC and dCCHO are taken from the data
of the mesocosms, whereas for DOC and DON we assume small initial values
close to zero (with C:N = 10) as explicit measurements of refractory and labile
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Chapter 2. Metrics for the estimation of parameters of a plankton ecosystem model with
mesocosm data

DOC are not available (DON = 0.005 mmolN m−3 and DOC = 0.05 mmolC
m−3).

2.2.3 Data assimilation approach

2.2.3.1 Control and fixed parameters

We want to determine estimates and uncertainty ranges of loss rates of phy-
toplankton biomass due to grazing, aggregation and exudation or leakage of
organic matter during the PeECE-I experiment. Therefore, we have selected
three control parameters (gmax, φ and γ) that affect the loss of phytoplankton
biomass. Other parameter values were taken from a preceding optimisation
(Chapter 4). These preceding estimates include IC parameters. The remain-
ing biological and physical parameters were assigned values adapted from a
series of previous studies (e.g., Schartau et al. 2007; Pahlow et al. 2013) that
employed parameterisations and definitions of state variables consistent to ours.
The decision to optimise only three desired parameters and fix others is owing
to the fact that we here focus on differences in uncertainty ranges and how
these depend on the metrics employed. Table 2.1 lists the description of fixed
model parameters along with their assigned values.

2.2.3.2 Cost functions

In our study we consider five different types of measurements (Ny = 5) from
the PeECE-I experiment: (1) dissolved inorganic carbon (DIC, mmol m−3), (2)
dissolved inorganic nitrogen (DIN) (nitrate + nitrite, mmol m−3), (3) chloro-
phyll a (Chl a, mg m−3), (4) particulate organic nitrogen (PON, mmol m−3),
and (5) particular ogranic carbon (POC, mmol m−3). Concentrations of nitrate
and nitrite are not explicitly resolved and we refer their sum as DIN. Obser-
vations are available on daily basis over a period of 23 days (Nt = 23). The
observation vectors (~yi) contains daily means of observations from nine meso-
cosms for five variables on a given day. Likewise, the corresponding vector for
model counterparts (Hi (~x)) consists of daily means of model states for the same
variables. Please note, modelled PON (PONmod ) is the sum of simulated N
concentrations of photoautotrophs (PhyN), zooplankton (ZooN) and detritus
(DetN). Simulated POC (POCmod) includes contributions from C biomasses of
phytoplankton (PhyC), zooplankton (ZooC), detritus (DetC), and TEPC and
dCCHO. The residual vector (~di) quantifies differences between observation
vector and the model output vectors at a given day.

~di = ~yi −Hi (~x) =


DICi

DINi

Chl a i
PONi

POCi


︸ ︷︷ ︸

data

−


DICmod

i

DINmod
i

Chlmodi

PONmod
i

POCmod
i


︸ ︷︷ ︸
model results

(2.18)

As noted before, model-data misfits can be quantified in different ways.
We set up four set of simulations or cases where we minimise cost functions
that have different forms. We can broadly categories our cost functions in two
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2.2. Theory and methods

categories: 1.) non-probabilistic cost functions, and 2) probabilistic cost func-
tions. For the first and second model experiments we employ non-probabilistic
approaches, whereas in the third and fourth cases probabilistic cost functions
have been considered.

For the first sets of simulations our cost function (J1) is defined by the sum-
mation of RMSEs.

J1 =

Nt∑
i=1

Ny∑
j=1

√(
~̄yi,j −Hi,j (~x)

)2
n

(2.19)

Where n is the number of available observations on a given day and ~̄yi,j is the
spatial mean of observations between mesocosms for the respective measure-
ment types on a day given by i. Every observational type may have its own
unit and therefore, in principle, the Ny terms must not be added. However,
addition of RMSEs of different units in equation 2.19 actually implies that a
standard error of 1 (in the respective unit) is assumed. Dividing RMSEs by
standard errors make them dimensionless and hence their summation becomes
possible to compute the total model-data misfit.

We apply a relative RMSE (rRMSE) as the quantitative metric to evaluate
our model in the second case. It differs from the RMSE in the normalisation
technique. rRMSEs are normalised by the temporal mean of observations.
Thus, our cost function for the second set of simulations is the summation of
rRMSEs of different variables:

J2 =

Nt∑
i=1

Ny∑
j=1

(√ 1

n
·
(
~̄yi,j −Hi,j (~x)

)2) · 1

ȳj
(2.20)

Where ȳj is the temporal mean over the entire period of the experiment for
the respective observational types.

For the third and fourth cases, we impose probabilistic assumptions on vari-
ables in our cost functions. In addition, we assume an additive Gaussian error
model for our simulations:

ȳi = Hi(xi) + εi (2.21)

Where Hi represents a measurement operator that accounts for interpolation
and unit conversions, and ε ∼ N(0, σ2) is Gaussian distributed with mean zero
and σ as the standard error. Notably, the standard errors are different from
the standard deviations. The standard error accounts for the uncertainty of
the sample mean, whereas the standard deviation is the measure of variability
in data of a certain variable. Thus, σ depends on both the standard deviation
(SD) and the sample size or the number of samples (n) at respective dates of
observation, by the simple relation σ = SD

/√
n. As the sample size increases,

the uncertainty of the sample mean decreases, but SD will remain the same.
Our cost functions for the third and fourth model experiments are derived
from the likelihood probability. As we disregard any prior information about
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parameter values, the likelihood p(~y | Θ) is maximised by actually minimising
its negative logarithm J(Θ) (Sivia and Skilling, 2006):

Θ̂ = argmax p(~y | Θ)→ argmin
[
− 2 ln(p(~y | Θ))

]
' argmin J(Θ) (2.22)

The estimate of the parameter vector (Θ̂) corresponds with the maximum of
the likelihood, or likewise with the minimum of its negative logarithm.

Next, we consider a cost function (J3) in which all data are regarded as being
independent. In this case, J3 reduces to a Chi-squared cost function (Ward
et al., 2010):

J3 =

Nt∑
i=1

Ny∑
j=1

(
~yi,j −Hi,j (~x)

)2
σ2i,j

(2.23)

For the fourth case, we minimise a cost function (J4) that accounts for cor-
relations in the data, using a data covariance matrix (R). Assuming Gaussian
probabilities, for the multivariate case, J4 can be written as:

J4 =

Nt∑
i=1

(~yi −Hi (~x))T R−1
i (~yi −Hi (~x)) (2.24)

On a given sampling day Ri can be derived as:

Ri = Si ·C(~y) · Si (2.25)

With Si being diagonal matrices (containing σi as diagonal elements) and C(~y)

being correlation matrices. Here, correlations between observations of bio-
logical variables change temporally. For example, observed DIN and Chl are
strongly negatively correlated during the pre-bloom period but for the period
after the algal bloom they are weakly correlated. Likewise, PON and POC ob-
servations are positively correlated before the bloom and negatively correlated
after the bloom. As the correlations between measurements can change from
the exponential growth period to the post-bloom period, we employ a novel
approach in which we consider period-specific correlation matrices (Cpre, Cbloom

and Cpost) in Equation (2.25) for the computation of the covariance matrices.
Matrix Cpre contains correlations between observations of different measure-

ment types during the pre-bloom period (i = 1, 2, ..., 10):

C(y) = Cpre =



DIC DIN Chl a PON POC

DIC 1 0.66 −0.53 −0.72 −0.78
DIN . 1 −0.53 −0.75 −0.48
Chl a . . 1 0.81 0.54
PON . . . 1 0.63
POC . . . . 1

 (2.26)

For the bloom period (i = 10, 11, ....., 14) we assume measurements to be
uncorrelated as we do not have any information about the exact time when cor-
relations change. Thus, Cbloom have off-diagonal elements of zero and diagonal
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elements of one:

C(y) = Cbloom =



DIC DIN Chl a PON POC

DIC 1 0 0 0 0
DIN . 1 0 0 0
Chl a . . 1 0 0
PON . . . 1 0
POC . . . . 1

 (2.27)

The third correlation matrix (Cpost) comprises of correlations from the post-
bloom period (i = 15, 16, ....., 23):

C(y) = Cpost =



DIC DIN Chl a PON POC

DIC 1 0.03 −0.20 0.14 −0.50
DIN . 1 −0.29 −0.27 0.33
Chl a . . 1 0.62 −0.32
PON . . . 1 −0.64
POC . . . . 1

 (2.28)

2.2.3.3 Parameter optimisation and uncertainty estimation

For optimisations we applied “optim” function available in R package FME
(Soetaert and Petzoldt, 2010). We follow a three steps optimisation proce-
dure. In the first step, we applied simulated annealing algorithm (SANN),
(Bélisle, 1992) to perform a stochastic search of the parameter space and ap-
proximate the global minima of our cost function J(Θ) without getting trapped
in local minima. Next step is to refine the result of the SANN algorithm by us-
ing the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Broyden, 1970;
Fletcher, 1970; Goldfarb, 1970; Shannon, 1970). The BFGS algorithm also
approximates the Hessian matrix of the parameter estimates (Thacker, 1989;
Tziperman et al., 1992). In the final step, we applied a Markov Chain Monte
Carlo (MCMC) method (Harmon and Challenor, 1997) to estimate parameter
uncertainties in the vicinity of the optimum also using the Hessian informa-
tion provided by the BFGS algorithm. The MCMC method derives posterior
uncertainty limits (credible regions) of the parameter estimates and resolves
collinearities (correlations) between them. Furthermore, the MCMC method
also provides the final “best” parameter vector (Θ̂) that generates the lowest
cost function value (Jmin).

2.3 Results

Model parameters that account for loss rates of phytoplankton biomass (gmax,
φ and γ) were optimised in four model experiments. For each case, we obtain
an ensemble of statistically indistinguishable model solutions and posterior es-
timates of loss parameters from the MCMC method. The optimisation results
differ for all four cases. In general, the model appears to perform better when
calibrated with cost functions that were derived from probabilistic consider-
ations (e.g. based on a likelihood), especially J4. Our optimisation results
suggest that exudation loss parameter (γ) is best constrained with the assim-
ilated data. Furthermore, optimised estimates of γ are higher than the ones
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of aggregation and grazing. Thus, according to our model, the exudation by
phytoplankton appears to be an important pathway in the mesocosms.

2.3.1 Parameter estimates and collinearities

Our results clearly show differences in estimates of parameters and their re-
spective uncertainties between the four model experiments. In general, we

Cases REγ REφ REgmax
First case 0.21 0.82 2.61
Second case 1.13 2.14 2.71
Third case 0.06 0.22 1.12
Fourth case 0.05 0.36 0.25

Table 2.2: Relative errors (RE = ( ˆθmax− ˆθmin)/θ̄) for the three sink parameters (REγ ,
REφ, REgmax

) in the respective cases according to MCMC results.

find the likelihood based cost functions to be a better metric for parameter
identification (Table 2.2), as they yield smaller posterior errors in parameter
estimates, quantified by relative errors (REs in Table 2.2). For the first and
second cases, gmax and φ remain poorly constrained by the mesocosms data.
This is evident from the large uncertainties in their posterior estimates (Figs.
2.2a and 2.2b). Furthermore, estimates of gmax, obtained from the MCMC
method seem spurious as they tend to approach extremely low values when
considering rRMSE and RMSE as cost functions. Interestingly, parameters
are worst constrained for the second case (Fig. 2.2b, Table 2.2). This is sur-
prising because we expected the rRMSE to behave as a better metric than
the RMSE, because of the normalisation. Figures 2.3a and 2.3b show values
of J1 and J2 (as contours) owing to variations in gmax and φ, while γ is fixed to
its optimal estimate. The innermost ellipses of J1 and J2 around their respec-
tive optimums are not closed from the one end indicating insensitivity of cost
functions to changes in values of gmax .

The mapping of the credible region of posterior uncertainties (green dots on
Figs. 2.3a and 2.3b) on the 2-D parameter space illustrates that the algorithm
fails to constrain gmax and φ. The performance of the MCMC method is slightly
better in terms of convergence when J1 is applied compared to J2. Overall, both
J1 and J2 turn out to be ineffective metrics to constrain model parameters
(especially gmax and φ). However, posterior errors in the estimates of γ are
smaller for the first case than for the second. The aggregation parameter φ,
which could not be estimated by applying rRMSE and RMSE cost functions,
become better constrained by the assimilated data in third and fourth cases.
There are nuanced differences in posterior estimates of φ between third and
fourth model experiments. The model predicts low optimised estimate of gmax
when data is assumed to be independent. Furthermore, uncertainties in gmax
are large when J3 is applied (Table 2.2, Figs. 2.5a and 2.5b). Overall, the
credible regions of posterior uncertainties are smallest for the fourth case, if
compared with the other cases. This suggests that the major loss parameters
of phytoplankton biomass are best constrained if we employ J4 as metric to
calibrate the model.

The alignment of cost function contours exhibit negative collinearities be-
tween values of φ and gmax, which is more pronounced for the cases where
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Figure 2.2: Posterior distribution of three control parameters (gmax, φ, γ in units d−1,
m3(mmol N)−1 d−1, d−1) according to Markov chain Monte Carlo (MCMC) results for the
first and second cases (non-probabilistic approaches). Black clouds (markers) on the upper
triangular matrix of each figure depict credible regions of posterior uncertainties for a com-
bination of two parameters. Histograms on the diagonal represent distribution of posterior
errors in parameter estimates. Numbers (-1 > and < 1) on the lower triangular matrix are
correlation coefficients among control parameters.
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Figure 2.3: J1 and J2 contours when varying φ and gmax around the optimum estimate
(Jmin) at θ̂, while γ is fixed to its optimised point estimate. Green markers represent
credible regions of parameter estimates obtained with the MCMC method.
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Figure 2.4: Posterior distribution of three control parameters (gmax, φ, γ in units d−1,
m3(mmol N)−1 d−1, d−1) according to Markov chain Monte Carlo (MCMC) results for the
third and fourth cases (probabilistic approaches). Black clouds (markers) on the upper trian-
gular matrix of each figure depict credible regions of posterior uncertainties for a combination
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coefficients among control parameters.
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Figure 2.5: J3 and J4 contours when varying φ and gmax around the optimum estimate
(Jmin) at θ̂, while γ is fixed to its optimised point estimate. Green markers represent
credible regions of parameter estimates obtained with the MCMC method.

36



2.3. Results

probabilistic based cost functions are applied (Fig. 2.5). Results from MCMC
reveal similar collinearities between parameter combinations of φ and gmax (Fig.
2.4). These results exemplify the uncertainty in constraining major loss pa-
rameters for phytoplankton biomass in the presence of grazing, if no explicit
information on grazing rates and zooplankton data are available. However,
collinearities between parameter combinations that include γ are significantly
reduced when the cost function with covariances is employed compared to other
cases.

2.3.2 Model-data comparisons

Plots in Figure 2.6 depict time-series comparisons of data with model results
(green trajectories) corresponding to the best parameter estimate (θ̂) in all
four cases. For the fourth case, the model successfully reproduces all obser-
vations. The simulated DIC and PON is underestimated in the first, second
and third cases. Model-data misfits in DIC and PON are largest for the case
where RMSE is applied as the cost function. According to MCMC results,
the optimised estimate for gmax is extremely low for the first case (Table 2.3),
which means that zooplankton growth is apparently underestimated, and hence
also heterotrophic respiration (one of the sources for DIC). Thus, the simu-
lated PON and DIC concentrations are lower than the respective observations
during the nutrient depletion phase (Figure 2.6).

Model parameters First case Second case Third case Fourth case

1)gmax 0.01 0.05 0.10 0.22
2)φ 0.02 0.04 0.03 0.03
2)γ 0.40 0.30 0.30 0.30

Table 2.3: Optimised point estimates of control parameters obtained from the MCMC
method.

Joassin et al. (2011) used data of the same experiment, but only from the
“present” treatment (Delille et al., 2005) to calibrate their model. They also
underestimate observed PON in the post-bloom period. Furthermore, their
model predicts low PON concentrations compared to the data also in the pre-
bloom period, which is not the case for our model simulations.

For the first case, the “best” ensemble solution predicts much higher accu-
mulation of POC than observed. Notably, the optimised estimate of γ is highest
for the case where the RMSE is applied compared to other three cases (Table
2.3). This explains the overestimation of POC by the model, due to excessive
TEPC production as a result of high exudation rates during the post-bloom
period. For the other cases the model reproduces POC data well, especially
when covariances are considered. Since TEPC contributes to POC, a good fit
to observed accumulation of POC means that TEPC concentrations are also
well resolved.

Our model predictions are consistent with chlorophyll observations when J3
and J4 are applied. For the third and fourth cases, the model matches observed
chlorophyll concentrations in the post-bloom period, but this is because our
model explicitly resolves the chlorophyll concentrations of detritus, and high
estimates of φ (as obtained in the second, third and fourth cases) facilitate
formation of detrital biomass. Simulated chlorophyll is underestimated for
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(b) Second case (rRMSE)
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(c) Third case (without covariances)
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(d) Fourth case (with covariances)

Figure 2.6: Comparison of observations (blue asterisks) with “best” optimised model results

(green trajectories) corresponding to Jmin at θ̂ obtained from the MCMC method for the four
cases.

cases in which non-probabilistic cost functions (RMSE and rRMSE) are used
for calibration. Nevertheless, our model predictions are in the same phase as
observations. In contrast to Joassin et al. (2011), our model does not show
early build up in phytoplankton chlorophyll in all cases.

A general model bias is seen in DIN uptake. In all four cases the model
predicts some delayed draw down in the DIN. Since this bias is the charac-
teristic of simulated DIN in optimised solutions of all four cases, it cannot be
explained by differences in parameter estimates. This does not seem to be a
severe model deficiency, it rather appears to be a mass balance problem in the
data. The exponential draw down in DIN data and accumulation of observed
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PON are not in phase. But, in the model mass balance is maintained. Thus,
when the model is fitted against observed PON it introduces misfits in DIN,
and vice versa.

2.3.3 Cross-validation with unassimilated data

Friedrichs et al. (2007) highlight the importance of validation of model solutions
against independent, unassimilated data as it provides unbiased assessment of
the model. To evaluate which metric maximises the robustness of the model
we designed a cross-validation experiment. In this experiment we validated the
“best” optimised solution obtained for the respective cases against data from
those mesocosms that were part of the “Present” treatment. These data may
be viewed as not being truly independent, because they are subject to the same
experimental setup. But, these data were not used for optimisation. This way
we compare our model solutions and assess model’s capability to reproduce
“other” data. To quantify the robustness of the model solution we adapted a
metric from Friedrichs et al. (2007), namely “Portability Index” (PI):

PI = Jassim/Junassim (2.29)

Where Jassim is the misfit cost with assimilated data (J1, J2, J3 and J4 in this
study) and Junassim is the cross-validation cost (against the data that were not
used for parameter optimisations). A model is increasingly portable or robust
as its PI approaches value of 1.0.

Table 2.4 lists the PI values for the respective cases that are obtained when
the optimised model solutions are cross-validated with independent data. We
obtain higher PI values for the probabilistic cost functions (third and fourth
cases) than the non-probabilistic ones (first and second cases). The highest
PI value (0.99) is achieved for the fourth case, which is in further support
of applying this kind of metric. This means the capability of the model to
reproduce the unassimilated data is best when the covariances are applied. In
contrast, the rRMSE turns out to be the worst metric to configure the model
and evaluate its robustness as for the second case we see a massive decrease in
the PI value (by ≈ 95 %) compared to the fourth case. A moderate decline in
the PI index of the model is obtained when J3 is considered than J4.

Cases PI

First case 0.60
Second case 0.05
Third case 0.92
Fourth case 0.99

Table 2.4: PI denotes the portability index of the “best” optimised solution for the
respective case.

2.3.4 Simulating available data of zooplankton biomass

Our results show that gmax remains unconstrained when the model is calibrated
with RMSEs (first and second case) and independent data (third case). A pos-
sible reason for this could be unavailability of explicit zooplankton data. The
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question then is to which extent some availability of zooplankton data would
have helped in this respect. To seek for an answer, we designed a twin experi-
ment where we calibrate our model with synthetic zooplankton data (generated
by the model). We use the optimised solution corresponding to Jmin at θ̂ ob-
tained for the fourth case (without covariances) to generate temporal estimates
for N and C concentrations of zooplankton. From these estimates, we sample
the noon (mid day) values and treat them as model-generated zooplankton
data. Subsequently, we evaluate our model with synthetic zooplankton data
in addition to the data from the mesocosms. For this experiment, we assume
data to be independent, hence similar to the third case. We employ the same
data assimilation approach like in previous model experiments.

Results of the twin experiment show exactly what we expected, particularly
in context of estimation of gmax. After assimilating synthetic zooplankton we
obtain better constraints on gmax (Fig. 2.7).
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Figure 2.7: Posterior distribution of three control parameters (gmax, φ, γ) according to
for the twin experiment with synthetic zooplankton data . Black clouds (markers) on the
upper triangular matrix of each figure depict credible regions of posterior uncertainties for
a combination of two parameters. Histograms on the diagonal represent distribution of
posterior errors in parameter estimates. Numbers (-1 > and < 1) on the lower triangular
matrix are correlation coefficients among control parameters. .

According to MCMC results, posterior errors in estimates of gmax have sig-
nificantly reduced compared to the case in which we considered independent
mesocosm data. The credible regions of posterior uncertainties in φ and γ are
similar to ones derived for the fourth case. Thus, addition of zooplankton data
facilitate estimation of gmax but have no effect on φ and γ. Another major
improvement is in collinearities associated with gmax. Interestingly, when we
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calibrate our model with data that include zooplankton N and C concentra-
tions, we do not find strong correlations between γ and the other two sink pa-
rameters. This in contrast to results of the four model experiments described
before. Thus, our twin experiment results exemplify that gmax can be well
identified independent of other φ and γ if we assimilate data for zooplankton
biomass.

MCMC algorithm finds similar estimates of θ̂ for the twin experiment and
the case without covariances, and hence the model performance do not change
significantly between these two cases in terms of reproducing of observations.
However, we certainly find that parameters (especially gmax) are better con-
strained in the twin experiment.

2.4 Discussion

In this study we find optimised model results to be sensitive to the metric (cost
function applied). The model seems to perform best when calibrated with cost
function that accounts for covariances in data. Our results suggest that among
all sink parameters only γ can be estimated comprehensively by the data. In
contrast, gmax and φ parameters show strong collinearities in all four cases, sug-
gesting they cannot be identified independently. We find large uncertainties in
posterior estimates of gmax which is associated with the unavailability of zoo-
plankton data. Fennel et al. (2001) reported a similar problem in constraining
grazing parameters while calibrating their marine ecosystem model with DIN
and Chl data of the Bermuda Atlantic Time-series study (BATS). They obtain
large a posteriori errors for zooplankton maximum growth and mortality rates
when zooplankton data were not available.

2.4.1 Sensitivity of the data assimilation model to error statis-
tics

Stow et al. (2009) stressed that quantification of model skill provides useful
insights on model selection and application. Our optimisation results show
significant differences in parameter estimates and uncertainties. Essentially,
the capability of our model to reproduce data depends on the information
expressed in the cost function. Hence, it is important to comprehend how
the information in the cost function affects model performance. According
to our MCMC results, overall model performance is best seen for the fourth
case when data covariances are considered. This inference can be made from
some good agreement between model results and observations and the small
magnitude of posterior errors in estimates of loss parameters (Figs. 2.6 and
2.4b).

Stow et al. (2009) highlighted that much of the art of constructing prob-
abilistic based cost functions involves developing the covariance matrix that
weights the contribution of every data points to the total cost in a time-series
experiment. A cost function with covariances accounts for temporal changes
that are correlated in observations (e.g. drawdown in DIN while PON in-
creases). Our results show that even critical parameters, like those that deter-
mine phytoplankton loss rates are better constrained when the model is cali-
brated with J4 compared to the other cases. This in line with Doney (1999),
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who pointed out for assessing the time and space variability in pelagic ecosys-
tem processes it is important to have good information on the error variance
and cross correlations of biogeochemical variables. Dowd et al. (2014) stressed
that by considering covariances in the cost function effects of non-normality in
the observations and strong nonlinear dynamics are accounted for, and thus es-
timation of parameters is facilitated. Many studies have applied cost functions
with covariances in their sequential and inverse data assimilations methods
to estimate model parameters and state variables (e.g., Vallino 2000; Lawson
et al. 1996; Natvik and Evensen 2003; Brasseur et al. 2005; Schartau et al.
2017; Krishna and Schartau 2017). Schartau et al. (2017) employed two prob-
abilistic cost functions (with and without data covariances) to calibrate their
model with mesocosm data to estimate sink parameters. They obtain smaller
error margins in estimates of parameters when covariances are considered in
the cost function. These results of Schartau et al. (2017) are consistent with
ours (third and fourth cases). Fennel et al. (2001) applied a “Chi-squared”
cost function to assimilate uncorrelated DIN and Chl data of the Bermuda
Atlantic Time-series study (BATS) in a marine ecosystem model. Results of
their sensitivity analysis show that many parameters are poorly constrained
and they describe the magnitude of posterior errors in parameter estimates
as “enormous”. Likewise, Ward et al. (2010) highlighted the problem of un-
derestimation in 1-D marine biogeochemical model when validated it with the
Arabian sea data using a cost function that disregarded covariances.

According to our results, RMSE and rRMSE appear to be less efficient
metrics compared to probabilistic based cost functions in assessing model skill.
Eknes and Evensen (2002) applied a normalised RMSE cost function to eval-
uate the performance of a 0-D model for uni- and multivariate cases. They
obtain best result for the univariate case. Stow et al. (2009) pointed out that
RMSEs are sensitive to phase errors in time and space, especially for multi-
dimensional data sets. Therefore, it seems the RMSE is a plausible metric to
calibrate models only when one observational type is considered. However,
our model performs slightly better in terms of constraining parameters when
calibrated with the RMSE than rRMSE. MCMC results show that parameter
identification fails when rRMSE is applied, especially for gmax and φ. Large
uncertainties in posterior estimates of gmax and φ suggest that rRMSE is not
sensitive to variations in parameter values. This could happen because of the
“smoothing” effect of the rRMSE. Since rRMSEs are typically normalised to
smoothing constants (e.g. temporal means of observations), high weights can-
not be assigned when large model-data discrepancy occurs. In other words,
large errors cannot be penalised appropriately while considering the rRMSE,
that may eventually result in biases. Losa et al. (2004) stressed that the weights
for the cost function should be chosen carefully as they strongly affects the qual-
ity of the solution. Thus, while considering rRMSE we possibly impose some
strong constraints, which is not the case with the RMSE.

2.4.2 Loss rates of phytoplankton biomass

In this study we focussed on only three parameters; all of them specifying
loss rates of phytoplankton biomass. These losses are associated with differ-
ent pathways of mass flux through the plankton ecosystem. We addressed
the difficulty of estimating these parameters for the case of not having any
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data available of dissolved organic matter, detritus and zooplankton concen-
trations. Also, information about rates of exudation, aggregation and grazing
are missing. This situation is typical and it introduces uncertainties to the
determination of mass flux. As discussed before, the choice of metric may
become particularly relevant when trying to come up with small uncertainties
in parameter estimates and model results. Figure 2.8 illustrates the range of
the three pathways in association with posterior uncertainties of the parameter
estimates as obtained from the MCMC method for the first and fourth cases.
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Figure 2.8: Optimised estimates of carbon losses from phytoplankton due to exudation,
grazing and aggregation corresponding to ensemble solutions obtained from the MCMC
method for the first case (when RMSE is applied) and the fourth case (when data covari-
ances are considered in the cost function).

It is evident from the figure that loss of phytoplankton biomass due to exu-
dation is greater than the one for grazing. According to our model, exudation
seems to be an important pathway in this mesocosm experiment. The respec-
tive rate estimates seem reliable, because they also determine the amount of
dCCHO being released and then transformed to TEPC. The comparison of
the resulting TEPC concentrations correspond with those observed. It is con-
sistent with the study of Engel et al. (2004b) in which they described algal
exudates in form of dCCHOs as potential sink of organic carbon. Schartau
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et al. (2007) highlighted that the release of dissolved organic matter (DOM)
by phytoplankton followed by formation of TEPC is an alternative and fast
pathway to produce POC that can be subject to carbon export. The TEP
is likely involved in the process of aggregation and thus in the formation of
particles described as detritus in our model approach. We did not resolve any
dependency between the formation of detritus and TEP, but this can be of
relevance because TEP may increase the apparent stickiness (Engel, 2000).

The reason why algal cells exude is discussed as being a release excess pho-
tosynthates that accumulate when carbon fixation exceeds incorporation into
cellular materials (Bjørrisen, 1988). However, the question arises here is why
our model predicts exudation as an important pathway for carbon export for
the given setup. Schartau et al. (2007) highlighted two modes of carbon over-
consumption. They associated first mode of DOC exudation to phytoplankton
growth. The second mode is related to formation of TEPC that leads to rise
in POC, while PON is constant. Apparently, data (DIN, DIC, Chl, POC and
PON) we assimilated in cost functions for different cases are sufficient to con-
strain phytoplankton growth. Consequently, we are able to constrain values of
γ as exudation is linearly coupled with the growth, especially during the bloom
period. Since dCCHOs (exudates) are precursors of TEP, we are also able to
reproduce TEPC concentrations in the mesocosms (see Fig. 2.6d). Joassin
et al. (2011) used the data from the “present” treatment (Delille et al., 2005)
of the PeECE-I experiment to calibrate their model, and they found a sharp
increase in simulated TEPC concentrations between day 1 and 10. In con-
trast, our model do not show such behaviour. Although we do not assimilate
TEPC data in our cost functions, we could still reproduce the correspond-
ing observations well, especially for the case with covariances (Figure 2.6d).
As we assimilated mean data of the “future” and “glacial” treatments in our
cost functions, it may be possible they represent “high CO2-like” conditions.
Riebesell et al. (2007) have shown enhanced carbon fixation rates for pho-
toautotrophs at high DIC concentrations. From an ecological perspective, our
model suggests that phytoplankton may assimilate excess carbon when being
exposed to elevated CO2 levels, which they release in form of DOC and TEP.
This assumption is in agreement with Engel et al. (2004a), they traced 63%
fraction of over-consumed carbon in particulate polysaccharides (e.g. TEPC)
and remaining 37% in DOC. Phytoplankton exudate serve as an energy source
for the growth of pelagic bacteria (Larsson and Hagström, 1979). Hence, a pos-
itive feedback on microbial loop is likely to be associated with algal exudation.
Results of Joassin et al. (2011) show that bacterial growth highly depends on
the availability of DOM.

2.5 Conclusion

In an inverse data assimilation approach, it is critical to apply a quantitative
metric that maximises the skill of a model for meaningful model simulations
and the estimation of state variables. With our data assimilation approach
we could test performances of four different cost functions that configure our
model with mesocosm data.

From this study we learned that the choice of metric is critical when es-
timating parameter values. Our results show that uncertainty ranges can be
larger for minimisations of RMSE in contrast to a probabilistic based cost
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function that accounts for observational errors (i.e negative logarithm of like-
lihood). We found that parameters are best identified when data covariances
are considered in the cost function (fourth case).

Correlations between parameter estimates can change depending on the
type of metric applied. According to our MCMC results, the collinearity be-
tween γ and other loss parameters significantly reduces when the cost function
with covariances is used to calibrate the model, and therefore exudation rates
can be estimated independent of other parameters, which is not the case for
the other metrics.

The optimised model results of carbon loss due to exudation are higher
than the ones that correspond to aggregation and grazing. Our model results
suggest that production of extracellular exudation is an important sink pathway
of phytoplankton biomass in the mesocosm experiment.

The grazing parameter gmax remains unconstrained in most of the cases,
which is associated to unavailability of explicit zooplankton data. To test this
we designed a twin experiment in which model generated zooplankton data is
assimilated. Our results show that some availability of data on zooplankton
biomass already improves the estimation of gmax.
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A data–model synthesis to explain
variability in calcification observed
during a CO2 perturbation
mesocosm experiment.

Shubham Krishna and Markus Schartau
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Abstract. The effect of ocean acidification on growth and
calcification of the marine algae Emiliania huxleyi was in-
vestigated in a series of mesocosm experiments where en-
closed water volumes that comprised a natural plankton com-
munity were exposed to different carbon dioxide (CO2) con-
centrations. Calcification rates observed during those exper-
iments were found to be highly variable, even among repli-
cate mesocosms that were subject to similar CO2 perturba-
tions. Here, data from an ocean acidification mesocosm ex-
periment are reanalysed with an optimality-based dynamical
plankton model. According to our model approach, cellular
calcite formation is sensitive to variations in CO2 at the or-
ganism level. We investigate the temporal changes and vari-
ability in observations, with a focus on resolving observed
differences in total alkalinity and particulate inorganic car-
bon (PIC). We explore how much of the variability in the data
can be explained by variations of the initial conditions and by
the level of CO2 perturbation. Nine mesocosms of one ex-
periment were sorted into three groups of high, medium, and
low calcification rates and analysed separately. The spread of
the three optimised ensemble model solutions captures most
of the observed variability. Our results show that small vari-
ations in initial abundance of coccolithophores and the pre-
vailing physiological acclimation states generate differences
in calcification that are larger than those induced by ocean
acidification. Accordingly, large deviations between optimal
mass flux estimates of carbon and of nitrogen are identified
even between mesocosms that were subject to similar ocean
acidification conditions. With our model-based data analysis
we document how an ocean acidification response signal in
calcification can be disentangled from the observed variabil-
ity in PIC.

1 Introduction

Much knowledge about growth and mortality of phytoplank-
ton has been inferred from experiments where environmen-
tal factors like light, temperature, and nutrient availability
have been predominantly controlled, e.g. in laboratory ex-
periments with batch cultures or with chemostats. Typically,
these experiments are designed to determine a physiologi-
cal response to variations of a single factor, e.g. explain-
ing changes in photosynthetic rate when exposed to differ-
ent light conditions (e.g. Platt et al., 1977; Marra and Heine-
mann, 1982; Lewis and Smith, 1983; Geider et al., 1985;
Harrison and Platt, 1986; Harding et al., 1987). Many lab-
oratory experiments are performed with monocultures, with
the advantage that physiological responses may then become
well expressed in measurements while variability between
replicates or even between repeated experiments should re-
main low. In this context a series of laboratory studies with
monocultures of calcifying coccolithophores were conducted
to investigate responses in calcification to variations in car-
bonate chemistry, often with Emiliania huxleyi, (e.g. Zon-
dervan et al., 2002; Iglesias-Rodriguez et al., 2008; Langer
et al., 2009; Barcelos e Ramos et al., 2010). These studies
were motivated by the expectation that the observed trend in
ocean acidification (OA) will affect calcifying algae and that
their physiology is likely sensitive to the seawater’s calcite
saturation state (Feely et al., 2004; Orr et al., 2005).

The repeated laboratory OA experiments showed ambigu-
ous responses in calcification to variations in carbon dioxide
(CO2) concentrations and Findlay et al. (2011) pointed out
that differences in laboratory methodology, but also details
in experimental design, are likely the reason for the large ob-
served variability in E. huxleyi responses to changes in car-
bonate chemistry. Similarly, Engel et al. (2014) stressed that

Published by Copernicus Publications on behalf of the European Geosciences Union.

Chapter 3. A data–model synthesis to explain variability in calcification observed during
a CO2 perturbation mesocosm experiment.

48



1858 S. Krishna and M. Schartau: Modelling of CO2 perturbation mesocosm experiment

variations in the observed ratio between particulate inorganic
carbon and particulate organic carbon (PIC : POC ratio) in-
crease with the decrease of measured relative growth rates,
depending on whether “low” growth conditions were bal-
anced (as achieved with chemostats) or resulted from unre-
solved transient nutrient-limitation effects in batch cultures.
This ongoing discussion is accompanied by the question of
how representative the outcomes of monoculture laboratory
experiments are, to allow for reliable future projections of
OA effects on oceanic calcification rates of coccolithophores
and on possible climate feedbacks.

If we seek to make inferences about future changes in
calcification under oceanic conditions, experimental data are
needed that consider more realistic environmental conditions
with a natural phytoplankton community that may include
calcifying algae like Emiliania huxleyi. A series of studies
were conducted to investigate effects of OA on plankton dy-
namics. Among those were experiments with tanks or bags
called mesocosms, with some enclosed water volume that
typically comprised a natural plankton community. These
mesocosms were typically perturbed and exposed to differ-
ent CO2 concentrations, e.g. Pelagic Ecosystem CO2 Enrich-
ment (PeECE) studies (Riebesell et al., 2008). Few studies
focused on the impact of OA on growth of E. huxleyi. In con-
trast to monoculture laboratory experiments, CO2 perturba-
tion mesocosm experiments yield “net” community response
signals that are anticipated to be more indicative for possible
future changes in oceanic calcification of coccolithophores.
Replicate mesocosms with similar initial nutrients, as well
as initial dissolved inorganic carbon (DIC) concentrations
typically show comparable temporal response patterns, i.e.
an exponential growth phase until nutrients become depleted
and a post-bloom period where chlorophyll a concentrations
decline. However, replicate mesocosms that all included E.
huxleyi exhibited large deviations in calcification responses,
thereby altering carbonate chemistry. Such variability was
well reflected in total alkalinity (TA) measurements of the
PeECE-I experiment (Delille et al., 2005). Furthermore, dur-
ing PeECE-I it happened that mesocosms with high and low
calcification rates were revealed among replicates in all three
CO2 treatments. To find enhanced variability in calcification
in mesocosm experiments is comprehensible and can be at-
tributed to the likely mixture of superimposed responses of
multiple plankton species even within replicates of similar
CO2 perturbation. Thus, small deviations in the initial rela-
tive mass distribution of photoautotrophs, zooplankton, and
detritus between replicate mesocosms can translate into some
pronounced variability in measurements even under similar
environmental conditions (e.g. Eggers et al., 2014).

Here we investigate data and their variability of replicate
mesocosms during the PeECE-I experiment. For this we take
a modelling approach to simulate environmental conditions
and the predominant dynamics of nine individual mesocosms
as described in Engel et al. (2005) and in Delille et al. (2005).
Joassin et al. (2011) presented a dynamical model to sim-

ulate the mass flux of carbon (C), nitrogen (N), and phos-
phorus (P) for the same PeECE-I experiment. Their model
resolves growth and losses of E. huxleyi together with in-
terdependencies between bacteria, viruses, detritus, and dis-
solved organic matter (DOM). The model of Joassin et al.
(2011) also features the exudation and coagulation process
of dissolved polysaccharides (here referred to as dissolved
combined carbohydrates, dCCHO) to form transparent ex-
opolymer particles (TEP). In the study of Joassin et al. (2011)
some emphasis is put on the enhanced mortality of E. huxleyi
due to viral lysis and on the variable stoichiometry (C : N ra-
tio) of the particulate organic matter (POC : PON ratio). They
did not attempt to resolve a dependency between calcification
and CO2 concentration and therefore restricted their simula-
tions to one treatment with three replicate mesocosms that
were exposed to present-day CO2 concentrations.

The focus of our model approach is different in that we
distinguish between two phytoplankton functional types, cal-
cifying algae (e.g. E. Huxleyi) and bulk non-calcifying algae,
i.e. an unresolved combination of picoplankton, dinoflagel-
lates, and diatoms. We assume a CO2 sensitivity for the ratio
of calcification to net carbon fixation (photosynthesis minus
respiration), based on results from the meta-analysis of Find-
lay et al. (2011). In our data–model synthesis we concen-
trate on the initialisation (initial filling) of the mesocosms,
with possible variations in the relative distribution of plank-
ton and detritus resolved in our model. A data assimilation
(DA) method is employed for the estimation of parameter
values, which helps to disentangle and understand some of
the differences and commonalities seen in observations, in
particular in TA and PIC data, but also in measurements of
dissolved inorganic nitrogen (DIN) and DIC, chlorophyll a,
as well as in particulate organic nitrogen (PON) and particu-
late organic carbon (POC).

First we will briefly provide some background informa-
tion about the experimental setup of PeECE-I, including ir-
radiance, temperature, and salinity, as these environmental
factors enter our model simulations. This will be followed
by a description of the model equations that include com-
ponents of the optimality-based approach to simulate algal
growth, using parameterisations proposed by Pahlow et al.
(2013). Thereafter, the data assimilation method for param-
eter estimation will be briefly explained. Specific details of
the model and of the data assimilation method are given in
the Appendix. Ensembles of three distinct model solutions
will be presented together with their mass flux estimates of
C and N. We will discuss the problem of identifying initial
conditions in combination with important model parameters.
We will also address the problem of resolving the variability
observed in the accumulation of PIC and how this variability
is related to the expression of the CO2 effect introduced to
the model.
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2 Material and methods

For our analysis we consider the setup and data of the
PeECE-I experiment, a study conducted at the Marine Bi-
ological Field Station (Raunefjorden, 60.3◦ N, 5.2◦ E) of the
University of Bergen, Norway between 31 May and 25 June
2001 (Engel et al., 2005; Delille et al., 2005). The objective
of this study was to investigate OA effects on marine calcify-
ing algae (coccolithophores) captured in polyethylene bags
of enclosed water volumes (mesocosms) and perturbed by
different levels of CO2 concentrations. A dynamical plank-
ton ecosystem model is used for simulations of N and carbon
C flux within each mesocosm. We apply a data assimilation
method to identify best estimates of model parameter values
together with initial conditions for model simulations.

2.1 Experimental data

Nine mesocosms of 2 m diameter and 11 m3 volume were
filled with unfiltered, post-bloom, nutrient-depleted water
from the fjord. After the filling of the mesocosms, nutri-
ents were added so that all mesocosms had similar initial
nutrient concentrations, approximately 15 mmol m−3 of ni-
trate together with nitrite and 0.5 mmol m−3 of phosphate.
Like the nutrients, the initial TA in all nine bags was
2146 mmol m−3 approximately (or if normalised to unit mass
≈ 2200 µmol kg−1). The bags were covered with air-tight
tents of tetra-fluoroethylene foil that allowed 95 % of pho-
tosynthetically active radiation (PAR) to pass through. The
mesocosm bags were subject to three different levels of per-
turbation of partial pressure of CO2: (a) mesocosms 1–3,
referred to as M1, M2, and M3, were exposed to similarly
high DIC levels (initial DIC= 2119, 2119, 2122 mmol m−3)
with 700 ppmV of initial pCO2; (b) M4, M5, and M6
started from DIC= 2048, 2056, 2040 mmol m−3 with a
corresponding pCO2 = 370 ppmV; and treatment (c) with
initial DIC= 1919 mmol m−3, 1929 m−3, 1927 m−3 with
180 ppmV pCO2 in mesocosms M7, M8, and M9. Thus,
data from three replicate mesocosms are available for each
of the three CO2 treatments. For each mesocosm the partial
pressure of atmospheric CO2 above the surfaces was largely
controlled by a continuous injection of gas with a treatment-
specific, individually prescribed CO2 content. Because there
was an open space between surface of mesocosms and the
tents, we assumed the pCO2 in the air above the mesocosms’
surfaces to be a mixture of 90 % of the perturbed pCO2 in-
side a mesocosm and 10 % of the actual atmospheric pCO2
(340 ppm) in all replicates.

Daily samples were collected and measured over a pe-
riod of 23 days. For every mesocosm, temperature and salin-
ity data were interpolated to hourly values for direct use as
environmental input for model simulations (Fig. 1). Hourly
photosynthetic available radiation (PAR) data were derived
from meteorological global irradiance measurements of the
Geophysical Institute at Bergen (Skartveit et al., 2001). Fig-
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Figure 1. Forcing variables for all nine mesocosms: (a) shows tem-
perature, linearly interpolated to hourly values between daily obser-
vations. (b) Displays hourly interpolated salinity values, and (c) re-
veals the irradiance data with hourly temporal variations resolved.

ure 1 shows that temperature increased by approximately
3 ◦C during the experiment and variations between the dif-
ferent mesocosms remained small. Small but noticeable dif-
ferences exist between mesocosms with respect to salinity. In
all mesocosms a gradual decrease in salinity was observed,
from S = 31.3 to approximately S = 30.8. The PAR data ex-
hibit variations on an hourly scale, due to changes in cloud
cover.

2.2 Modelling approach

For model simulations we assume that all mesocosms are ho-
mogeneously mixed, as we neglect an explicit representation
of vertical turbulent mixing (0-D-model approach). Further-
more, we assume no light gradient in mesocosms and use
depth integrated hourly irradiance data to force the model.
The applied model equations describe mass exchange rates
of N and C between compartments of (1) dissolved inorganic
nitrogen and carbon (DIN and DIC), (2) N and C biomass
of coccolithophores and other phytoplankton (CoccoN and
CoccoC , PhyN and PhyC), (3) zooplankton (ZooN and
ZooC), (4) detritus (DetN and DetC), and (5) labile dissolved
organic N and C (DON and DOC), Fig. 2. Due to the design
of the PeECE-I experiment, our model includes some addi-
tional features. The first is that we consider an explicit rep-
resentation of dissolved combined carbohydrates (dCCHO)
that act as precursors for carbon content of transparent ex-
opolymer particles (TEPC), similar to Schartau et al. (2007)
and Joassin et al. (2011). Since our model resolves changes
in TA along with DIC so that we can also derive pH val-
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Figure 2. Schematic representation of the model: boxes characterise
individual compartments that are represented by one or more model
state variables. The arrows represent key biogeochemical processes
(named in red) between compartments. One compartment includes
dissolved inorganic carbon and nitrogen (DIC and DIN). This com-
partment also embeds total alkalinity (TA). Biomass and chloro-
phyll concentrations of photoautotrophs are resolved with respect
to carbon and nitrogen explicitly (referred to as PhyC and CoccoC,
PhyN and CoccoN, and Chlphy and Chlcocco respectively). Varia-
tions in carbon and nitrogen biomass are also resolved for zooplank-
ton (ZooC and ZooN) and for detritus (DetC and DetN). Dissolved
combined carbohydrates (dCCHO) are distinguished from other la-
bile dissolved organic matter, described asLDOC andLDON. Only
dCCHO are assumed to act as precursor for the formation of trans-
parent exopolymer particles, whose carbon content is explicitly re-
solved (TEPC). One compartment represents the formation and dis-
solution of particulate inorganic carbon (PIC), affecting DIC as well
as TA.

ues and the corresponding partial pressure of CO2 (pCO2).
We resolve neither viral infections nor bacterial biomass ex-
plicitly, as done in Joassin et al. (2011). Microbial activ-
ity is implicitly considered by parameterisations of hydrol-
ysis and remineralisation. Both processes are assumed to
be temperature-dependent but are independent of changes
in bacteria biomass. Instead, hydrolysis and remineralisation
rates are calculated as being proportional to substrate avail-
ability only. Likewise, any effects by viral lysis remain un-
specified and are an integral part of a single total mortality
that is assigned to phytoplankton and coccolithophores. In
the following, the general model equations of mass flux of C
and N are described as sources and sinks, inducing changes
in the mass concentration of the respective state variables.

2.2.1 Photoautotrophs

In our model we distinguish between calcifying and non-
calcifying photoautotrophs, coccolithophores (Cocco), and
other bulk phytoplankton (Phy). Respective net photoau-

totrophic growth rates (µcocco/phy) are described as rates of
gross carbon fixation (V C) minus some corresponding sum
of respiration costs (rC) due to the synthesis of chlorophyll a,
nutrient assimilation, and maintenance:µcocco/phy=V

C
−rC .

The proportions of V C and rC are determined by optimal re-
source allocation while energetic trade-offs are imposed, as
described in Pahlow et al. (2008). These physiological equa-
tions of optimal allocation have been shown to be well appli-
cable for a series of different conditions (e.g. including dia-
zotrophy) and scales (e.g. Smith et al., 2011; Pahlow et al.,
2013; Arteaga et al., 2014; Fernández-Castro et al., 2016).
Here we neglect diazotrophy as well as the effect of phospho-
rus availability on nitrogen uptake and thus on algal growth.
From the data we could not infer any phosphorus limitation
of growth prior to nitrogen depletion and we assume that
cellular nitrogen (N) directly limits the net growth rate of
photoautotrophs (µcocco/phy). Nitrogen is generally necessary
for synthesising enzymes. According to the model approach
of Pahlow and Oschlies (2009), the major metabolic path-
ways within the algae are regulated by the resources allocated
to produce these enzymes. Thus, key processes like photo-
synthesis, chlorophyll a synthesis, and net carbon fixation
become affected by internal resource allocation. The model
maximises the photoautotrophic growth rates by optimising
the allocation of resources to nutrient acquisition sites and to
the light-harvesting complex (LHC). The auxiliary variables
mentioned above are described in Table A1 in Appendix A.
The detailed equations are given in Appendix A2.

Biomass concentrations of photoautotrophs

The biomass build-up (net growth) of photoautotrophs de-
pends on the amount of N and C assimilated by the algae
minus losses because of aggregation, grazing by zooplank-
ton, and exudation or leakage of organic matter. The sources
minus sinks (sms) terms of the photoautotrophs’ biomass are
as follows:

sms of photoautotroph biomass = C and N uptake
− exudation/leakage− aggregation− grazing.

The corresponding sms differential equations of C and N
biomass for phytoplankton and coccolithophores are given
in Appendix A2.

Chlorophyll a concentrations

The synthesis of chlorophyll a (Chl) is represented by an op-
timal trade-off between photosynthesis and respiratory costs
in the chloroplast of a cell. The synthesis rate depends on the
degree of light saturation (SI ), on the amount of net carbon
fixed inside chloroplasts, and on the chlorophyll-to-carbon
ratio (θ ). Also, the chlorophyll synthesis rate is sensitive to
changes in the cellular nitrogen-to-carbon ratio (N : C), QN.
The descriptions of the above-introduced auxiliary variables
are given in Table A1. Like for biomass, the parameterisa-
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Table 1. Initial conditions and model parameters that are subject to optimisation.

Initial conditions & Description Unit
parameters for optimisation

1. PON0 Initial concentration of particulate organic nitrogen mmol N m−3

2. fdet Fraction of PON0 assigned to non-living detritus –
3. fzoo Fraction of living PON0 assigned to zooplankton –
4. fcocco Initial coccolithophore fraction of photoautotrophs –
5. Q0 Subsistence quota (minimum cellular N : C ratio) mol mol−1

6. αcocco Photosynthetic efficiency of coccolithophores mol C (g Chl a)−1 m2 W−1 d−1

7. αphy Photosynthetic efficiency of non-calcifying phytoplankton mol C (g Chl a)−1 m2 W−1 d−1

tions for chlorophyll a are identical for the calcifying and
non-calcifying phytoplankton in our model:

sms of chlorophyll a = synthesis of chlorophyll a
− aggregation− grazing.

The respective differential equations for chlorophyll a of
non-calcifying phytoplankton (with subscripts phy) and coc-
colithophores (cocco) are listed in Appendix A2.

Formation of particulate inorganic carbon (PIC)

The process of calcification in our model depends on the
amount of energy provided through photosynthesis and is
simply expressed by a ratio of PIC formation per carbon fixed
(fPIC, Eq. A21). The differential equation of PIC describes a
net accumulation rate (formation minus dissolution) and no
explicit distinctions can be made with respect to how PIC be-
comes eventually distributed between algal biomass, detritus,
or zooplankton:

sms of PIC= calcification by coccolithophores
− dissolution of coccoliths (calcite).

The differential equations for precipitation and dissolution of
PIC are given in Appendix A4.

2.2.2 Zooplankton

The grazing losses of the photoautotrophs are resolved with
an explicit representation of zooplankton biomass. With our
grazing approach (Holling type III) no distinctions are made
between micro- and meso-zooplankton or between different
feeding types. Changes in zooplankton biomass are subject to
a mortality (Mzoo; e.g. losses to higher trophic levels). Other
loss terms represent respiratory costs (rzoo) as well as ex-
cretion (γzoo). Zooplankton restore C and N towards a con-
stant N : C ratio (Qzoo

const) of 0.19. The restoring time (τ ) in
our model is equal to 1 day. It mimics an increase in respira-
tion (rzoo) if the N : C ratio falls belowQzoo

const and an increase
in excretion (γNzoo) if N : C is above Qzoo

const. Details of aux-
iliary variables related to the zooplankton compartment of

the model are given in Table A1. The buildup of zooplank-
ton biomass depends on the total prey concentrations (phyto-
plankton and coccolithophores):

sms of zooplankton biomass = grazing on phytoplankton
+ grazing on coccolithophore
− respiration (or excretion)−mortality.

The differential equation for zooplankton biomass and
grazing function are given in Appendix A5.

2.2.3 Detritus

Detritus comprises a variety of components with particles of
different sizes and sinking rates (Fasham et al., 1990). The
detritus resolved by our model simply combines dead plank-
ton biomass and fecal pellets. Sources of detrital C and N
mass are given in terms of phytoplankton aggregation and
mortality of zooplankton. Aggregation is parameterised with
quadratic loss terms of the photoautotrophs. These aggrega-
tion equations resolve interactions between two types of par-
ticles (small cells of photoautotrophs and large aggregates
of detritus): (a) aggregation of cells of photoautrophs and
(b) aggregation of small photoautotrophs with larger detri-
tus – see details in the Appendix A. The two-particle-type
approach allows a trade-off between accuracy of estimated
mass flux and the resolution of particle size (Ruiz et al.,
2002). We assume that hydrolysis is temperature-dependent
and that it is responsible for the degradation of detritus, act-
ing as a source for (labile) LDON and LDOC. The equations
of detrital C and N can thus be described as follows:

sms of detritus = aggregation of phytoplankton
+ aggregation of coccolithophore
+ zooplankton mortality− hydrolysis.

The respective differential equations of detrital C and N mass
are given in the Appendix A7.
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2.2.4 Dissolved inorganic compounds (DIN, DIC) and
total alkalinity (TA)

Dissolved inorganic nitrogen (DIN)

The DIN pool represents the total concentration of nitrate,
nitrite, and ammonium. Nitrogen utilisation by phytoplank-
ton and coccolithophores is a sink of DIN, whereas het-
erotrophic excretion and remineralisation of LDON are the
major sources:

sms of DIN = −N uptake by phytoplankton
−N uptake by coccolithophores
+ excretion by zooplankton + remineralisation.

The sms differential equation for DIN is given in Ap-
pendix A8.

Dissolved inorganic carbon (DIC)

The DIC pool combines CO2, bicarbonate, and carbonate.
The primary sinks of DIC are net carbon fixation to sup-
port photoautotrophic growth (µcocco/phy) and calcification
of coccolithophores. We do not differentiate between the util-
isation of CO2 and bicarbonate for algal growth and calcifi-
cation. Note that net carbon fixation (µcocco/phy) in our model
becomes slightly negative in the absence of light (dark res-
piration of the photoautotrophs). Total heterotrophic respi-
ration acts as major DIC source and is expressed by zoo-
plankton respiration and by the remineralisation of dissolved
organic carbon (LDOC + dCCHO):

sms of DIC = −net C uptake by phytoplankton
− net C uptake by coccolithophores
− calcification + dissolution of PIC
+ zooplankton respiration
+ remineralisation + gas exchange.

The corresponding differential equation for DIC is listed in
Appendix A8.

Total alkalinity (TA)

Temporal changes in TA in our model are due to the sinks
and sources of DIN and DIP (1DIP= 1

16 ×1DIN), a process
of precipitation and dissolution of calcite plates produced by
the calcifying algae. We follow the nutrient-H+ compensa-
tion principle described in Wolf-Gladrow et al. (2007). In
our model we are resolving the nitrogen flux of zooplank-
ton excretion but we are eventually not resolving any asso-
ciated net change in TA. This is because we cannot differ-
entiate between the excretion of ammonium (NH+4 ) and of
nitrate (NO−3 ) and nitrite (NO−2 ). The excretion of 1 mole
NH+4 would increase TA by 1 mole, whereas the excretion of
1 mole NO−3 or NO−2 would decrease TA by 1 mole (Wolf-
Gladrow et al., 2007). In other words, we indirectly impose

that half of the N excretion by zooplankton is NH+4 and the
other half is NO−3 and NO−2 , which would introduce a net
TA change of zero. Measured values of DIN, TA, and DIC
on day one of the experiment were taken as initial conditions
for respective mesocosms.

sms of total alkalinity = N and P uptake by phytoplankton
+ N and P uptake by coccolithophores
− calcification by coccolithophores + dissolution of calcite
− remineralisation of dissolved organic N and P.

The differential equation for TA is given in the Appendix A8.

2.2.5 Dissolved labile organic matter and transparent
exoplymer particles

Dissolved organic matter (DOM) is produced by exudation
of the photoautotrophs and by hydrolysis of detrital matter.
The DOM is subject to remineralisation, being the source of
DIN and DIC. The applied model distinguishes between dC-
CHOs and a residual fraction of LDOC and LDON. This
distinction is made because only dCCHOs are simulated to
act as precursors for the formation of TEPs. In our model the
DOM’s primary source is freshly exuded and leaked organic
matter from photoautotrophs. An additional source of DOM
is due to degradation of detrital matter (hydrolysis and micro-
bial exudation) in response to bacterial activity. The fraction
of exudates that enter the dCCHO pool may vary between
the exponential growth phase and during periods of nutri-
ent limited growth, described as two modes of exudation in
Schartau et al. (2007). We therefore introduced a parame-
terisation (f cocco/phy

dCCHO , Eq. A39) that simulates such a shift
in quality of the exudates, depending on the respective cell
quota of the coccolithophores and of the other phytoplank-
ton (QN

cocco/phy). Remineralisation and microbial respiration
are respective sinks of LDOC and LDON. Table A1 lists all
associated auxiliary variables. The equations for labile DOC
and DON are described as follows (with details given in Ap-
pendix A9):

sms ofLDON = exudation by photoautotrophs
+ hydrolysis/degradation of detritus
+ hydrolysis/degradation of gels
− remineralisation/respiration of dissolved organic matter.

2.2.6 Dissolved combined carbohydrates (dCCHO)

By introducing dCCHO we account for an additional sink
of DOC other than microbial degradation, which is the
physical-chemical transformation of dissolved to particu-
late matter, here resolved as the coagulation of dCCHO to
form transparent exopolymer particles (TEP) of carbon. This
transformation is parameterised as an aggregation process,
as proposed in Engel et al. (2004) and effectually applied in
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Schartau et al. (2007) and in Joassin et al. (2011) (see details
in Appendix A10):

sms of dCCHO = exudation− coagulation of dCCHO
− aggregation of dCCHO with TEPC
− remineralisation of dCCHO.

Transparent exopolymer particles (TEP)

The carbon content of TEP is explicitly resolved because it
can be a significant constituent of POC measurements (Ver-
dugo et al., 2004). This consideration is important for our
data–model synthesis, in particular because it affects the sto-
ichiometric C : N ratio of particulate organic matter. The sink
terms of dCCHO, described before, are the only sources for
TEPC in our model approach. The degradation of TEPC is
parameterised similarly to the hydrolysis of detritus:

sms of TEPC = coagulation of dCCHO
+ aggregation of dCCHOwith TEPC
− degradation.

The corresponding differential equation for TEPC produc-
tion is listed in the Appendix A10.

2.2.7 Model parameters and initial conditions

Out of 33 model parameters, 26 parameters are fixed and
the remaining 7 parameters (4 initial condition parameters
(fcocco, fzoo, fdet. PON0) and 3 ecological parameters (αphy,
αcocco, Q0) enter the optimisation procedure. The decision
on which parameters should become subject to optimisation
is based on a series of preceding parameter optimisations and
subsequent sensitivity analyses. A major objective is to re-
duce the number of parameters for optimisation to a mean-
ingful minimum. This facilitates the identification of those
parameter values that are of primary concern. Since we ad-
dress differences in initial conditions in our study, we con-
sider four parameters that determine these differences, and
they need to become subject to optimisation. The addition-
ally selected three growth parameters are amongst those to
which the model solution is most sensitive. The model so-
lutions are also highly sensitive to variations of the maxi-
mum potential nitrogen uptake rate (V N

0 ). This parameter is
excluded from optimisation, because it is not possible to ob-
tain estimates of (V N

0 ) that are independent of estimates of
the photosynthetic efficiency. Therefore, a value is assigned
to V N

0 that is typical and was used for simulations of other
experiments (e.g. Pahlow et al., 2013), ensuring credible es-
timates of those parameters that are optimised in our study.
The mesocosm experiment covers only a short post-bloom
period and we found other parameters, like maximum graz-
ing rates and the aggregation parameters, to be weakly con-
strained by the available data. Their consideration for opti-
misation would impede the identification of the other more

important parameters. Values assigned to those parameters
that are excluded from optimisation are adapted from other
studies (e.g. Pahlow et al., 2013; Schartau et al., 2007).

Initial condition values for some of the state variables
in the model are computed by initial condition parameters,
given in fractions. The initial biomass during the start of
the experiments, specified by PON0, is distributed between
living and non-living biomass, which is determined by the
parameter of the initial detritus fraction (fdet). The living
biomass is further distributed between photoautotrophs and
zooplankton, specified by the initial zooplankton fraction pa-
rameter (fzoo). Finally, the remaining relative distribution
of photoautotrophic biomass is set by fcocco. For example,
a value of fcocco= 1 would mean that all photoautotrophic
biomass is associated with the presence of coccolithophores
exclusively.

PON0 = DetN0+ZooN0+CoccoN0+PhyN0 (1)
with the individual fractions:
DetN0 = fdet ·PON0 (2)
ZooN0 = fzoo · (PON0−DetN0) (3)
CoccoN0fcocco · (PON0−DetN0−ZooN0) (4)
PhyN0 = (1− fcocco) · (PON0−DetN0−ZooN0) (5)

For initial zooplankton, coccolithophore, and phytoplank-
ton biomass we apply a constant C : N ratio of 6.625. We
consider a higher C : N ratio (= 2× 6.625) only for ini-
tial detritus. Since the mesocosms were filled with post-
bloom, nutrient-depleted water masses, we assume that all
dead particulate organic matter has a C : N ratio that is
rather typical for such post-bloom conditions. Initial condi-
tions of PIC, DIC, and TA are taken from the data for re-
spective mesocosms, whereas we assume same small fixed
values (e.g. DON= 0.05, DOC= 102.5, dCCHO= 1.0 and
TEPC= 3.5 mmol m−3) as initial conditions for all meso-
cosms.

2.3 Design of data assimilation (DA) approach

A peculiarity of the PeECE-I experiment is that high and low
changes in TA were found in all three CO2 treatments, in re-
sponse to differences in calcification (Delille et al., 2005).
Because the three distinct patterns in calcification (Fig. 3)
are attributable to all three treatments, a factor other than the
CO2 perturbations induced variations between the individ-
ual mesocosms. For all other observations no such clear pat-
tern could be identified. We designed our data assimilation
approach according to this finding and therefore investigate
three possible situations (model solutions) that differ in their
TA response: low, medium, and high calcification (referred
to as LC, MC, and HC respectively). Thus, for each of these
three (LC, MC, and HC) situations we find three mesocosms
that were subject to three different CO2 levels (initial 700,
370, and 180 ppmV). By adapting the same nomenclature as
in Engel et al. (2005) and in Delille et al. (2005), we can
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Figure 3. (a) shows three distinct calcification patterns, reflected in
total alkalinity (TA) data. Those mesocosms that exhibit high TA
values (a reduced drawdown during the bloom and post-bloom pe-
riod) feature rates of low calcification (LC, in blue colour). Meso-
cosms with low TA values (a strong reduction of TA) reveal rates of
high calcification (HC, marked red). Rates of medium calcification
(MC) are assigned to the remaining mesocosms (with intermediate
TA values, marked black). (b) shows the respective different CO2
treatments in the same colours as for LC, MC, and HC. The fig-
ure shows that each calcification case (LC, MC, and HC) includes
mesocosm of all three CO2 treatments.

assign the mesocosms M1, M6, and M8 to those with low
calcification rates (highest TA), M2, M5, and M7 to the ones
with medium calcification, and finally M3, M4, and M9 to
mesocosms with high calcification rates (lowest TA).

2.3.1 Definition of cost function (data–model misfit)

In our data assimilation approach we consider data from the
three cases (LC, MC, and HC) separately, but we make iden-
tical statistical assumptions. The observation vector (yi) con-
tains daily means of three mesocosms of the following mea-
surements:

1. dissolved inorganic carbon (DIC, mmol m−3),

2. dissolved inorganic nitrogen (DIN) (nitrate + ni-
trite, mmol m−3),

3. chlorophyll a (Chl a, mg m−3),

4. particulate organic nitrogen (PON, mmol m−3),

5. particular organic carbon (POC, mmol m−3),

6. particulate inorganic carbon (PIC, mmol m−3),

7. total alkalinity (TA, mmol m−3).

Like the data vector yi , the vector Hi (x) represents mean
values of three simulated mesocosms for each calcification
case (LC, MC, and HC). It combines results of model states:
C and N biomass concentrations of the photoautotrophs
(PhyN & PhyC and CoccoN & CoccoC), of zooplankton
(ZooN & ZooC), of detritus (DetN & DetC), and carbon
concentration of transparent exopolymers particles (TEPC).
The vector of differences (d i) between observation (yi) and
model results Hi (x) is given as follows.

di = yi −Hi (x) =




DICi
(NO−3 +NO−2 )i
Chl ai
PONi
POCi
PICi
TAi




︸ ︷︷ ︸
data

(6)

−




DICi
DINi
(Chlphy+Chlcocco)i
(PhyN+CoccoN+ZooN+DetN)i
(PhyC+CoccoC+ZooC+DetC+TEPC)i
PICi
TAi




︸ ︷︷ ︸
model results

For the cases LC, MC, and HC we calculated daily resid-
ual standard errors (σi) based on the measurements. Unlike
other variables, the estimation of the standard errors for DIC
is not straightforward because of the different CO2 levels.
For the derivation of the standard errors we considered the
differences (offsets) of the mean initial DIC concentrations
between the different CO2 treatments. DIC concentrations
of those mesocosms that were initially exposed to high-CO2
(DIC) concentrations are “offset” – corrected so that their
initial mean DIC matches the initial mean of the present-day
DIC concentrations. Mesocosms of the low-CO2 treatment
were adjusted likewise. In this manner, all initial mean DIC
concentrations have become identical, but changes and vari-
ations (between the mesocosms) with respect to these mean
values remain. Thus, variances of the respective LC, MC, and
HC mesocosms can be calculated after applying these (two)
offset corrections to all DIC data of the high- and low-CO2
treatments. Eventually, individual standard errors for the LC,
MC, and HC mesocosms are derived for all sampling dates.

The time-varying covariance matrices Ri are constructed
with Si (with diagonal elements of standard errors, see
Eq. B3 in Appendix B) together with some correlation matri-
ces (C(y)). Correlations between measurements were com-
puted based on data of all nine mesocosms. Two matrices
C(y) have been derived from data for two distinct periods:
(1) the exponential growth phase and (2) the post-bloom pe-
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riod.

Ri = Si ·C(y) ·Si (7)

Equation (7) is applied because correlations between obser-
vations can change from pre-bloom period to post-bloom
period. For example, PON and DIC are strongly negatively
correlated during the exponential growth phase but become
weakly positively correlated during the post-bloom period,
when both DIC and PON decrease. The correlation matrices,
C(y), for the two respective periods are also given in the Ap-
pendix B.

A maximum likelihood (ML) estimator is applied, mean-
ing that no explicit prior information is considered for the
estimation of parameter values. Eventually, we use three sim-
ilar cost functions but with data (y) and covariances (R) from
the respective three mesocosms of each case. These daily
data (yi) are available for a period ofNt = 23 days, with sub-
script i indicating the day when measurements were made.
The elements of the parameter vector of interest (2) are those
parameters listed in Table 1, including the initial value of
PON0 and initial condition parameters that further specify
how PON0 is distributed between detritus, zooplankton, coc-
colithophores, and the remaining photoautotrophs. For a ML
estimation of the parameters (including the initial conditions)
we maximise the conditional probability of explaining the
data, given our model, together with a set of values assigned
to the parameters (to each element of 2):

p(y|2) = constant · exp[−
1
2

Nt∑

i=1
dTi R−1

i d i]

∝ exp[−
1
2
J (2)]. (8)

The ML estimate of parameter values can be found by actu-
ally identifying the minimum of the exponent of p(y|2) of
Eq. (8), since the constant term is independent of2. We thus
compute and minimise the following cost function J (2):

J (2) =

Nt∑

i=1

(
yi −Hi (x)

)TR−1
i

(
yi −Hi (x)

)
. (9)

We not only wish to identify the minimum of J (2) that cor-
responds with one best estimate of parameter values (2̂) but
also confine a credible region of parameter estimates. This
credible region tells us how reliable the parameter estimates
are (yielding lower and upper credibility limits) and resolves
correlations (collinearities) between the parameters. The pa-
rameter optimisation procedure implemented in this study is
described in detail in the Appendix B.

3 Results

3.1 Parameter estimates for specific mesocosms with
low, medium, and high calcification

The same seven model parameters (Table 1) were optimised
for all three calcification cases (LC, MC, and HC) inde-
pendently, using data from respective mesocosms. With our
data assimilation approach we can thus specify commonali-
ties and differences between model solutions for mesocosms
with LC, MC, and HC. Table 2 lists all ML estimates, which
correspond with the best model solutions obtained with the
Markov Chain Monte Carlo (MCMC) method. Collinearities
are expressed by the correlation coefficients of two param-
eter combinations, which we have also calculated based on
results of the MCMC method (Table 3).

Credible interval limits for each parameter were derived
from nonparametric probability densities of the MCMC es-
timates. Figure 4 shows cumulative density function (CDF)
for corresponding posterior probability distributions. The
steeper the CDF increase is, the narrower the 95 % credible
interval of the parameter estimate. According to the width of
credible intervals we find uncertainty ranges of initial condi-
tions parameters fdet, fzoo, and PON0 to be generally small
for all three cases of calcification respectively. The initial
condition parameters are best constrained for the solution of
medium calcification (MC). The parameter fcocco shows the
largest uncertainty for the HC case. A large fraction (≈ 90 %)
of initial biomass comprises of detrital matter in all three so-
lutions. Table 4 shows mean concentration values of PON0,
DetN0, ZooN0, CoccoN0, and PhyN0 along with their un-
certainties according to respective MCMC estimates. Initial
zooplankton concentration is highest in HC solutions. Thus,
more photoautotrophic biomass is lost due to grazing by zoo-
plankton and less by aggregation in model solutions for HC,
which is reflected by the negative correlation between initial
condition parameters fzoo and fdet. For those parameters that
do not specify the initial conditions we hoped to find that
all credible intervals overlap, which would have suggested
insignificant differences between the estimates. A single set
of values of these parameters could then be unambiguously
used for simulations of all nine mesocosms, independently
of how the values of the initial conditions turned out to be.
This is not the case, as can be seen in Fig. 4 and in the correla-
tion coefficients (Table 3). Estimates of the subsistence quota
(Q0) are lower for the mesocosms with high and medium cal-
cification rates. Apparently, lower Q0 and higher αcocco val-
ues are required to build up high coccolithophores biomass
in mesocosms with high calcification rates as initial coccol-
ithophores concentration is low and grazing pressure is high.

During the post-bloom period, the mesocosms pooled in
HC reveal TA changes that are consistently higher than in
the LC mesocosms. In fact, these differences become well
reflected in our parameter estimates. Thus, our optimised en-
semble model solutions are providing the statistical evidence
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Table 2. Maximum likelihood parameter estimates of three model solutions: low, medium, and high calcification (LC, MC, and HC).

Parameter Description LC MC HC Units

PON0 Parameter of initial PON concentration 1.25 1.90 1.61 mmol N m−3

fdet Parameter of initial detritus fraction 0.89 0.89 0.89 –
fzoo Parameter of initial zoopl. fraction 0.72 0.63 0.88 –
fcocco Parameter of initial coccolithophore fraction 0.39 0.88 0.40 –
Q0 Subsistence N : C ratio 5.5×10−2 4.2×10−2 4.2×10−2 –
αcocco Photosynth. light absorpt. coeff. of coccolithoph. 1.40 0.50 1.66 mol C (g Chl a)−1 m2 W−1 d−1

αphy Photosynth. light absorpt. coeff. of non-calcifiers 1.73 3.10 1.71 mol C (g Chl a)−1 m2 W−1 d−1
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Figure 4. Probability distributions of the initial condition and physiological model parameters: the cumulative sum of non-parametric prob-
ability densities (CDF) were derived from the posteriors of the Markov Chain Monte Carlo (MCMC) approach. The bars on the bottom of
each panel show respective 95 % credible (uncertainty) ranges of the parameter estimates.

that HC and LC are significantly different. With respect to
the mesocosms assigned to the MC case we see in our pa-
rameter estimates and ensemble model solutions that they are
rather close to conditions also met by the HC mesocosms.
In this case the differences in parameter estimates (between
MC and HC) are small, although we find significantly dif-
ferent estimates for αcocco and for fzoo between MC and HC
(see Fig. 4). Thus, we may have one or two out of the three
MC mesocosms that might have been better assigned to the
HC case. However, this is reflected in our data assimilation
results and we are primarily concerned with the upper and
lower extremes in calcification, as resolved by the six meso-
cosms in the LC and HC cases.

3.2 Data–model comparison

The variational range of parameter estimates (Fig. 4) induce
ensembles of model trajectories (model results) that are sta-
tistically indistinguishable (or equivalent). Based on these
posterior ensemble parameter estimates of all three calcifi-
cation solutions we find a general good agreement between
model results and the data (Fig. 5).

The ensembles reflect uncertainty ranges in model solu-
tions, which correspond nicely with most of the variability
in observations. Almost the entire range of variability in TA
is recovered with our three distinct solutions of calcification.
The observed variability in POC is captured with the opti-
mal ensemble model solutions. Only few maximum values
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Table 3. Correlation coefficients of parameter estimates of low, medium, and high calcification model solutions (LC, MC, and HC). Corre-
lation coefficients ≥ 0.6 are marked bold face.

fdet fzoo fcocco Q0 αcocco αphy

PON0 −0.03/0.03/−0.30 0.57/0.48/0.51 −0.10/0.29/0.66 0.05/−0.20/−0.34 0.11/0.03/−0.56 −0.10/0.19/0.60
fdet 1 −0.51/−0.33/−0.92 0.13/0.01/−0.28 0.23/0.25/0.11 −0.15/−0.10/0.10 0.13/0.03/−0.40
fzoo 1 −0.47/0.24 / 0.5 −0.11/−0.30/−0.16 0.50/0.52/−0.38 −0.42/0.22/0.63
fcocco 1 0.10/−0.12/−0.25 −0.99/−0.15/−0.95 0.99/0.93/0.93
Q0 1 −0.10/−0.25/ 0.18 0.13/0.10/−0.26
αcocco 1 −0.97/−0.18/ −0.87
αphy 1

Figure 5. Full variational range of model outputs due to uncertain-
ties in parameter estimates. Model ensembles of high, medium, and
low calcification solutions compared with observations.

seen in POC data remain unresolved, likely because we have
optimised parameters that hardly introduce changes in the
solution of TEPC concentrations. The model solutions ex-
hibit some faster increase in the accumulation of PON dur-
ing the exponential growth phase, in spite of the fact that DIN
data are well matched. Although this systematic model offset
(bias) is pronounced, it does not correspond with any simi-
lar model bias in POC. Another general offset can be seen
for simulated Chl a concentrations during the post-bloom pe-
riod. Our model shows sharp draw down in Chl a in all three
solutions (HC, MC, and LC) during the post-bloom period,
whereas observed Chl a values are more variable.

Table 4. Mean initial values of PON (PON0), detritus (DetN0), zoo-
plankton (ZooN0), coccolithophores (CoccoN0), and bulk phyto-
plankton (PhyN0) according to posterior of the (initial condition)
parameter estimates of three solutions: low, medium, and high cal-
cification (LC, MC, and HC).

State variable LC/mmol N m−3 MC HC
name

PON0 1.2± 0.01 1.9± 0.01 1.7± 0.1
DetN0 1.1± 4× 10−4 1.7± 1× 10−3 1.6± 0.01
ZooN0 0.1± 1× 10−3 0.1± 1× 10−3 0.2± 0.01
CoccoN0 0.02± 2× 10−3 0.06± 1× 10−3 0.01± 2× 10−3

PhyN0 0.02± 2× 10−3 0.01± 4× 10−4 0.01± 3× 10−3

3.2.1 Variations in calcification in response to growth
conditions

According to our model approach we resolve changes in
the rate of calcification relative to the carbon that is assim-
ilated for growth of the coccolithophores. For the period of
nutrient repletion the values of the molar calcification-to-C-
assimilation ratio (1PIC :1C≈ 0.5) are smaller than the val-
ues under nutrient-depleted growth conditions. All ensem-
bles of model solutions (LC, MC, and HC) reveal a similar
behaviour, with variations in 1PIC :1C greater than 0.5 (up
to 2.2) for growth rates between 0 and 0.3 d−1. These varia-
tions depend on the light-acclimation state (e.g. θcocco), fluc-
tuations in irradiance, and cell quota (QN

cocco). The variations
in 1PIC :1C during the nutrient-depleted period can be at-
tributed to fluctuations in carbon assimilation due to produc-
tion of TEPC .

3.2.2 Distinctions between model results of low and
high calcification (LC and HC)

Optimised model results of LC yield the highest TA values of
all mesocosms, being in accordance with the TA data. DIN
concentrations are well resolved by the model, and varia-
tions of the ensemble DIN simulations are similarly low to in
observations. The previously mentioned biases in PON and
Chl a are most conspicuous in this LC ensemble of optimal
model results. Variability in the POC data of the LC meso-
cosms is not captured by the model ensemble. But simula-
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Figure 6. Molar calcification-to-C-fixation ratio compared to net
growth rate of coccos (µcocco) in high and low calcification solu-
tions.

tion results (solid lines in Fig. 7) match the POC mean of the
three mesocosms. For PIC we also find a good agreement be-
tween model ensemble results and data. However, a notice-
able potential bias exists for the PIC response in the high-
CO2 treatment (M1), where model results overestimate PIC
data during the maximum bloom period and shortly after nu-
trient depletion. This overestimation is more pronounced in
mesocosms with high CO2 treatment. The LC ensemble suc-
cessfully reproduces amplitude of Chl a peak seen in data;
this is also the case in the solutions of HC mesocosms.

DIN is well resolved in the HC solutions (Fig. 8). Simu-
lated Chl a also fits well to observations. HC solutions yield
the largest variability in DIC, TA, and PIC amongst all opti-
mised solutions, which we mainly attribute to the large un-
certainty ranges of the model parameters fcocco and αcocco.
The HC solutions show sharp drawdown in DIC during the
bloom period compared to other solution (LC). This can be
explained by an enhanced calcification activity due to high
growth rates of coccolithophores in HC during the bloom pe-
riod. Again, model overestimates observed PIC values (M3)
under high-CO2 conditions shortly after the maximum of
bloom. PON is best reproduced in this HC case in compari-
son to LC. Although model HC solutions reproduce the en-
tire variability in observed PIC, the corresponding best fits
(to M3, M4, and M9) underestimate PIC data.

3.2.3 Integrated flux estimates of carbon and nitrogen
(C and N budgets of mesocosms)

The ensemble model solutions for LC and HC constitute two
extremes and we therefore concentrate on the C and N bud-
gets of these two cases. Carbon and N flux estimates were
computed as integrals over the entire 23-day period. Figure 9
shows mean C and N flux estimates and their standard errors
of the LC solutions of the low- and high-CO2 treatments.
Figure 10 shows the corresponding flux estimates for the HC
solution. We learn from these flux estimates that the simu-

Figure 7. Low calcification solution. The coloured bands represent
ensemble of model results according to the posterior and symbols
show observations.

lated C and N mass flux estimates differ more between the
mesocosms with different calcification rates than between
the mesocosms exposed to different CO2 levels. In both cases
(LC and HC), most inorganic carbon and nitrogen (DIC and
DIN) are utilised by non-calcifiers (≈ 56 % in case of HC
and ≈ 64 % in the LC solution), despite the differences be-
tween LC and HC. Generally, more carbon fixation (with
C : N uptake ratio of 168 : 10≈ 17) occurs in the HC than
in the LC mesocosms (C : N uptake ratio ≈ 13). Flux bud-
gets show that non-calcifiers clearly dominate in mesocosms
with low calcification rates, and in HC mesocosms coccol-
ithophores and bulk phytoplankton biomasses are compara-
ble (Figs. 9 and 10). Although grazing, in general, is high in
HC mesocosms (Table 4), there is a trend of higher grazing
pressure on bulk phytoplankton than on coccolithophores.
This is shown by N flux estimates, where zooplankton gain
nearly 57 % of their total biomass through grazing on non-
calcifiers in HC and LC. According to our model solutions,
the coccolithophores are always less vulnerable to grazing
than the bulk phytoplankton. This model behaviour may not
be fully conclusive, because we have no information about
the actual grazing rates or about grazing preferences. A no-
ticeable difference between high and low calcification model
ensembles is in terms of mortality of zooplankton. Higher
mortality is seen in HC solutions. Since the carbon fixation
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Figure 8. High calcification solution. The coloured bands represent
ensemble of model results according to the posterior and symbols
show observations.

in HC is high, exudation and leakage rates are also higher.
Accordingly, TEPC production is enhanced in HC solutions.
Unlike estimates of C flux, the N fluxes in HC and LC ensem-
bles are similar, e.g. aggregation losses of phytoplankton and
of coccolithophores are 3± 0.4 and 2± 0.4 mmol N m−3 in
HC, and 3.4± 2× 10−3 and 1.5± 2× 10−3 mmol N m−3 in
LC respectively. Similarly, flux estimates of all mesocosms
show almost the same rates of DIN utilisation, excretion, ex-
udation, and remineralisation.

4 Discussion

The data assimilation approach applied in this study was de-
signed to resolve differences in TA and thus in calcification,
while variations in other data (e.g. DIN, PON, and POC)
should also be explained with our model. We distinguished
between mesocosms with high, medium, and low calcifica-
tion rates (HC, MC, and LC) and their respective data were
used to come up with optimal estimates of initial conditions
and of some important physiological model parameters. Ide-
ally, we would have identified similar optimal values of the
physiological parameters and would have obtained different
estimates of the initial conditions for all three cases, HC,
MC, and LC. However, our results reflect a more complex

Figure 9. Carbon and nitrogen fluxes estimated by the model in
mesocosms with low observed calcification but different CO2 treat-
ment, high (a) and low (b). All the arrows that point downwards
show flux estimates from the respective compartment on the right
hand side, whereas arrows pointing upwards show values on the left
hand side.

picture and our optimised values for the initial conditions
also depend on the best estimates for the model parameters.
The initial conditions could not be constrained independently
and model solutions of the HC case do not automatically im-
ply a higher initial abundance of coccolithophores relative to
the other, non-calcifying, phytoplankton. Likewise, the LC
solution does not require a lower initial biomass of calci-
fying algae. Instead of differences in relative species abun-
dance, the initial physiological conditioning, e.g. acclima-
tion states of the algae, seems relevant as well, which is in
the end reflected in the estimates of the physiological pa-
rameters Q0, αcocco, and αphy). An alternative data assimila-
tion approach would be to optimise the physiological model
parameters (Q0, αcocco, and αphy) together with the initial
conditions (PON0, fdet, fzoo, and fcocco) for mesocosms of
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Figure 10. Carbon and nitrogen fluxes estimated by the model in
mesocosms with high observed calcification but different CO2 treat-
ment, high (a) and low (b). All the arrows that point downwards
show flux estimates from the respective compartment on the right
hand side, whereas arrows pointing upwards show values on the left
hand side.

one calcification case in a first step, e.g. the MC case (us-
ing data of mesocosms M2, M5, and M7). In a second step
we could have fixed the optimised physiological model pa-
rameters Q0, αcocco, and αphy (as identified with data of, for
example, the MC case) and would have then estimated only
the initial condition parameters for the other mesocosms, e.g.
low and high calcification (LC and HC). This alternative ap-
proach does work (not shown), but we learned that we may
then put too much confidence into those estimates of Q0,
αcocco, and αphy obtained first, e.g. estimates for the MC
mesocosms. It can even obscure the fact that collinearities
exist between some initial condition estimates and the other
model parameters. Furthermore, with such an alternative ap-
proach we could end up with different estimates of the initial
conditions, if we would have started with data of either the
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POC : PON ratio over the duration of the experiment.

HC or LC mesocosms first instead. The design of our data as-
similation approach is more challenging but it is better suited
to disclose major uncertainties and collinearities in estimat-
ing initial conditions together with model parameters of algal
growth.

4.1 Uncertainty ranges in parameter estimates and
variability in model solutions

Large variations can be seen in the data of PIC, reflecting
the variability measured in TA. Since optimal ensembles of
model solutions were derived for three distinct cases of cal-
cification (LC, MC, and HC), we automatically capture most
of the observed variability in PIC with our simulations. The
spread of the ensemble solutions for TA and PIC is smaller
in each of the three cases relative to the observed total range.
This means that the respective uncertainties in our parameter
estimates are small enough to obtain three distinctive ensem-
bles of model solutions. However, as discussed before, it is
not possible to identify optimal values of the initial condition
parameter fcocco independently from estimates of the other
physiological model parameters. This situation is aggravat-
ing but not unusual (Schartau et al., 2016). For instance, in
a sensitivity study with a regional marine ecosystem model,
Gibson and Spitz (2011) stressed that collinearities exist be-
tween initial conditions and the values assigned to the bio-
logical parameters.

The posterior uncertainties in the estimates of the subsis-
tence quota, (Q0), are rather small, if compared with the
uncertainty ranges of the other parameter estimates. Like-
wise, parameter estimates of the initial condition parame-
ters PON0, fdet, and fzoo are fairly confined. The variational
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Figure 12. Simulated nitrogen biomass concentrations of photoau-
totrophs and zooplankton in high and low calcification solutions.

range that we see in our model solutions is mainly induced
by uncertainties in estimates of the photosynthesis parame-
ters αcocco and αphy and of fcocco. The combination of these
three parameters mainly determine the spread in model solu-
tions with respect to the amount of C-fixation and also calcifi-
cation. This also explains why the ensemble model solutions
exhibit only small variations in DIN and PON concentrations
and thus in our N-flux estimates.

Variability in POC is much more pronounced than in
PON. All three model solutions show a steep increase in the
POC : PON ratio as soon as algal growth becomes nutrient-
limited (Fig. 11). The variability seen in the POC : PON ratio
is thus mainly due to a temporal variation in QN (N : C ratio
of both photoautotrophs) and thus of the algal growth con-
ditions. The temporal variations in QN eventually disperse
into zooplankton biomass and detritus, inducing elevations
of their respective C : N ratios during the post-bloom period.
Another contribution to the elevation of POC : PON ratios is
also related to changes in POC because it constitutes concen-
trations of TEPC, which is explicitly resolved in our model.

Our results show an increase in molar 1PIC :1C-
assimilation at low net growth rates (µcocco) under nutrient-
limited conditions (Fig. 6) in both HC and LC cases. These
variations are translated into some variability seen in the
PIC : POC ratio. Variability in PIC : POC is discussed in En-
gel et al. (2014), where they collected and analysed data
of diverse experiments and documented an increase (up to
fourfold) in values of cellular PIC : POC at relative growth
rate (RGR) ≈ 0.2 d−1 and below in various CO2 treatments.
The reason for a sharp increase in the molar 1PIC :1C-
assimilation ratio at low growth rates in our model is because

of a down regulation of LHC. Such model behaviour is in
agreement with the interpretation of Barcelos e Ramos et al.
(2012), who describe calcification as a process into which
the coccolithophores can channel excess energy. In order
to maximise (optimise) growth rate under nutrient-depleted
and high-light conditions, the model allocates more re-
sources and energy to support nutrient acquisition than to the
LHC (indicated by low f 0LHC

cocco values). Since 1PIC :1C-
assimilation is inversely related to f 0LHC

cocco in our model, an
increase in calcification (relative to C-fixation) is obtained at
low growth rates. The maximum of 1PIC :1C-assimilation
ratio in our simulations are in accordance with those found
in Barcelos e Ramos et al. (2010).

4.1.1 Differences between high and low calcification
solutions (HC and LC)

The optimised model solutions for HC and LC reveal sig-
nificant differences in the development of coccolithophore
biomass. As discussed before, these differences are not solely
attributable to differences in the relative proportions of ini-
tial biomass concentrations. In fact, the optimisations yielded
estimates that suggest fairly similar initial coccolithophore
biomass concentrations between all nine mesocosms. Eg-
gers et al. (2014) stressed that variations in initial plankton
composition can be responsible for large differences in the
responses observed on community level, thereby masking
any possible CO2 effect on photosynthesis or calcification.
Briefly, our results not only support the findings of Eggers
et al. (2014), they provide additional insight to the problem
of resolving a CO2 response in the presence of variability
in measurements. One added message compared to Eggers
et al. (2014) is that our mass flux estimates are shown to
differ more between the different calcification solutions than
between the different CO2 treatments. This situation exem-
plifies that simulation results (e.g. future model projections)
may involve uncertainties in flux estimates that are larger
than the CO2 effect introduced to the model (e.g. by fol-
lowing Findlay et al., 2011). Another added message is that
initial conditions may not be independently estimated from
estimates of phytoplankton growth parameters, like αphy and
αcocco. This is particularly relevant for model assessment and
model analyses of mesocosm experiments. We stress that the
original design of the experiment was meaningful, in partic-
ular with respect to the initial filling of the mesocosms in
the PeECE-1 experiment. The retrospective separation of the
CO2 response signal from the system’s variability was only
possible because mesocosms with similar initial conditions
were subject to different CO2 concentrations. Such separa-
tion would be more difficult, in retrospect, if mesocosms with
similar initial conditions would have been (by chance) ex-
posed to similar CO2 levels.

From a modelling perspective it is helpful to know about
the initial individual mass contributions to PON0, including
details in the initial composition of the plankton. But the level
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of compositional detail remains unclear, since these varia-
tions in individual plankton composition will in the end al-
ways translate into some variational (uncertainty) range in,
for example, the initial photo-acclimation state, since our
model approach only distinguishes between calcifiers and all
other, non-calcifying, phytoplankton. These considerations
were disregarded when we designed this study and we orig-
inally thought of the importance of the relative mass distri-
butions between the state variables resolved by our model,
while imposing fixed initial stoichiometric ratios (C : N and
Chl a : N). It seems plausible to allow for some variations of
the initial stoichiometric ratios as well.

For now we are interested in the question: what in-
duces the different model solutions for LC and HC, in
spite of similar initial conditions in the concentrations of
coccolithophores and phytoplankton? First of all, we have
some differences between the relative proportions of ini-
tial detrital, zooplankton, and photoautotrophic biomass
(e.g. DetN : ZooN : (PhyN+CoccoN)= 80 : 10 : 1 for HC
and 28 : 3 : 1 for LC). The difference between these ratios
point towards net photoautotrophic growth rates that are
higher in the LC case than in the HC case, since losses due
to grazing and aggregation must be lower in the LC case.
However, the initial conditions in mesocosms of the LC case
do not automatically yield model solutions of the highest
photoautotrophic growth. Instead we find overall reduced
growth rates but some pronounced differences in the rela-
tive proportions of biomass between the coccolithophores
and the non-calcifying phytoplankton (Fig. 12). The rea-
son for these differences lies primarily in the relative dif-
ferences between the estimates of the physiological param-
eters, with estimates of αcocco always being smaller than of
αphy. The photosynthetic efficiency of the coccolithophores
remains clearly smaller (LC case) or can become simi-
lar (HC case) relative to the other, non-calcifying, phyto-
plankton. Major differences between the LC and HC solu-
tions can thus be attributed to higher αcocco values (median
αcocco= 1.7 mol C (g Chl a)−1 m2 W−1 d−1) in HC poste-
rior distribution compared to LC (median αcocco= 1.4 mol C
(g Chl a)−1 m2 W−1 d−1). The estimates of αcocco are neg-
atively correlated with the estimates of fcocco (Table 4)
and we may therefore look on the combination of the two
parameters. To do so we compare two extreme solutions,
selected from the ensemble solutions of LC and HC re-
spectively. One extreme solution yields the lowest calci-
fication among all HC solutions, based on the parameter
combination (αcocco= 1.84 mol C (g Chl a)−1 m2 W−1 d−1

, fcocco= 0.34). The other selected solution represents the
highest calcification of all LC solutions, which corre-
sponds with (αcocco= 1.59 mol C (g Chl a)−1 m2 W−1 d−1 ,
fcocco= 0.35). Thus, it is mainly the photosynthetic effi-
ciency αcocco to which the model solution is highly sensitive.
Hence, a difference of ≈ 0.3 mol C (g Chl a)−1 m2 W−1 d−1

can effectively determine the differences in our simula-
tions with respect to rates of carbon fixation and calci-
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Figure 13. Bar plots depicting cumulative sum of PIC residual
(model–data misfit) from day 13 to day 18 of the experiment for
three replicates in mean solution of HC, MC, and LC ensembles.
First row shows mesocosms with high CO2 treatment (future), sec-
ond row medium CO2 treatment (present), and third row low CO2
treatment (glacial).

fication. The build-up of comparable nitrogen biomass of
coccolithophores and bulk phytoplankton in HC solutions
are achieved with identical Q0 values and only nuanced
differences in values between αcocco and αphy. In con-
trast, bulk phytoplankton (non-calcifiers) out-compete coc-
colithophores during the bloom period in the LC solutions
(Fig. 12).

Differences in photosynthetic efficiency estimates for the
LC and HC cases could possibly be invoked for two rea-
sons: (a) because of unresolved differences in initial photo-
acclimation states (e.g. different light history during the
filling period), since we assume identical initial Chl : N
(θN

cocco= θ
N
phy) and N : C (Qcocco=Qphy) ratios for all nine

mesocosms (and thus for LC, MC, and HC), or (b) because
of unresolved varying conditions in irradiance. To impose
identical surface PAR forcing on all nine mesocosms might
not be appropriate, and the arrangement of neighbouring
mesocosms may have caused some shading effects. From the
available data and with our model approach it is not possible
to resolve such varying conditions afterwards.

4.2 Model biases

Model biases disclose systematic deviations of simulation re-
sults from observations, which may point towards (i) erro-
neous model counterparts to observations (definition ofH(x)
in Eq. 9) or (ii) deficiencies in model dynamics (errors in x).
Some bias is related to the increase in PON concentration
during the late phase of exponential growth (between days
10 and 12, Fig. 12). The noticeable bias (temporal offset)
in simulated PON concentrations can be explained with an
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Figure 14. Full spread of model solutions according to credible
range in parameter estimates, including ensemble solutions of high,
medium, and low calcification (light brown shaded area). Symbols
represent observations of all mesocosms. Khaki shaded bands show
CO2 effect in the model, for solutions with lowest, medium, and
highest calcification rates.

apparent overestimation of initial coccolithophore biomass.
The estimates of fcocco turned out to be highest, if compared
with the estimates for the low and high calcification (LC and
HC) model solutions. Furthermore, the range of credible val-
ues for fcocco is small (Fig. 4). Both estimates of fcocco and
of PON0 lead to an initial biomass concentration of coccol-
ithophores that is approximately three times higher than in
the LC case and even six times the initial concentration of
the model solutions for HC.

With our model we do not distinguish between growth
of picoplankton and the other non-calcifying phytoplankton
during the initial bloom phase. The initial abundance of pi-
coplankton (mainly Micromonas spp.) and their decline was
observed during the early pre-bloom period of the PeECE-I
experiment (Engel et al., 2005). This explains why our sim-
ulated Chl a and PON concentrations are lower compared to
observations between day 1 and day 4. Another discrepancy
between simulated and observed Chl a exists during the post-
bloom period. We assume that this bias is mainly because we
do not account for detrital chlorophyll pigments (presumably
of inactive or destroyed cells) in our model. Formation of de-
tritus is associated with the aggregation of coccolithophores
and of the other phytoplankton to form detritus (simulated
as a transfer of algal biomass into detritus) in our model, and
the fate of Chl a within the detritus compartment remains un-
resolved. Once N and C biomass of the photoautotrophs are
transformed to detritus, an associated flux of Chl a is disre-
garded. An explicit consideration of the fate of Chl a would

likely improve model performance and some refinements in
this respect are recommended for the future.

Results of our data–model synthesis also exhibit a small
but distinctive bias in the calcification response to elevated
CO2 levels. The distinctions we made with respect to meso-
cosms of LC, MC, and HC helped us to identify such bias.
This bias implies that the CO2 effect on calcification, as in-
troduced to our model, is slightly smaller than in the obser-
vations, which will be discussed in detail hereafter.

4.3 Disentangling CO2 effect from the observed
variability in PIC

We considered a simple CO2 relationship that mimics only
OA effects on calcification. It is a dependency that was
adopted from the meta-analysis of Findlay et al. (2011). With
this CO2 dependence we can already capture differences in
PIC formation. The CO2 sensitivity that we introduced to our
model is only effective with respect to the ratio of calcifica-
tion versus C-fixation, thereby reducing the overall calcifica-
tion rate under high-CO2 conditions. This effect turned out
to be small compared to the total variability seen in PIC data.
According to our model setup we do not consider any po-
tential changes in vulnerability to predation (or edibility) of
the coccolithophores due to elevated CO2. Likewise, any ad-
ditional CO2 effects, e.g. on the rate of aggregation, are not
accounted for. Such effects remain unresolved, and therefore
the comparison of our budget calculations yield only small
differences between high and low CO2 levels, in particular
with respect to nitrogen flux estimates. Thus, differences in
C and N budgets between the two extreme calcification cases,
LC and HC, are more pronounced than between different
levels of CO2. To resolve consecutive ecological effects in
response to a reduction of the relative calcification rate we
would have needed explicit data, i.e. revealing differences in
grazing and aggregation rates between the individual meso-
cosms. With the PON and POC data used in our data assim-
ilation approach it is not possible to distinguish between dif-
ferent coccolithophore loss terms like grazing and aggrega-
tion, since detritus and zooplankton are both constituents of
the same PON and POC measurements.

The advantage of resolving LC, MC, and HC solutions
separately is that for each case we can compare data with
model results of mesocosms individually, of low- (glacial),
medium- (present), and high- (future) CO2 treatments. In
other words, for every LC, MC, and HC case we resolve
three mesocosms, of which each was subject to different CO2
levels. This way we have separated differences between LC,
MC, and HC from variations induced by a CO2 effect. Do-
ing so reveals PIC formation to be systematically overesti-
mated by the model for all mesocosms of the future treatment
(Figs. 7 and 8, MC case not shown). In contrast to Delille
et al. (2005), our results show an early onset of calcification
in mesocosms of the high-CO2 treatment between day 10
and day 15. It indicates that the CO2 effect introduced to our
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model is likely too weak. This becomes evident according to
positive model–data residuals in PIC between day 13 and day
18 for those mesocosms with future treatment (Fig. 13). It is
not evident for the glacial and present-day CO2 treatments,
where the corresponding residuals do not show a systematic
positive offset.

Figure (14) shows the total variability seen in PIC data to-
gether with the full variational range of all ensemble model
solutions. In addition, we depict those ranges in simulated
PIC that are solely due to the CO2 effect, based on the two
extreme calcification solutions (lowest and highest simulated
PIC) and the best model solution (according to the lowest
cost function values) for the MC mesocosms. If we compare
the simulated CO2 response signal on calcification with the
total variability in PIC (in Fig. 14), we find that the CO2 ef-
fect remains small. This situation demonstrates the difficulty
in isolating a distinctive CO2 signal from the total variabil-
ity seen in PIC observations. However, with our model-based
analysis approach this CO2 signal becomes detectable.

5 Conclusions

An analysis of data of a mesocosm experiment is often ap-
proached by first grouping individual mesocosms according
to the level of perturbation (e.g. the level of DIC added). In
some cases, such an apparently self-evident approach may
not help to reveal some basic phenomenon in mesocosm ex-
periments. For a meaningful data analysis the mesocosms
need not be exclusively differentiated by the different levels
of perturbation but may first be sorted by major differences
between relevant response signals, as done with respect to
the magnitude of calcification in our study (by differentiating
between LC, MC, and HC). In mesocosm experiments these
differences in responses are likely associated with variations
in initial conditions.

With our data assimilation approach we could disentangle
three distinctive ensembles of model solutions that represent
mesocosms with high, medium, and low calcification rates.
The results of our data–model synthesis show that the ini-
tial relative abundance of coccolithophores and the prevail-
ing physiological acclimation states drive the bloom develop-
ment and determine the amount of calcification in the meso-
cosms. Small variations of these two initial factors between
the mesocosms can generate differences in calcification that
are larger than the change in calcification induced by OA.
In spite of this difficulty, a CO2 response signal may still be
identifiable, as long as mesocosms that reveal the strongest
similarities (with respect to initial composition of plankton
and their physiological state) are not used as replicates for
similar CO2 conditions (perturbations). Instead, mesocosms
with similar initial conditions should be exposed to different
levels of OA. Such favourable starting conditions were met
in the mesocosm experiment described in Engel et al. (2005)

and Delille et al. (2005), as well as in the experiment of Eg-
gers et al. (2014).

An alternative approach to setting up mesocosms is to
gradually increase the level of perturbation for a series of
mesocosms. This way a gradient of different perturbation
levels is introduced. The advantage then is that mesocosms
that have been collated according to, for example, the lowest
and highest response signals (or likewise according to simi-
larities in initial conditions) may then be separately analysed
with respect to their responses to the individual levels of per-
turbation.

From this modelling study we infer that collinearities ex-
ist between estimates of initial conditions and physiological
model parameters, in particular for the photosynthetic effi-
ciencies αphy and αcocco and the initial fraction of coccol-
ithophores determined by fcocco. Therefore, it is not possible
to identify initial concentration of photoautotrophs indepen-
dently of parameters responsible for phytoplankton growth
in HC, MC, and LC model solutions. This was only found
because we optimised initial conditions together with phys-
iological parameters for HC, MC, and LC mesocosms sep-
arately. By this separation we could better specify the CO2
effect on PIC formation. In doing so, we could identify a
systematic overestimation of calcification in our model and
we conclude that our simulated CO2 effect on PIC formation
is even too weak.

Data availability. The results presented are made available by the
authors. The model output data are centrally stored. Please send
requests to skrishna@geomar.de or to mschartau@geomar.de.
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Appendix A: Supplementary model equations

A1 Arrhenius relation

The effect of temperature on the metabolic rates and biologi-
cal activities of the vast majority of organisms is given by the
Arrhenius relationship (Sibly et al., 2012).

Tf = exp[−AE .(
1
T
−

1
Tref

)], (A1)

where Tref is reference temperature, given in units Kelvin (K)
and approximately equal to 293.15 K (Table A1).

A2 Photoautotrophs

The resource allocation depends on the cellular nitrogen-to-
carbon (N : C) ratio, expressed by the cell quota (QN). QN

is the cellular N biomass normalised to carbon and energy
units. The availability of resources that can be allocated is
estimated by the relative difference between QNand a sub-
sistence quota (Q0). Q0 is the minimum N : C ratio required
for a photoautotrophic cell to survive. AsQN approachesQ0
fewer resources can be allocated (e.g. to the light-harvesting
complex, (LHC)) and algal growth becomes limited. Under
balanced optimal conditions we can approximate fV ≈ f 0

V

for photoautotrophs. An optimal allocation of nutrients to
specific cellular sites (or cell compartments) is thus deter-
mined by a trade-off between three fractions: (a) a fraction
that is allocated to the nutrient acquisition complex (fV ),
(b) a fraction attached to structural proteins (expressed as
Qs/Q

N), and (c) a remaining fraction (1−fV −Qs/Q) that
can be allocated to the LHC and thus promotes the synthesis
of chlorophyll a (Pahlow et al., 2013). An optimal alloca-
tion factor (f 0

V ) for nutrient uptake is derived by maximising
net growth rate with respect to nutrient uptake and thus fV
(Eq. A3 in Appendix A). Under nutrient-depleted conditions,
some higher growth rate of an algal cell can be maintained
by increasing f 0

V to the cost of resources that can be as-
signed to the light-harvesting complex (referred to as f 0

LHC;
the optimal allocation factor for LHC). In consequence, the
mobilisation of resources (N in this study) for nutrient ac-
quisition (induced by an increase of f 0

V ) reduces the rate of
chlorophyll a synthesis; vice versa for light-limited condi-
tions. Growth rate of a cell is optimised by investing more
resources to the LHC of a cell, which enhances the rate of
chlorophyll a synthesis. This is achieved for low values of
f 0
V .
In the model, the optimal allocation factor for the LHC in

an algal cell is calculated from f 0
V and Q0:

Qs =
Q0

2
, (A2)

f 0
Vphy/cocco

=
Qs

QN
cocco/phy

− ζN
· (QN

cocco/phy−Q0), (A3)

f 0
LHCcocco/phy

= 1 −
Qs

QN
cocco/phy

− f 0
Vcocco/phy

, (A4)

where ζN is the cost of N uptake in a photoautotrophic cell
( mol mol−1) and Qs is the N quota attached with structural
proteins (mol N (mol C)−1). In our model, maximum N as-
similation rate and maximum carbon fixation rates are nu-
merically identical.

V N
max = V

N
0 · Tf , (A5)

V C
max = V

C
0 · Tf , (A6)

where V N
max and V C

max are maximum N assimilation and max-
imum carbon fixation rates (mol N (mol C)−1 d−1 and mol C
(mol C)−1 d−1). Model parameters V N

0 and V C
0 are photoau-

totrophic potential N assimilation and C fixation rates (mol N
(mol C)−1 d−1 and mol C (mol C)−1 d−1) (Table A1).

The total N uptake rate of photoautotrophs is calculated
from the local N uptake rate (Pahlow et al., 2013). The latter
is calculated from maximum N assimilation rate, potential
nutrient affinity and DIN concentration.

V̂ N
=

(√
1

V N
max
+

√
1

A0 · (DIN)

)−2

, (A7)

V N
phy/cocco = f

0
Vcocco/phy

· V̂ N, (A8)

where V̂ N is the local N uptake of photoautotrophs (mol N
(mol C)−1 d−1). A0 is potential nutrient affinity of respective
algae (m3 (mol C)−1 d−1) (Table A1).

The gross carbon fixation rate of calcifiers and non-
calcifiers is calculated from day length, degree of light sat-
uration, f 0

LHC, and V C
max:

V C
cocco/phy = Ld f 0LHC

cocco/phy · V
C
max · S

cocco/phy
I , (A9)

where V C
cocco/phy is the gross carbon-fixation by photoau-

totrophs (mol C (mol C)−1 d−1), Ld is the day length as a
fraction of 24 h. For more details see Table A1. Sphy/cocco

I

is the degree of light saturation in photoautotrophs and cal-
culated as follows:

S
cocco/phy
I = 1− exp(−

α · θ̂cocco/phy · I

V C0
), (A10)

where θ̂cocco/phy is the Chl : C ratio in the chloroplast of
a cell (Pahlow and Oschlies, 2009; Pahlow et al., 2013)
(mg Chl (mmol C)−1).

The differential equations of C and N biomass for phyto-
plankton and coccolithophores are as follows.

d
dt

PhyC= (µphy − CNfact · γN)

· PhyC −
Aphy

QN
phy
−
Gphy

QN
phy

(A11)
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d
dt

CoccoC= (µcocco − CNfact

· γN) · CoccoC −
Acocco

QN
cocco

−
Gcocco

QN
cocco

(A12)

d
dt

PhyN= V N
phy

· PhyC − γN · PhyN − Aphy − Gphy (A13)
d
dt

CoccoN= V N
cocco · CoccoC − γN

· CoccoN − Acocco − Gcocco (A14)

A description of auxiliary variables is given in Table A1. We
stress that the parameterisations in Eqs. (A11) and (A12) are
identical for both photoautotrophic groups (coccolithophores
and non-calcifying algae), but some of the corresponding op-
timised parameter values may turn out to be different be-
tween the two.

The differential equations for chlorophyll a of non-
calcifying phytoplankton (with subscripts phy) and coccol-
ithophores (cocco) are as follows:

d
dt

Chlcocco/phy =

(
µcocco/phy +

θ̇cocco/phy

θcocco/phy

)

·Chlcocco/phy − Acocco/phy θ
N
cocco/phy

− Gcocco/phy θ
N
cocco/phy, (A15)

where θN
cocco/phy are the respective cellular Chl : N ratios

(mg Chl (mmol N)−1) (Table A1). The terms θ̇cocco/phy are
the time derivatives of θcocco/phy. The regulation of θphy and
θcocco on the build-up and limitation of chlorophyll a is de-
termined by optimality-based criteria.

The regulation term for chlorophyll a synthesis (Schl) is
given as follows:

Schl =
θ̇cocco/phy

θcocco/phy
=

(
1
ζChl ·

∂Acocco/phy

∂θ̂cocco/phy

)

+ Q̇N
cocco/phy ·

θ̂cocco/phy

θcocco/phy

·

(
2 ·Qs

QN
cocco/phy ·Q

N
cocco/phy

+ ζN

)
, (A16)

∂Acocco/phy

∂θ̂cocco/phy
= Ld · V

C
max ·

[
αcocco/phy · I

V C
max

· (1− Scocco/phy
I ) · (1− ζChl

· θ̂cocco/phy)

−S
cocco/phy
I · ζChl

]
−RChl

M · ζChl, (A17)

where A is an auxiliary variable that contains all light-
dependent terms (Pahlow and Oschlies, 2009; Pahlow et al.,
2013) (d−1); ζChl and ζN are costs of chlorophyll a synthesis
and N assimilation (mol C (g Chl)−1 and mol C (mol N)−1)
(Table A1). The derivative term ( ∂A

∂θ̂
) is given in units mol C

(g Chl)−1 d−1.

A3 Respiration costs

Total respiration cost in a cell includes costs due to chloro-
phyll synthesis, nutrient acquisition, and cell maintenance.

rcphy/cocco = R
Chl
phy/cocco+ ζ

N
· V N

phy/cocco+RM, (A18)

where respiration cost due to synthesis of chlorophyll a is
given as follows:

RChl
phy/cocco = (V

C
phy+ f 0LHC

phy/cocco · R
Chl
M )

· ζChl
· θ̂phy/cocco, (A19)

where RM is maintenance respiration cost of a cell (d−1).
Detailed description of auxiliary variables is given in the Ta-
ble A1.

A4 PIC formation and regulation of calcification

PIC formation can be written as a single differential equation:

d
dt

PIC = (fCO2 ·fPIC ·µcocco)·CoccoC− τdissol ·PIC, (A20)

where τdissol is the dissolution rate of PIC (d−1). Parameteri-
sation of the calcite-to-Corganic ratio is given by Eq. (A21),
whereas the regression model of Findlay et al. (2011) to
quantify effect of different CO2 concentrations on PIC for-
mation is represented by Eq. (A22).

fPIC =
1
2
+

sPIC

1+ exp(sPIC · f 0LHC
cocco)

, (A21)

fCO2 = −0.0097 ·CO2 aq+ 0.9654, (A22)

with aqueous carbon dioxide CO2 aq concentrations nor-
malised to water mass instead of volume (µmol kg−1).

A reference rate of PIC formation under nutrient-replete
and light-saturated conditions is prescribed as a molar ratio
of fPIC= 0.5 mol PIC formed per mol C assimilated into or-
ganic matter, Eq. (A21). The molar ratio (fPIC) is assumed
to increase when the fraction of resources allocated to the
LHC of a cell (f 0LHC

cocco) decreases. According to our model
approach, the process of calcification can be interpreted as an
additional pathway for dissipating excess energy (Barcelos e
Ramos et al., 2012), as is the case under high-light condi-
tions when chlorophyll a synthesis rates diminish (induced
by a reduction of f 0LHC

cocco). On the one hand, PIC formation
becomes enhanced under high-light conditions, while fewer
resources become allocated to LHC. On the other hand, cal-
cification is reduced or ceases under conditions of low or
no light. Under nutrient-depleted conditions, when more re-
sources become allocated to nutrient uptake sites rather than
to LHC, the rate of calcification per net carbon fixation also
increases. For low (nutrient-limited) growth rates under satu-
rated (or high) light conditions the parameterisation fPIC can
yield maxima in the calcite-to-Corganic ratio (of the calcify-
ing algae) that may reach values of 2 and slightly above. The
function fCO2 in Eq. (A20) has no dimension and it simulates
the effect of varying CO2 concentrations on fPIC.
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A5 Zooplankton

The sms differential equations for zooplankton carbon and
nitrogen biomass are as follows:

d
dt

ZooC=
Gphy

QN
phy
+
Gcocco

QN
cocco

− rzoo −
Mzoo

Qzoo
, (A23)

d
dt

ZooN= Gphy + Gcocco − γ
N
zoo − Mzoo. (A24)

Equations below represent Holling type 3 grazing dynam-
ics.

Gphy = gm ·
(PhyN2)

ε+ (PhyN2)
·ZooN, (A25)

Gcocco = gm ·
(CoccoN2)

ε+ (CoccoN2)
·ZooN, (A26)

where gm is the nitrogen-specific maximum grazing rate on
photoautotrophs (d−1) and ε is the half saturation constant
for grazing ((mmol N)2 m−6).

A6 Zooplankton respiration and excretion

Respiration is parameterized as a function of respira-
tion maintenance rate coefficient, temperature-dependent
metabolic rates, and carbon concentration of heterotroph.

rzoo = Rbasal · Tf ·ZooC (A27)

Similarly, excretion is parameterised as a function of respira-
tion maintenance rate to basal metabolism, temperature de-
pendent metabolic rates and nitrogen concentration of het-
erotroph.

γzoo = Rbasal · Tf ·ZooN (A28)

A7 Detritus

The corresponding differential equations of detrital C and N
mass are as follows.

d
dt

DetC =
Aphy

QN
phy
+
Acocco

QN
cocco
+
Mzoo

Qzoo

−ωdet · Tf ·DetC (A29)
d
dt

DetN = Aphy+Acocco+Mzoo−ωdet · Tf ·DetN (A30)

Aggregation equations for bulk phytoplankton and coccol-
ithophores are given below.

Aphy = φagg ·PhyN ·DetN + φagg ·PhyN2 (A31)

Acocco = φagg ·CoccoN ·DetN+φagg ·CoccoN2 (A32)

A8 Dissolved inorganic compounds (DIN, DIC) and
total alkalinity (TA)

The nitrogen uptake (V N
cocco/phy) is carbon-specific and is

therefore given as a rate of N utilisation per carbon (mol N
(mol C)−1 d−1) (Pahlow and Oschlies, 2009):
d
dt

DIN= −
(
V N

phy ·PhyC+V N
cocco ·CoccoC

)

+ γNzoo+ ρ · Tf ·LDON. (A33)

The sources of DIN are calculated from zooplankton excre-
tion (γNzoo) and the remineralisation of LDON.

The sms differential equation for DIC is given below.

d
dt

DIC= −µphy ·PhyC− (1+ fCO2 · fpic) ·µcocco

·CoccoC+ τdissol ·PIC+ rzoo+ ρ · Tf

· (LDOC+ dCCHO)+FDIC (A34)

Calculations of air–sea gas exchange (FDIC) within meso-
cosms are based on original carbonate chemistry code pro-
vided by the Ocean Carbon-Cycle Model Intercomparison
Project (Orr, 1999). The original code was refined to include
an accelerated iteration scheme for pH and pCO2 calcula-
tions (C. Völker, personal communication, 2007), as already
applied in Schartau et al. (2007).

The differential equation listed below accounts for TA in
the system.

d
dt

TA= (1+ 1/16) · (
V N

phy

QN
phy
·PhyN+

V N
cocco

QN
cocco
·CoccoN)

− 2 · (fCO2 · fPIC ·µcocco ·CoccoC− τdissol ·PIC)
− (1+ 1/16) · ρ · Tf ·LDON (A35)

Measured values of DIN, TA, and DIC on day one of the ex-
periment were taken as initial conditions for respective meso-
cosms.

A9 Dissolved labile organic matter

The differential equations for dissolved organic matter are
given below.

d
dt
LDOC = Cfact · γN ·

[
(1− f phy

dCCHO) ·PhyC+ (1− f cocco
dCCHO)

·CoccoC]+ωdet · Tf ·DetC
+ωgel · Tf ·TEPC− ρ · Tf ·LDOC (A36)
d
dt
LDON = γN · (PhyN+CoccoN)+ωdet · Tf

·DetN− ρ · Tf ·LDON (A37)

A10 dCCHO and TEPC

The differential equation for dissolved combined carbohy-
drates (dCCHO) is given as follows.

d
dt

dCCHO = Cfact · γN
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Table A1. Auxiliary model variables and model parameters.

Auxiliary variables & functions Description Unit

Tf Arrhenius temperature dependency –
fV resource fraction allocated for nutrient acquisition –
f 0
V

optimal allocation value of fV –
f 0

LHC optimal resource allocation to light-harvesting complex (LHC) –
µ net growth rates of respective photoautotrophs d−1

Qs N quota attached with structural proteins mol N (mol C)−1

V̂N photoautotrophic local N uptake rate of rate mol N (mol C)−1 d−1

V C photoautotrophic gross carbon fixation rates mol C (mol C)−1 d−1

rC respiration rates d−1

VN
max photoautotrophic maximum N assimilation rates mol N (mol C)−1 d−1

V C
max photoautotrophic maximum C fixation rates mol C (mol C)−1 d−1

VN carbon-specific nitrogen uptake rate mol N (mol C)−1 d−1

QN molar cellular nitrogen-to-carbon (N : C) ratio (cell quota) mol N (mol C)−1

θ chlorophyll-a-to-carbon (Chl : C) ratio of photoautotrophs g Chl (mol C)−1

θ̇ time derivative of θ g Chl (mol C)−1 d−1

θN chlorophyll-a-to-nitrogen (Chl : N) ratio of photoautotrophs g Chl (mol N)−1

SI degree of light saturation for photosynthesis –
Schl regulation term for chlorophyll synthesis mol C (mol N)−1

Ld day length as a fraction of 24 h –
I Mean irradiance Wm−2 d−1

θ̂ photoautotrophic chloroplast Chl : C ratio g Chl (mol C)−1

A variable representing all light-dependent terms d−1

G nitrogen-specific rates of zooplankton grazing mmol N m−3 d−1

rzoo zooplankton respiration mmol C m−3 d−1

γNzoo zooplankton excretion of nitrogen mmol N m−3 d−1

Mzoo nitrogen-specific zooplankton mortality mmol N m−3 d−1

A nitrogen-specific rates of aggregation mmol N m−3 d−1

fPIC calcification relative to net carbon fixation mol PIC (mol C)−1

FDIC flux due to air–sea gas exchange mmol C m−3 d−1

fCO2 regression model of CO2 effect on calcification –
fdCCHO fraction of exudates assigned to dCCHO –
αdCCHO stickiness between dCCHO and dCCHO –
βdCCHO C-specific collision rates between dCCHO and dCCHO m3 (mmol C)−1 d−1

αTEPC stickiness between dCCHO and TEPC –
βTEPC C-specific collision rates between dCCHO and TEPC m3 (mmol C)−1 d−1

Model parameters (fixed) Value

1. γN photoautotrophic loss rate of organic nitrogen 0.1 d−1

2. CNfact enhancement factor of carbon exudation relative to γN 1.0 –
3. ρ remineralisation rate of dissolved organic matter 0.05 d−1

4. ωdet hydrolysis/degradation rate of detritus 0.02 d−1

5. ωgel hydrolysis/degradation rate of TEPC 0.01 d−1

6. τdissol dissolution rate of particulate inorganic carbon 0.01 d−1

7. φdCCHO coagulation parameter of dCCHO 7.48× 10−4 m3 (mmol C)−1 d−1

8. φTEPC coagulation parameter of dCCHO-TEPC 2.56 × 10−2 m3 (mmol C)−1 d−1

9. Tref reference temperature for AE relation 293.15 K
10. AE slope of Arrhenius relationship 4500 K
11. aw light attenuation due to water column 0.04 m−1

12. ac light attenuation due to chlorophyll a 0.05 (mg Chl a)−1 m3

13. RChl
M cost of chlorophyll maintenance 0.1 d−1

14. RM total respiration maintenance cost 0.05 d−1

15. ζChl cost of photosynthesis coefficient 0.6 mol C (g Chl a)−1

16. ζN cost of N uptake 0.7 mol C (mol N)−1

17. A0 potential nutrient affinity 1 m3 mol C−1 d−1

18. VN
0 photoautotrophic potential N assimilation rate 4.0 mol C (mol N)−1

19. V C
0 photoautotrophic potential C fixation rate 4.0 mol C (mol C)−1

20. γN algal nitrogen loss rate 0.1 d−1

21. φagg aggregation rate 0.01 m3 (mmol N)−1 d−1

22. pdCCHO minimum DOC fraction allocated to dCCHO 0.2 –
23. gm nitrogen-specific maximum grazing rate 0.2 d−1

24. ε prey capture rate normalised to maximum grazing rate 1 (mmol N)2 m−6

25. Mzoo mortality rate of zooplankton 0.05 d−1

26. Rbasal zooplankton basal respiration rate 0.05 d−1

27. sPIC slope of 1PIC formed per 1C assimilated 5.0 mol PIC (mol C)−1
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·

[
f

phy
dCCHO ·PhyC+ f cocco

dCCHO ·CoccoC
]

−φdCCHO · dCCHO2
−φTEP · dCCHO ·TEPC

− ρ · Tf · dCCHO (A38)

Given below is the parameterisation to estimate the frac-
tion of phytoplankton exudates that become available to be
part of dCCHO during two distinct modes of carbon over-
consumption described in Schartau et al. (2007).

f
cocco/phy
dCCHO =

[
1+pdCCHO · exp(1−Qs/Q

N
cocco/phy)

]−1
,

(A39)

where pdCCHO is the fraction of DOC that enters the dC-
CHO pool. The coagulation parameter of dCCHO (φdCCHO)
is derived from a product of αdCCHO (stickiness between
dCCHO and dCCHO) and βdCCHO (C-specific collision
rates between dCCHO and dCCHO). Likewise, the coag-
ulation parameter of dCCHO-TEPC (φTEPC) is computed
from the product of αTEPC (stickiness between dCCHO and
TEPC) and βTEPC (C-specific collision rates between dC-
CHO and TEPC); αdCCHO and αTEPC have no units as they
are probabilities, whereas βdCCHO and βTEPC have units ( m3

(mmol C)−1 d−1). Values of αdCCHO, αTEPC, βdCCHO, and
βTEPC are taken from (Schartau et al., 2007).

φdCCHO = αdCCHO ·βdCCHO

φdCCHO = (0.87 · 10−3) · 0.86 = 7.48 · 10−4 (A40)
φTEPC = αTEPC ·βTEPC

φTEPC = 0.4 · 0.064 = 2.56 · 10−2 (A41)

The differential equation for formation of TEPC is shown
below.

d
dt

TEPC= φdCCHO · dCCHO2
+φTEP · dCCHO

·TEPC−ωgel · Tf ·TEPC (A42)

Appendix B: Data assimilation

B1 Parameter optimisation procedure

The entire optimisation procedure of each (LC, MC, and HC)
case is subject to five consecutive analysis steps:

1. adjustment of parameters while considering published
typical values −→ specify model solution that is in
qualitative (visual) good agreement with observations
of the medium calcification (MC) case.

2. application of simulated annealing algorithm (SANN)
(see Bélisle (1992)), to effectively scan and minimise
the seven-dimensional manifold (2,J (2)), while avoid-
ing getting trapped into local minima of J (2) −→ ob-
tain global estimate of 2.

3. local refinement of the parameter estimate, using
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970;
Shanno, 1970) −→ identify maximum likelihood es-
timate that corresponds with the global minimum
(2̂, J (2̂)).

4. calculation of the inverse of second derivatives of J (2)
with respect to every parameter (Hjj =∂2J/∂22

j at 2̂,
which is a point-wise approximation of the diagonal el-
ements of a Hessian matrix H) −→ derive marginal er-

rors (standard errors,
√
H−1
jj ) of the estimated parameter

values.

5. application of a Markov Chain Monte Carlo (MCMC)
method, using the marginal error information of item
4 above to confine credible range of optimal parameter
values −→ derive posterior confidence limits of param-
eter estimates and collinearities (correlations) between
parameter estimates.

For steps 2, 3, and 5 the R package FME is applied, as coded
and described by Soetaert and Petzoldt (2010). The plank-
ton ecosystem model was coded and compiled as a shared
library in FORTRAN so that we can apply a FORTRAN-R
wrapper function. This wrapper allows us to take advantage
of fast numerical Euler forward integrations of the model
equations while, at the same time, we can benefit from the R
platform and its freely available packages. The cost function
J (2) is evaluated in R. The MCMC method employed here
is based on the adaptive Metropolis–Hastings (AMH) algo-
rithm (Haario et al., 2001), which is also available with the R
package FME. The AMH algorithm generates a new param-
eter vector (2∗) by perturbing the original vector2, inferred
from a “proposal” distribution (Metropolis et al., 1953). The
standard deviation information required for generating the
initial proposal (Gaussian) distribution in the AMH algo-
rithm is derived from the diagonal elements of Hessian ma-
trix. We approximated the diagonal elements of the Hessian
with finite central differences, as described in, for example,
Matear (1995), Kidston et al. (2011) and Kreus and Schartau
(2015). To do so we imposed an incremental step size of 1 %
variation to the respective parameter values.

B2 Data correlation matrices

Correlations during pre-bloom (ti ; i = 1, . . . , 13) between
mesocosms with medium observed calcification in matrix
form are given below.

C(y) =




DIC DIN Chl a PON POC PIC TA
DIC 1 0.57 −0.95 −0.77 −0.95 −0.89 0.88
DIN . 1 −0.56 −0.52 −0.53 −0.58 0.53
Chl a . . 1 0.71 0.91 0.81 −0.77
PON . . . 1 0.87 0.77 −0.65
POC . . . . 1 0.83 −0.77
PIC . . . . . 1 −0.95
TA . . . . . . 1




(B1)
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Correlations during post-bloom period (ti ; i= 14, ... , 22) ar-
eas follows.

C(y) =




DIC DIN Chl a PON POC PIC TA
DIC 1 0.22 0.27 0.29 −0.83 −0.93 0.94
DIN . 1 0.3 0.31 −0.23 −0.22 0.24
Chl a . . 1 0.99 0.01 −0.44 0.49
PON . . . 1 −0.02 −0.45 0.50
POC . . . . 1 0.65 −0.64
PIC . . . . . 1 −0.99
TA . . . . . . 1




(B2)

Residual standard errors (σi) were calculated based on daily
measurements between the mesocosms of similar observed
calcification and can be written in matrix notation with off-
diagonal elements being zero.

Si =




σ
(DIC)
i 0 · · · 0

0 σ
(DIN)
i · · ·

...
...

...
. . . 0

0 · · · 0 σ
(TA)
i




(B3)
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Abstract

Marine phytoplankton can regulate their stoichiometric composition in response to
variations in the availability of nutrients, light and the pH of seawater. Varying elemen-
tal composition of photoautotrophs affects several important ecological and biogeo-
chemical processes, e.g., primary and export production, nutrient cycling, calcification,
and grazing. Here we compare two plankton ecosystem models that consider regula-
tory mechanisms of cellular carbon and nitrogen driving the physiological acclimation
of photoautotrophs. The Carbon:Nitrogen Regulated Ecosystem Model (CN-REcoM)
and the Optimality-Based Model (OBM) differ in their representation of phytoplankton
dynamics, i.e. nutrient acquisition, synthesis of chlorophyll a, and growth. All other
model compartments (zooplankton, detritus, dissolved inorganic and organic matter)
and processes (grazing, aggregation, remineralisation) are identical in CN-REcoM and
OBM.

We assess the skills of the two models against data from an ocean acidification
mesocosm experiment with three CO2 treatments. Neither model accounts for any car-
bon dioxide (CO2) effects explicitly. Instead, we assimilate data of the different CO2
treatments separately. For the OBM, optimal parameter estimates of Qmin (subsistence
N:C ratio) and V0

C (maximum potential photosynthesis rate of photoautotrophs) are
higher for mesocosms exposed to high CO2 compared to those with low CO2 concen-
tration. A possible physiological interpretation of higher estimates of Qmin and V0

C is
that phytoplankton may experience environmental stress under more acidic conditions,
and hence must invest more energy/resources for maintaining basic cellular functions.
By contrast, a similar relationship is not observed for the CN-REcoM. Our data as-
similation reveals that the parameters of the OBM are better constrained by the data
than those of CN-REcoM. Furthermore, the OBM is more robust than CN-REcoM in
reproducing data that were not used for parameter optimization.

Keywords: Models, Acclimation, mesocosms, ocean acidification, photoacclimation,
optimality-based

1. Introduction

Several studies in the recent past have shown significant deviations in cellular
C:N:P ratios of phytoplankton from the classical Redfield stoichiometry (C:N:P =
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106:16:1) in the surface oceans (Burkhardt et al., 1999; Körtzinger et al., 2001; Geider
and La Roche, 2002; Flynn, 2003; Martiny et al., 2013). Furthermore, it has been well
documented that marine phytoplankton have the ability to change their stoichiomet-
ric composition, typically represented as ratios (e.g., C:N:P — carbon-to-nitrogen-to-
phosphorus), in response to changes in nutrient and light availability, and the pH of
seawater (Geider, 1987; Klausmeier et al., 2008; Flynn et al., 2001; Iglesias-Rodriguez
et al., 2008). Such changes are subject to investigation as they affect food web dynam-
ics at different trophic levels of aquatic ecosystems. As the elemental composition of
photoautotrophs changes, several important ecological processes are affected, includ-
ing primary production, nutrient cycling, calcification and cellular growth (Sterner,
1990; Urabe and Sterner, 1996; Cebrian and Lartigue, 2004; Orr et al., 2005). In ad-
dition, the content of chlorophyll a (Chla) within photoautotrophic cells (Chla:C and
Chla:N ratio) also varies because of complex influences by light, nutrient and temper-
ature (Armstrong, 2006; Behrenfeld et al., 2002).

During the last two decades marine biogeochemical models have been applied
to study the response of primary and export production to long-term changes in the
physical environment of aquatic ecosystems over a wide range of temporal and spatial
scales(Behrenfeld et al., 2006; Boyd and Doney, 2002; Quere et al., 2005; Harley et al.,
2006; Smith et al., 2009; Ayata et al., 2013). These biogeochemical models employ
various plankton-ecosystem components, ranging from simple nutrient, phytoplankton,
zooplankton, detritus (NPZD) type models to highly complex (more than 20 compart-
ments) ecosystem models (Friedrichs et al., 2007). However, most of these models are
are based on nitrogen, e.g. Fasham et al. (1990), while assuming constant C:N ratios
for estimating mass flux within the ecosystem. In many of the first-generation biogeo-
chemical models (Dugdale, 1967; Aksnes and Egge, 1991; Hurtt and Armstrong, 1999;
Fennel et al., 2001; Klausmeier et al., 2004), phytoplankton growth is represented by
a Monod model of nutrient concentration (Monod, 1949). Franks (2009) argued that
there is no particular reason why an algal cell should behave like an enzyme and follow
Michaelis-Menten kinetics for nutrient uptake.

Phytoplankton respond to changes in the physical environment and acclimate ac-
cordingly by varying their elemental composition (Goldman et al., 1979; Healey, 1985;
Rhee et al., 1981; Burkhardt and Riebesell, 1997; Burkhardt et al., 1999). Models that
do not account for photoacclimation (i.e., with a constant Chl:C) can not reproduce in
situ data of nitrogen limited marine diatoms (Flynn et al., 2001). In addition, many
model-data comparison studies have shown that including variable Chl:C and C:N ra-
tios improves the ability of models to fit data (Hurtt and Armstrong, 1996, 1999; Spitz
et al., 2001). Geider et al. (1998) presented a photoacclimation model that describes the
changes in phytoplankton growth rates and their composition (C, N and chlorophyll)
in response to changing physical and chemical environment. The predictions of the
model are in good agreement with experimental observations from cultures under bal-
anced and unbalanced growth. Flynn (2003) suggested that quota-type models with ex-
plicit inclusion of photoacclimation may work well for many oceanographic modelling
scenarios. Armstrong (2006) proposed a dynamic model that includes an optimality-
based relationship between Chl:C and N:C ratios, and inferred that the performance of
the model was as good as the one of Geider et al. (1998). Saito et al. (2008) defined
three categories of nutrient colimitation of primary productivity in aquatic ecosystems
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on the basis of their mathematical formulations and visualizations. The chain model
of Pahlow and Oschlies (2009) and Pahlow et al. (2013) assumes that phytoplankton
growth in the surface ocean is colimited by N and P, in contrast to studies of Flynn
(2001) and Flynn (2008) who assumed N and P limitations act independently.

It is difficult to compare and quantify model performance (Evans, 2003; Friedrichs
et al., 2007). Increasing the complexity of models can increase realism, but constrain-
ing large numbers of parameters is a major challenge, especially when observations
are sparse (Denman, 2003). Devising and testing a plankton ecosystem model is chal-
lenged by two aspects: 1) data availability for comparison with model results (model
assessment), and 2) identification of the best representative model solutions to explain
these data (model calibration). Data assimilation is concerned with both aspects. Data
available from mesocosm experiments can greatly facilitate assessment and calibration
of model behaviour (e.g.,Vallino 2000; Schartau et al. 2017). In situ mesocosm per-
turbation studies provide an effective tool to study the impact of anthropogenic forc-
ing on marine ecosystems (Riebesell et al., 2008). Environmental conditions (e.g.,
temperature, pH and salinity) can be manipulated in mesocosms to investigate marine
ecosystem responses (Sommer et al., 2007; Kim et al., 2006). A series of three Pelagic
Ecosystem CO2 enrichment Experiments (PeECE I–III) have been conducted between
2001 and 2005, (Riebesell et al., 2008). The PeECE experiments made use of large
mesocosms that were exposed to different CO2 concentrations to investigate effects of
ocean acidification on marine plankton dynamics associated with increased stratifica-
tion.

Modelling studies have focussed on the PeECE-I experiment (Delille et al., 2005;
Engel et al., 2005) and simulated observed biogeochemical processes, e.g., primary
production, calcification, exudation of dissolved organic carbon (DOC), formation of
transparent exopolymer particles (TEP) and viral lysis. In the study of Joassin et al.
(2011) a mechanistic model was applied that resolves C, N, P fluxes for E. Huxleyi,
with explicit representation of calcification and microbial (bacteria and viruses) dy-
namics. They stressed that the variability in the cellular C:N ratio of E. Huxleyi drives
the dynamics of most of the processes (including calcification and DOC excretion) in
the mesocosms, and attribute the collapse in algal abundance at the end of the bloom to
viral lysis. In a recent study, Krishna and Schartau (2017) used an optimality-based
model and they showed that large variability observed in calcification between the
mesocosms during the PeECE-I experiment could be explained by the small variations
in the initial abundance of coccolithophores and the prevailing physiological acclima-
tion states. These small variations generate differences in calcification that are larger
than those induced by ocean acidification.

In this study we compare differences in the performance of two carbon-nitrogen
regulatory model approaches (Geider-based and Optimality-based) that differ in their
representation of the physiology of the phytoplankton, such as the formulation of nutri-
ent uptake (e.g., Droop and Monod kinetics), chlorophyll a synthesis, and growth. The
focus of this study is to assess the skills of the models against data from the PeECE-I
experiment. Although neither of the models resolve the effect of CO2 on the plankton
growth and carbon fixation, we employ them to investigate whether algal growth dy-
namics vary systematically in response to different CO2 perturbations. We set up three
sets of simulations representing different CO2 treatments. For one set of simulations
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we include data from mesocosms of high and normal CO2 levels (future and present
day treatments), referred to as ”FUT-PRE”. The second set consists of simulations
of the mescosms exposed to high and low CO2 levels (future and glacial treatments),
named ”FUT-GLA”. The third set represents simulations of low and present day CO2
conditions (glacial CO2 levels together with present day treatments), designated as
”PRE-GLA”. We apply the same data assimilation (DA) approach for all three sets.
This way we obtain optimised parameter vectors for each CO2 case. We compare the
credibility of parameter values and their uncertainty ranges for both models, and assess
how the parameter estimates vary between the CO2 levels. Last but not the least, we
cross-validate the “best” optimised solution for each ensemble case against data not
used for parameter optimisation in order to test the general robustness of the model
solutions.

2. Methods

We evaluate the performance of two marine ecosystem models, both being cali-
brated with data from the PeECE-I mesocosm experiment. We explore how the models
represent plankton dynamics in the mesocosms under temporally varying conditions
(nutrients and light), and their ability to reproduce observations. A data assimilation
approach is applied for the identification of optimal model parameter values as well as
for their respective ranges of uncertainty, including correlations (collinerarities). The
plankton ecosystem models (OBM and CN-REcoM) are applied to simulate the carbon
and nitrogen fluxes in nine mesocosms.

2.1. Data
A series of three experiments was conducted in the large-scale mesocosm facilities

at the marine field station of University of Bergen (Raunefjorden) between years 2001
and 2005 to investigate effects of ocean acidification (OA) on plankton community
dynamics. These experiments are referred to as Pelagic Ecosystem CO2 Enrichment
(PeECE ) studies (Riebesell and Tortell, 2011). PeECE-I is the first of the series. Nine
mesocosms were grouped into three replicates each for three different levels of the ini-
tial partial pressure of CO2 (Engel et al., 2005; Delille et al., 2005). Mesocosms 1–3
(M1, M2 , M3) were subject to high dissolved inorganic carbon (DIC) levels (between
2119 and 2122 mmol m−3), corresponding to pCO2≈ 710 ppmV. Mesocosms M7, M8
and M9 were initiated with low DIC levels, between 1919 and 1929 mmol m−3. The
remaining three mesocosms (M4, M5, M6) were initialised with DIC concentrations
between 2040 and 2056 mmol m−3, corresponding to present day pCO2 level (≈ 410
ppmV). For our model simulations, we consider the air above the mesocosms’ surface
to be a mixture of 90 % air with the target pCO2 and 10 % of air with ambient atmo-
spheric pCO2 (Krishna and Schartau, 2017). All nine mesocosms were enriched with
similar initial concentrations of DIN (dissolved inorganic nitrogen), approximately 15
mmol m−3. Daily measurements of salinity and temperature are available for the en-
tire period (23 days) of the PeECE-I experiment. We interpolate daily temperature and
salinity values and use these as environmental forcing for our model simulations. We
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also include hourly photosynthetically active radiation (PAR) data from meteorologi-
cal global irradiance measurements of the Geophysical Institute of the University of
Bergen, Norway (Skartveit et al., 2001).

In this study we do not attempt to explicitly resolve coccolithophores and calcifica-
tion, as done in Krishna and Schartau (2017). Only a single compartment of all phyto-
plankton is used instead, which reduces the number of free parameters and allows for a
better comparison of the two model versions of interest. However, calcification affects
the amount of dissolved inorganic carbon (DIC) utilized by the algae in the mesocosms.
Therefore, in this study we employ “corrected” DIC data, which is the sum of observed
DIC and PIC (particulate inorganic carbon). In this manner, we attempt to correct for
the effect calcification on the DIC data.

2.2. Candidate models
We apply two carbon and nitrogen regulatory marine ecosystem models, namely,

Carbon:Nitrogen Regulated Ecosystem Model (CN-REcoM) and Optimality-based model
(OBM) to simulate the PeECE-I experiment. We assume the mesocosms to be homo-
geneously mixed and do not include any vertical export of particulate organic matter
in either model. Furthermore, we consider light gradients in mesocosms. Attenuation
of light in water column is estimated by Lambert-Beer’s law and depends on depth (d),
the light absorption coefficients of seawater (aw) and chlorophyll a (ac), and the chloro-
phyll concentration (Chl). The mean irradiance (Iavg) is thus derived by integrating this
function over depth.

κ = aw + (ac · Chl) (1)

Iavg =
0.95 · I
κ · d ·

[
1 − exp (κ · d)

]
(2)

Where κ is the attenuation coefficient for light at a given depth. It is to note that tops
of mesocosms were covered with tetrafluroethylene films in the PeECE-I experiment
and allowed only 95 % transmission for photosynthetically active radiation (Delille
et al., 2005). Therefore, we assume a fraction of incident irradiance, which is equal
to 0.95 · I, that enters into the mesocosms. In both models effects of phosphorus on
photoautotrophic growth are neglected and we do not simulate diazotrophy here.

2.3. General structure of models
Both models describe carbon and nitrogen fluxes between: (1) dissolved inorganic

compounds (DIC and DIN), (2) Phytoplankton (PhyC, PhyN), (3) zooplankton (ZooC,
ZooN), (4) detritus (DetC, DetN), (5) labile dissolved organic compounds (lDON,
lDOC) and (6) dissolved combined carbohydrates (dCCHO). dCCHO acts as a precur-
sor for transparent exopolymer particles (TEP). Figure 1 shows a schematic represen-
tation of the general structure of both models and processes connecting different model
compartments. OBM and CN-REcoM only differ in the mechanistic representation
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Figure 1: Schematic representation of model compartments connected by different physio-ecological
processes. It is note that only phytoplankton compartment is different for the OBM and CN-REcoM, and

rest are identical.

of phytoplankton growth dynamics (including chlorophyll synthesis). Formulations of
all other model compartments (Zooplankton, Detritus, LDOM, dCCHO and TEP) are
identical for both models (Fig. 1).

Phytoplankton: Algal growth is attributed to carbon (C) and nitrogen (N) assimi-
lated by photoautotrophs minus losses due to aggregation, grazing by zooplankton and
exudation of organic matter. The general ordinary differential equations (ODEs) for
phytoplankton biomass build up in both models are given as:

d
dt

PhyC = (µ − γ) · PhyC − 1
QN (A + G) (3)

d
dt

PhyN = VN
C · PhyC − γ · PhyN − A − G (4)

Where µ and VN
C are the net growth and nitrogen uptake rates in units d−1 and mol N

(mol C)−1 d−1. γ is the exudation rate given in d−1 and QN is the cell quota in mol
N (mol C)−1. Nitrogen loss rates due to grazing (G) by zooplankton and aggregation
of phytoplankton (A) are given in mmol N m−3 d−1. Parameterisations of A and G are
described in Krishna and Schartau (2017). It is to note that the OBM and CN-REcoM
employ different mechanistic formulations for the estimation of µ and VN

C .
For both models, chlorophyll a content in phytoplankton is regulated by its synthesis
rate (S chl), A and G. Although parameterisations of A and G are identical for the OBM
and CN-REcoM, the ones for S chl are different. The ODE for Chl synthesis is given as:

d
dt

Chl = S chl · Chl − θN(A + G) (5)
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Details on auxiliary variables and parameters introduced in the above equations are
given in table 1.

Model parameters Description Unit
1) PON0 Initial concentration of particulate organic nitrogen mmol N m−3

2) fdet fraction of PON0 assigned to non-living detritus -
3) fzoo fraction of living PON0 assigned to zooplankton -
4) Qmin subsistence quota (minimum cellular N:C ratio) mol N (mol C)−1

5) α Photosynthetic efficiency of phytoplankton mol C (g Chla)−1 m2 W−1 d−1

6) γ exudation rate of photoautotrophs d−1

5) ζN cost of N uptake mol C (mol N)−1

6) VC
0 maximum potential photosynthesis rate of photoautotrophs mol C (mol C)−1

7) Rre f degradation rate constant at reference temperature d−1

Auxiliary Variables
1) QN N:C ratio of a cell mol N (mol C)−1

2) VN
max maximum N uptake rates of photoautotrophs mol N (mol C)−1d−1

3) VN
C C specific N uptake rate of photoautotrophs mol N (mol C)−1d−1

4) VC
max maximum C fixation rate of photoautotrophs mol C (mol C)−1d−1

5) VC C fixation rate of a cell mol C (mol C)−1d−1

6) µ net growth rate of photoautotrophs d−1

7) A N-specific phytoplankton aggregation mmol N (m)−3d−1

8) G N-specific grazing mmol N (m)−3d−1

9) θ Chl:C ratio of a cell g Chl a (mol C)−1

10) θN Chl:N ratio of a cell g Chl a (mol N)−1

11) S chl Chlorophyll synthesis rates of photoautotrophs d−1

12) I Irradiance W m−2

13) Tref reference temperature for AE relation K

Table 1: Common parameters and auxiliary variables for the CN-REcoM and OBM.

Zooplankton: In both models, zooplankton grazing is described by a Holling type
III function (Morozov, 2010) on photoautotrophs and loss in zooplankton biomass (car-
bon and nitrogen) is accounted for by mortality. Additional details on zooplankton
compartment and ODEs for zooplankton biomass are given in Appendix A.1.

Detritus: Sources of detrital C and N biomass are represented in terms of phytoplank-
ton aggregation and mortality of zooplankton in both models. Respective ODEs for
detrital biomass can be found in Appendix A.2. Furthermore, the OBM and CN-
REcoM also resolve detrital chlorophyll (see Appendix A.2).

Dissolved inorganic compounds: Respiration by Zooplankton, remineralisation of la-
bile dissolved organic carbon (l DOC) compounds and sugars, and gas exchange with
the atmosphere are sources for dissolved inorganic carbon (DIC). The only sink of
DIC is the carbon assimilated by photoautotrophs. The sources of dissolved inorganic
nitrogen (DIN) are zooplankton excretion and remineralisation of labile dissolved or-
ganic nitrogen (l DON) compounds. Nitrogen utilisation by an algal community is the
primary sink of DIN in both models. The differential equation for DIN is given as:
Differential equation on DIC and DIC are given in Appendix A.3 and Appendix A.4.

Dissolved labile organic matter (LDOM): Freshly exuded and leaked organic mat-
ter from phytoplankton, hydrolysis of detritus and transparent exopolymer particles
(TEP) contribute to formation of L DOC and L DON. The conforming ODEs are de-
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scribed in Appendix A.6.

Dissolved combined carbohydrates (dCCHO): dCCHO acts as an additional sink
of dissolved organic compounds (DOC). dCCHOs coagulate to form TEP, which is
a physical-chemical transformation. The ODEs for formation of dCCHO and carbon
content of TEP(TEPC) are explained in Appendix A.6.

2.4. Differences between the OBM and CN-REcoM
The OBM and the CN-REcoM describe the regulation of C:N and Chl:C ratios of

algal cells in response to changes in external nutrient, light and temperature conditions.
CN-REcoM is largely based on the assumptions of Geider et al. (1998), asserting that
maximum photosynthetic rate is achieved by an algal cell when QN reaches QN

max. By
contrast, for the OBM µ is maximised by implementing an optimal resource allocation
strategy between nutrient acquisition and light-harvesting functions in a cell (Pahlow
et al., 2013).

Nutrient limiation: Nutrient assimilation (nitrogen in this study) in CN-REcoM is
a Michaelis-Menten function of maximum carbon-specific nitrogen uptake rate (VN

max)
and DIN. Notably, formulation of VN

max is modified from that of Geider et al. (1998),
e.g. in Schartau et al. (2007):

VN
max = V f act · VC

0 · T f · Qmax

1 + exp (−100 · (Qmax − QN))
(6)

With VC
0 being the maximum potential photosynthesis rate in d−1 and V f act is a factor (

<1) that relates the maximum potential nitrogen to VC
0 . The term T f is a function for the

temperature dependence of metabolic rates as used in Geider et al. (1998) , and Qmax

is the maximum of cellular N:C ratio in unit mol N (mol C)−1. The exponential term
introduced in the denominator of Eq. (6) prevents the singularity when VN

max reaches 0
as QN increases towards Qmax. This makes CN-REcoM more robust and amenable to
1D and 2D modelling approaches where an explicit representation of vertical turbulent
mixing is required. VN

C is finally calculated with the Monod equation:

VN
C = VN

max ·
DIN

DIN + kDIN
(7)

In contrast, nitrogen assimilation in the OBM is described by the optimality-based
kinetics as proposed in Pahlow et al. (2013). VN

C is given as a function of optimal
allocation factor for nutrient acquisition ( f o

v ), DIN and T f :

VN
C = f o

v ·
(√

1
(T f · VN

0 )
+

√
1

A0 · (DIN)

)−2

(8)

where VN
0 is the maximum potential nitrogen uptake rate and has unit mol N (mol

C)−1 d−1 and A0 is the nutrient affinity in m3 (mol C)−1 d−1. Notably, Smith et al.
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Parameters Description Unit
1) V f act conversion factor of maximum potential N uptake rate relative to VC

0 -
2) θmax maximum Chl:C ratio of a cell g Chl (mol C)−1

3) QN
max maximum N:C ratio of a cell mol N (mol C)−1

4) KDIN half-saturation constant for nitrate uptake mmol N m−3

Table 2: CN-REcoM specific parameters.

(2016) suggested A0 to be a better metric of competitive ability of photautotrophs for
nutrients than the half-saturation constant of Michaelis-Menten kinetics. Details about
the auxiliary variables and parameters related to nitrogen limitation for both models
are given in Tables 1, 2 and 3.

Algal growth: The growth rate of an algal cell in the CN-REcoM is estimated by
the difference between the carbon fixation rate ( VC) and losses owing to basal respira-
tion and costs of biosynthesis. Furthermore, we assume that the maintenance metabolic
rate constants describing basal respiration, remineralisation of algal N, degradation of
algal Chlorophyll (Chl) are identical, and denoted as a single parameter Rre f in units of
d−1.

µ = VC − (ζN · VN
C ) − Rre f (9)

Where ζN is the cost of N uptake in a photoautrophic cell in units of mol C (mol N)−1.
VC is affected by the light saturated maximum photosynthesis rate (VC

max), nutrient
limitation, light limitation and temperature (Geider et al., 1998).

VC = VC
max ·

[
1 − exp

(− α · θ · Iavg

VC
max

)]
(10)

where Iavg is the mean irradiance in Wm−2. θ is the chlorophyll a-to-carbon ratio in
units g Chl (mol C)−1, and α is the photosynthetic efficiency of photoautotrophs in mol
C (g Chla)−1 m2 W−1 d−1.

Parameters Description Unit
1) VN

0 photoautotrophic potential N fixation rate mol N (mol C)−1 d−1

2) RChl
M cost of chlorophyll maintenance d−1

3) RM total respiration maintenance cost d−1

4) ζChl cost of photosynthesis coefficient mol C (g Chla)−1

5) A0 potential nutrient affinity m3 mol C−1 d−1

Auxiliary variables
1) Qs Cell quota attached with structural proteins mol N (mol C)−1

2) f o
v Optimised fraction of N:C allocated for nutrient acquisition -

3) f o
LH Optimised fraction of N:C allocated for light harvesting -

4) θ̇ time derivative of theta g Chl a (mol C)−1

5) S I degree of light saturation -

Table 3: OBM specific parameters and auxiliary variables.
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In the OBM, µ is estimated by the difference between VC and the sum of respiration
costs (R) due to Chlorophyll a synthesis, nitrogen acquisition and basal respiration. In
contrast to the CN-REcoM, the OBM resolves explicitly respiration costs due to light
harvesting. VC of photoautotrophs is calculated from day length (Ld) as a fraction of 24
hour, the degree of light saturation (S I), optimal allocation factor for light harvesting
f o
LH , VC

0 and T f (Pahlow et al., 2013).

VC = Ld . f o
LH · T f · VC

0 · S I (11)

It is to note that for the OBM VC
0 and VN

0 are numerically identical. S I is the (dimen-
sionless) degree of light saturation.

The description of the auxiliary variables and parameters associated with phyto-
plankton growth for both models are given in Tables 1, 2 and 3.

Chlorophyll synthesis: Pigment synthesis in the CN-REcoM depends on light and
VN

C . Synthesis of chlorophyll ceases as chlorophyll a-to-nitrogen ratio of a cell, θN , ap-
proaches its maximum θN

max, which is a model parameter. Under high light conditions,
S chl is down-regulated and becomes inversely proportional to the light dependent term
(α · θ · Iavg).

S chl = VN
C ·

1
2
· (θN

max − θN) · VC

α · θ · I (12)

With θN in g Chl (mol N)−1.
Conversely, chlorophyll synthesis in the OBM is driven by a trade-off between

carbon fixation and respiratory costs of photosynthesis within the chloroplast, and does
not depend on θN

max. S chl depends on the (optimised) size of the chloroplast ( f o
LH), the

rate of change in QN and light conditions (Pahlow et al., 2013).

S chl =
(
µ +

θ̇

θ

)
(13)

where the term
(
θ̇
θ

)
is the optimal regulation term for chlorophyll a synthesis.

Auxiliary variables and model parameters describing chlorophyll synthesis are listed
in Tables 1, 2 and 3.

2.4.1. Control parameters
We have selected 7 model parameters of the OBM and 8 parameters of CN-REcoM

for the optimisations. 6 parameters are common for the OBM and CN-REcoM. These
parameters are:
1. PON0 ,
2. fdet ,
3. fzoo ,
4. Qmin ,
5. α ,
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6. γ.

Increasing the number of parameters for optimisation could affect the estimation of
model parameters (Denman, 2003; Friedrichs et al., 2007). Therefore, we have kept
the number of model parameters to a meaningful minimum. Krishna and Schartau
(2017) show that collinearities exist between estimates of initial conditions and eco-
logical model parameters, in particular algal growth parameters, and it is not possible
to determine either of them independently. Hence, we have decided to include initial
conditions as parameters (PON0, fdet and fzoo) along with the growth parameters in
our optimisations. Although the definition of the parameter α slightly differs between
OBM and CN-REcoM, it remains a major source parameter for the carbon (C) biomass
build up in both models. The units (mol C (g Chl a)−1 m2 W−1 d−1) of α are same in
OBM and CN-REcoM. The subsistence cell quota (Qmin) turns out to be a critical phys-
iological parameter in estimating C biomass (Krishna and Schartau, 2017). We assume
identical organic carbon and nitrogen exudation rates (γ) for photoautotrophs in both
models. γ is a critical parameter in constraining TEPC production and hence POC. In
CN-REcoM the maximum nutrient uptake rate is derived from VC

0 and V f act, whereas
in the OBM, the potential maximum rates of nutrient uptake (VN

0 ) and photosynthesis
(VC

0 ) are numerically identical.
PeECE-I has a short post-bloom period (Krishna and Schartau, 2017), hence pa-

rameters like maximum grazing rates and the aggregation rates are poorly contrained
by the available data (Schartau et al., 2017). Studies on skill assessment of models (e.g.,
Friedrichs et al. 2006, 2007; Ward et al. 2010) show that poorly constrained parameters
can strongly affect model performance. Therefore, we decided to use the same values
for grazing and aggregation-rate parameters as in Krishna and Schartau (2017).

2.4.2. Initial conditions
In OBM and CN-REcoM, the initial-conditions of some state variables are calcu-

lated by initial condition parameters. Total initial biomass is given by the parameter
(PON0) and distributed between living and non-living biomass. The parameter fdet
determines the fraction of PON0 that is assigned to initial detritus. The remaining
fraction, living biomass, is distributed between photoautotrophs and zooplankton as
specified by the initial zooplankton fraction parameter ( fzoo).

PON0 = DetN0 + ZooN0 + PhyN0 (14)
with the individual fractions:

DetN0 = fdet · PON0 (15)
ZooN0 = fzoo · (PON0 − DetN0) (16)
PhyN0 = (1 − fzoo) · (PON0 − DetN0) (17)

We compute initial C biomass of zooplankton and photoautotrophs from their respec-
tive N biomasses by applying a constant C:N ratio of 6.625. For the C biomass of
detritus we assume a higher C:N ratio ( = 2 × 6.625). We made this assumption be-
cause mesocosms were filled with late/post-bloom, nutrient depleted water, and hence
all dead particulate organic matter should have a C:N ratio that is typical for such post-
bloom conditions (Krishna and Schartau, 2017). We assume an initial Chl:N ratio of
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one. Therefore, the estimates are identical to initial N biomass of photoautotrophs in
both models. Initial conditions of DIC, TA, TEPC and dCCHO are taken from the data
of the mesocosms, whereas for DOC and DON we assumed small initial values close
to zero (with C:N = 10) as explicit measurements of refractory and labile DOC are not
available (DON = 0.005 mmolN m−3 and DOC = 0.05 mmolC m−3).

2.5. Data assimilation
Although both modelling approaches (OBM and CN-REcoM) in this study do not

resolve the effects of changes in carbonate chemistry of seawater on algal growth dy-
namics, we desire to assess the skills of the models in this respect. Thus, we would
like to simulate the three different CO2 treatments using the OBM and the CN-REcoM,
and investigate if there are any differences in the parameter estimates or the data-model
misfit function that suggest possible CO2 effects on phytoplankton growth dynamics.
Hence, we set up three simulation cases representing different CO2 concentrations. For
the first simulation set (FUT-PRE) we assimilated means of the data of mesocosms
treated with high (FUT ) and medium (PRE ) CO2 concentrations (high CO2 scenario).
For the FUT-GLA simulations means of the data of the FUT and GLA mesocosms were
assimilated (medium CO2 case). For PRE-GLA, we considered means of the data of
the PRE and GLA mesocosms. Our decision to assimilate data from two treatments in
each parameter optimisation is owing to the fact that the data sets for each individual
treatment (3 mesocosms) are insufficient for constraining our model parameters. Thus,
we included data from 6 mesocosms in each set (Table 4).

Simulated CO2 cases Description Assimilated mesocosms
1) “FUT-PRE” High CO2 scenario M1, M2, M3, M4, M5, M6
2) “FUT-GLA” Today’s CO2 scenario M1, M2, M3, M7, M8, M9
3) “PRE-GLA” Low CO2 scenario M4, M5, M6, M7, M8, M9

Table 4: Grouping of mesocosms in the respective CO2 cases.

2.5.1. Data-model misfit function (Cost function)
As described above, we consider the data for three cases (FUT-PRE, FUT-GLA,

PRE-GLA). However, we impose the same statistical assumptions in all three cases.
The observations vector (~yi) contains daily means of observations from six mesocosms
for five variables, namely: (1) dissolved inorganic carbon (DIC, mmol m−3), (2) dis-
solved inorganic nitrogen (DIN) (nitrate + nitrite, mmol m−3), (3) chlorophyll a (Chl
a, mg m−3), (4) particulate organic nitrogen (PON, mmol m−3), (5) particular organic
carbon (POC, mmol m−3).

Likewise, the model counterpart, the vector Hi
(
~x
)
, consists of daily means of model

states for the same variables. PON and POC are not state variables as they represent
sums of biomasses of living organisms and the detritus (Vallino, 2000). Modelled PON
(PONmod ) is the sum of N concentrations of photoautotrophs (PhyN), zooplankton
(ZooN) and detritus (DetN) for both models.

PONmod = PhyN + ZooN + DetN (18)
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Similarly, modelled POC (POCmod) includes contributions from C biomasses of phyto-
plankton (PhyC), zooplankton (ZooC), detritus (DetC), and TEPC and dCCHO.

POCmod = PhyC + ZooC + DetC + TEPC + dCCHO (19)

The residual vector (~di) represents the differences between observation vector and the
model output vectors.

~di = ~yi − Hi
(
~x
)

=



DICi

DINi

Chl ai

PONi

POCi


︸      ︷︷      ︸

data

−



DICmod
i

DINmod
i

Chlmod
i

PONmod
i

POCmod
i


︸         ︷︷         ︸

model results

(20)

We assume the same observational error model for all three cases. We compute
daily residual standard errors (σi) from the available measurements on a given day
for each case. The estimation of residual standard errors for DIC is not as straight-
forward as for the other variables (Krishna and Schartau, 2017). Since there are three
different CO2 treatments, we first computed the differences (offsets) of the mean initial
DIC concentrations for the FUT and GLA treatments from the mean initial DIC con-
centrations of the PRE treatment. Then, for those mesocosms that were treated with
high CO2 concentrations, the computed “offset” was subtracted from the DIC measure-
ments. Likewise, DIC values for the mesocosms of the PRE treatment were adjusted
(the “offset” value was added). Thus, initial mean DIC values for all three treatments
become identical, but the variability with respect to the means of the observations be-
tween the treatments still persists.

We defined our cost function as the maximum likelihood (ML) estimator to find
out the parameter vector (Θ̂) that maximises the conditional probability of explaining
the data for a given model together with a set of values assigned to the parameter
vector (Θ). Since we do not consider explicit prior information for the estimation
of model parameters, the posterior probability, p(~y | Θ) becomes proportional to the
negative logarithm of the maximum likelihood (J(Θ), or the cost function). For all three
simulation cases we use a similar cost function but different data (~yi) and covariances
(Ri) from the corresponding six mesocosms available for the period of Nt = 23 days.
The subscript i indicates on which day measurements were taken.

p(~y | Θ) ∝ exp[−1
2

J(Θ)] = constant · exp[−1
2

Nt∑

i=1

~di
T R−1

i
~di] (21)

Since the constant term in Eq. (21) is independent of Θ, the cost function we eventually
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minimise and compute is:

J(Θ) =

Nt∑

i=1

(
~yi − Hi

(
~x
))T R−1

i
(
~yi − Hi

(
~x
))

(22)

The time-varying covariance matrices Ri are constructed with diagonal matrices Si

(containing σi as diagonal elements at time ti) and correlation matrices (C(~y)). Corre-
lations between measurements were computed based on data from six mesocosms for
each case.

Ri = Si · C(~y) · Si (23)

The covariance matrices (Ri) are constructed for three distinct periods:
1. Exponential growth phase ( Day 1 to 10) ,
2. Bloom period (Day 11 to 14) ,
3. Post-bloom period (Day 15 to 23) .

Since the correlations between observations can change from the exponential growth
period to the post-bloom period (Schartau et al., 2017; Krishna and Schartau, 2017), we
employ period-specific covariance matrices in our data assimilation approach. How-
ever, for the bloom period we assume measurements to be uncorrelated. We dedicate
this period as a transition period because we do not have any information about the pre-
cise time when correlations change. Thus, for the bloom period covariance matrices
have off-diagonal elements of zero and contain only variances as the diagonal elements.

2.5.2. Parameter optimisation and uncertainty estimation
We applied intrinsic functions available in the R package FME (Soetaert and Pet-

zoldt, 2010) to optimise model parameters and estimate uncertainties associated with
them in all three cases (FUT-PRE, FUT-GLA, PRE-GLA). The first step of the optimi-
sation procedure is to come up with a parameter set corresponding to the model solu-
tion (reference solution) that is qualitatively in good agreement with observations of the
FUT-GLA case. The second step is the application of simulated annealing algorithm
(SANN), see (Bélisle, 1992), to perform a stochastic search of the parameter space and
find out the global minima of J(Θ) without getting trapped in local minima. In the
next step the result of the SANN algorithm is refined by using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970;
Shanno, 1970) — a gradient-based search algorithm that gives the best local parameter
estimate (Θ̂). The fourth step is to approximate the Hessian matrix (H) at Θ̂ using the
“Hessian” function available in the ”numDERIV package” in R. Further, the covari-
ance matrix (UΘ̂) is computed fromH (Schartau et al., 2017) as:

UΘ̂ = 2 · H−1 (24)
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Lastly, the marginal error or standard error information ( ul) around Θ̂ is derived from
the covariance matrix, UΘ̂ (Schartau et al., 2017) .

ul = t1− α
2

d f

√
UΘll (25)

where t1− α
2

d f is the two-tailed student’s t distributions for a given degree of freedom(d f )
and the quantile of the parametric probability density distribution (α), see Marsili-
Libelli et al. (2003).

The fifth and the final step of the optimisation procedure is the application of a
Markov Chain Monte Carlo (MCMC) method (Harmon and Challenor, 1997). The
MCMC method employed in this study is based on the Metropolis-Hastings (MH ) al-
gorithm (Metropolis et al., 1953; Hastings, 1970). The MH algorithm uses the marginal
error information around Θ̂ and samples the complete probability distribution of the pa-
rameter space to generate an ensemble of optimised model solutions. Application of
a MCMC method serves three main purposes: first, it estimates the credible range of
optimised parameter values (uncertainties); second, it derives collinearlities (correla-
tions) between the optimised parameter estimates. And third, it also provides the best
“optimised” solution, corresponding to the lowest cost function value.

Both plankton ecosystem models were coded and compiled as a shared library in
FORTRAN. This is done so that we can apply a FORTRAN-R wrapper function. The
wrapper allows us to take advantage of fast numerical Euler forward integrations of the
model equations in FORTRAN, and at the same time we can benefit from the open-
source R platform.

3. Results

3.1. Optimised parameter estimates and associated uncertainties
Seven parameters from the OBM and eight from the CN-REcoM were optimised

separately in the three CO2 treatment cases (FUT-GLA, FUT-PRE and PRE-GLA).
With our data assimilation approach we obtained an ensemble of optimised model solu-
tions for each CO2 case, including information on parameter uncertainties. We attribute
the differences in optimised parameter values between the three independent optimisa-
tions to potential CO2 effects. Table 5 shows the optimised parameter estimates for
both models in all the three cases. Our results clearly indicate differences in optimised
estimates of the respective control parameters and their associated uncertainties be-
tween the models. Figure 2 shows uncertainties in estimates of initial concentrations
of PON, zooplankton and detritus for the FUT-PRE, FUT-GLA and PRE-GLA meso-
cosms. For the OBM, estimates of initial concentrations of PON, zooplankton and
detritus are similar between the CO2 treatments. However, we find differences in opti-
mised values of initial concentrations between the cases for the CN-REcoM. The initial
concentrations of detritus and zooplankton seem to be underestimated by CN-REcoM
in the mesocosms treated with medium (present day) CO2 levels (Fig. 2). Low grazing
pressure in the FUT-GLA mesocosms promotes a faster algal biomass build up, which
is corroborated by the strong negative correlation between the parameters α and fzoo

for the CN-REcoM (Table A.3).
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We expected to identify systematic differences in parameter estimates (primarily
growth parameters) between the three CO2 treatments for both models, which would
clearly point towards CO2-effects on the algal growth dynamics that are not explicitly
resolved by these two models. We observe a distinct pattern in the estimates of pa-
rameters Qmin and VN

0 (numerically identical to VC
0 ) only for the OBM. The estimates

of Qmin and VN
0 are highest for the mesocosms exposed to high CO2 concentrations

compared to those with low CO2 (Fig. 3). By contrast, a similar relationship is not
observed for the CN-REcoM, as no inferable differences in estimates of Qmin and VC

0
can be seen between the treatments.

For the CN-REcoM, parameters (mainly α and Qmin) seem to be poorly constrained
by data, which is evident from the large uncertainties in the optimised estimates of α
and unrealistically low values of Qmin for photoautrophs (Fig. 3). The estimates of Qmin

are as low as 0.01 for the CN-REcoM, which are lower than the minimum in N:C ratios
seen for the extreme case of species with very high fat content, e.g. Nannochloropsis
oculata (Flynn et al., 1993; Hoffmann et al., 2010). Estimates of α are too high for
the CN-REcoM in all three cases (Fig. 3). Apparently, CN-REcoM minimises our cost
function by unrealistic overestimation of α and underestimation of Qmin. However, this
brute-force minimisation increases the chance of fitting noise to data (Friedrichs et al.,
2007). On the contrary, estimates of α and Qmin are well constrained for the OBM by
the data in all three cases (Fig. 3). Moreover, the optimised values are realistic and
comparable to the ones found in laboratory and field experiments.

Parameters Description FUT-PRE FUT-GLA PRE-GLA Unit

OBM

1) PON0 Initial concentration of particulate organic nitrogen 1.80 1.94 1.90 mmol N m−3

2) fdet fraction of PON0 assigned to non-living detritus 0.37 0.52 0.40 -
3) fzoo fraction of living PON0 assigned to zooplankton 0.94 0.77 0.77 -
4) α Photosynthetic efficiency of phytoplankton 1.40 3.33 1.65 mol C (g Chla)−1 m2 W−1 d−1

5) γ Algal loss rate of organic carbon and nitrogen 0.23 0.33 0.27 d−1

6) Q0/Qmin subsistence quota (minimum cellular N:C ratio) 0.04 0.03 0.02 mol N (mol C)−1

7) VC
0 photoautotrophic maximum potential photosynthesis rate 3.27 3.26 3.31 d−1

CN-REcoM

1) PON0 1.86 1.80 2.01 mmol N m−3

2) fdet 0.38 0.10 0.47 -
3) fzoo 0.98 0.92 0.933 -
4) α 5.67 7.72 7.70 mol C (g Chla)−1 m2 W−1 d−1

5) γ 0.21 0.23 0.24 d−1

6) Q0/Qmin 0.02 0.01 0.01 mol N (mol C)−1

7) VC
0 photoautotrophic maximum potential photosynthesis rate 3.27 3.26 3.31 d−1

8) V f act conversion factor of maximum potential N uptake rate relative to VC
0 0.31 0.22 0.24 -

Table 5: “Best” parameter estimates obtained from the MCMC method for both the models.
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Figure 2: Boxplot representation of the posterior distribution of initial condition parameters as obtained
from the MCMC method for the CN-REcoM and OBM in three CO2 cases.
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Figure 3: Boxplot representation of posterior distribution of ecological parameters as obtained from the
MCMC method for the CN-REcoM and OBM in three CO2 cases.
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(a) High CO2 (FUT-PRE) (b) Present CO2 (FUT-GLA)

(c) Low CO2 (PRE-GLA)

Figure 4: OBM ensemble plot for mesocosms with CO2 treatment, high (a), present (b) and low (c). Sym-
bols represent observations, grey trajectories ensemble solutions (100 members randomly subsampled) and
dashed green line represents the ”best” optimised solution corresponding to the lowest cost function value.
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(a) High CO2 (FUT-PRE) (b) Present CO2 (FUT-GLA)

(c) Low CO2 (PRE-GLA)

Figure 5: CN-REcoM ensemble plot for mesocosms with CO2 treatment, high (a), present (b) and low (c).
Symbols represent observations, grey trajectories ensemble solutions (100 members randomly subsampled)
and dashed green line represents the ”best” optimised solution corresponding to the lowest cost function
value.
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3.2. Data-Model intercomparison

Uncertainties in credible values of parameter estimates can generate model solu-
tions that are statistically indistinguishable. For each CO2 perturbation case we ob-
tain an ensemble of model solutions from the MCMC method. Figures 4a, 4b and
4c show ensemble solutions for the FUT-PRE, FUT-GLA and PRE-GLA mesocosms
compared to data for the OBM. Likewise, Figures 5a, 5b and 5c depict model-data
comparisons for the CN-REcoM. In general, the OBM appears to perform better than
the CN-REcoM in reproducing data. This inference is quantitatively supported by low
cost function values obtained for the solutions of the OBM compared to those for the
CN-REcoM. Large variations in cost function values highlight the parameter identifi-
cation problem for the CN-REcoM.

Models PRE-GLA FUT-GLA FUT-PRE

OBM J = 1966 ± 4.0 J = 3143 ± 20.4 J = 3099 ± 5.0

CN-REcoM J = 2185 ± 20.0 J = 5693 ± 129.4 J = 2982 ± 10.5

Table 6: Mean cost function values and standard deviations based corresponding to the posterior distribution
of parameter estimates obtained from the MCMC method for the three CO2 cases.

Both models reproduce DIC, PON and POC observations well in all three treat-
ments (Figs. 4a, 4b, 4c, 5a, 5b and 5c). Optimised solutions of OBM and CN-REcoM
show a systematic offset (delay) in the draw down of DIN which is more pronounced
between day 9 and day 13. The bias persists in all three CO2 cases despite differences in
parameter estimates. It seems, data assimilation method compensate for phase-lagged
PON and DIN data by fitting simulated PON to corresponding observations on the cost
of misfits in DIN. By doing so it generates overall low data-model misfit for the entire
period of the experiment in all three cases.

The accumulation of POC during the post bloom period is slower for the opti-
mised solutions of CN-REcoM compared to OBM. Since dCCHOs are the precursors
of TEPC, low estimates of γ for the CN-REcoM (Fig. 3) may result in the lower
TEPC production, and hence low POC concentrations. The OBM underestimates the
observed Chl a in the FUT-GLA case. This underestimation can be attributed to high
optimised values of α for phytoplankton in the FUT-GLA mesocosms (Fig. 3). The
higher the estimate of α, the lower the chlorophyll synthesis rate and higher the carbon
fixation rate in an algal cell.

3.2.1. Differences between the High-CO2 and low-CO2 model solutions (FUT-PRE
and PRE-GLA)

Both models reveal a CO2-dependency of subsistence quota (Qmin) of phytoplank-
ton in mesocosms. According to MCMC results, posterior estimates of Qmin increase
with the CO2 concentration (Fig. 3). A possible physiological interpretation of this
could be that phytoplankton in high-CO2 mesocosms experience environmental stress,
and hence invest more resources/energy in maintenance of cells to sustain life, e.g.,
synthesis of enzymes and thickening of cell wall. Consequently, less resources are
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available to support primary production and cellular growth. On the contrary, in the
low CO2 mesocosms phytoplankton are relatively less stressed. We find a pattern in es-
timates of VC

0 between CO2 cases for the OBM. Potential cellular carbon fixation rates
are higher for phytoplankton in the FUT-PRE mesocosms than the PRE-GLA ones.
This is consistent with the results of Riebesell et al. (2007) and Engel et al. (2013),
who observed increased photosynthetic rates of phytoplankton in response to elevated
pCO2. However, we do not find any relationship between CO2 concentrations and VC

0
for the CN-REcoM.

Although the OBM predicts high estimates of VC
0 for the FUT-PRE mesocosms,

the accumulation of POC is slow (Fig. 4a). Observations regarding effects of elevated
CO2 on marine phytoplankton have been ambiguous. On the one hand, studies have
shown elevated carbon fixation and growth rates in variety of phytoplankton taxa in
acidic environments (Riebesell et al., 2007; Hare et al., 2007; Riebesell et al., 2007;
Engel et al., 2013). On the other hand, primary production is often negatively impacted
by increasing CO2 concentrations (Sciandra et al., 2003; Langer et al., 2006). Thus,
the slow build up of biomass as predicted by the OBM for the high-CO2 mesocosms
is not unrealistic. Furthermore, from the POC data it is difficult to derive an inference
on relationship between CO2 treatment and POC build up, as the latter becomes highly
variable under nutrient depleted conditions. Production of TEPC is considered one of
the reasons for the variability in POC accumulation (Engel et al., 2014).

In general, models exhibit some delay in DIN uptake, but the draw down is slightly
faster for the FUT-PRE mesocosms, especially between day 9 and 13. This may be
because the maximum nitrogen uptake rates (VN

0 ) of phytoplankton are higher for the
high-CO2 mesocosms than the other two treatments. For the CN-REcoM, the prod-
uct of VC

0 and V f act yields the estimate of VN
0 , whereas for the OBM VC

0 and VN
0 are

numerically identical. Table 5 shows that both models find high VN
0 estimates for the

FUT-PRE mesocosms. Bowes (1993) and Beardall et al. (2009) also reported enhanced
nitrogen uptake rates for phytoplankton exposed to elevated CO2 levels.

3.3. Validation and cross-validation of optimised model solutions
The cost function is a useful metric to quantify model-data misfit. However, ob-

taining low model-data misfits is not only the criterion to assess the performance of a
model. Generating low cost function values does not necessarily indicate that a data-
assimilation model is robust, until it is validated against data that were not assimilated
or not used for parameter optimisations.

We cross-validated the “best” solution (optimised solution that yields the lowest
cost function value) from the respective CO2 ensemble solutions against the indepen-
dent data. For instance, the cost function value is assessed for the optimised solution
of the FUT-PRE mesocosms against data from GLA (glacial) mesocosms. Likewise,
the solution for the respective models that yielded the lowest cost function value for
the PRE-GLA mesocosms is cross-validated against the FUT (future) mesocosms. The
cost function value for the optimised FUT-GLA solution is evaluated with data from
the PRE (present) mesocosms. In this way we are able to assess the robustness of our
optimised model solutions.

Figure 6 shows the cost function values corresponding to the optimised solutions
for the three CO2 treatments. In addition, the figure depicts the model-data misfits
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that are obtained when optimised solutions for FUT-PRE, FUT-GLA and PRE-GLA
mesocosms are validated with independent data.
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Figure 6: Stacked bar plot representation of the cost function values corresponding to validation of the
“best” optimised solutions obtained in the three CO2 case against assimilated and unassimilated data for the
OBM and CN-REcoM.

In general, the OBM yields lower misfits than the CN-REcoM when configured
with assimilated and unassimilated data. Overall cost owing to the optimised solution
for the low CO2 mesocosms for the OBM is ≈ 10% lower than for the CN-REcoM.
Likewise, the optimised FUT-GLA solution for the CN-REcoM produces ≈ 57% higher
model-data misfit compared to the OBM (Fig. 6). However, the solutions for the high-
CO2 mesocosms for the OBM and CN-REcoM show similar cost function values. The
cross-validation results also give an edge to the OBM over the CN-REcoM (Fig. 6).
For the CN-REcoM, the cost corresponding to the cross-validation of the PRE-GLA
solution with the data from the FUT-PRE mesocosms is ≈ 24% higher than the one
of the OBM . Similarly, the optimised FUT-GLA solution for the CN-REcoM induces
≈ 20% higher misfit relative to the OBM when compared with unassimilated data.
The largest discrepancy in the cross-validation results is seen for the high-CO2 case
(FUT-PRE) between the models. The OBM yields ≈ 28% lower misfit value than the
CN-REcoM. To summarise, results of our cross-validation experiments suggest that the
OBM is a more robust model than the CN-REcoM in reproducing the unassimilated,
independent data.

3.4. Cellular ratios

Optimised estimates of VC
0 for the OBM are higher than those of CN-REcoM in all

three cases (Fig. 3). Figure 7 shows variations in cellular photosynthetic rates owing
to changes in Chl:C ratios. The OBM yields higher carbon fixation rates than the
CN-REcoM, however Chl:C ratios remain low (especially in the post bloom period).
It seems that, as the OBM accounts for optimal allocation of resources between light
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harvesting and nutrient acquisition functions of a cell, it can maintain some high carbon
fixation rates even when Chl:C ratios are low. This behaviour of the OBM is apparent
in the FUT-GLA case. On the other hand, Figure 7 reveals a strong constraint in the
formulation of the photosynthesis for the CN-REcoM: which is a cell can achieve high
values of carbon fixation rates only when QN approaches QN

max and θ approaches θmax.
Armstrong (2006) pointed out a similar problem for the model of Geider et al. (1998).
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Figure 7: Daily mean values for cellular Chl:C vs carbon fixation rates estimated by models for mesocosms
with CO2 treatment, high (a), present (b) and low (c). The colour palette (blue to red) depicts daily variations
in these ratios over the period of the experiment, starting from the day 1 (blue) to the day 23 (red).

For the FUT-GLA case, the OBM predicts high estimates of α, which means algal
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cells are able to achieve high photosynthesis rates at low chlorophyll concentrations.
Simulated phytoplankton exudation rates by the OBM are also higher for the FUT-GLA
mesocosms compared to the PRE-GLA and FUT-PRE ones, which applies to TEPC
production and POC concentrations as well. Apparently, the cost function finds high
values for photosynthetic efficiencies and exudation rates to produce a good ensemble
fit to observed accumulation of POC in the FUT-GLA mesocosms (Fig. 4b). But,
by doing so it generates misfits in Chlorophyll as Chl:C ratios are underestimated.
However, this trade-off in the cost function works well for the FUT-GLA solutions of
the OBM as it reduces the overall discrepancy between data and model integrated over
the time period of the experiment. More details on this are discussed below.

4. Discussion

A novel data assimilation approach is applied in this study to evaluate skills of
two plankton models, CN-REcoM and OBM, with data from mesocosms treated with
different CO2 concentrations. We want to assess whether neglect of CO2 dependency
in models is expressed in differences between parameter estimates. Ideally, we would
have obtained the similar optimised parameter values and associated uncertainty ranges
for both models in the respective CO2 case. However, our results reflect a more com-
plex picture. Uncertainties in initial condition parameters are larger for the OBM com-
pared to the CN-REcoM. But physiological parameters are better constrained for the
OBM in all three CO2 cases. Furthermore, a systematic pattern is seen in the estimates
of Qmin and V0

C for solutions of the OBM between the cases. Owing to the fact that we
assimilated data of three different CO2 treatments in our models, it may be possible to
attribute variations in the estimates of Qmin and V0

C to potential CO2 effects. However,
interestingly these effects are captured only by the OBM and not by the CN-REcoM.

4.1. Potential CO2 effects on phytoplankton growth dynamics
The most striking result of our study is that estimates of Qmin and V0

C show a depen-
dency on CO2 concentrations for the OBM. According to MCMC results, the highest
optimised values of V0

C and Qmin are obtained for the FUT-PRE mesocosms and lowest
for the PRE-GLA case. Although we do not explicitly resolve CO2 effects in the OBM,
these results are consistent with findings of previous studies concerning impacts of OA
on marine phytoplankton (e.g., Burkhardt et al. 1999; Riebesell et al. 2007; Gao et al.
2012). Burkhardt et al. (1999) and Gervais and Riebesell (2001) have observed an in-
crease in rates of carbon fixation in diatom culture in response to elevated CO2 levels.
Likewise, Shi et al. (2009) and Barcelos e Ramos et al. (2010) have found stimulating
effects of ocean acidification on coccolithophores. In addition, Riebesell et al. (2007)
noted that primary production increased by ≈ 40% in mesocosms treated with high
CO2. A major source of energy expenditure in phytoplankton is the active transport
of inorganic carbon across the membranes through the CO2 concentrating mechanisms
(CCMs) (Hopkinson et al., 2011). It is believed that in an acidic environment many
phytoplankton species can effectively down-regulate CCMs and use the energy saved
for carbon fixation and growth (Raven and Johnston, 1991; Gao et al., 2012). This may
explain high estimates of V0

C for phytoplankton in high CO2 mesocosms, as predicted
by the OBM.

Chapter 4. Comparison of two carbon-nitrogen regulatory models calibrated with
mesocosms data.

100



Interestingly, OBM also predicts high estimates of Qmin for phytoplankton in FUT-
PRE mesocosms and lowest for the FUT-GLA case. It appears that in the high-CO2
mesocosms photoautotrophs may invest a higher fraction of cellular resources in cel-
lular maintenance to sustain life than those in other mesocosms. The effect of high
maintenance costs is apparently antagonistic to the positive effect of enhanced carbon
fixation rates on algal growth in the high-CO2 mesocosms. However, this situation is
not unrealistic. Gao et al. (2012) investigated responses of marine primary produc-
ers to marine stressors (including OA). They found that diatoms exposed to high CO2
conditions show enhanced growth rates but also increased maintenance costs of pH
homeostasis. Schlüter et al. (2016) stressed that energetic costs of maintenance in phy-
toplankton are expected to rise in response of OA. Likewise for coccolithophores, with
decrease in pH and concentration of CO−2

3 ions the total energetic cost of calcification
(including maintenance costs) is believed to increase (Monteiro et al., 2016).
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Figure 8: Comparison of simulated POC:PON ratios by the OBM with corresponding observations for the
three CO2 treatments.

As noted above, the OBM finds high carbon fixation rates for phytoplankton in
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the FUT-PRE mesocosms. However, the predicted POC:PON ratios are lowest for the
mesocosms from the high-CO2 treatment, whereas the observed POC:PON ratios are
highest (see Fig. 8). This discrepancy is the result of the more severe underestimation
of POC in the FUT-PRE than in the other treatments. A possible explanation may be
that phosphorus limitation is not included in the OBM and hence production of PCH-
HOs and subsequently TEPC as cells enter P exhaustion phase is not captured by the
model. Furthermore, studies have shown elevated TEPC production in phytoplankton
when exposed to high CO2 concentration (Engel et al., 2004; Riebesell et al., 2007).
Since the OBM does not resolve any CO2 effect on exudation and TEPC formation,
this could be another reason for underestimation of POC.

On the one hand, the OBM gives us some insight into CO2 effects on phytoplankton
growth dynamics when evaluated with mesocosm data on OA. On the other hand, for
CN-REcoM we do not see any pattern in estimates of Qmin and V0

C between the CO2
treatments. Although optimised values of Qmin increase with the CO2 concentrations,
the estimates obtained for FUT-GLA and PRE-GLA are unrealistically low and thus
spurious.

4.2. Plastic vs. rigid model behaviours
A rigorous model skill assessment should be based on several criteria. While the

ability to reproduce observations is an important skill, it is equally important to as-
sess parameter uncertainties and robustness of the model, as well as the plausibility of
the parameter estimates obtained during calibration. For example, the CN-REcoM fits
most of the data quite well, but the estimates of its parameters (e.g. Qmin and α) are
unrealistic with large posterior errors. Friedrichs et al. (2007) stressed that models with
a large number of unconstrained parameters may have lower predictive ability. Such
models exhibit a high degree of plasticity (or flexibility) in their parameter estimates
which may result from structural deficiencies in these models (Ward et al., 2010; Schar-
tau et al., 2017). For instance, Qmin and α are poorly constrained for the CN-REcoM,
but the same parameters are well constrained for the OBM with the identical data. In
this case, inappropriate parameterization of processes in the CN-REcoM seems to be
the reason for poor parameter estimates.

Posterior estimates of α and Qmin for CN-REcoM seem unrealistic as these val-
ues fall outside of their typical ranges inferred from previous modelling studies that
employed similar parameterisations. CN-REcoM predicts much higher estimates of
α than the OBM in all three CO2 cases. For such high values of α, a model should
ideally yield low Chl:C ratios and high primary production rates for algal cells (Lewis
and Smith, 1983). However this is not the case, as we obtain low carbon fixation rates
and high Chl:C ratios for the CN-REcoM (Fig. 7). Thus, the behaviour of CN-REcoM
is not coherent with its parameter estimates. It appears that CN-REcoM contains a
structural uncertainty in its parameterisations that include Qmin and α because the same
parameters are well constrained for the OBM by the identical data.

Modelling studies before have highlighted structural deficiencies in the model of
Geider et al. (1998) for phytoplankton acclimation (Flynn et al., 2001; Armstrong,
2006; Smith and Yamanaka, 2007). Flynn et al. (2001) calibrated four plankton models
with culture data of Anning et al. (2000) and found significant shortcomings in the
parameterization for N assimilation in the Geider model. Likewise, Armstrong (2006)
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pointed out that some assumptions of the Geider model can not reproduce the data
of Laws and Bannister (1980) and hence may yield unreliable estimates of Chl:C and
N:C ratios. Smith and Yamanaka (2007) validated the Geider-based (G) model and the
optimality plankton growth (P) model of Pahlow (2005) with the data of Flynn et al.
(1994) and reported an unexpected behaviour of the G model in predicting Chl:C ratios.
The CN-REcoM is also based on assumptions of Geider et al. (1998), and hence we
cannot rule out deficiencies in the model formulations.

Optimised values of α and Qmin predicted by the OBM are comparable to estimates
obtained in previous studies for the same parameters. In this regard, the OBM seems
to display a rigid behaviour as it imposes strong constraints on estimates of its param-
eters during the calibration with data. However, this may make the OBM more skilled
than CN-REcoM because it yields solutions for the CO2 cases by finding parameter
estimates that are well in the range of their uncertainties as inferred from preceding
studies.

4.3. Model biases
Biases in multivariate model outputs can result from either structural deficiencies in

the model or from trade-offs in the metric we employ to calibrate the model. However,
since data have associated uncertainties as well, it is not trivial to analyse and assess
model skill based on model-data discrepancies (Allen et al., 2007a).

Our data assimilation results reveal a few biases in both models. Some of these
biases persist in all three CO2 cases irrespective of models, whereas others are specific
to a particular treatment. In the following, we disentangle biases due to uncertainty
in model parameterisations, mass balance problem in the data and trade-offs in the
cost function. A common bias that can be identified in solutions of the CN-REcoM
and OBM is the underestimation of observed chlorophyll in the pre-bloom period be-
tween days 1-4. During the initial phase of the PeECE-I experiment some growth of
picoplankton was observed (Engel et al., 2005). However, this initial growth is not
captured by models as they neither resolve phytoplankton size spectrum nor functional
groups. Thus, structural over-simplification of the phytoplankton compartment in the
CN-REcoM and OBM could be the reason for both models to underestimate chloro-
phyll concentrations at the beginning of the experiment. A similar bias was highlighted
in Krishna and Schartau (2017).

Both models predicts slower uptake of DIN in all three cases. As highlighted above,
exponential drawdown in observed DIN and build-up of PON data do not occur in the
same phase. In other words, the peak in observed PON is seen 1-2 days after the ex-
haustion of DIN. This may be occur due to: 1) some early loss of nitrogen via DON,
2) early grazing on phytoplankton and 3) plankton mortality due to bacterial infection.
However, in both models the concentration of PON peaks on the same day when DIN
is fully depleted (Figs. 4a, 4b, 4c, 5a, 5b and 5c), suggesting mass balance is main-
tained. This induces a discrepancy between observed DIN and PON and their model
counterparts, especially during the exponential growth phase. Thus, when models are
fitted to PON data, misfits in DIN are introduced, and vice versa.

In the FUT-GLA mesocosms, the OBM simulates lower chlorophyll concentrations
than observed. This underestimation of chlorophyll concentration can be explained by
low rates of chlorophyll synthesis and high exudation rates for phytoplankton in the
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FUT-GLA mesocosms. The OBM finds higher estimates of α and γ for the FUT-GLA
case than the other two. High values of α are typically found for low-light adapted phy-
toplankton as they are capable of utilising low light intensities to achieve high carbon
fixation rates at low chlorophyll concentrations (Falkowski, 1980). Thus, there could
be a possibility of self-shading effects in the FUT-PRE mesocosms according to the
OBM. However, the same inference cannot be derived from observations. The OBM
also predicts high values for γ which means higher exudation of DOC and PCHHOs,
and also enhanced TEPC production that eventually becomes part of POC. The OBM
reproduces POC observations quite well for the FUT-GLA case. We computed per-
centage model bias, Pbias (Allen et al., 2007b) for the OBM which is a measure of
systematic under- or overestimation of observations. Interestingly, we found highest
Pbias value for chlorophyll (62%) and lowest for POC (0.4%). Therefore, it is likely
that the OBM predicts high estimates of α and γ to yield a good fit to observed POC
and other variables except chlorophyll, and hence lowers the overall model-data misfit
for the FUT-GLA case.

5. Conclusion

Schartau et al. (2017) highlight that representative model results are those that can
explain data. The attraction of our data assimilation (DA) method is that it generates
a set of model solutions that explains observations and gives insight into model pa-
rameter estimates and their associated uncertainty ranges. We applied our novel DA
approach, which accounts for changes in correlations between observed measurement
types in the cost function during pre-bloom, bloom and post-bloom phases of the ex-
periment, to calibrate two plankton models, the optimality-based model (OBM) and
the Carbon:Nitrogen Regulated Ecosystem Model (CN-REcoM).

Parameters are better constrained for the OBM than the CN-REcoM in three CO2
treatments. Effects of CO2 are expressed as differences in parameter estimates between
CO2 treatments. A systematic pattern in estimates of the maximum-rate parameter
(V0

C) and the subsistence quota (Qmin) between the three CO2 treatments is revealed
for the OBM. The highest estimates of V0

C and Qmin are obtained for phytoplankton in
the mesocosms that were treated with high CO2 concentrations and lowest for those
in mesocosms with low CO2 levels. The OBM seems to suggest that ocean acidifica-
tion may stimulate carbon fixation rates in phytoplankton, but at the cost of increased
metabolic stress. However, a firm conclusion can be made only after considering an
explicit, mechanistic CO2 dependency in the OBM. Therefore, for future similar stud-
ies we suggest to include parameterisations in the OBM that resolve CO2 effects on
nutrient uptake and algal growth.

By contrast, we do not see a clear relationship between parameter estimates and
CO2 concentrations for the CN-REcoM, suggestive of potential CO2 effects. In ad-
dition, most of the parameters are poorly constrained for the CN-REcoM and some
of their estimates seem spurious. Our cross-validation results show that OBM so-
lutions are more robust than those of CN-REcoM as they yield lower misfits when
compared with independent data. Although our results show that the OBM underesti-
mates POC:PON ratios compared to those observed, in our assessment of two plankton
models we find that the OBM is more skilled than CN-REcoM.
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Appendix A. Indentical model compartments

Appendix A.1. Zooplankton
For both models, the grazing response of the zooplankton community is according

to Holling type III (Morozov, 2010), with no distinction between micro- and mesozoo-
plankton. Any loss in zooplankton biomass (carbon and nitrogen) is accounted for by
mortality. Zooplankton homeostasis in C and N stoichiometry is approximately main-
tained by restoring a constant N:C ratio (Qconst

zoo ) of 0.19, with a restoring time (τ) of 24
hours. We assume that respiration and excretion by zooplankton form the means for
restoring towards Qconst

zoo . The buildup and decline of zooplankton biomass depend on
prey concentration (grazing) and losses due to mortality, respiration and excretion. In
contrast to Joassin et al. (2011), the OBM and the CN-REcoM do not explicitly resolve
viral or bacterial biomass. In both models the microbial activity is implicitly consid-
ered to be part of remineralisation and hydrolysis. Thus, the rates of remineralisation
and hydrolysis depend on substrate concentration, and are assumed to be independent
of bacteria biomass. The differential equations (ODEs) for zooplankton C and N con-
centrations are given as:

d
dt

ZooC =
G

QN − rzoo − Mzoo

Qzoo
(A.1)

d
dt

ZooN = G − γN
zoo − Mzoo (A.2)

Where rzoo is the zooplankton respiration in unit mmol C m3 d−1 and Qzoo is the N:C
ratio of zooplankton in mol N (mol C)−1. γN

zoo and Mzoo is the nitrogen-specific zoo-
plankton excretion and mortality in mmol N m3 d−1 (see Table A.1).

Appendix A.2. Detritus
Detritus comprises all non-living particulate organic matter (Fasham et al., 1990).

Aggregation loss of photoautotrophs is a quadratic function of nitrogen biomass. The
aggregation equation resolves interactions between two types of particles: (a) aggre-
gation of cells of photoautotrophs and (b) aggregation of small algal cells with large
detritus. We assume that temperature- and substrate-dependent hydrolysis is respon-
sible for the degradation of detritus. Detritus disintegration acts as a source for labile
DOC (l DOC) and DON (l DON). Respective ODEs of detrital C and N mass are given
as:

d
dt

DetC =
A

QN +
Mzoo

Qzoo
− ωdet · T f · DetC (A.3)

d
dt

DetN = A + Mzoo − ωdet · T f · DetN (A.4)

With ωdet as the hydrolysis/degradation rate of detritus in d−1(Table A.1).
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Krishna and Schartau (2017) showed that a discrepancy occurs between simulated
and observed Chl a during the post-bloom period when detrital chlorophyll is not taken
into account. Hence, we explicitly resolve the detrital chlorophyll. As for N and C, the
source for detrital chlorophyll pigment is phytoplankton aggregation.

d
dt

DetChl = A · θ − Rre f · Chl (A.5)

Appendix A.3. Dissolved inorganic carbon (DIC)
Since the OBM allows for respiration by algae at night, the net carbon fixation may

become negative in the absence of light. In both models no differentiation have been
made between the utilisation of carbonate, bicarbonate ions and aqueous CO2. The
source-minus-sink (sms) equation for DIC is:

d
dt

DIC = −µ · PhyC + rzoo + ρ · T f · (LDOC + dCCHO) + FDIC (A.6)

Where ρ is the remineralisation rate of dissolved organic matter in d−1(Table A.1) and
FDIC is the flux due to air-sea gas exchange and has unit mmol C m−3d−1.

Appendix A.4. Dissolved inorganic nitrogen (DIN)
The DIN pool in the OBM and CN-REcoM is represented by the total concentration

of nitrate (NO−1
3 ), nitrite (NO−1

2 ) and ammonium (NH−1
4 ). However, the contributions

of individual constituents are not resolved. The differential equation for DIN uptake is:

d
dt

DIN = −(VN
C · PhyC) + γN

zoo + ρ · T f · LDON (A.7)

Appendix A.5. Total alkalinity (TA)
Since we do not resolve calcification, the only source of TA in both models is DIN

and DIP (dissolved inorganic phosphorus) uptake by phytoplankton. Since models
do not explicitly resolve sources and sinks of DIP, we assume a fixed stoichiometry
(∆DIP = 1

6 ·∆DIN) to derive the contributions of changes in DIP from those in DIN.
Additionally, we assume that the one half of the N excretion by zooplankton constitutes
NH−1

4 and the other half NO−1
3 and NO−1

2 .Thus, the net TA change is zero (Krishna and
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Schartau, 2017). Temperature-driven remineralisation of LDON and LDOP is the only
process that decreases total alkalinity of the system in our study. The ODE for TA
changes is:

d
dt

TA = (1 + 1/16) · VN
C

QN · PhyN − (1 + 1/16) · ρ · T f · LDON (A.8)

Appendix A.6. Dissolved organic matter (DOM) and TEP

DOM comprise DOC and DON, and produced by exudation of carbon and nitro-
gen by phytoplankton and hydrolysis of detrital matter. In both the models, sinks of
DOC consist of residual labile dissolved organic carbon (LDOC) and dCCHOs. The
temperature-dependent remineralisation process acts as a sink for LDOC and LDON.

d
dt

LDOC = γ · (1 − fdCCHO) · PhyC + ωdet · T f · DetC

+ ωgel · T f · TEPC − ρ · T f · LDOC (A.9)

d
dt

LDON = γ · PhyN + ωdet · T f · DetN − ρ · T f · LDON (A.10)

Where fdCCHO is the fraction of exudates assigned to dCCHO (Krishna and Schartau,
2017). ωgel is the hydrolysis/degradation rate of TEPC in d−1. We estimate a temporally
varying fraction of DOC exudates ( fdCCHO) that enters the dCHHO pool from QN :

fdCCHO =
[
1 + pdCCHO · exp(1 − Qs/QN)

]−1
(A.11)

With Qs being the N quota attached with structural proteins in mol C (mol N)−1 and
pdCCHO is the fraction of DOC allocated to dCCHO (see Table A.1). It is to note that
dCCHO act as precursors for the formation of TEPs. In other words TEP production is
the sink for dCCHO pool. The corresponding differential equation for dCCHO is:

d
dt

dCCHO = γ · fdCCHO · PhyC − φdCCHO · dCCHO2 − φTEP · dCCHO · TEPC

− ρ · T f · dCCHO (A.12)

Where φdCCHO and φTEPC are the coagulation parameters (Krishna and Schartau, 2017).

TEPC is explicitly resolved in models. The fluctuations in TEPC production can
induce variations in the C:N ratio of particulate organic carbon (POC), especially dur-
ing nutrient-limited periods (Engel et al., 2004; Schartau et al., 2007). Hence, TEPC is
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a critical constituent of POC measurements (Verdugo et al., 2004). The formation of
TEPC is described by coagulation of dCCHOs and aggregation of dCCHO with TEPC
(Engel et al., 2004; Schartau et al., 2007). The mathematical equation describing TEPC
production is following:

d
dt

TEPC = φdCCHO · dCCHO2 + φTEPC · dCCHO ·TEPC−ωgel · T f ·TEPC (A.13)

Parameters Description Unit
1)AE slope of arrhenius relationship K
2) aw light attenuation due to water column m−1

3) ac light attenuation due to chlorophyll a (mg Chla)−1 m3

4) ρ remineralisation rate of dissolved organic matter d−1

5) ωdet hydrolysis/degradation rate of detritus d−1

6) ωgel hydrolysis/degradation rate of TEPC d−1

7) φdCCHO coagulation parameter of dCCHO m3 (mmol C)−1 d−1

8) φTEPC coagulation parameter of dCCHO-TEPC m3 (mmol C)−1 d−1

9) φagg aggregation rate m3 (mmol N)−1 d−1

10) pdCCHO minimum DOC fraction allocated to dCCHO
11) gm nitrogen specific maximum grazing rate d−1

12) ε prey capture rate normalised to maximum grazing rate (mmol N)2 m−6

13) Qzoo
const Constant N:C ratio in zooplankton mol N (mol C)−1

14) Mzoo mortality rate of zooplankton d−1

15) Rbasal zooplankton basal respiration rate d−1

Table A.1: Additional common parameters for CN-REcoM and OBM

fdet fzoo α γ Q0/Qmin VN
0

OBM
PON0 0.43 / 0.54 / 0.37 0.38 / - 0.41 / 0.17 -0.19 / 0.52 / 0.12 0.15 / 0.38 / 0.33 0.28 / -0.27 / -0.04 0.43 / -0.16 / 0.36
fdet . 0.0 / - 0.88 / -0.24 0.32 / 0.92 / 0.35 -0.1 / -0.13 / -0.17 0.30 / -0.15 / 0.34 0.10 / -0.74 / -0.17
fzoo . . -0.75 / -0.86 / -0.38 -0.33 / 0.19 / 0.27 0.79 / 0.41 / 0.17 0.96 / 0.89 / 0.74
α . . . 0.41 / 0.10 / 0.42 -0.53 / -0.34 / -0.35 -0.70 / -0.70 / -0.01
γ . . . . -0.46 / -0.33 / -0.40 -0.19 / 0.56 / 0.81
Q0/Qmin . . . . . 0.84 / 0.32 / -0.01

Table A.2: Correlation coefficients between the optimised parameter values of the OBM as estimated by the
MCMC method for the three CO2 cases (FUT-PRE / FUT-GLA / PRE-GLA). Correlation coefficients ≥ 0.6
are marked bold face.

fdet fzoo α γ Q0/Qmin VC
0 V f act

CN-REcoM
PON0 0.64 / 0.21 / 0.53 0.40 / -0.31 / 0.10 0.47 / 0.27 / 0.20 -0.36 / 0.29 / 0.14 -0.36 / -0.01 / -0.01 - 0.32 / 0.30 / -0.10 0.48 / -0.28 / 0.21
fdet . 0.40 / 0.14 / -0.04 0.38 / 0.04 / 0.29 -0.1 / 0.00 / 0.01 - 0.05 / -0.01 / 0.17 - 0.33 / 0.03 / 0.01 0.52 / 0.04 / 0.15
fzoo . . 0.10 / -0.80 / -0.40 0.18 / - 0.71 / -0.04 - 0.04 / - 0.10 / 0.31 0.02 / - 0.81 / 0.38 0.41 / 0.91 / 0.02
α . . . 0.26 / 0.91 / 0.39 -0.54 / 0.04 / -0.20 -0.67 / 0.98 / - 0.22 0.65 / - 0.90 / 0.12
γ . . . . -0.58 / -0.02 / -0.22 -0.10 / 0.90 / 0.34 0.18 / -0.71 / -0.21
Q0/Qmin . . . . . 0.73 / 0.05 / 0.65 - 0.61 / - 0.06 / -0.50
VC

0 . . . . . . - 0.90 / -0.92 / -0.87

Table A.3: Correlation coefficients between the optimised parameter values of CN-REcoM as estimated by
the MCMC method for the three CO2 cases (FUT-PRE / FUT-GLA / PRE-GLA). Correlation coefficients ≥
0.6 are marked bold face.
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Chapter 5

Summary & conclusive discussion

This thesis has addressed two important aspects of oceanography that are
related to: 1) the response dynamics of marine planktonic ecosystems to OA,
and 2) estimation of model parameters with a data assimilation (DA) approach.
On the one hand, the thesis provides some valuable insights into physiological
and community level responses of marine phytoplankton to OA. On the other
hand, it highlights novel DA approaches that facilitate parameter identification
in marine ecosystem models and maximise their predictive capabilities.

Model-based data analyses of an OA experiment were performed, in which
observations from a mesocosm experiment were interpreted with different dy-
namical model approaches. The plankton models were calibrated with these
data and were applied to investigate CO2 effects on phytoplankton growth dy-
namics in the mesocosms. The analyses were somewhat different from classical
statistical analyses of the data. With the definition of the model equations
we become explicit about the underlying dynamics of the system. Two model
approaches (and three model versions) have been applied in this thesis. The
first model approach (an optimality-based model) resolves OA effects on cal-
cification by coccolithophores (see Chapter 2). With this model approach the
variability observed in TA and calcification during the PeECE-I experiment
is investigated. In the next study the performance of two plankton models
is assessed against data from the same mesocosm experiment. These models
differ with respect to their description of nutrient uptake and phytoplankton
growth. Intentionally, no OA effect was considered in both models in this
particular analysis. The idea was to test whether this neglect of any CO2 de-
pendency is expressed in estimates of the physiological parameters when fitted
with data of different CO2 treatments.

All mesocosms have been assumed to be homogeneously mixed. There-
fore the applied models do not resolve vertical transport of organic matter.
However, these 0-D model approaches describe all important physio-ecological
processes of a marine ecosystem and allow the estimation of mass flux through
a planktonic ecosystem.

Data assimilation (DA) methods were used for a synthesis of mesocosm ob-
servations and model results, as well as for the optimisation of model parame-
ter values, along with their uncertainties. The cost functions applied in these
methods account for changes in correlations between observations during dif-
ferent phases of phytoplankton growth (e.g., pre-bloom, bloom and post-bloom
periods). This approach has not been applied in any data assimilation studies
so far. DA methods helped to successfully reproduce most of the observed
data and give some valuable insights into physiological and ecological aspects
of phytoplankton dynamics in the mesocosms (e.g. cellular level responses to
elevated CO2 levels and variability in calcification and accumulation of POC at
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the community level). In the following synthesis, key results of this thesis are
presented.

5.1 Effects of initial conditions on physio-ecological

processes in mesocosm experiments

In mesocosm experiments initial conditions (ICs) play a critical role as these
determine the food web dynamics in the mesocosms and also affect the esti-
mates of mass fluxes that are exchanged at different trophic levels (Vallino,
2000). Likewise, marine ecosystem models that simulate mass flux at local
oceanic sites are also sensitive of initial conditions and physical forcings (e.g.
Gibson and Spitz 2011 ).

In Chapter 3 an optimality-based model has been applied to find the source
of variability observed in calcification and TA between mesocosms (especially
those from the same CO2 treatment). To answer this question a data assim-
ilation approach has been designed in which mesocosms are sorted into three
groups depending on rates of calcification, and data from these mesocosms are
assimilated in three separate sets (cases) of model simulations (see Chapter
3). These three groups of distinct calcification rates happened to be exposed
to different CO2 conditions. This way we could separate the initial condition
problem from a possible CO2 effect on calcification. Data assimilation method
yields an ensemble of model solutions for respective cases. The spread of these
solutions captures the large part of observed variability in data (particularly
PIC and TA). With small variations in initial biomass of coccolithophores the
model is able to reproduce most of the variability in PIC and TA data (see
Figs. 5 and 14 in Chapter 3). Thus, according to the model, the large variabil-
ity that was observed in calcification and TA in the PeECE-I could have been
generated due to small differences in initial abundance of coccolithophores and
respective photo-acclimation states during initialisation (filling) of mesocosms.

Eggers et al. (2014) stressed the relevance of initial plankton community
composition in driving dynamics of planktonic ecosystems. They found that
initial abundance of phytoplankton had a greater impact than OA on the stand-
ing stock biomass at the end of the experiment. Results obtained in Chapter 3
reveal similar finding. It has been shown that the variability generated due to
uncertainties in ICs is much larger than the simulated CO2 effect (Fig. 14 in
Chapter 3). Eggers et al. (2014) also stressed that initial ratio between algal
species (e.g., cyanobacteria, diatoms, and dinoflagellates) is the key to the out-
come of competitive dynamics. This corroborates the model results obtained in
Chapter 3. According to the model, in mesocosms with high calcification rates
coccolithophores outcompete bulk phytoplankton as their initial abundance is
higher, and vice versa for low calcification mesocosms.

5.2 CO2 effects on cellular physiology of photoau-

totrophs and community level dynamics

To discriminate a CO2 response signal from all the other factors that con-
trolled/affected the calcification rates in the PeECE-I experiment, a CO2 de-
pendency of calcification has been adopted from Findlay et al. (2011) and
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applied to an optimality-based model (Chapter 3). The model suggests that
the effect of CO2 on calcification (accumulation of PIC) and TA is small. To
obtain a weak OA response signal on calcification is not unrealistic. There are
studies (e.g., Buitenhuis et al. 1999; Langer et al. 2006; Rickaby et al. 2010;
Engel et al. 2014) that show no conclusive evidence of stimulating effects of
OA on calcification.

In contrast to the calcification study, no CO2 dependency is considered in
model approaches (OBM and CN-REcoM) applied in Chapter 4. Neither of
these models explicitly resolve CO2 effects on algal growth dynamics. They
are employed to investigate whether there are any systematic variations in es-
timates of model parameters between mesocosms of different CO2 treatments
that can be related to potential OA effects. This is achieved with a data as-
similation approach in which three sets of simulations have been set up for
both models, mimicking three different CO2 treatments. Results obtained for
the OBM show high estimates of parameters V C

0 (potential maximum photo-
synthesis rate) and Qmin (subsistence quota) for phytoplankton in mesocosms
with high CO2 and vice versa for those in low CO2 mesocosms. However, no
such relationship is seen in parameter estimates of the CN-REcoM.

As noted above, the pattern in the estimates of V C
0 and Qmin between CO2

treatments (in the neglect of CO2 dependency) is obtained only for the OBM.
A possible reason for this could be that the OBM accounts for the optimal
allocation of resources between nutrient uptake and light harvesting functions
of a cell, which is not the case for the CN-REcoM.

Results obtained in Chapter 4 support the OBM to be more “skilful” than
the CN-REcoM. Owing to this fact, differences in parameter estimates of the
OBM can be attributed to possible CO2 effects. From an ecological perspec-
tive, the OBM seems to suggest that OA may stimulate carbon fixation rates
in phytoplankton, but at the expense of elevated metabolic costs. This is
supported by findings of previous studies that investigated OA effects on phys-
iology of marine phytoplankton (Zondervan et al., 2002; Riebesell et al., 2007;
Gao et al., 2012; Monteiro et al., 2016). Gao et al. (2012) studied effects of OA
along with other stressors on growth dynamics of phytoplankton. Their results
show enhanced primary production rates and increased maintenance costs of
pH homeostasis in algae treated with high CO2. Monteiro et al. (2016) high-
lighted that energy demand for calcification in coccolithophores, that includes
transport, metabolic, structure and maintenance costs, is believed to increase
in acidic conditions.

5.3 Collinearity in model parameter estimates

The identification of collinearities in parameter estimates inform about those
parameters that cannot be estimated independent of others (Matear, 1995;
Schartau et al., 2017). Gibson and Spitz (2011) stressed that it is of great
interest to explore the sensitivity of an ecosystem model dynamics to uncer-
tainty in biological parameters, initial conditions and environmental forcing
and collinearities between them. In this thesis, collinearities between model
parameters and initial conditions were clearly identified, as well as between
different physiological parameters for different model approaches.
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Results of Chapter 2 show that parameter collinearities are sensitive to the
type of metric that is used to calibrate the model. In Chapter 2 the perfor-
mance of four cost functions has been evaluated while configuring a plankton
model with mesocosm data. Correlations between optimised values of loss pa-
rameters (mainly the exudation parameter γ) are significantly reduced when
the cost function based on probabilistic assumption of data covariances is ap-
plied (Figs. 2.2 and 2.4 in Chapter 2). Similar results are discussed in Schartau
et al. (2017), who calibrated a plankton model with mesocosm data to estimate
algal loss parameters. They get better information on parameter estimates and
obtain reduced collinearities when cost function with covariances was used.

Data assimilation results in Chapter 3 reveal strong negative collinearities
between estimates of fcocco and estimates of α and αcocco. This indicates that
initial abundance of coccolithophores in mesocosms can not be estimated inde-
pendently of physiological model parameters (e.g. α and αcocco). As these pa-
rameter dependencies are resolved by the data assimilation approach in Chap-
ter 3, it became possible to understand the contribution of two initial factors
(initial abundance and photo-acclimation states of coccolithophores) in gener-
ating a large variability in calcification. Gibson and Spitz (2011) pointed out a
similar sensitivity between estimates of initial phytoplankton and nitrate con-
centrations and values of annual primary productivity in their regional marine
ecosystem model.

In Chapter 4 collinearities between two physiological parameters, maximum
potential photosynthesis rate of photoautotrophs (V C

0 ) and subsistence quota
(Qmin), have been revealed for two different model setups (OBM and CN-
REcoM). Both models find strong positive correlation between V C

0 and Qmin
only for phytoplankton in the mesocosms treated with high CO2 concentrations
(Table 6 in Chapter 4). As this dependency between V C

0 and Qmin is only
obtained for high CO2 mesocosms, it may be reasonable to speculate that OA
can invoke antagonistic physiological responses on growth of marine algae.

5.4 Model biases

Few model biases are identified in this thesis. All model approaches described
tend to underestimate phytoplankton biomass (PON) and chlorophyll during
the start of the experiments (see Chapters 3 and 4). Initial picoplankton bloom
was observed during the pre-bloom period of the PeECE-I experiment (Engel
et al., 2005). Models introduced in this thesis do not resolve size spectrum of
phytoplankton. As no size-based distinction has been, models may fail to cap-
ture early picoplankton bloom which could lead to underestimation of PON and
Chl compared to observations between day 1 and day 4. Joassin et al. (2011)
proposed a dynamical plankton model to simulate mesocosms of “Present”
treatment from the PeECE-I experiment. Their model also underestimates
Chl and PON at the start of the experiment, may be for the same reason as
noted before.

Another bias has been observed in the simulated calcification response to
elevated CO2 level (see Chapter 3). The optimality-based model systemati-
cally overestimates calcification by coccolithophores in mesocosms treated with
high CO2 concentrations. This is evident from positive values of PIC residu-
als (model minus data) for mesocosms treated with high CO2 (Figure 13 in
Chapter 3). Although the model yields low cellular PIC:C-assimilation ratio
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for the “Future” treatment mesocosms, it simulates a weak OA response on
calcification at the plankton community level.

A common bias is identified for the OBM and CN-REcoM in Chapter 4.
Both models predict some slower uptake of DIN compared to observations.
Graphical visualization of observations from the PeECE-I experiment show
that increase in PON do not match up with drawdown in DIN. This is why we
assumed observations to be uncorrelated between day 11 and day 14 in the cost
function applied in Chapter 4. However, for models peak in PON is obtained
on the same day when DIN gets fully exhausted. This leads to a discrepancy
between data and model results. To compensate for this, it seems the cost
function tolerates misfits in DIN to generate good fit to PON data (see Figs. 4
and 5 in Chapter 4). And by doing so it yields lower overall model-data misfit
for the entire period of the experiment.
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Chapter 6

Outlook: What can be improved
for similar future studies.

It has been shown that small uncertainties in initial conditions can lead to a
large variability in response of dynamics of a planktonic ecosystem (e.g. in
calcification, see Chapter 3). Therefore, for future mescosom studies on OA
we should put more efforts to measure initial conditions, e.g. data about
initial plankton composition and measurements of initial nitrogen-to-carbon
and chlorophyll-to-carbon ratios. For the experimental set up of future OA
experiments, it is suggested to sort mesocosms into groups with similar initial
conditions (e.g. phytoplankton abundances) first, and then perturbed these
groups with different levels of CO2 concentrations. This way we can resolve
the effects of initial conditions and we may increase the chance of detecting a
robust OA response signal, as noise-to-signal ratio will be reduced.

The model parameter describing the maximum grazing rate can remain
poorly constrained in absence of explicit data about zooplankton and detritus
(as shown in Chapter 2). As this zooplankton parameter is not identified,
no firm model-based inferences on zooplankton dynamics and their top-down
control on phytoplankton can be made. Therefore, more emphasis should be
put on measurements of zooplankton abundance, composition and grazing rates
in future mesocosm experiments, as these data may facilitate identification of
zooplankton related model parameters.

Although plankton models (OBM and CN-REcoM) do not explicitly resolve
effects of CO2 on growth dynamics of phytoplankton, they (mainly OBM)
suggest a dependency of physiological parameters (related to phytoplankton
growth) on CO2 (see Chapter 4). Therefore, for the future modelling studies
with the OBM addressing similar scientific questions it might be beneficial to
include parameterisations for CO2 effects on nutrient uptake and phytoplank-
ton growth in the model. In Chapter 4, the simulated POC:PON ratios are
underestimated by the OBM compared to observations. This may be resolved
by including phosphorus (P) limitation in the model for the future studies.
Introduction of P-limitation may improve the solutions of carbon exudation as
it induces delayed reduction in nitrogen uptake, and hence continous uptake
of carbon can take place until N:C ratio reaches its minimum (Qmin).

Different aspects of data assimilation, e.g. parameter optimisation and
quantification of uncertainties in parameter estimates, have been extensively
addressed here. A probabilistic based cost function, that accounts for temporal
covariances between measurement types, is shown to perform much better as
metric for model calibration than other cost functions (e.g. RMSEs). Data
assimilation results presented in this thesis show that cost functions (prob-
abilistic approaches) with covariances facilitate parameter identification and
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uncertainty estimation as well as help to reduce parameter collinearities (Chap-
ters 2, 3 and 4). Thus, for subsequent data-model syntheses of multivariate
nature, this thesis recommends application cost functions that are derived from
probabilistic approaches and account for temporal and/or spatial correlations
between observations.
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Terbrüggen, A., and Zondervan, I. (2004a). Transparent exopolymer par-
ticles and dissolved organic carbon production by Emiliania huxleyi exposed
to different CO2 concentrations: a mesocosm experiment. Aquatic Microbial
Ecology, 34(1):93–104.

Engel, A., Thoms, S., Riebesell, U., Rochelle-Newall, E., and Zondervan, I.
(2004b). Polysaccharide aggregation as a potential sink of marine dissolved
organic carbon. Nature, 428(6986):929–932.

Engel, A., Zondervan, I., Aerts, K., Beaufort, L., Benthien, A., Chou, L.,
Delille, B., Gattuso, J.-P., Harlay, J., Heemann, C., et al. (2005). Testing
the direct effect of CO2 concentration on a bloom of the coccolithophorid
Emiliania huxleyi in mesocosm experiments. Limnology and Oceanography,
50(2):493–507.

Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C. (2008). Impacts of
ocean acidification on marine fauna and ecosystem processes. ICES Journal
of Marine Science, 65(3):414–432.

Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield,
O., and Taylor, F. (2004). The evolution of modern eukaryotic phytoplankton.
science, 305(5682):354–360.

Fasham, M., Ducklow, H., and McKelvie, S. (1990). A nitrogen-based model of
plankton dynamics in the oceanic mixed layer. Journal of Marine Research,
48(3):591–639.

Faugeras, B., Bernard, O., Sciandra, A., and Lévy, M. (2004). A mechanistic
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Gao, K., Helbling, E. W., Häder, D.-P., and Hutchins, D. A. (2012). Responses
of marine primary producers to interactions between ocean acidification, so-
lar radiation, and warming. Marine Ecology Progress Series, 470:167–189.

129



BIBLIOGRAPHY

Gattuso, J.-P. and Hansson, L. (2011). Ocean acidification. OUP Oxford.

Gauthier, O., Virieux, J., and Tarantola, A. (1986). Two-dimensional nonlinear
inversion of seismic waveforms: Numerical results. Geophysics, 51(7):1387–
1403.

Geider, R. J., Maclntyre, H. L., and Kana, T. M. (1998). A dynamic regulatory
model of phytoplanktonic acclimation to light, nutrients, and temperature.
Limnology and Oceanography, 43(4):679–694.

Gervais, F. and Riebesell, U. (2001). Effect of phosphorus limitation on elemen-
tal composition and stable carbon isotope fractionation in a marine diatom
growing under different CO2 concentrations. Limnology and Oceanography,
46(3):497–504.

Gibson, G. and Spitz, Y. (2011). Impacts of biological parameterization, initial
conditions, and environmental forcing on parameter sensitivity and uncer-
tainty in a marine ecosystem model for the Bering Sea. Journal of Marine
Systems, 88(2):214–231.

Gilbert, J. C. and Nocedal, J. (1992). Global convergence properties of con-
jugate gradient methods for optimization. SIAM Journal on optimization,
2(1):21–42.

Giordano, M., Beardall, J., and Raven, J. A. (2005). CO2 concentrating
mechanisms in algae: mechanisms, environmental modulation, and evolu-
tion. Annu. Rev. Plant Biol., 56:99–131.

Goldenberg, S. U., Nagelkerken, I., Ferreira, C. M., Ullah, H., and Connell,
S. D. (2017). Boosted food web productivity through ocean acidification
collapses under warming. Global Change Biology.

Goldfarb, D. (1970). A family of variable-metric methods derived by variational
means. Mathematics of Computation, 24(109):23–26.

Graham, E. R. and Thompson, J. T. (2009). Deposit-and suspension-feeding
sea cucumbers (Echinodermata) ingest plastic fragments. Journal of Exper-
imental Marine Biology and Ecology, 368(1):22–29.

Gregg, W. W., Friedrichs, M. A., Robinson, A. R., Rose, K. A., Schlitzer,
R., Thompson, K. R., and Doney, S. C. (2009). Skill assessment in ocean
biological data assimilation. Journal of Marine Systems, 76(1):16–33.
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A. (2012). Immunotoxic effects of environmental toxicants in fish—how to
assess them? Environmental science and pollution research, 19(7):2465–
2476.

Shannon, D. F. (1970). Conditioning of quasi-Newton methods for function
minimization. Mathematics of Computation, 24(111):647–656.

134



BIBLIOGRAPHY

Short, F. T., Burdick, D. M., and Kaldy, J. E. (1995). Mesocosm experiments
quantify the effects of eutrophication on eelgrass, Zostera marina. Limnology
and oceanography, 40(4):740–749.

Shuter, B. (1979). A model of physiological adaptation in unicellular algae.
Journal of theoretical biology, 78(4):519–552.
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