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Abstract 

Because of anthropogenic global warming, the world ocean is currently losing oxygen. This trend 

called ocean deoxygenation is particularly pronounced in low-latitude upwelling-related oxygen 

minimum zones (OMZs). In these areas, the temperature-related oxygen drawdown is additionally 

modulated by biogeochemical feedback mechanisms between sedimentary iron (Fe) and phosphorus 10 

release, water column nitrogen cycling and primary productivity. Similar feedbacks were likely active 

during past periods of global warming and ocean deoxygenation. However, their integrated role in 

amplifying or mitigating climate change-driven ocean anoxia has not been evaluated in a systematic 

fashion. Moreover, many studies on past (de)oxygenation events emphasize anoxic-sulfidic (i.e., euxinic) 

basins such as the Black Sea rather than upwelling-related OMZs as modern analogue systems. 15 

In this review, I summarize the current state of knowledge on biogeochemical processes in the water 

column and sediments of OMZs. Nitrate-reducing (i.e., nitrogenous) to weakly sulfidic conditions in the 

water column and Fe-reducing (i.e., ferruginous) to sulfidic conditions in the surface sediment are 

identified as key-features of anoxic OMZs in the modern ocean. A toolbox of paleo-redox proxies is 

proposed that can be used to identify OMZ-type biogeochemical cycling in the geological record. By 20 

using a generalized model of sedimentary Fe release and trapping, I demonstrate that the extent of Fe 

mobilization and transport in modern OMZs is comparable to that inferred for the euxinic Black Sea and 

ferruginous water columns in Earth history. Based on this result, I suggest that many sedimentary Fe 

enrichments in the geological record are broadly consistent with OMZ-type redox conditions in the water 

column and surface sediment, especially if enhanced chemical weathering and reactive Fe supply to the 25 

ocean during past periods of global warming are taken into account. Future studies on paleo-

(de)oxygenation events with a combined focus on Fe, sulfur and nitrogen cycling may reveal that OMZ-

type redox conditions were an important feature of the ocean through Earth’s history. 
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1. Introduction 30 

The currently observed trend of ocean deoxygenation poses a severe threat to marine ecosystems 

(Diaz, 2001; Diaz and Rosenberg, 2008). Moreover, ocean anoxia is regarded as one of the main causes 

for extinction events in Earth history (Meyer and Kump, 2008). As a consequence, there is a growing and 

converging interest in the biogeochemistry of oxygen-deficient ocean regions across different scientific 

communities.  35 

A recent global compilation of dissolved oxygen data suggests that the ocean has lost 2 % of its 

oxygen content over the last few decades (Schmidtko et al., 2017). An important part of this trend is 

related to anthropogenic global warming, which increases ocean stratification and reduces ventilation by 

impeding deep convection of oxygenated surface water. In addition, the solubility of oxygen in seawater 

decreases with increasing temperature (Benson and Krause, 1980; Mataer and Hirst, 2003; Keeling et al., 40 

2011). Changes in land use have led to enhanced nutrient inputs to the coastal ocean, which has resulted 

in increased primary production, carbon export and respiratory oxygen consumption in subsurface 

waters (Rabalais et al., 2010; Howarth et al., 2011). Hotspots of ocean deoxygenation are the tropical 

oxygen minimum zones (OMZs) where upwelling of nutrient-rich water generates an environment with 

high primary production and naturally low to zero oxygen concentrations in the subsurface (~100 - 900 45 

m water depth). Human-induced global environmental change causes an additional oxygen drawdown 

and spatial expansion of these tropical OMZs (Stramma et al., 2008). In addition to physical mechanisms 

and external nutrient inputs, the intensity and spatial extent of OMZs is regulated by internal 

biogeochemical feedback mechanisms. Upon oxygen depletion, fixed nitrogen loss through 

denitrification reduces the nitrate concentration in upwelling water masses, thus imposing a negative 50 

feedback on primary production, carbon export and oxygen consumption (Canfield et al., 2006). In 

contrast, enhanced recycling of phosphorus and iron from anoxic sediments are a positive feedback for 

primary production (Ingall and Jahnke, 1994; Van Capellen and Ingall, 1994; Wallmann, 2003; Scholz et 

al., 2014a). Whether OMZ intensity and expansion will be amplified or mitigated by these feedback 

mechanisms in the future depends on complex interactions between the marine biogeochemical cycles 55 

of nitrogen, phosphorus, iron and sulfur and is a matter of ongoing debate (e.g., Canfield et al., 2006; 

Ulloa et al., 2012; Landolfi et al., 2013; Scholz et al., 2014a). 

Since many biotic crises in Earth’s history were associated with ocean anoxia (Meyer and Kump, 

2008), paleoceanographers, geobiologists and other scientists working on paleo-environmental 
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perturbations have a long-standing interest in ocean deoxygenation. Traditionally, semi-restricted basins 60 

with anoxic and sulfidic (commonly referred to as euxinic) conditions in the deep water such as the Black 

Sea were considered to be the best modern analogue environments for ocean anoxia in the geological 

past (e.g., Lyons et al., 2009). However, oxygen drawdown and euxinia in these silled basins is related to 

freshwater input and sluggish circulation, which results in an excessively long deep water residence time 

compared to open-marine environments. The comparability of anoxic continental margin settings in the 65 

geological past with modern euxinic basins is therefore limited, especially if causal connections between 

biogeochemical feedbacks and anoxia are to be established. As a consequence, there is a growing 

interest in OMZs as potential analogue environments for biogeochemical cycling within the context of 

open-marine anoxia in Earth history (e.g., Zhang et al., 2016; Hammarlund et al., 2017; Guilbaud et al., 

2018). Recent studies hypothesized that OMZ-type redox structures have existed at least since the 70 

Mesoproterozoic (1400 Ma ago) (Zhang et al., 2016).      

The goal of this review is to synthesize recent research findings on biogeochemical processes in the 

water column and sediments of OMZs, and how these become registered in sedimentary archives. Much 

of this synthesis will be based on understanding biogeochemical cycling and the development of paleo-

redox proxy signatures in the Peruvian OMZ (Fig. 1) and the euxinic Black Sea (Fig. 2). These two anoxic 75 

marine environments are considered to be type localities for open-marine and silled basin-type anoxia. 

Moreover, they are comparably well-studied using state-of-the-art paleo-redox proxies that are 

commonly applied in studies on biogeochemical cycling in pre-Cenozoic Earth history (i.e., iron 

speciation, redox-sensitive trace metals). Other pronounced OMZs (northeast equatorial Pacific, Arabian 

Sea, Benguela upwelling) will also be considered provided that pertinent data are available. Euxinic 80 

basins with less restricted deep water compared to the Black Sea (e.g., Baltic Sea Deeps, Cariaco Basin) 

are considered to be intermediate systems that share characteristics with both open-marine OMZs and 

the Black Sea (e.g., Algeo and Lyons, 2006; Scholz et al., 2013). For sake of clarity, I will not explicitly refer 

to these intermediate environments in this article.            

Many biogeochemical processes that produce a specific sedimentary fingerprint are relevant for 85 

biogeochemical (de)oxygenation feedbacks (e.g., denitrification, sedimentary phosphorus and iron 

release). As a consequence, the sedimentary fingerprints presented in this review cannot only be used to 

identify OMZ-type biogeochemical cycling in the geological record but also to evaluate whether the 

extent of reducing conditions in a paleo-environment was amplified or mitigated by biogeochemical 

feedback mechanisms. Finally, I will identify open questions and future challenges in reconciling 90 

observations in modern OMZ-type environments and the paleo-record.   
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2. Biogeochemical cycling in modern OMZs 

2.1. The influence of ocean circulation on water mass age and oxygen consumption 

Tropical OMZs are laterally fed with central and intermediate water masses that are subducted into 

the ocean interior at higher latitudes (Sloyan and Rintouil, 2001; Karstensen et al., 2008). Along the flow 95 

path of these water masses within the thermocline, degradation of downward sinking organic material 

drives oxygen consumption and release of remineralized nutrients. Wind-driven upwelling of the oxygen-

depleted and nutrient-rich water at the eastern ocean boundaries results in high rates of primary and 

export production as well as further oxygen drawdown in the subsurface. The overall extent of oxygen 

depletion in eastern boundary OMZs is controlled by the rate of primary production and respiration, 100 

both locally and along the flow path, as well as the rate of central and intermediate water formation 

(Karstensen et al., 2008). The latter is a function of upwelling intensity and climatic conditions in the 

source regions (Talley, 1993; Karstensen et al., 2008). Water masses within the eastern equatorial Pacific 

OMZ off Peru have spent approximately 100 to 200 years within the ocean interior (Brandt et al., 2015). 

During this time, respiratory oxygen consumption has led to a very low or zero oxygen concentration. In 105 

comparison, deep water residence time in the Black Sea is considerably longer (literature data range 

from several hundred to several thousand years) (Murray et al., 1991; Özsoy and Ünlüata, 1997; Algeo 

and Lyons, 2006), which implies that deep water anoxia can be maintained despite a much lower primary 

productivity in surface waters (~130 g C m-2 yr-1) (Grégoire and Beckers, 2004) compared to the Peruvian 

upwelling region (~1300 g C m-2 yr-1) (Pennington et al., 2006). The Black Sea is characterized by density 110 

stratification and an estuarine circulation pattern related to a positive freshwater balance where 

continental run-off and precipitation exceed evaporation. Since the basin’s sill at the Bosporus straits is 

located above the layer with the highest density gradient (pycnocline), deep water exchange is highly 

restricted. Moreover, the stable density stratification limits upward mixing of nutrient-replete deep 

waters into the photic zone. Therefore, biogeochemical feedbacks, which may modulate the intensity 115 

and expansion of open-marine OMZs, are less likely to establish in the Black Sea or other semi-restricted 

euxinic basins.  

2.2. Water column biogeochemistry and benthic-pelagic coupling 

2.2.1. Nitrogen and manganese 

The most pronounced OMZs of the modern ocean are located in the northeast and southeast 120 

equatorial Pacific, the Arabian Sea and the Benguela upwelling system off the coast of Namibia (Paulmier 

and Ruiz-Pino, 2009). In these ocean regions, oxygen has been drawn down to very low levels and 
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organic carbon degradation in the OMZ is partly mediated by reduction of nitrate (NO3
-) to nitrite (NO2

-) 

and gaseous nitrogen compounds (N2O, N2) (Fig. 1A) (Gruber and Sarmiento, 1997; Lam and Kuypers, 

2011). In addition to this heterotrophic pathway called denitrification, NO2
- is also reduced to N2 by the 125 

chemolithoautotrophic anammox process (anaerobe ammonia oxidation) (Daalsgaard et al., 2003; 

Kuypers et al., 2005; Hammersley et al., 2007). Oxygen measurement with highly sensitive 

electrochemical sensors in the core of the Peruvian and Chilean OMZs suggest that denitrification is only 

possible at oxygen concentration below ~50 nM (Thamdrup et al., 2012). Since N2 is unavailable to non-

nitrogen fixing primary producers, denitrification and anammox represent the ultimate sink for 130 

bioavailable (fixed) nitrogen in the ocean (Gruber, 2008). As a result of partial denitrification and as a 

biogeochemical signature of nitrate-reducing or ‘nitrogenous’ conditions, NO2
- accumulates in the water 

column of (essentially) anoxic OMZs (Fig. 1B).  

Bacterial reduction of manganese (Mn) oxide minerals, the pathway following denitrification in the 

natural succession of organic carbon degradation processes, also takes place in the water column of 135 

anoxic OMZs (Fig. 1). From a water column perspective, it is generally difficult to differentiate in situ Mn 

oxide reduction and dissolution in the lower water column from sedimentary sources (Hawco et al., 

2016). However, surface sediments in anoxic OMZs are strongly depleted in Mn relative to the lithogenic 

background (Böning et al., 2004; Brumsack, 2006) suggesting that much of the Mn loss must take place 

prior to deposition. Consistent with this notion, pore water Mn concentrations and dissolved Mn fluxes 140 

across the sediment-water interface in OMZs are too low as to account for the extent of sedimentary Mn 

depletion (Scholz et al., 2011) and water column observations (Johnson et al., 1992, 1996). Much of the 

Mn that is reductively dissolved in the water column is efficiently transported offshore within the OMZ 

(Klinkhammer and Bender, 1980; Lewis and Luther, 2000) and contributes to Mn accumulation in the 

deep ocean (Koschinsky and Halbach, 1995; Klinkhammer et al., 2009).        145 

2.2.2. Iron and sulfur 

Surface sediments in OMZs are characterized by maxima in pore water Fe2+ at or very close to the 

sediment water interface (Fig. 1B) (Van der Weijden, 1999; Severmann et al., 2010; Noffke et all., 2012). 

The dissolved Fe2+ in the ‘ferruginous’ pore water is derived from the reductive dissolution of Fe 

(oxyhydr)oxide minerals by dissimilatory Fe reduction and abiotic Fe reduction with hydrogen sulfide 150 

(H2S) (Canfield, 1989). Due to the absence of oxygen in the bottom water and surface sediment, pore 

water Fe2+ can be transported across the sediment-water interface by molecular diffusion without being 

re-oxidized and -precipitated (Fig. 1). The benthic Fe efflux generally increases with decreasing bottom 

water oxygen concentration and increasing organic carbon rain rate (McManus et al., 1997; Elrod et al., 
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2004; Severmann et al., 2010; Noffke et al., 2012), because these parameters control the extent of Fe re-155 

oxidation and the intensity of anaerobic microbial metabolism (actual release of Fe from organic material 

is negligible) (Dale et al., 2015). Due to this general relationship, benthic Fe fluxes tend to decrease from 

the productive shelf and upper slope in an offshore direction and towards greater water depth (Fig. 1A) 

(Noffke et al., 2012; Scholz et al., 2016). Due to sedimentary Fe release, OMZ waters are characterized by 

elevated concentrations of dissolved Fe2+ (tens of nM) compared to well-oxygenated coastal water (Fig. 160 

1B) (e.g., Landing and Bruland, 1987; Bruland et al., 2005; Vedamati et al., 2014). In contrast to Mn, 

however, only a small portion of the reduced Fe is stabilized and transported offshore within the OMZ. 

This iron is presumably in colloidal form and bound to organic ligands, which allows it to be transported 

over longer distances (Lohan and Bruland, 2008; Kondo and Moffet, 2015). The remaining Fe is re-

precipitated and -deposited close to the sedimentary source. Re-oxidation and scavenging of sediment-165 

derived Fe2+ in the anoxic OMZ off Peru has been attributed to nitrate-dependent Fe oxidation (Scholz et 

al., 2016; Heller et al., 2017). In this process, dissolved Fe2+ is oxidized with NO3
- as the terminal electron 

acceptor, either coupled to the microbial reduction of NO3
- (Straub et al., 1996; Raiswell and Canfield, 

2012) or to an abiotic reduction of NO2
- catalyzed by the reactive surfaces of Fe (oxyhydr)oxide minerals 

(Picardal, 2012; Klüglein and Kappler, 2013). As evidenced by high sedimentary Fe fluxes and elevated Fe 170 

concentrations in the nitrogenous bottom water of OMZs, nitrate-dependent Fe oxidation (and any other 

Fe scavenging process in OMZs) is relatively inefficient in demobilizing sediment-derived Fe compared to 

re-oxidation with oxygen. Therefore, reducible Fe can be continuously cycled between the surface 

sediment and overlying water through oxidation, deposition and dissolution until a fraction of it is 

retained in the sediment and buried (Fig. 1A) (Scholz et al., 2014b; Scholz et al., 2016). Sedimentary Fe 175 

enrichments in the oxic-anoxic transition area at the lower boundary of the Peruvian OMZ indicate that 

much of the Fe released from shelf and slope sediments eventually accumulates farther downslope 

where oxygen and nitrate penetrate into the sediment thus preventing further Fe release (Fig. 1A) 

(Scholz et al., 2014b, c).  

Iron (oxyhydr)oxides minerals scavenge phosphate (PO4
3-) and other particle-reactive compounds 180 

(e.g., trace metals) in the water column. Therefore, reductive Fe dissolution and release from OMZ 

sediments is generally accompanied by PO4
3- release (McManus et al., 1997; Noffke et al., 2012). 

Sedimentary Fe and PO4
3- release (phosphorous is released from both Fe (oxyhydr)oxides and organic 

material) support primary productivity in upwelling regions (Johnson et al., 1999; Bruland et al., 2005) 

and are major sources of dissolved Fe and PO4
3- to the global ocean (Wallmann et al., 2010; Dale et al., 185 

2015).    
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Bacterial sulfate reduction is the dominant pathway of organic matter degradation in OMZ sediments 

(Thamdrup and Canfield, 1996; Bohlen et al., 2011). Since any H2S produced immediately reacts with 

dissolved Fe and reactive Fe (oxyhydr)oxide minerals, H2S does not accumulate in the pore water before 

these highly reactive Fe phases (i.e., highly reactive towards H2S) have been completely converted to 190 

pyrite (FeS2) or metastable sulfide minerals (Canfield, 1989; Canfield et al., 1992). In addition, H2S 

concentrations in surface sediments of OMZs are kept at a low level by sulfide-oxidizing, nitrate-reducing 

bacteria such as Thioploca and Thiomargarita (Ferdelman et al., 1997; Schulz et al., 1999). Some of these 

microorganisms form filaments that are used to actively transport NO3
- into the sediment for H2S 

oxidation (Fossing et al., 1995).  195 

A number of studies have reported plumes of H2S (up to a few tens of µM) in the water column of the 

Peruvian and Namibian OMZs (Schunck et al., 2013; Brüchert et al., 2003). On the Peruvian continental 

margin, sulfidic events coincided with high productivity and water column stagnation following the main 

upwelling season. Under such conditions, NO3
- and NO2

-, which normally oxidize H2S in the surface 

sediment, become depleted in the bottom water so that H2S can escape into the water column (Fig. 1A, 200 

Fig. 3) (Sommer et al., 2016). Because of the high solubility of Fe2+ in weakly sulfidic water (Rickard, 

2006), sulfidic events in the Peruvian OMZ are accompanied by exceptionally high dissolved Fe2+ 

concentrations in the water column (up to hundreds of nM) (Fig. 3) (Scholz et al., 2016). 

Chemolithoautotrophic sulfide oxidation with NO3
- or other nitrogen compounds (Schunck et al., 2013) 

and nitrate-dependent Fe oxidation (Scholz et al., 2016) likely remove dissolved H2S and Fe2+ at the 205 

boundaries of the plume.       

2.2.3. Trace metals 

The goal of this section is to provide a general overview about different modes of trace metal delivery 

and fixation in OMZ sediments. Therefore, I will focus on metals that are well characterized using data 

for sediments, pore waters and particulate matter. For detailed reviews of trace metal cycling in the 210 

context of ocean anoxia the reader is referred to Brumsack (2006) and Tribovillard et al. (2006). 

Arguably the best studied and most frequently used trace metals in the context of ocean anoxia and 

paleo-redox conditions are vanadium (V), molybdenum (Mo) and uranium (U). These metals have a long 

residence time (several tens to hundreds thousands of years) and largely uniform concentration in open-

ocean seawater (V is somewhat depleted in the surface ocean) but are generally enriched in anoxic 215 

sediments (Tribovillard et al., 2006). Traditionally, it was argued that V, Mo and U accumulate in OMZ 

sediments by downward diffusion from the bottom water (Böning et al., 2004; Brumsack, 2006). Such a 
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scenario of trace metal accumulation requires a downward directed concentration gradient from the 

bottom water to the sediment depth of metal removal. This type of pore water profile is common for U 

but rather atypical for V and Mo (Barnes and Cochran, 1990; Klinkhammer and Palmer, 1991; Zheng et 220 

al., 2000; McManus et al., 2005; Morford et al., 2005; Scholz et al., 2011). In agreement with this 

observation, solid phase mass accumulation rates of U are broadly consistent with benthic fluxes 

(Klinkhammer and Palmer, 1991; McManus et al., 2005). By contrast, sedimentary mass accumulation 

rates of V and Mo in anoxic OMZs (Böning et al., 2004; Scholz et al., 2011) are generally higher than 

expected based on estimates of downward diffusion from the bottom water (Scholz et al., 2017). This 225 

observation implies that sedimentary V and Mo enrichments require a solid carrier phase that delivers 

these elements to the seafloor. Consistent with this notion, many pore water profiles of V and Mo in 

OMZs are characterized by surficial maxima indicating that V and Mo are released from solid carriers 

during early diagenesis (Zheng et al., 2000; Scholz et al., 2011). Release of V and Mo into the pore water 

drives an upward directed diffusive flux across the sediment-water interface as well as a downward 230 

directed flux into the zone of metal removal (Scholz et al., 2017). Shallow V and Mo peaks in the pore 

water often coincide with the accumulation of dissolved Fe (and sometimes Mn) suggesting that Fe 

(oxyhydr)oxides adsorb particle-reactive metals in the water column and ‘shuttle’ them to the sediment 

surface (Shaw et al., 1990; Zhang et al., 2000; Scholz et al., 2011). Such a scenario is supported by 

laboratory experiments (Chan and Riley, 1966a, b) and water column observations showing that V and 235 

Mo are associated with Fe-rich particles in the anoxic and nitrogenous water column of the Peruvian 

OMZ (Scholz et al., 2017; Ho et al., 2018). Downward sinking organic material is likely to be another 

important carrier phase for V, Mo and U (Fig. 1A) (e.g., Nameroff et al., 2002; Zheng et al. 2002; 

Ohnemus et al., 2017, Ho et al., 2018). However, it is not known how much of the metals bound to 

organic material is actively incorporated by organisms and how much is passively scavenged in the 240 

anoxic water column. 

The efficiency of the removal mechanism from pore water determines the magnitude of diffusive 

delivery (U) and the extent to which metals delivered by solid carriers are retained and buried or lost to 

the water column by diffusion across the sediment-water interface (V and Mo). The removal of U from 

pore water is mediated by reduction of U(VI) to U(IV) and precipitation of U(IV) oxides or adsorption to 245 

reactive surfaces (Tribovillard et al., 2006). Since U reduction can be mediated by Fe-reducing bacteria 

(Lovley et al., 1991), diffusive U accumulation in the sediment is favored in depositional settings where 

Fe reduction takes place close to the sediment surface (McManus et al., 2005). The mechanism(s) 

leading to V precipitation in anoxic sediments are not well characterized. It is generally believed that V 
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reduction (V(V) to V(IV) to V(III)) and removal is induced under anoxic (i.e., ferruginous) but not 250 

necessarily sulfidic conditions in the pore water (Emerson and Huested, 1991; Wehrli and Stumm, 1989; 

Wanty and Goldhaber, 1992; Tribovillard et al., 2006). In contrast, Mo removal from pore water into 

sulfurized organic molecules and pyrite or other Fe sulfide compounds requires the presence of 

dissolved H2S (Helz et al., 1996; Erickson and Helz, 2000; Tribovillard et al., 2004; Vorlicek et al., 2018). 

2.3. Comparison to biogeochemical cycling in the euxinic Black Sea 255 

All of the biogeochemical processes taking place in the water column and sediments of OMZs (Fig. 1) 

are observed in the euxinic Black Sea as well (Fig. 2). However, the location (e.g., sediment and pore 

water versus water column) and water depth where they take place is different, which has important 

implications for the dynamics of nutrient turnover, primary production and respiratory oxygen 

consumption.   260 

In the Black Sea, oxygen is depleted within the uppermost 70 m and the nitrogenous zone is located 

between ~70 and 100 m water depth (Fig. 2B) (Friederich et al., 1990; Kuypers et al., 2003). Below the 

depth of NO3
- and NO2

- depletion, organic carbon degradation is chiefly mediated by bacterial sulfate 

reduction and H2S concentrations increase up to about 400 µM within the deep water. Elevated Fe2+ 

concentrations up to 300 nM (i.e., comparable to those in the sulfidic plumes in the Peruvian OMZ) (Fig. 265 

1B) are observed within the weakly sulfidic layer between ~100 and 200 m water depth (Fig. 2B). Below 

this depth, dissolved Fe concentrations are capped by the solubility of Fe sulfide minerals such as 

mackinawite (FeS) and greigite (Fe3S4) (Lewis and Landing, 1991).  

Similar to sediments in OMZs, anoxic shelf sediments in the Black Sea release Fe to the water column 

(Wijsman et al., 2001). Most of this sediment-derived Fe is re-precipitated in the oxic bottom water, but 270 

a small part is transported offshore, presumably in colloidal form or stabilized by organic ligands 

(Raiswell and Canfield, 2012). Once trapped within the anoxic deep water, shelf-derived Fe cannot 

escape to shallower areas anymore since the basin is capped by nitrogenous and oxic water masses, 

which efficiently oxidize any Fe that is transported in a vertical direction by diffusion or advection (Fig. 2). 

In fact, water column profiles of Fe2+, NO3
-and NO2

- suggest that much of the Fe trapping could be 275 

mediated by nitrate-dependent Fe oxidation (Scholz et al., 2016) rather than oxidation with oxygen (Fig. 

2B). Due to the oxidative barrier overlying the Black Sea deep water, concentrations of Fe and Mn (and 

also PO4
3-) (Dellwig et al., 2010) rise to appreciable levels until the solubility products of authigenic 

minerals are exceeded. An important implication of this trapping mechanism is that, in contrast to 

upwelling-related OMZs, nutrients are retained in the deep water and/or buried in the basin sediments 280 
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rather than recycled and transported into the photic zone by coastal upwelling. Therefore, primary 

productivity in the pelagic Black Sea is controlled by external nutrient inputs from rivers and shelf 

sources (Grégoire and Beckers, 2004) whereas in OMZs upwelling of thermocline water (Pennington et 

al., 2006) and redox-dependent nutrient recycling from anoxic shelf sediments supply most of the 

nutrients to the productive surface ocean (Johnson et al., 1999; Bruland et al., 2005; Dale et al., 2017). 285 

Due to the proximity and mutual dependency of sedimentary nutrient sources and sinks, primary 

productivity and respiration, the intensity and expansion of OMZs can be amplified or mitigated by 

benthic-pelagic feedback mechanisms.  

2.4. Amplification or mitigation of anoxia by benthic-pelagic feedbacks 

According to conventional theory, the extent of reducing conditions in OMZs is bounded by a 290 

negative feedback within the nitrogen cycle (Canfield, 2006; Ulloa et al., 2012).  Once oxygen is depleted, 

denitrification and anammox within the nitrogenous zone decrease the size of the bioavailable NO3
- pool. 

Upon upwelling of these waters, primary production becomes nitrogen‐limited, which results in a 

reduction in carbon export. Reduced export production, in turn, reduces the rate of respiration in OMZ 

waters (including denitrification) thus reducing the oxygen and NO3
- demand and preventing further 295 

OMZ intensification (Fig. 4A). According to Canfield (2006), this denitrification feedback prevents NO3
- 

and NO2
- depletion and therefore the onset of bacterial sulfate reduction, which could eventually drive 

the OMZ into euxinic conditions. 

Importantly, however, most of the OMZs in the modern ocean are located in high-nutrient-low-

chlorophyll (HNLC) regions (eastern equatorial Pacific, Benguela upwelling), which implies that primary 300 

productivity and, by inference, respiratory oxygen consumption is limited by Fe rather than NO3
- 

(Hutchins and Bruland, 1998; Johnson et al., 1999). Given the well-established relationship between 

bottom water oxygen concentration and sedimentary Fe release (Severmann et al., 2010; Dale et al., 

2015), ocean deoxygenation could lead to an increase in Fe supply to the surface ocean in these regions. 

This would lead to an increase in primary and export production and could therefore cause OMZ 305 

intensification in a positive feedback loop (Fig. 4B) (Scholz et al., 2014a). In a related fashion, PO4
3- 

release from anoxic sediments is thought to amplify marine productivity and ocean anoxia on geological 

timescales, e.g., during oceanic anoxic events (Ingall and Jahnke, 1994; Van Capellen and Ingall, 1994; 

Wallmann, 2003).  

 A dynamic interplay of the feedback connections described above could have a strong impact on 310 

nutrient and redox cycling in OMZs. Modelling studies suggest that any negative feedback between 
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primary production and denitrification in OMZs (Fig. 4A) can be overcome if the bioavailable NO3
- pool in 

the photic zone is continuously replenished by nitrogen fixation (Canfield, 2006). Under such 

circumstances, sulfate reduction can become the dominant organic matter respiration pathway and H2S 

can accumulate in the water column (Fig. 4C). Theoretically, nitrogen fixation in OMZs is favored by 315 

dissolved nitrogen to PO4
3- ratios below that of non-nitrogen-fixing phytoplankton (N/P < 16) (Redfield, 

1963; Tyrell, 1999; Gruber, 2008) related to denitrification and sedimentary phosphorus release. 

Moreover, sedimentary Fe release can satisfy the tremendous Fe demand of nitrogen-fixing organisms 

(Fig. 4C) (Falkowski, 1997; Moore and Doney, 2007). Such a scenario is in line with findings in the 

Peruvian OMZ where short-lived events of NO3
- and NO2

- depletion and weakly sulfidic conditions in the 320 

water column (Fig. 3) were shown to coincide with intense nitrogen fixation (Löscher et al., 2014) 

enabled by Fe and PO4
3- release from the anoxic shelf sediments (Noffke et al., 2012). Whether such 

feedbacks between the nitrogen, phosphorus and Fe cycles could drive OMZs into permanently euxinic 

conditions or trigger a transition from continental margin to basin-wide anoxia has yet to be evaluated. It 

has been hypothesized that substantial accumulation of H2S in the bottom water and surface sediment 325 

causes a shutdown of sedimentary Fe release at a certain point, because most of the Fe is converted to 

pyrite and buried in the sediment (Fig. 4C) (Scholz et al., 2014a). In other words, intensified pyrite 

formation could turn continental margin sediments from a net source to a net sink for Fe thus cancelling 

the feedback between sedimentary Fe release, biological productivity and oxidant consumption. 

Given the strongly differing residence times of nitrogen, Fe and phosphorus in the ocean (fixed 330 

nitrogen: ~103 years; Fe: ~102 years; PO4
3-: ~104 years) (Gruber, 2008; Wallmann, 2010; Boyd and 

Ellwood, 2010), feedback connections among their biogeochemical cycles are likely to unfold on longer 

timescales. Biogeochemical modeling in the context of past oceanic anoxic events can be a powerful tool 

to evaluate the role of benthic-pelagic feedbacks in modulating OMZ expansion and intensity. However, 

for ground truthing purposes any paleo-modeling needs to be informed by paleo-proxy records. The 335 

following discussion of proxy signatures of OMZ-type biogeochemical cycling is meant to provide a 

framework for the reconstruction of biogeochemical feedbacks in OMZ-like paleo-settings.  

3. Sedimentary fingerprint of OMZ-type biogeochemical cycling 

3.1. Iron-based paleo-proxies 

Enrichments of reactive Fe in marine sediment and sedimentary rocks are generally regarded as a 340 

paleo-indicator for anoxic conditions in the water column at the time of deposition. This rationale is 

related to observations in the modern Black Sea (Fig. 5B) where sediments are characterized by highly 
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reactive Fe (FeHR) to total Fe ratios (FeHR/FeT) > 0.38, which is used as a threshold to indicate anoxia 

(Raiswell and Canfield, 1998; Poulton and Canfield, 2011). These enrichments, along with elevated Fe to 

aluminum (Al) ratios relative to the lithogenic background, are generated by Fe release from shelf 345 

sediments and Fe trapping in the euxinic basin, a mechanism referred to as “shelf-to-basin Fe shuttle” 

(Raiswell and Anderson, 2005; Lyons and Severmann, 2006). Due to sulfidic conditions within the water 

column and sediments, most of the reactive Fe supplied from the surrounding shelf areas is converted to 

pyrite. Therefore, a high proportion of pyrite Fe (Fepy) within the FeHR pool is considered to be a paleo-

indicator for euxinic conditions (Fepy/FeHR > 0.8 is used as a threshold for euxinia) (Raiswell et al., 1997; 350 

Poulton and Canfield, 2011). Highly reactive Fe (sum of Fe (oxyhydr)oxide, Fe carbonate and pyrite) is 

recovered from bulk sediment by wet chemical extraction techniques (Canfield et al., 1986; Poulton and 

Canfield, 2005). These observations are the framework upon which a triad of Fe-based paleo-proxies 

(FeHR/FeT, FeT/Al, Fepy/FeHR) is widely used to track anoxia in the geological record, including in open-

marine settings. However, I suggest here that the interpretation of these proxies in open-marine settings 355 

will differ because of differences in the geological and biogeochemical factors that underpin Fe 

mobilization and deposition.    

3.1.1. Observations in modern OMZs 

In the context of OMZs, associating anoxia with sedimentary Fe enrichments is problematic. Surface 

sediments in OMZs are ferruginous, which implies that reactive Fe can be mobilized and transported 360 

across the sediment-water interface (see Section 2.2.2.). Provided that bottom currents transport the 

dissolved Fe away from the source area, one would expect the remaining sediment to be become 

depleted rather than enriched in highly reactive Fe. By contrast, re-deposition of the transported Fe at 

another location, e.g., due to re-oxidation with NO3
-, NO2

- or oxygen in the water column, and retention 

as pyrite in the sediment would generate an enrichment of highly reactive Fe in the sink area. Depending 365 

on the size and distance between source and sink areas and the transport capacity for Fe within the OMZ 

waters, Fe redistribution across the continental margin would yield a complex pattern of sedimentary Fe 

enrichments and depletions. Consistent with this scenario, shelf sediments within the Peruvian OMZ are 

slightly enriched in reactive Fe whereas slope sediment within the OMZ are depleted in highly reactive Fe 

compared to continental margin sediments with oxic bottom water (Fig. 5A) (Scholz et al., 2014b, c). Due 370 

to intense sulfate reduction within the sediment, pyrite is the principle burial phase for reactive Fe 

throughout the Peruvian OMZ (Suits and Arthur, 2000; Scholz et al., 2014a). Slope sediments underlying 

the lower boundary of the OMZ are characterized by elevated FeT/Al, which has been attributed to a net 

supply of highly reactive Fe from farther upslope. Because slope sediments below the Peruvian OMZ are 
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non-sulfidic (Scholz et al., 2011) much of the reactive Fe (oxyhydr)oxide delivered is converted to 375 

authigenic silicate minerals (e.g., glauconite), consisting of both ferrous and ferric Fe, during early 

diagenesis (Suits and Arthur, 2000; Böning et al., 2004; Scholz et al., 2014c). As silicate Fe is not 

efficiently dissolved by conventional chemical extraction techniques for the recovery of highly reactive 

Fe (e.g., Poulton and Canfield, 2005), sediments below the OMZ display highly elevated FeT/Al ratios but 

inconspicuous FeHR/FeT ratios (Scholz et al., 2014c). Authigenic glauconite has been observed at the 380 

boundaries of other OMZs (Mullins et al., 1985) and, interestingly, the conditions leading to the 

precipitation of this mineral are similar to those leading to the formation of greenalite (Harder, 1980; 

Tosca et al., 2016), the predominant Fe silicate mineral in Precambrian banded iron formations (Bekker 

et al, 2010).  

3.1.2. Theoretical framework for the interpretation of iron-based paleo-proxies in the context of OMZs 385 

The distributions of highly reactive Fe phases in modern OMZs are rather complex compared to 

euxinic basins where the source and sink areas are clearly separated from each other (Raiswell and 

Anderson, 2005; Scholz et al., 2014b). To interpret long-term proxy records of FeHR/FeT or FeT/Al at a 

single location within or adjacent to an OMZ, a systematic framework of how geological factors 

(sedimentation rate, continental margin geometry relative to the water column redox structure) control 390 

the extent of sedimentary Fe enrichment or depletion is required.  

In Fig. 6A and Fig. 6B, indices for sedimentary Fe enrichment and anoxia (FeT/Al, FeHR/FeT) are plotted 

against benthic Fe effluxes and authigenic (i.e., non-lithogenic) Fe rain rates. At higher background 

sedimentation of terrigenous Fe and Al, Fe release or trapping has a smaller impact on FeT/Al or FeHR/FeT 

than in a scenario where little terrigenous material is delivered (Raiswell and Anderson, 2005). To 395 

account for this effect, I computed scenarios of reactive Fe release or trapping with different sediment 

mass accumulation rates (MARs) (Fig. 6).  The benthic Fe effluxes and MARs applied in these calculations 

cover the typical range of values observed in the modern ocean (Burdige, 2007; Dale et al., 2015). As no 

literature data for authigenic Fe rain rates are available, the range of published benthic Fe effluxes was 

adopted for this parameter as well (with reverse sign). The validity of this approach is demonstrated by 400 

the values of FeT/Al and FeHR/FeT obtained in the different scenarios of reactive Fe trapping, which are 

consistent with published data for modern euxinic basins and paleo-records (e.g., Raiswell and Canfield, 

1998; Lyons and Severmann, 2006; Poulton et al., 2010). The starting value for each scenario of reactive 

Fe release or trapping is the FeT/Al of the average upper continental crust (0.44) (McLennan, 2001) and 

the FeHR/FeT of continental margin sediments with oxic bottom water (0.28  0.06) (Poulton and Raiswell, 405 

2002). All scenarios as well as FeT/Al and FeHR/FeT data for sediments from the Peruvian continental 
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margin, the Gulf of California and the Black Sea are plotted in a diagram of FeT/Al versus FeHR/FeT in Fig. 

6C (a close-up highlighting OMZ data is shown in Fig. 6D). 

The generalized modeling scenarios reveal that reactive Fe release and trapping theoretically results 

in FeT/Al and FeHR/FeT values that lie on one single trend line (Fig. 6C). The mass accumulation of 410 

terrigenous sediment determines the extent of deviation from the starting value at a given authigenic Fe 

rain rate or benthic Fe efflux. Most of the data plotted in Fig. 6C and Fig. 6D plot along this trend line, 

which corroborates that redistribution of reactive Fe is responsible for the observed variability. Slope 

sediments in the Peruvian OMZ are characterized by lower FeT/Al and FeHR/FeT compared to the starting 

value (Fig. 6C and D). Typical MARs on the Peruvian slope are of the order of 0.01 - 0.05 g cm-2 yr-1 415 

(Scholz et al., 2011). To generate the observed deviation in FeT/Al and FeHR/FeT from the starting value at 

this MAR, a benthic efflux of ~1 µmol cm-2 yr-1 is required. This estimate is in good agreement with the 

range of benthic Fe fluxes observed in the same area (0.3 - 3.2 µmol cm-2 yr-1) (Noffke et al., 2012) 

suggesting that, indeed, sedimentary Fe release has caused the observed depletion in reactive Fe (Scholz 

et al., 2014b). Deviations from the trend line in Fig. 6C towards higher FeHR/FeT can be generated by 420 

pyritization of Fe bound to silicate minerals, e.g., due to a long-term exposure of clay minerals to H2S 

(Raiswell and Canfield, 1996). Conversely, delivery of reactive Fe and precipitation of authigenic Fe 

silicate minerals would generate a shift towards lower FeHR/FeT and higher FeT/Al. Consistent with this 

scenario, sediments below the Peruvian OMZ, which have been shown to be enriched in Fe silicate 

minerals, plot on the corresponding trend line (Fig. 6C) (Scholz et al, 2014c).  425 

In general, elevated FeT/Al and FeHR/FeT > 0.38 require either a high authigenic Fe rain rate or a low 

rate of terrigenous background sedimentation (Fig. 6). Taking the threshold for anoxia as a reference 

value, the modest deviations in FeHR/FeT observed in the OMZs off Peru and in the Gulf of California (Fig. 

6C) would not be indicative of anoxic conditions in the bottom water. Importantly, however, these 

continental margin environments are characterized by a one to two order of magnitude higher MAR 430 

(Calvert et al., 1966; Scholz et al., 2011) compared to the pelagic Black Sea (MAR: <0.005 g cm-2 yr-1) 

(Brumsack, 1989; Calvert et al., 1991). Taking this difference in MAR into account reveals that sediments 

in these systems receive a similar supply of authigenic Fe as pelagic Black Sea sediments (compare dark 

blue and greenish lines in Fig. 6A and Fig. 6B). Applying one single threshold of FeHR/FeT for anoxia in a 

broad range of depositional environments seems questionable in this context. To account for this 435 

problem, Poulton and Canfield (2011) suggested that FeHR/FeT between 0.22 and 0.38 can also be 

indicative for anoxia if terrigenous background sedimentation is high. However, this transitional range is 

entirely consistent with the average FeHR/FeT of continental margin sediments with oxic bottom water 
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(Poulton and Raiswell, 2002). The trend line of FeT/Al versus FeHR/FeT in Fig. 6C can provide additional 

constraints on whether a Fe proxy signature can be assigned to sedimentary Fe release and trapping. It 440 

should be noted, however, that trapping of Fe from other non-lithogenic sources (i.e., hydrothermal 

venting) is expected to generate enrichments that plot on the same trend line.    

On open-marine continental margins, the balance between reactive Fe source and sink areas likely 

depends on a combination of biogeochemical and sedimentological factors. The OMZ in the Gulf of 

California is located between 400 and 800 m water depth (Campbell and Gieskes, 1984). Due to the 445 

sheltered character and semi-restricted bathymetry of the Gulf of California, Fe released from shelf and 

upper slope sediments can be transported downslope and accumulate within and below the OMZ. By 

contrast, the Peru OMZ is located at shallower depth (below 50-100 m water depth) and sedimentary Fe 

release takes place in a dynamic shelf environment where strong bottom currents can transport 

sediment-derived solutes in an alongshore direction (Suess et al., 1987). Local enrichments in reactive Fe 450 

are likely to form in organic carbon depocenters (Reimers and Suess, 1983) where shallow pyrite 

formation (Scholz et al, 2014a) is supported by intense bacterial sulfate reduction in the surface 

sediment (Bohlen et al., 2011). Sediments on the upper slope within the Peruvian OMZ are frequently re-

suspended by internal waves (Mosch et al., 2012), which causes comparably low net sedimentation rates 

(Scholz et al, 2011) and creates a favorable environment for sedimentary Fe depletion. Downward 455 

focusing of sediment-derived Fe from the upper slope into the oxic sink area with less dynamic sediment 

transport regime causes Fe accumulation in a relatively confined area close to the lower boundary of the 

OMZ (Scholz et al., 2014b).  

Considering the small-scale variability in sedimentological factors on the Peruvian continental margin, 

a laterally consistent enrichment in reactive Fe like in the Black Sea is unlikely to evolve. By contrast, in a 460 

less dynamic environment such as the Gulf of California continental slope, widespread Fe enrichments 

may develop, provided that background sedimentation does not overwhelm the authigenic Fe rain rate. 

In both continental margin environments spatial (modern surface sediments) or temporal (in a paleo-

record) variability in FeT/Al and FeHR/FeT along the trend lines in Fig. 6C (toward both higher and lower 

values) is indicative of enhanced Fe mobility in the surface sediment and bottom water. Provided that Fe 465 

transport in the water column takes place within reach of the photic zone (e.g., through upwelling like in 

the Peruvian OMZ), the mobilized Fe can support biological productivity in the surface ocean.             

3.2. Trace metal-based paleo-proxies 
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Metals respond in a systematic fashion to the redox gradients observed in the water column and 

surface sediments of OMZs (Fig. 5A) (Nameroff et al., 2002; Böning et al., 2004, 2005; Scholz et al., 2011). 470 

Because of reductive Mn dissolution and offshore transport in the water column, OMZ sediments are 

commonly depleted in Mn relative to lithogenic material (Böning et al., 2004, 2005; Borchers et al., 

2005). By contrast, in euxinic basins Mn supplied from the surrounding shelf areas is trapped within the 

basin (Fig. 5B) (Brumsack, 2006; Lyons and Severmann, 2006; Scholz et al., 2013). Sedimentary Mn 

depletion is not limited to the area where the OMZ impinges the seafloor but extends farther downslope 475 

into areas with well-oxygenated bottom water (Böning et al., 2004, 2005; Scholz et al., 2011). Therefore, 

Mn depletion relative to crustal material can generally be indicative of the presence of an anoxic, though 

not necessarily nitrogenous water mass at an open-marine continental margin (Table 1). 

The behavior of many other metals that have been used as a paleo-redox proxy is tied to the redox 

state of the bottom water and surface sediment (Fig. 5A, Fig. 7). On the Peruvian continental margin, U is 480 

the first element to become enriched in the sediment as the oxygen concentrations in the bottom water 

decrease (Fig. 7). This trend can be explained by U reduction and fixation under ferruginous conditions in 

the surface sediment. As the bottom water and surface sediments become more reducing, V and Mo 

accumulation outpace U accumulation. Sedimentary Mo enrichments reach comparable values to Black 

Sea sediments (Fig. 7) on the shallow shelf where H2S is detectable shortly below the sediment-water 485 

interface (Böning et al., 2004; Scholz et al., 2011). Based on this pattern, Scholz et al. (2004a) suggested 

that ratios of excess Mo to U (see Electronic Supplement for details on the calculation of excess metal 

concentrations) can be used in conjunction with Fe speciation data to reconstruct whether surface 

sediments were oxic, ferruginous or sulfidic at the time of deposition (Table 1, Fig. 7). Differentiating 

between ferruginous and sulfidic conditions in surface sediment is important for assessing whether 490 

conditions were conducive to sedimentary Fe release or Fe trapping, retention and burial as pyrite 

(Scholz et al., 2014a).  

Sedimentary molybdenum concentrations above 25 µg g-1 have been suggested to be generally 

indicative for euxinic conditions (Scott and Lyons, 2012; Dahl et al, 2013). Sediments in the OMZs off 

Peru and Namibia clearly exceed this threshold (Fig. 6) (Böning et al., 2004; Borchers et al., 2005; Scholz 495 

et al., 2011), which has tentatively been attributed to the occurrence of sulfidic events and Mo 

scavenging from the sulfidic water column (Dahl et al., 2013). However, on the Peruvian continental 

margin, particulate Mo concentrations within sulfidic water masses are low compared to those in 

nitrogenous and oxic water masses (Scholz et al., 2017). Based on this observation, Scholz et al. (2017) 

hypothesized that Mo accumulation in shelf sediments is accelerated by Mo delivery with Fe 500 
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(oxhydr)oxides that precipitate in the water column through nitrate-dependent Fe oxidation. Further 

research on the distribution, isotope composition and speciation of particulate metals in OMZs will help 

to better characterize the mode of trace metal scavenging under anoxic conditions.  

Recently, Zhang et al. (2016) introduced V depletion relative to terrigenous material as an indicator 

for weakly oxic conditions in the bottom water at the boundaries of OMZs. This notion was based on 505 

observations in the northeast equatorial Pacific off Mexico where sediments below the OMZ seem to be 

slightly depleted in V but enriched in Mo relative to lithogenic material (Nameroff et al., 2002). Zhang et 

al. (2016) attributed this observation to V release from Mn oxide minerals under anoxic but non-sulfidic 

conditions in the surface sediment underlying weakly oxic bottom water. The mechanism of Mo fixation 

under Mn-reducing and non-sulfidic conditions was not specified by Zhang et al. (2016). In general, the 510 

deviations in V concentration from lithogenic material reported by Nameroff et al. (2002) are small. 

Moreover, V concentrations in lithogenic material are generally high (almost two orders of magnitude 

higher than Mo) but can vary considerably as a function of provenance and lithology (McLennan, 2001; 

Planavsky et al., 2016). As a consequence, small depletions of V relative to a high lithogenic background 

are associated with a large uncertainty. 515 

Within the oxygen gradient at the lower boundary of the Peruvian OMZ, ratios of excess V to Mo 

clearly exceed the V/Mo of the upper continental crust, which implies that under weakly oxic conditions 

V is more efficiently delivered and/or retained than Mo. This observation is in conflict with the proxy 

rationale outlined by Zhang et al. (2016) but consistent with the general notion that V can accumulate 

under anoxic and non-sulfidic conditions whereas Mo accumulation requires the availability of free H2S 520 

(Tribovillard et al., 2006). On the Peruvian continental margin excess V/Mo ratios decrease throughout 

the redox-gradient in the bottom water and approach the V/Mo of the upper continental crust in sulfidic 

shelf sediments (Fig. 7). According to this pattern, V/Mo could be applied along with Mo/U to trace the 

transition from ferruginous to sulfidic conditions in the surface sediment (Table 1). 

Excess V concentrations in the Peruvian OMZ are generally high compared to Black Sea sediments 525 

(Fig. 7). This trend could be related to V delivery by Fe (oxyhydr)oxides (Scholz et al. (2017) and/or 

organic particles originating from the photic zone or the OMZ itself (Ho et al., 2018). Ohnemus et al. 

(2017) demonstrated that heterotrophic (presumably denitrifying) microbial communities in the 

Peruvian OMZ are particularly enriched in V and other transition metals compared to phototrophic 

organism at the sea surface. Other nutrient-related trace metals that are poorly soluble under sulfidic 530 

conditions (e.g., cadmium (Cd)) are generally enriched in the sediments of productive upwelling areas 

compared to sediments in euxinic basins (Brumsack, 2006). This trend is even more pronounced when 
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nutrient-type trace metals are normalized to Mo. Sweere et al. (2016) demonstrated that ratios of Cd to 

Mo increase from values close to seawater (Cd/Mo = 0.007) in restricted basins to values similar to 

phytoplankton (Cd/Mo = 2) (Brumsack, 1986) in open-marine upwelling regions. Future work comparing 535 

the speciation and isotope composition of metals in suspended particulate organic matter and sediments 

of OMZs may help to identify the specific sedimentary fingerprint of different biological communities 

(with different enzymes and thus metal quota) and metabolisms in the overlying water column.   

3.3. Tool box for the identification of benthic-pelagic feedbacks in the geological record 

Proxy signatures for redox conditions and sedimentary Fe release and trapping (FeT/Al, FeHR/FeT, 540 

(Mo/U)XS) (Table 1) can be combined with paleo-indicators for sedimentary phosphorus and water 

column nitrogen cycling to identify OMZ-type biogeochemical cycling and the associated interplay of 

benthic-pelagic feedbacks (Fig. 4) in the geological record. 

Phosphorus is preferentially remineralized from organic material relative to carbon under anoxic 

conditions in the bottom water (Ingall and Jahnke, 1994, 1997; Wallmann et al., 2010).  Therefore, 545 

sedimentary PO4
3- release in anoxic ocean regions generates elevated sedimentary carbon to phosphorus 

ratios (Ingall and Van Cappellen, 1990; Algeo and Ingall, 2007) compared to the average composition of 

phytoplankton (C/P > 106) (Redfield, 1963). This signature can be used to identify sedimentary 

phosphorus release in the geological record (Table 1) (März et al., 2008; Mort et al., 2008; Poulton et al., 

2015). Conversely, the extent of phosphorus burial with organic material, Fe (oxyhydr)oxides or biogenic 550 

and authigenic phosphorus minerals (carbonate fluorapatite, CFA) can be evaluated by a combination of 

elevated phosphorus to Al ratios (P/Al) and sedimentary phosphorus speciation  (e.g., Schenau and De 

Lange, 2001; Mort et al., 2008; März et al., 2008; Poulton et al., 2015) (Table 1). In modern OMZs 

enhanced sedimentary P/Al ratios are often observed in slope sediments where low to zero net 

sedimentation rates and strong bottom currents favor the accumulation of CFA nodules and crusts 555 

(Glenn and Arthur, 1988). In this case, elevated P/Al and CFA concentrations are not indicative of 

enhanced phosphorus burial on a continental margin scale but rather for sediment reorganization and 

CFA build-up in a confined area.   

 Nitrogen cycling in the water column (i.e., nitrogen loss under nitrogenous versus nitrogen fixation 

under euxinic conditions) can be reconstructed by the aid of nitrogen isotopes (Table 1). Denitrification 560 

and anammox in the nitrogenous water column leaves the remaining NO3
- enriched in the heavy 

nitrogen isotope (15N). If the remaining NO3
- is incorporated into phytoplankton biomass and 

subsequently preserved in the sediments, water column nitrogen loss can be identified in the 
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sedimentary record by elevated δ15N values relative to atmospheric nitrogen (δ15Nsediment > 0 ‰) (Altabet 

et al., 1995; Ganeshram et al., 2000; Galbraith et al., 2004). Quantitative denitrification, which is a 565 

prerequisite for the onset of bacterial sulfate reduction and euxinic conditions in an OMZ, would cancel 

out any isotope fractionation associated with partial nitrogen loss (Boyle et al., 2013). Under such 

circumstances, the sedimentary δ15N approaches the nitrogen isotope composition of nitrogen-fixing 

microorganisms (δ15Nsediment ≤ 0 ‰) (see, e.g., Higgins et al., 2012, and Ader et al., 2016, for further 

details, including the role of ammonia). Importantly, nitrogen isotope ratios have to be interpreted on a 570 

relative scale as the regional δ15N is superimposed by the global secular δ15N trend (Algeo et al, 2014). 

For instance, during Cretaceous oceanic anoxic events, partial water column denitrification likely 

generated a lower δ15Nsediment compared to the present-day, since the δ15N of the global NO3
- pool was 

shifted to a lower value. Additional information on nitrogen cycle processes can be derived from 

diagnostic biomarkers (Kuypers et al., 2002; Bauersachs et al., 2010).   575 

4. Nitrogenous, ferruginous or euxinic conditions along anoxic ocean margins in the Phanerozoic? 

In studies on biogeochemical cycling in pre-Cenozoic Earth history, ocean anoxia is typically 

associated with euxinic or ferruginous conditions in the water column whereas nitrogenous (to weakly 

sulfidic) conditions, the predominant expression of anoxia in the modern ocean, are often neglected. The 

definition of euxinic conditions is based on the presence of dissolved H2S in the water column (Meyer 580 

and Kump, 2008; Lyons et al., 2009) whereas ferruginous conditions are assigned to anoxic waters that 

contain dissolved Fe but no hydrogen sulfide (Poulton and Canfield, 2011). Euxinic and ferruginous 

conditions are differentiated based on sedimentary Fe speciation (Fig. 8). Elevated FeHR/FeT (FeHR/FeT > 

0.38) indicates anoxia while the extent of pyritization determines whether conditions were ferruginous 

(Fepy/FeHR < 0.8) or euxinic (Fepy/FeHR > 0.8) (Poulton and Canfield, 2011).  585 

The concept of an anoxic and ferruginous ocean was originally assigned to the Archean era. Prior to 

the onset of oxic weathering of sulfide minerals on land the ocean was poor in sulfate. Under these 

circumstances, H2S produced by near-complete sulfate reduction could be quantitatively titrated by Fe 

supplied by hydrothermal venting and, subsequently, dissolved Fe could rise to appreciable levels (Fe2+ > 

H2S) (Holland, 1984; Canfield, 1998; Poulton and Canfield, 2011). Greatly enhanced Fe mobility and 590 

transport in the ferruginous ocean of the Archean (and Proterozoic) is manifested in the deposition of 

banded iron formations (Bekker et al., 2010). Sulfate-depleted (sulfate < 50 µM) tropical lakes like Lake 

Matano provide a meaningful analogue for Fe cycling in a ferruginous ocean during the Precambrian 

(Crowe et al., 2008).  
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More recently, the proxy signature of ferruginous conditions has been reported for a number of 595 

Phanerozoic sections where quantitative sulfate consumption is in many cases inconsistent with the 

sulfur isotope record (März et al., 2008; Dickson et al., 2014; Lenniger et al., 2014; Poulton et al., 2015; 

Clarkson et al., 2016). In a scenario where dissolved sulfate concentrations are very low (sulfate < 200 

µM), the δ34S of sedimentary pyrite is expected to approach the sulfur isotope composition of 

contemporary seawater (e.g., as constrained from sulfate-containing evaporite samples) (Canfield and 600 

Raiswell, 1999; Habicht et al., 2002). Conversely, if pyrite-sulfur is characterized by an isotopic offset 

from contemporary seawater (i.e., δ34Spyrite < δ34Sseawater), sulfate reduction must be incomplete and 

ferruginous conditions cannot be attributed to quantitative sulfate depletion. In these cases, ferruginous 

conditions are thought to be a redox state intermediate between nitrogenous and euxinic, where 

dissolved Fe2+ is the dominant redox species in the water column (Fe2+ > H2S, NO3
-/NO2

-) (Poulton and 605 

Canfield, 2011).  

In the modern ocean such an intermediate stage of ferruginous conditions does not exist in the water 

column but only in the sediment pore water (Fig 1B). In fact, the highest Fe concentrations observed in 

the Peruvian OMZ and the Black Sea (tens to hundreds of nM) coincide with several orders of magnitude 

higher concentrations of NO3
-/NO2

- or H2S (NO3
-/NO2

- or H2S > Fe2+) (Fig. 1B, 2B and 3). Multiple factors 610 

can explain the lack of a Fe-dominated intermediate redox state in these systems. In the water column of 

the Black Sea, solid Fe (oxyhydr)oxide minerals are several orders of magnitude less abundant and have a 

shorter residence time compared to dissolved sulfate (Lewis and Landing, 1991). Therefore, Fe reduction 

in sinking particles cannot outpace H2S generation by bacterial sulfate reduction. Instead, a rapid switch 

from nitrogenous to weakly sulfidic conditions takes place with no Fe-rich and NO3
-/NO2

--depleted and 615 

non-sulfidic stage in between. During sulfidic events on the Peruvian margin, Fe2+ and H2S are jointly 

released from the sediment into the water column upon NO3
- and NO2

- depletion in the bottom water 

(Scholz et al., 2016; Sommer et al., 2016). Here, the lack of a ferruginous intermediate stage prior to the 

onset of weakly sulfidic conditions in the water column is likely related to the high solubility of reduced 

Fe in weakly sulfidic waters (Rickard, 2006). By contrast, in the pore water of anoxic sediments, 620 

ferruginous conditions can readily establish because solid Fe (oxyhydr)oxide minerals are in stationary 

contact with a relatively small volume of seawater. 

According to Poulton and Canfield (2011), ferruginous anoxia dominates over euxinia during times of 

reduced seawater sulfate concentrations and enhanced reactive Fe supply to the ocean, e.g., due to 

intensified chemical weathering under conditions of elevated atmospheric CO2 and warmer climate. 625 

Under such circumstances, an excess of highly reactive Fe over sulfate is thought to facilitate the onset of 
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ferruginous conditions in the water column, despite the presence of leftover sulfate. In this context, it is 

worth noting that sedimentary H2S release on the Peruvian shelf can take place despite the presence of 

unsulfidized Fe (oxhydr)oxide minerals in the surface sediment (Scholz et al., 2016). More research on 

sulfate-lean (few mM of sulfate), tropical brackish water systems could help to better constrain the 630 

circumstances under which ferruginous conditions can establish in the water column at the presence of 

leftover sulfate. However, as demonstrated in Section 3.1. Fe transport in the water column and 

redistribution of sedimentary reactive Fe does not necessarily require a water column where Fe2+ 

dominates over NO3
-/NO2

- and H2S. Even under the nitrogenous to weakly sulfidic conditions prevailing in 

modern OMZs dissolved Fe concentrations in the water column are elevated and sediment-derived Fe 635 

can be transported, which is demonstrated by significant sedimentary Fe enrichments in the Gulf of 

California and on the Peruvian margin. In fact, recalculating the FeT/Al and FeHR/FeT observed in these 

settings for a lower MAR of terrigenous material (like in the pelagic Black Sea) yields a proxy signature 

that is indicative of ferruginous conditions (Fig. 8A).  

The theoretical effect of enhanced terrigenous Fe supply to continental margin sediments on 640 

sedimentary Fe redistribution can be evaluated in Fig. 8B. More intense weathering of silicate minerals 

and an accumulation of Fe (oxyhydr)oxides, e.g., through expansion of tropical laterite soils, would shift 

the FeT/Al and FeHR/FeT of terrigenous particles and thus the relationship between FeT/Al and FeHR/FeT to 

higher values. Moreover, more intense weathering of Fe-rich rock types (e.g., more mafic than felsic 

igneous rocks) (Nockolds, 1954) in the hinterland would yield a higher FeT/Al and, thus, shift the 645 

relationship parallel to the y-axis. Both of these trends facilitate the generation of a ferruginous proxy 

signature at a given MAR and authigenic Fe rain rate (Fig. 8B), regardless of whether NO3
-/NO2

-, Fe2+ or 

H2S are the dominant redox species in the water column. Based on this reasoning, I propose that the 

ferruginous proxy signature is generally consistent with nitrogenous to weakly sulfidic conditions like 

those observed at intermediate depth in the Black Sea (100 - 250 m water depth) (Fig. 2B) and in the 650 

water column overlying the Peruvian shelf.    

5. Summary and future directions 

Anoxic OMZs in the modern ocean are characterized by nitrogenous to weakly sulfidic conditions in 

the water column and ferruginous to sulfidic conditions in the surface sediment. A combination of Fe- 

and trace metal-based paleo-proxies can be used to identify this redox structure and the associated 655 

biogeochemical processes and feedback mechanisms in sedimentary archives. A generalized model of 

sedimentary Fe release and trapping was used to demonstrate that the extent of Fe mobilization and 

transport in modern OMZs can be comparable to that inferred for the euxinic Black Sea and ferruginous 
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water columns in Earth history. Based on this finding it is argued that the ferruginous proxy signature is 

broadly consistent with Fe cycling under OMZ-type redox conditions, especially if enhanced chemical 660 

weathering and reactive Fe input to the ocean during past periods of global warming are taken into 

account. 

A specific trend line of FeT/Al versus FeHR/FeT is proposed as a tool to identify sedimentary Fe release 

and trapping in the paleo-record. Deviations from this trend line indicate that additional processes, such 

as changes in terrestrial weathering intensity or Fe transfer from/to the pool of silicate minerals, have to 665 

be taken into account in the interpretation of Fe proxy signatures. Sediment geochemical data from 

paleo-records that plot along the trend line for Fe release and trapping imply that Fe mobility in the 

surface sediment and bottom water of the paleo-environment was enhanced. Ample Fe supply to the 

photic zone under these circumstances may have amplified nitrogen fixation and primary production, 

thus contributing to OMZ expansion and the development of euxinic conditions along productive 670 

continental margins in Earth history (e.g., Grice et al., 2005; Owens et al., 2013).  

As a summary of this review article, I propose a proxy-based scheme for the distinction between 

restricted basin-type and open-marine anoxic settings with non-euxinic or euxinic conditions in the water 

column (Fig. 9). Non-euxinic conditions can be nitrogenous to weakly sulfidic or ferruginous with or 

without leftover sulfate. All of these modes of non-euxinic ocean anoxia are compatible with a 675 

ferruginous Fe proxy signature and dynamic transitions among them are a conceivable possibility. The 

sulfur and nitrogen isotopic trends assigned to these modes in Fig. 9 are tentative and meant to inspire 

future research on how coupled nitrogen, Fe and sulfur cycling along anoxic ocean margins has evolved. 

Most studies on biogeochemical cycling in pre-Cenozoic Earth history focus on proxies for Fe and sulfur 

cycling to differentiate between euxinic and ferruginous anoxia. Adding proxies for nitrogen cycling to 680 

this routine may provide new insights into how nitrogen cycling processes (denitrification) affected Fe 

mobility during past periods of ocean anoxia (e.g., Michiels et al., 2017). More work on sedimentary Fe 

speciation and redistribution in modern OMZs is required to better characterize controlling factors and 

the extent of Fe release, transport and trapping along productive continental margins. For instance, 

chemical weathering in tropical river catchments, intense terrigenous input by large streams and an 685 

extended shelf width on passive continental margins are factors that are likely to affect the extent of 

sedimentary Fe redistribution in OMZs. 

Many of the biogeochemical processes described in this article have been shown to affect the isotope 

composition of metals (e.g., vanadium, chromium, iron, molybdenum, thallium, uranium) (Teng et al., 

2017). However, with the exception of Fe and Mo (e.g., Poulson et al., 2006; Poulson-Brucker et al., 690 
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2009; Severmann et al., 2006, 2010; Scholz et al., 2014a, b, 2017), none of these promising isotope 

geochemical tools has been studied in a systematic fashion in OMZs (i.e., across the entire bottom water 

redox-gradient, ideally including not only sediments but also pore waters and suspended particulate 

matter). Comparing sedimentary trace metal ratios and metal isotope values with trace metal quota and 

isotope compositions of different biological communities could help to identify specific metabolisms that 695 

are associated with nitrogenous or euxinic conditions at open-marine continental margins in Earth 

history. More research on the distribution, isotope composition and/or speciation (dissolved, particles, 

sediment) of metals that accumulate under anoxic but non-sulfidic conditions (e.g., rhenium, chromium, 

vanadium) can provide valuable insights into the specific sedimentary fingerprint of redox gradients at 

the boundaries between nitrogenous and oxic or euxinic water masses. Combining such novel tools with 700 

well-established geochemical proxies in both modern and ancient anoxic settings will help to better 

constrain the role and abundance of OMZ-type biogeochemical cycling throughout Earth history. 
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Figure captions 

Figure 1. Biogeochemical cycling in the water column and sediments of oxygen minimum zones: (A) 1155 

Schematic sketch illustrating element fluxes (arrows, colors are indicative for elements or species) and 

turnover. The size and direction of arrows is indicative of the flux magnitude and direction relative to the 

sediment-water interface or geometry of the continental margin. Note that only processes that are 

relevant for the discussion of proxy signatures are considered. Trace metal cycling is presented in a 

generalized fashion to provide an overview about relevant processes. (B) Examples for water column and 1160 

pore water profiles of major redox species in the Peruvian OMZ (Scholz et al., 2011, 2016). 

Figure 2. Biogeochemical cycling in the water column of the euxinic Black Sea: (A) Schematic sketch 

illustrating element fluxes and turnover. See Figure 1A for details. (B) Examples for water column profiles 

of major redox species in the Black Sea (Friederich et al., 1990; Lewis and Landing., 1991).  

Figure 3. Examples for water column profiles of major redox species in the Peruvian OMZ during a 1165 

sulfidic event in the water column (Scholz et al., 2016). The maxima in H2S and Fe2+ (depth depicted by 

horizontal arrow) were formed by lateral transport of water masses from shallower areas.  

Figure 4. Biogeochemical feedbacks which can amplify (green arrows) or mitigate (red arrows) OMZ 

intensity and expansion. (A) Negative feedback for primary production, organic matter (OM) export and 

oxidant consumption through denitrification (Canfield, 2006). (B) Positive feedback through sedimentary 1170 

Fe and PO4
3- release (Ingall and Jahnke, 1994; Van Capellen and Ingall, 1994; Scholz et al., 2014c). (C) 

Cancelation of the negative feedback in (A) by nitrogen fixation (Canfield, 2006). Nitrogen-fixing 

organisms are favored by low nitrogen to phosphorus ratios and high Fe supply related to sedimentary 

PO4
3- and Fe release. The feedback in (C) could transfer an OMZ from a nitrogenous to a euxinic mean 

redox state.  1175 
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Figure 5. Schematic comparison of trace metal- and iron-based paleo-redox proxy signatures in (A) the 

Peruvian OMZ and (B) the euxinic Black Sea (after Böning et al. (2004); Brumsack (2006); Lyons and 

Severmann (2006); Raiswell and Canfield (1998); Scholz et al. (2011, 2014a, b); Wijsman et al., (2001)). 

The principle processes leading to the formation of proxy signatures are indicated as well (see Fig. 1 and 

Fig. 2 for details). Horizontal dashed lines in the Mn/Al and FeT/Al diagrams depict the composition of 1180 

lithogenic material. Horizontal dashed lines in the FeHR/FeT and Fepy/FeHR diagrams depict threshold 

values for anoxic and euxinic conditions, respectively (Raiswell and Canfield et al., 1998; Poulton and 

Canfield, 2011).     

Figure 6. Theoretical framework for the interpretation of sedimentary Fe enrichment and depletion: (A) 

FeT/Al as a function of benthic Fe efflux (negative sign on x-axis), authigenic Fe rain rate (positive sign on 1185 

x-axis) and sediment mass accumulation rate (MAR) (colored lines); the black star depicts the FeT/Al of 

the average upper continental crust (McLennan, 2001). (B) FeHR/FeT as a function of benthic Fe efflux, 

authigenic Fe rain rate and MAR; the black star depicts the average FeHR/FeT of continental margin 

sediments with oxic bottom water (Poulton and Raiswell, 2002). (C) Relationships shown in (A) and (B) in 

a cross plot of FeT/Al versus FeHR/FeT; symbols depict the average FeT/Al  SD and FeHR/FeT  SD of 1190 

sediment cores from the OMZs off the coast of Peru (Scholz et al., 2014b, c) and in the Gulf of California 

(F. Scholz, unpublished data; see Supplementary Information for further details). The range of FeT/Al and 

FeHR/FeT observed in pelagic Black Sea sediments is shown for comparison (Raiswell and Canfield, 1998; 

Lyons and Severmann, 2006). The trend depicting delivery of FeHR and authigenesis of Fe silicate minerals 

was calculated by using a 1:9 ratio between newly delivered and pre-existing FeHR that is incorporated 1195 

into silicate minerals. (D) Close-up of (C) showing OMZ sediments in greater detail. See Supplementary 

Information for further details about the underlying calculations.  

Figure 7. Shelf-to-slope distribution of bottom water oxygen concentrations, sedimentary trace metal 

enrichments (expresses as excess metal concentrations relative to the metal to Al ratio of the upper 

continental crust; see Supplementary Information) and logarithmic trace metal ratios (log(Me/Me)XS) 1200 

across the Peruvian continental margin at 11 °S (data from Scholz et al. (2011)). Element concentration 

ratios are presented as logarithmic ratios to avoid asymmetry effects. The logarithmic trace metal ratio 

in seawater and composition of Holocene Black Sea sediments (range between the average of Unit 1 and 

Unit 2 sediments) (Brumsack, 2006) are shown for comparison. 

Figure 8. (A) Cross plot of Fepy/FeHR versus FeHR/FeT with fields for oxic, ferruginous and euxinic proxy 1205 

signatures (Poulton and Canfield, 2011). Symbols depict the average Fepy/FeHR  SD and FeHR/FeT  SD of 

sediment cores from the Peruvian continental margin (Scholz et al., 2014c) and the Gulf of California (F. 
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Scholz, unpublished data; see Supplementary Information for further details). Only sediment cores with 

elevated FeHR/FeT relative to sediments with oxic bottom water are shown (see Fig. 6C).  The arrows 

were calculated under the assumption that the sediment cores had a one order of magnitude lower 1210 

sediment mass accumulation rate (i.e., approximately similar to the Black Sea) but the same authigenic 

Fe rain rate (Fig. 6B). The high SD of Fepy/FeHR is related to the downcore increase in pyritization because 

of increasing H2S concentrations in the pore water (Scholz et al., 2014c). (B) Cross plot of FeT/Al versus 

FeHR/FeT illustrating the impact of terrestrial weathering intensity on the trend line for sedimentary Fe 

release and trapping. See Supplementary Information for further details about the underlying 1215 

calculations.  

Figure 9. Proxy-based scheme for the identification of different types of anoxic settings in the geological 

record: restricted basin-type versus open-marine with nitrogenous, weakly sulfidic, ferruginous (with or 

without leftover sulfate) or euxinic conditions in the water column. A ‘weakly sulfidic’ water column is 

characterized by hydrogen sulfide concentrations below FeS saturation whereas a euxinic water column 1220 

is saturated with respect to FeS (see Section 2.3). Threshold values of Cd/Mo are from Sweere et al. 

(2016). Regional nitrogen isotope variability has to be interpreted relative to the global secular δ15N 

trend (see Section 3.3 for further information). The nitrogen isotopic trends are tentative (e.g., coeval 

assimilation and nitrification of ammonia is neglected) (Ader et al., 2016) and meant to provide a basis 

for discussion. 1225 



Table 1. Biogeochemical conditions and processes across OMZs and associated paleo-redox proxies.

Biogeochemical conditions and processes Paleo-redox proxy

Redox conditions (see Fig. 7 for details)

Anoxic water column (open-marine) Mn/Al < UCC1

Oxic surface sediment (Mo/U)XS < UCC

Ferruginous surface sediment UCC ≤ (Mo/U)XS < seawater

Sulfidic surface sediment (Mo/U)XS ≥ seawater

Iron cycle

Reactive Fe release or trapping , Fe mobility in surface sediment FeHR/FeT, FeT/Al

and bottom water (see trend line in Fig. 6C)

Pyritization, Fe trapping, retention and burial Fepy/FeHR

Phosphorous cycle

P release C/P (relative to phytoplankton)

P burial P/Al, phosphorous speciation

Nitrogen cycle (water column)

Denitrification, anammox, nitrogen fixation δ
15

N, biomarker
1UCC: Upper continental crust (McLennan, 2001).
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Generalized model for sedimentary iron release and trapping 

The FeT/Al and FeHR/FeT after reactive Fe release or trapping were calculated with the following 

equations: 

𝐹𝑒𝑇/𝐴𝑙 =
𝑀𝐴𝑅 ∙ 𝐴𝑙 ∙ (

𝐹𝑒𝑇
𝐴𝑙

)
𝑐𝑟𝑢𝑠𝑡

+ ((𝑅𝑅𝐹𝑒 , 𝐹𝐹𝑒) ∙ 𝑀𝐹𝑒)

𝑀𝐴𝑅 ∙ 𝐴𝑙
 

𝐹𝑒𝐻𝑅/𝐹𝑒𝑇 =

𝑀𝐴𝑅 ∙ 𝐴𝑙 ∙ (
𝐹𝑒𝑇
𝐴𝑙

)
𝑐𝑟𝑢𝑠𝑡

∙ (
𝐹𝑒𝐻𝑅
𝐹𝑒𝑇

)
𝑜𝑥𝑖𝑐

+ ((𝑅𝑅𝐹𝑒 , 𝐹𝐹𝑒) ∙ 𝑀𝐹𝑒)

𝑀𝐴𝑅 ∙ 𝐴𝑙 ∙ (
𝐹𝑒𝑇
𝐴𝑙

)
𝑐𝑟𝑢𝑠𝑡

+ ((𝑅𝑅𝐹𝑒 , 𝐹𝐹𝑒) ∙ 𝑀𝐹𝑒)
 

MAR: Sediment mass accumulation rate, in g cm-2 yr-1. 

Al: Aluminum concentration in the sediment, in mg g-1. Scenarios of Fe loss or gain where calculated by 10 

assuming using a sedimentary Al concentration of 50 mg g-1 which is consistent with published data for 

sediments on the Peruvian margin, in the Gulf of California and the Black Sea (Scholz et al., 2011; 

Brumsack, 2006). 

(Fe/Al)crust: FeT/Al of the average upper continental crust, 0.44 (McLennan, 2001).  

(FeHR/FeT)oxic: FeHR/FeT of continental margin sediments with oxic bottom water, 0.28  0.06 (Poulton and 15 

Raiswell, 2002). 

RRFe: Authigenic Fe rain rate, in mmol cm-2 yr-1 (positive sign).   

FFe: Benthic Fe efflux, in mmol cm-2 yr-1 (negative sign). 

MFe: Molar mass of Fe, 55.845 mg mmol-1. 

mailto:fscholz@geomar.de
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Sediment geochemical data for sediments from the Gulf of California  20 

Sediment cores were collected in the Gulf of California during RV Sonne cruise SO241 in June and July 

2015. Pore water recovery and sediment subsampling was realized in a glove bag under anoxic 

conditions as explained in Scholz et al. (2011). Total iron (Fe) and aluminum (Al) concentrations were 

determined after total digestion by inductively coupled plasma optical emission spectroscopy (ICP-OES) 

(see Scholz et al. (2011) for details). Certified reference standards (SDO-1, USGS; MESS-3, Canadian 25 

Research Council) were digested and analyzed on a routine basis. The obtained values for Fe and Al were 

always within the certified ranges. A sequential sediment extraction for the recovery of highly reactive Fe 

phases was applied to the freeze-dried and ground sediment samples (Poulton and Canfield, 2005). An 

in-house standard (OMZ-1) and the Certified Reference Material PACS-3 (Canadian Research Council) 

were extracted during each batch of sequential extractions. The results for the sum of highly reactive Fe 30 

without Fe bound to pyrite (Fepy) were consistent with data generated at the University of Southern 

Denmark (SDU) for the same standard material (GEOMAR, OMZ-1: 0.47  0.02 wt. %, n = 18, PACS-3: 

1.25  0.01, n = 7; SDU, OMZ-1: 0.44  0.05 wt. %, n = 3, PACS-3: 1.26  0.04, n = 12). The chromium 

reduction method was used for the determination of Fepy (Canfield et al., 1986). The accuracy of the 

method was monitored by determining the pyrite content of mixtures between pure pyrite and quartz 35 

sand. The geochemical data for sediments from the Gulf of California are summarized in Supplementary 

Table S1. 

Calculation of excess trace metal concentrations 

Excess metal concentrations (MeXS) relative to the metal to Al ratio of the upper continental crust 

(McLennan, 2001) were calculated with the following equation (e.g., Brumsack, 2006): 40 

𝑀𝑒𝑋𝑆 = 𝑀𝑒 − (
𝑀𝑒

𝐴𝑙
)
𝑐𝑟𝑢𝑠𝑡

∙ 𝐴𝑙 

MeXS: Excess metal concentration, in µg g-1. 

Mesample: Metal concentration in the sediment, in µg g-1. 

Alsample: Metal concentration in the sediment, in µg g-1. 

(Me/Al)crust: Me/Al of the average upper continental crust, V: 1.33 ∙ 10-3, Mo: 1.9 ∙ 10-5, U: 3.5 ∙ 10-5 

McLennan, 2001).  45 

 

 



3 
 

References 

Brumsack H.-J. (2006) The trace metal content of recent organic carbon-rich sediments: Implications for 

Cretaceous black shale formation. Palaeogeography, Palaeoclimatology, Palaeoecology 232, 344-361. 50 

Canfield D. E., Raiswell R., Westrich J. T., Reaves C. M., and Berner R. A. (1986) The use of chromium 

reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology 54, 

149-155. 

McLennan S. M. (2001) Relationships between the trace element composition of sedimentary rocks and 

upper continental crust. Geochemistry Geophysics Geosystems 2, paper number 2000GC000109. 55 

Poulton S. W. and Raiswell R. (2002) The low-temperature geochemical cycle of iron: From continental 

fluxes to marine sediment deposition. American Journal of Science 302, 774-805. 

Poulton S. W. and Canfield D. E. (2005) Development of a sequential extraction procedure for iron: 

implications for iron partitioning in continentally derived particulates. Chemical Geology 214, 209-

221. 60 

Scholz F., Hensen C., Noffke A., Rohde A., Liebetrau V., and Wallmann K. (2011) Early diagenesis of redox-

sensitive trace metals in the Peru upwelling area: response to ENSO-related oxygen fluctuations in the 

water column. Geochimica et Cosmochimica Acta 75, 7257-7276.      


	EARTH_2018_278_R2
	Table1
	Figure1_OMZ
	Figure2_EuxinicBasin
	Figure3_SulfidicEventOMZ
	Figure4_Feedbacks
	Figure5_Proxies
	Figure6_FeFramework
	Figure7_TM
	Figure8_crossplot
	Figure9_scheme_R2
	EARTH_2018_278_SI



