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Abstract The Alboran Basin in the westernmost Mediterranean hosts the orogenic boundary between the
Iberian and African plates. Although numerous geophysical studies of crustal structure onshore Iberia have
been carried out during the last decade, the crustal structure of the Alboran Basin has comparatively been
poorly studied. We analyze crustal-scale images of a grid of new and reprocessed multichannel seismic
profiles showing the tectonic structure and variations in the reflective character of the crust of the basin. The
nature of the distinct domains has been ground-truthed using available basement samples from drilling and
dredging. Our results reveal four different crustal types—domains—of the Alboran Basin: (a) a thin
continental crust underneath the West Alboran and Malaga basins, which transitions to (b) a magmatic arc
crust in the central part of the Alboran Sea and the East Alboran Basin; (c) the North African continental crust
containing the Pytheas and Habibas subbasins; and (d) the oceanic crust in the transition toward the
Algero-Balearic Basin. The Alboran Basin crust is configured in a fore-arc basin (West Alboran and Malaga
basins), a magmatic arc (central and East Alboran), and a back-arc system in the easternmost part of the East
Alboran Basin and mainly Algero-Balearic Basin. The North African continental crust is influenced by
arc-related magmatism along its edge and was probably affected by strike-slip tectonics during westward
migration of the Miocene subduction system. The distribution of active tectonic structures in the current
compressional setting generally corresponds to boundaries between domains, possibly representing
inherited lithospheric-scale weak structures.

1. Introduction

The Alboran Basin is located at the westernmost Mediterranean, at the inner part of the Gibraltar Arc system,
formed by the Betics and Rif orogenic belts on-land, and the Gulf of Cadiz imbricated wedge toward the west
(Gràcia, Dañobeitia, Vergés, Bartolome, 2003; Iribarren et al., 2007; Figure 1). Seismic tomography detected a
slab in the upper mantle, which supports that its origin is related to a subduction system (Wortel &
Spakman, 2000).

Although the crustal thickness and upper mantle structure under the emerged region around the Alboran
Basin has been extensively studied recently using passive seismology methods including travel-time
earthquake tomography (e.g., Bezada et al., 2013), surface-wave tomography (e.g., Palomeras et al.,
2014), and receiver functions (e.g., Mancilla et al., 2015), the crustal and upper mantle structure under
the Alboran Basin still remains inadequately constrained. Results from global travel-time tomography
yield mantle structure only where very good ray coverage controls hundreds of kilometers of wavelength
features, due to a limited resolution of the method (Chertova et al., 2014; Spakman & Wortel, 2004;
Wortel & Spakman, 2000). More recent velocity models obtained with waveform inversion from regional
earthquakes (Fichtner & Villaseñor, 2015) show long-wavelength crustal thickness and upper mantle
structure. There are few previous deep-penetration multichannel seismic reflection (MCS) studies of the
structure of the basin (Booth-Rea et al., 2007; Watts et al., 1993). These data were collected before
multibeam bathymetric mapping of the entire basin was available (Ballesteros et al., 2008; d’Acremont
et al., 2014; Gràcia, Dañobeitia, Vergés, & Parsifal Team, 2003; Gràcia et al., 2006, 2012; Martinez-Loriente
et al., 2016), so that location of seismic profiles is often not optimal. Available basement dredges and scientific
and commercial well data samples of basement are scarce but provide key ground-truth information for
the domains.

Here we present the first comprehensive study of the Alboran Basin crust characterization derived from MCS
images, originally designed and acquired with the objective of imaging the full crustal structure, and
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complemented by vintage deep-penetration reprocessed MCS profiles. The main objectives of this work are
(i) to characterize the crustal types within the Alboran Basin, (ii) to interpret the nature of the basement types
on the basis of seismic images and available basement samples, and (iii) to contextualize the crustal
configuration in a geodynamic evolutionary model.

2. Geological Setting

The Gibraltar Arc system resulted from the interaction between the Iberian and African plates, and exotic
terrains collectively known as the Alboran Domain (Balanyá & García-Dueñas, 1987; García-Dueñas et al.,
1992; Sanz De Galdeano, 1990). The Alboran Domain is formed by three polymetamorphic terrains, in
ascending order, the Nevado-Filabride, Alpujarride, and Malaguide complexes (e.g., Sanz de Galdeano,

Figure 1. Regional bathymetric map of the Alboran Sea and of the Gulf of Cadiz (d’Acremont et al., 2014; Gràcia, Dañobeitia, Vergés, & Parsifal Team, 2003; Gràcia
et al., 2006, 2012; Martínez-Loriente et al., 2013, 2016) completed with IEO bathymetry (Ballesteros et al., 2008; Gómez de la Peña et al., 2016) and released
SRTM-3 and GEBCO digital data. Main depocenters and tectonic structures are displayed (Gràcia et al., 2006, 2012). Location of TOPOMED-GASSIS (black lines), EVENT-
DEEP Leg 2 (gray lines), ESCI Alboran (green lines), and CONRAD (brown lines) are depicted. Red and yellow lines display the seismic profiles presented in this study.
Inset: location of the shown area (red rectangle). AIF = Al-Idrissi Fault; AR = Alboran Ridge; ARF = Alboran Ridge Front Fault; BBP = Beni Bousera Peridotite;
CF = Carboneras Fault; LN = Lineation North; LS = Lineation South; NF = Nekor Fault; PF = Palomares Fault; RP = Ronda Peridotite; YF = Yusuf Fault.
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1990). Recent studies support that the Nevado-Filabride is not part of the Alboran Domain sensu strictu,
being mostly the Paleozoic basement of Iberia (Booth-Rea et al., 2015). The evolution of the region
containing the Alboran Basin (Figure 1) has been proposed as related to the evolution of a subduction
system. A combination of slab roll-back and slab tearing (Lonergan & White, 1997; Spakman & Wortel,
2004; Wortel & Spakman, 2000) has probably driven the entire system affecting the subsidence patterns
of parts of the basin (Do Couto et al., 2016), magmatic activity that led to the generation of new
basements during the Tortonian (Booth-Rea et al., 2007; Duggen et al., 2004, 2005; Hoernle et al., 1999),
and tectonic processes.

The Alboran Basin was mainly formed during the Miocene (Comas et al., 1999; Do Couto et al., 2016;
Martínez-García et al., 2017). The extension was accompanied by crustal contamination by magmatism
and several volcanic episodes (e.g., Duggen et al., 2004, 2008; Hoernle et al., 1999). The first volcanic epi-
sode was late Oligocene to earliest Miocene tholeiitic dykes exposed onshore (Duggen et al., 2004;
Marchesi et al., 2012; Torres-Roldan et al., 1986). The second episode occurred during the Late
Serravallian-Tortonian, with the emplacement of calk-alkaline, tholeiitic, and shoshonitic volcanics, subduc-
tion related, in most of the basin (Duggen et al., 2008). Finally, evidence of a third volcanic episode during
the Messinian and Plio-Quaternary is found at the basin margins, where alkaline volcanic rock complexes
are probably related to a hot asthenosphere source, rather than subduction-related fluids (Duggen et al.,
2004, 2008). During the Late Miocene contractive deformation occurs during the latemost Tortonian in the
easternmost section of the system, both onshore (eastern Betics, Booth-Rea et al., 2004) and offshore in
the NE margin of Palomares (offshore SE Iberia, Giaconia et al., 2015), whereas much of the basin was
under extension. After Messinian time the entire Alboran region undergoes contractive deformation that
is clearly active since the Early Pliocene to today (Giaconia et al., 2015; Martínez-García et al., 2013,
2017). The Moho and crustal structure has been mapped onshore (e.g., Díaz et al., 2016; Mancilla &
Diaz, 2015), but the offshore crustal structure is comparatively poorly known, with limited resolution velo-
city models from passive-source data (Grevemeyer et al., 2015). Moho depth (crustal thickness) in the
Gibraltar Arc system is very variable, ranging from ~8 km in the Algero-Balearic Basin (ABB) to ~55 km
below NW Morocco, at the Rif belt (Díaz et al., 2016). Below the western Betics (South Iberia), the Moho
occurs at 40–50 km depth, thinning to ~20 km toward the easternmost Betics, probably related to slab
delamination (Mancilla et al., 2015). Similarly, Moho depth under the Rif belt (NW Morocco) is 40–55 km
deep, while in NE Morocco and NW Algeria is 25–35 km deep (Díaz et al., 2016; Mancilla & Diaz, 2015).
The boundary between these two areas is defined onshore by the Nekor Fault that extends offshore along
the Al-Idrissi Fault System. These differing crustal structures are probably related to the Neogene evolution
of the subduction system and delamination processes currently affecting this area (e.g., Fadil et al., 2006;
Mancilla et al., 2015; Seber et al., 1996). Offshore, the Moho topography has not been resolved in detail.
Tomographic models (e.g., Mancilla & Diaz, 2015; Palomeras et al., 2017) do not have enough resolution
to image intrabasin thickness variations, mainly due to the lack of offshore stations (Mancilla & Diaz,
2015) and the coarse grid spacing used (~60 × 60 km, Mancilla & Diaz, 2015; Palomeras et al., 2017).
These models provided a mean crustal thickness of ~17 km (Palomeras et al., 2017). Local earthquake data
record of a temporal network covering the Alboran Basin supports a mean crustal thickness of ~20 km
(Grevemeyer et al., 2015).

3. Data and Methods
3.1. Data Acquisition and Processing

Themain data set used for this study are MCS data, corresponding to ~2,550 km of the TOPOMED-GASSIS and
~300 km of EVENT-DEEP Leg 2 surveys acquired and processed by our group of the Barcelona CSI. We have
also reprocessed ~90 km of vintage data from the ESCI Alboran survey (the ESCI-Alb1 profile, Comas et al.,
1995) and integrated the ESCI Alboran lines 2b and 2c and ~990 km of CONRAD cruise data (Figure 1). The
MCS profiles from the TOPOMED cruise (October 2011) were acquired on board of the Spanish RV
“Sarmiento de Gamboa,” using a 5,100 (leg 1) to 6,000 (leg 2) meter long active section of a solid state
Sentinel SERCEL streamer with 408 (profiles TM01–TM25) and 480 (profiles TM26–TM30) active sections
(12.5 m channel interval), towed at 10 m depth, with compasses every 150 m. The air gun source was
50.15 l (3,060 c.i.). The source array was composed by 8 G-GUN II guns deployed at 7.5/9 m depth, in single
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cluster configuration. The air guns were fired every 30 m (profiles TM01 and TM02), 40 m (profiles TM03 to
TM05), and 50 m (profiles TM06 to TM31) at a pressure of 2,000 to 2,500 psi. The record length was 14 to
19 s at of 2-ms sampling rate. Profiles from EVENT-DEEP Leg 2 were acquired in June 2010 on board the
RV “Sarmiento de Gamboa,” using a 3,400-m-long solid state Sentinel SERCEL streamer with 276 channels,
12.5 m long, and a seismic array of 10 air guns, with a total volume of 1,880 c.i. shot every 37.5 m, recording
12 s at 2-ms sampling rate. The ESCI Alboran survey was carried out on board Seismic Vessel “Bin Hai” from
WesternGeco (Geco at the time) in February 1992. An air gun array of 7,118 c.i. (2,000 psi) was fired every
75 m, with the signal recorded for 22 s at 4-ms sampling rate, on a 4,500-m-long (180 channels with 25 m
group interval) analogue streamer.

TOPOMED, EVENT-DEEP Leg 2, and ESCI profiles have been processed using GLOBE Claritas software. The pro-
cessing flow was designed to obtain crustal-scale information, preserving resolution in the sedimentary
basins, but imaging the deeper parts of the crust. Processing steps in time domain include minimum-phase
conversion, streamer geometry definition accounting for feathering, common midpoint sorting, spherical
divergence correction, predictive deconvolution in Tau-P domain (to eliminate the bubble and short periods
multiple reverberations), surface consistent deconvolution, surface-related multiple elimination, Radon filter
demultiple, normal-move-out correction based on velocity semblance analysis, dip move out correction,
stretch mute, amplitude recovery, stack, finite differences time migration, and time and spatial variant
band-pass filter (for further information about the processing flow, see the supporting information and
Figure S4; see also Yilmaz, 1987).

The CONRAD survey carried out in October 1988 on board the RV “Robert D. Conrad” used a BOLT air gun
array of 5,346 c.i. fired every ~50 m and a DIGICON 2,400-m-long streamer with 48 active groups spaced
50 m. CONRAD data set was obtained from the Academic Seismic Portal of the University of Texas (UTIG).
The available stacks were processed further including statistical deconvolution, time and space variant
band-pass filter, amplitude balance, and finite differences time migration.

We used the IHS Kingdom Advanced software to interpret the stratigraphy and the main structures of the
MCS data set integrating our multibeam bathymetry compilation (e.g., Ballesteros et al., 2008; Gràcia et al.,
2006, 2012) and used Generic Mapping Tools (Wessel & Smith, 1991) to plot seismic images. Seafloor map
analysis and display were done with ArcGIS software.

3.2. Moho Interpretation

Since the 1980s, several studies demonstrated the feasibility to use MCS records to characterize crustal
structures. Different national projects like DEKORP (Deutsches Kontinentales Reflexionsseismisches
Programm, Meissner et al., 1983), BIRPS (The British Institutions Reflection Profiling Syndicate, Klemperer
& Matthews, 1987; Matthews, 1982), or COCORP (Consortium for Continental Reflection Profiling,
Allmendinger et al., 1983) and international projects like BABEL (Baltic and Bothnian Echoes from the
Lithosphere, BABEL working Group, 1993) and IAM (Iberian Atlantic Margins, Dean et al., 2000) collected
land and marine seismic reflection records that imaged the entire crust at the time, with unprecedented
vertical and horizontal resolution.

In wide-angle seismic data, the crust-mantle or Moho boundary is associated with an abrupt increase in
seismic velocities. In coincident multichannel reflection seismic profiles, this velocity step correlates either
with a sharp reflection or with the base of the more or less reflective lower crust, which not always corre-
spond to the location of the brightest reflections (e.g., BABEL working group, 1993; Freeman et al., 1988;
Knapp et al., 1996). Reflectivity in the upper mantle has rarely been imaged and typically occurs as discrete
events striking with an angle to the crustal structure. Their origin is uncertain and widely debated (BABEL
working group, 1993).

Some of these studies report a discontinuous and laminated character for the Moho reflection, while it exhi-
bits a sharp discontinuous character on velocity models obtained from coincident wide-angle seismic pro-
files. This difference has been associated with the finest resolution obtained by reflection data at the
complex transition zone between the crust and the mantle (Hale & Thompson, 1982). Recent models testing
how a 3-D deep laminated zone is imaged in 2-D supports that destructive interferences destroy part of the
reflected signal (Hobbs et al., 2006). Thus, a weak signal is not necessarily indicative of a gradational
Moho boundary.
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Following previous studies, we have interpreted the Moho boundary as the deepest continuous clear
reflection or as the base of the more dispersed reflectivity. We have detected the Moho boundary along
all seismic lines. Although the Moho signal changes in strength among the sections, a seismic boundary
can be correlated across the entire basin, supporting a consistency in our interpretation. The events
located above the base of the reflectivity have been interpreted as intracrustal features, discussed in
section 5.1.

4. Reflective Character of the Crust

The deep penetration seismic images display five different domains with different types of crustal reflectivity:
the West Alboran Basin (WAB), the Malaga Basin (MB), the East Alboran Basin (EAB), the North African margin
(NAM), and the transition to the ABB. The domains with different crustal types are defined using well sites and
dredge information, providing—locally—the nature of the basement.

4.1. The WAB

The WAB is a deep sedimentary depocenter, with ~6–7 s TWTT of infill (~7–8 km thick) accumulated since the
Late Aquitanian-Burdigalian (~21 Ma, Do Couto et al., 2016), with a sequence with no tectonic deformation
(Figures 1 and 2a). Metamorphic basement similar to Alboran Domain on-land was drilled during DSDP
Leg 121 and ODP Leg 161 (Comas et al., 1992, 1999). These metamorphic rocks are dated Late Oligocene-
Early Miocene (~27–19 Ma, Comas et al., 1999; Kelley & Platt, 1999). At the south eastern side of the WAB, vol-
canic intrusions occur (Duggen et al., 2004).

The metamorphic basement has low internal reflectivity (Figures 2a, 3a, and 4a). The basement top is a bright
reflection at highs (Figure 2a, common midpoints (CMPs) 16000–14000) and indistinct under the deep basin,
where it is inferred at the base of continuous parallel reflections interpreted as sediments (Figure 3a, CMPs
19000–16000). The Moho boundary is delineated by faint discontinuous reflections (e.g., Figures 2a, 3a,
and 4) with slightly higher amplitude than the background reflectivity (e.g., Figures 2 and 4). Discrete reflec-
tions locally occur in the uppermost mantle (Figure 3a).

The basement top occurs at 5–8 s TWTT under the basin depocenter (Figures 2a, CMPs 20000–16000, and
4a, CMPs 2000–8000) and rises toward a high at ~2 s TWTT sampled by ODP and DSDP drilling expeditions
(Figures 2a, CMPs 16000–10000 and Figure 4a, CMPs 8000–10000). The Moho occurs at 7–8 s TWTT in the
northern sector (Figure 2a, CMPs 20000–16000) and at 8–10 s TWTT on the southwestern sector (Figure 4a,
CMPs 2000–10000). Underneath the basement highs, the Moho is not well defined, although indistinct
events occur at ~8 s TWTT (Figure 2a, CMP ~14000, ~12000). At the center of the basin basement thickness
is only ~1–2.5 s TWTT (~4–6 km, Figures 2a, CMPs 20000–17000, Figure 4a, CMPs 2000–7000). In the
basement highs, basement thickness is ~ 5 s TWTT (Figures 2a and 2b, CMPs 16000–8000, Figure 4a,
CMPs 7000–11000). Approaching the Straits of Gibraltar, the Moho occurs at ~8 s TWTT and basement
thickens to ~6–7 s TWTT. The southeastern sector contains volcanic highs cropping out at the seafloor
(Figures 1 and 2b) indicating that metamorphic basement has been affected by magmatic arc
activity (Figure 2b).

4.2. The MB

The MB depocenter is>6 s TWTT deep and drilling of basement on its northern flank recoveredmetamorphic
samples (Figure 1, Andalucia A-1, Comas et al., 1992), sharing similarities to the WAB basement.

Under the MB, the top of the basement is poorly defined, and it is inferred at the base of a set of subhor-
izontal continuous reflections (Figure 5). The basement shows two layers, with different reflectivity: the
upper crust that shows poor reflectivity, while the lower crust is characterized by higher reflectivity
(Figure 3b). The boundary between the upper and lower crust is defined by relatively continuous 5- to
10-km-long groups of high-amplitude reflections with a layered aspect (Figure 3b) that progressively
becomes indistinct toward the west and disappears under the WAB (Figure 4b). The Moho reflection
character is similar to the WAB, with sparse reflections (Figure 3b) that gain in continuity toward the east,
characterized by moderate amplitudes and low frequency (Figure 5a, CMPs 6000–10000 and Figure 5b,
CMPs 12000–18000).
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Figure 3. (a) Zoom of profile TM17 (West Alboran Basin). See Figures 1 and 2a for location. (b) Zoom of profile TM22 (Malaga Basin). See Figures 1 and 5a for location.
Vertical exaggeration is of ~x:1 taking into account deep crust velocities (~6,000 m/s).
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Profile TM21 (Figure 4) images the transition between the WAB and the MB. These two subbasins
present continuity in the age of the sedimentary infill (Do Couto et al., 2016) and the nature of the
continental basement; however, the basement thickness is different. The basement top of the MB is
located at ~3.5–5 s TWTT (Figure 5) and the Moho at ~10 s TWTT (Figure 5), that is, ~6–6.5 s TWTT
thick, or about 18–20 km thick (using 6-km/s average basement velocity after wide-angle studies
onshore, e.g., Banda et al., 1993). The upper crust is <~4 s TWTT thick and the lower crust <~2.5 s
TWTT thick.

The eastern end of the MB is abrupt near the Carboneras Fault System (Figure 5b, CMP ~18000) that
marks the boundary with the magmatic basement of the EAB. This fault reactivated an inherited struc-
ture formed at the middle Miocene (Giaconia et al., 2014; Rutter et al., 2012; Scotney et al., 2000).
However, first evidences of activity in the current transpressional regime initiated in latemost
Messinian or earliest Pliocene (Moreno et al., 2016), younger than the early Miocene age of the MB
(Do Couto et al., 2016). Volcanic constructions grew during the Late Serravallian to Tortonian in the
MB near the boundary with the arc crust of the EAB (e.g., Chella Bank in Figure 5b, CMPs 12000–
160000).

4.3. The EAB

Dredges of the EAB basement sampled volcanic units of Late Serravallian-Tortonian age (Duggen et al., 2004,
2005, 2008). The volcanic rocks are calc-alkaline enriched in light rare earth elements and depleted light rare
earth element tholeites indicating subduction-related melts intruding continental crust and primitive volca-
nic arc, respectively (Duggen et al., 2004).

Seismic images display a volcanic upper basement unit that laterally changes in thickness creating a
complex basement topography that locally appears controlled by faults conceivably formed during the
arc accretion (Figures 6a, 7, and 8). This upper unit contains short reflections (3–7 km long) forming com-
plex subhorizontal patterns possibly composed by successive volcanic units. The base of the volcanic units
is not a sharp boundary, although it can be mapped due to a change in the reflectivity pattern, as the vol-
canic units show higher reflectivity than the underlying middle crust (Figure 7). The boundary between the
middle and lower crusts is defined by a change from comparatively lower to enhanced reflectivity in the
lower crust, containing relatively continuous reflections that form bands perpendicular (Figure 7a) and par-
allel (Figure 7b) to the basin axis, roughly striking W-E. Moho reflections are indistinct and poorly contin-
uous, so that the Moho boundary has been interpreted at the base of the lower-crust reflectivity
(Figures 6a and 7).

The upper unit is up to ~1 s TWTT or ~2–2.5 km thick (assuming 5 km/s), the middle unreflective crust is ~2 s
TWTT thick (~6 km thick assuming 6 km/s), and the lower crust is ~3 s TWTT thick (~9 km, Figures 6a, 7, and 8).
Thus, the crust of the EAB is ~4–8 s TWTT thick (~10–19 km thick).

Evidence of magmatic arc activity within the Alboran Basin occurs between 4°150W and 1°W (Figure 1,
e.g., Duggen et al., 2004). This magmatism may have led to form a new basement during the growth
of the arc (Figures 6a and 8a), as in the case of the EAB (Booth-Rea et al., 2007). However, magmatism
locally extends into the pre-existing metamorphic basement, where isolated volcanic edifices occur
(e.g., Algarrobo Bank in Figure 4b, CMPs 17000–21000, Chella Bank in Figure 5b, CMPs 12000–160000,
Comas et al., 1999; Duggen et al., 2008). These volcanic edifices are characterized by high-amplitude
wavy reflections that usually form aprons on the flanks of the volcanic constructions (e.g., Ibn-Batouta
Bank in Figure 2b, CMPs 10000–4000; Algarrobo Bank in Figure 4b, CMPs 17000–21000; El Sabinar
Bank in Figure 6a, CMPs 2500–4000 and Figure 9). Volcanic edifices commonly show a circular seafloor
morphology (Figure 1), that is especially evident in the Chella Bank (Figures 9a–9c), with a mean diameter
of ~30 km. In areas floored by volcanic basement, volcanic edifices are also found (Figures 9d–9e). In
these areas, elongated ridges are more common than conical edifices (Figure 1), with a mean width of
20 km and different lengths, being the Maimonides Seamount the longest one, more than 50-km-long
(Maimonides High in Figure 9d; Yusuf Ridge and Al-Mansour Seamount in Figure 9e). They display a
layered stratigraphy of volcanoclastic strata.

The southern EAB boundary with the North African continental crust occurs at (a) the location of the Yusuf
strike-slip fault system (Figure 6b, CMPs 10000–12000, Figure 8a, CMPs 7000–9000, and Figure 8b CMPs
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Figure 7. (a) Zoom of profiles TM09 (perpendicular to the margin) and (b) TM28 (parallel to the margin; East Alboran Basin). See Figures 1 and 6a for location. Vertical
exaggeration is of ~x:1 taking into account deep crust velocities (~6,000 m/s).
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7000–8000) and (b) continuous along Alboran Ridge frontal fault system extending westward (Figure 10).
Like the Carboneras fault system, Yusuf and Alboran Ridge fault systems are located at the boundary of
crustal domains and their fault activity is latemost Messinian or earliest Pliocene (Martínez-García et al.,
2013) and thus much younger than the basement age. Toward the east, the volcanic basement of
the EAB progressively transitions to the thinner oceanic crust of the ABB (Figure 1, Booth-Rea et al.,
2007, 2018).

Figure 9. Detail of the volcanic edifices. (a–c) Cross sections of the Chella Bank. Three radial transects are performed, showing an irregular basement top
and aprons toward the high flanks. V = volcanic construction. (d) Detailed image of the Maimonides High. An irregular basement top forming conical highs is
imaged. VB = volcanic basement. (e) Detail images of the Yusuf Ridge and Al-Mansour volcanic outcrops. Internal wavy reflections developing apron
shapes toward the highs flanks are imaged. VB = volcanic basement. Blue stars: volcanic dredges. Vertical exaggeration is of ~x:1.8 taking into account a
3,000-m/s velocity.
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4.4. The NAM

The NAM forms the widest shallow water shelf of the Alboran Basin. It contains the Habibas (HBB) and
Pytheas (PB) basins (Figure 1), where the HBB-1 well sampled metamorphic basement rocks of possible
Late Triassic-Early Jurassic? age (Medaouri et al., 2014). However, a later metamorphic age has been described
onshore (Late Oligocene-Middle Miocene, Negro et al., 2007), suggesting that a secondmetamorphic process
affected this margin.

This area is characterized by basement >8.5–10 s TWTT thick (~25–30 km) with comparatively high internal
reflectivity where packages of intracrustal reflections (ICRs) are common (Figures 11 and 12). The most con-
tinuous ICR packages in the Alboran Basin (5–20 km) occur under the Habibas Basin on images parallel to the
margin (Figure 12a) loosing continuity under the Pytheas Basin. The same ICR exhibit much less continuity
(2–5 km) on images perpendicular to the margin (Figure 12b). A well-defined boundary between the upper
and lower crust is not observed. ICR bands dip toward the NW, and in the lower crust, events stop at a fairly
consistent level interpreted as the Moho (Figure 11b), which are better imaged on profiles parallel to the
strike of the margin (Figure 12).

Under the Habibas Basin, basement top is interpreted at the base of a synform filled by discontinuous layer-
ing inferred to be the oldest infill, underlying well-stratified younger strata (e.g., Figures 11b, CMPs
8000–2000 and 12b). The Moho is interpreted at ~12 s TWTT depth (Figures 11b and 12), shoaling toward
the west (Figures 11a and 13).

In the outer western region, the North African basement is affected by magmatic activity (Figures 10, 11a,
and 13). South of the Alboran Ridge, the upper unit of the basement under the South Alboran Basin
appears made of volcanic layers that locally generate several hundreds of meters of relief. Rhyolites
sampled on the Alboran Ridge, yield a Late Serravallian-Tortonian volcanic age (e.g., Duggen et al.,
2004; Hoernle et al., 1999). The basement thins from ~10 s TWTT (~30 km) under the Habibas and
Pytheas basins to <8 s TWTT under the South Alboran Basin (Figure 10, CMPs 1000–6000, and Figure 13).

4.5. The Transition to the ABB

Under the ABB, the basement top is interpreted at the base of the continuous reflections associated with the
sedimentary infill (Figure 14). The basement can be divided into three units: (1) an upper volcanic unit, which
base cannot be identified, (2) a middle crust, with lower reflectivity that decreases from top to bottom, and (3)

Figure 10. Time migration of profile TM04 (see location in Figure 1). Crustal structure is displayed. M = Messinian top (~5.33 Ma); Mt.B = metamorphic basement;
VB = volcanic basement; V = volcanic constructions; ICR = intracrustal reflection. Main structures are identified. Vertical exaggeration is of ~x:1 taking into account
basement velocities (~4,500 m/s).
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a lower crust showing higher reflectivity. The boundary between the middle and the lower crust is defined by
a high continuous subhorizontal reflection at ~7–7.5 s TWTT (Figure 14). The Moho is interpreted at the base
of the high-reflectivity lower crust, and it is characterized by sparse high-amplitude reflections, <5 km long.
The upper volcanic unit and the middle crust are ~1 s TWTT thick (~3 km assuming 6 km/s) and the lower
crust is up to ~2 s TWTT thick (~7 km, Figure 14).

Figure 11. Time migration of profile TM15 (see location in Figure 1). This profile is divided into (a) western section and (b) eastern section. Crustal structure is
displayed. M = Messinian top (~5.33 Ma); Mt.B = metamorphic basement; V = volcanic constructions; ICR = intracrustal reflection. Vertical exaggeration is of ~x:1
taking into account basement velocities (~4,500 m/s).
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5. Discussion
5.1. Nature of the Crustal Domains

Changes in reflectivity and basement internal structure, crustal thickness, and available basement sampling
support three main types of crustal domains: (i) relatively thin continental crust under the WAB and MB, and
somewhat thicker continental basement under the NAM; (ii) magmatic arc crust of the EAB and NE Alboran
Basin (including Mazarron margin); and (iii) a transition to back-arc oceanic crust of the ABB (Figure 15a). The
continental crust shows evidence of magmatic constructions in regions adjacent to the magmatic arc-
type basement.

Figure 14. Timemigration of profile TM27 (see location in Figure 1). Crustal structure is displayed. VB = volcanic basement. Vertical exaggeration is of ~x:1 taking into
account basement velocities (~4,500 m/s).

Figure 13. Time migration of profile TM16 (see location in Figure 1). Crustal structure is displayed. M = Messinian top (~5.33 Ma); Mt.B = metamorphic basement;
V = volcanic constructions; ICR = intracrustal reflection. Vertical exaggeration is of ~x:1 taking into account basement velocities (~4,500 m/s).
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5.1.1. Thin Continental Crust Under West Alboran and MBs
We infer a continental nature for the basement of theWAB and theMB on the basis of the metamorphic rocks
drilled in DSDP site121, ODP site 976 and industry wells on the Spanish and Moroccan shelfs and the general
lack of volcanic constructions and volcanic units as those observed in the magmatic domains. Under the
WAB, a faint discontinuous intrabasement seismic event may represent the weakest Moho reflection in the
basin, so that the basement is ~2 s TWTT thick (~6 km, Figures 2a and 4). The only basement velocity

Figure 15. (a) Crustal domains of the Alboran Sea basin. The identified crustal domains are depicted (see figure legend), together with the previous domains
identified at the Gulf of Cadiz (Martínez-Loriente et al., 2014) and on-land the Iberian and African margins (from Mancilla et al., 2015). Interpretation of peridotite
outcrops is based on Berndt et al. (2014). MCS profiles used in this work are depicted in light gray. (b) Interpretation of the volcanic arc system, divided into fore-arc,
magmatic arc, and back-arc basin. Magmatic intrusions and basement of the magmatic arc crust domain are enclosed inside red dashed lines.
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information comes from a local earthquake tomography study that seems to support the extension under the
basin of the Ronda and Beni Bousera peridotitic massifs cropping out in south Iberia and NW Africa, respec-
tively (El Moudnib et al., 2015). The Ronda Peridotite is overlaid by 5- to 6-km-thin continental crust section
(Frasca et al., 2015). Thus, it is conceivable that the basement is made of very thin crust or even of exhumed
mantle that is partially serpentinized, so that the faint reflections represent a serpentinization front similar to
boundaries observed on the basement of the Iberia Abyssal Plain (Dean et al., 2000). The continental base-
ment thickens toward the E, and to the NE under the MB where clear Moho reflections delineate a ~6 s
TWTT thick basement (~18 km, Figure 5a), but the sediment infill and nature of the basement are similar
to the basement drilled at the eastern edge of the WAB. In the MB, several volcanic constructions rest on
the basement and their volcanoclastic deposits interfinger with the basin infill (Figure 4b, CMPs 18000–
21000 and Figure 5a, CMPs 11000–17000).

The thickening of continental basement from the WAB toward the E and NE into the MB indicates that the
basement unit underwent different degrees of extension. The higher extension at the WAB produced a dee-
per depocenter, but in both subbasins thinning is not related to obvious fault activity affecting the basement
and the Miocene sedimentary section. However, thinning of a crustal section to fewer than 6 km is accom-
plished by major faulting with kilometer-scale fault offsets extending over tens of kilometers across the
region (e.g., Ranero & Pérez-Gussinyé, 2010). The lack of clear fault-related structures may indicate that it
occurred either before the current basin structure formed, or very rapidly during the early sediment deposi-
tion, and it is not well displayed on the seismic images. We speculate that thinning, perhaps leading to man-
tle exhumation (currently onshore and under the WAB) occurred before emplacement of the peridotite
massifs in the Early Miocene (~19–22 Ma, Garrido et al., 2011; Hidas et al., 2013; Sosson et al., 1998), thus prior
to the early Alboran Basin formation, in Burdigalian times (Frasca et al., 2015). The emplacement of the
extended terrane may have obscured the extensional fault structure.
5.1.2. Magmatic Arc-Type Crust in the EAB
The basement of the central and NE regions of the EAB is formed by Neogene magmatism (Booth-Rea et al.,
2007, 2018; Giaconia et al., 2015; Gómez de la Peña et al., 2016) sampled in outcrops at the seafloor and
onshore in SE Iberia (Duggen et al., 2004, 2005, 2008). The geochemical composition of these volcanic rocks
is indicative of subduction-related fluids (Duggen et al., 2004). Basement thickness ranges between 4 s TWTT
in the transition to the ABB (~8–10 km) to ~6 s TWTT (~18 km) near the western end of the domain (Figures 6–8)
and displays three layers throughout the domain. Across the entire magmatic domain, the volcanic basement
is a unit characterized by weakly stratified reflections that, where sampled, are composed by basaltic to ande-
sitic lava flows and ashes (Figure 9e). Below the volcanic layer, comparatively the middle crust is featureless,
whereas reflectivity is abundant in the lower crust (Figure 8a, CMPs 9000–12000 and Figure 8b, CMPs
9000–13000). The three-layer structuration and the reflectivity characteristics correlate well with previous stu-
dies (Booth-Rea et al., 2007). However, we interpret a slightly deeper Moho under the EAB (~8–10 s TWTT,
Figure 6a, CMP 9000–13000, Figure 8a). In contrast to the ESCI lines (Booth-Rea et al., 2007), the processing
flow applied to the TOPOMED data included an efficient multiple attenuation (see Figures S4 and S5; see also
Monk, 1993; Wang, 2003) that unveils features that otherwise are masked by the multiple energy. In
TOPOMED lines, clear reflectivity is observed till ~8–10 s (Figures 7b and 8a, CMPs 9000–13000), supporting
our interpretation of the Moho. Lower-crustal reflections display different patterns, with the main two
attitudes as subhorizontal events at the top of the lower crust delineating the abrupt transition to a rather
transparent middle crust, and at the base of the crust either dipping or subhorizontal. However, the lack of
good 3-D control makes it difficult to determine the real attitude of the reflectors. Similar reflections had pre-
viously been described on ESCI-Alb line (Figure 1) and interpreted as magmatic layering (Booth-Rea et al.,
2007, 2018), which may be the origin of most lower crust reflectivity in the magmatic domain.

All features of this domain are consistent with the arc magmatism interpretation: (i) the volcanic layer made
of flows, clasts, and ashes forming the upper crust, as indicated by available basement samples; (ii) the vol-
canic constructions (Figure 9) with a clear seafloor topography and image of its internal structure are indica-
tive of volcanic edifices (Figures 1 and 9); and (iii) the 8- to 18-km-thick basement with a similar character of
lower-crustal reflectivity across the domain.

5.1.3. Continental Crust of the NAM
The continental crust of the NAM has the deepest Moho reflections of the Alboran Basin at ~12 s TWTT, with a
basement of ~10 s TWTT or ~30 km thick (Figures 11 and 13). This is slightly thicker than the continental crust

10.1029/2017TC004946Tectonics

GÓMEZ DE LA PEÑA ET AL. 3371



of the North African continental margin facing the ABB that progressively thins from ~25 to ~13 km under the
oceanic domain (Aïdi et al., 2018).

Lower crust and Moho reflections are clear in images acquired parallel to the margin trend, with a 1- to 2-s
band of reflections apparently dipping to the NW that gently flatten down-dip approaching ~12 s TWTT to
give way to a featureless mantle (Figures 11 and 12a). In contrast, images collected perpendicular to the
margin trend, display indistinct reflections, with discontinuous lower crustal and Moho reflections
(Figures 6b and 8a, CMPs 4000–7000, Figure 8b, CMPs 3000–6000, Figure 12b). Tie points of lines parallel
and perpendicular to the margin show that the features creating the conspicuous reflectivity on strike-
parallel lines are fairly linear (Figure 12a) with laterally limited extension (Figure 12b). A linear structure in
the basement might represent a deformation fabric, like metamorphic mylonites stretching parallel to the
margin strike. In contrast, it is rather unlikely that large rock bodies (or compositional layering) of contrasting
physical properties produce the lower crustal reflectivity. In particular, the pervasive character of the roughly
1-D seismic fabric supports a tectonic nature of the structure, like mylonitic banding, irrespective of the pre-
sence of pre-existing rock bodies with different physical properties. Mylonites have been shown to cause
velocity anisotropy capable of creating intrabasement reflectivity (Christensen, 1989; Fountain et al., 1984;
Jones & Nur, 1984). This interpretation supports that the continental margin basement may have been
sheared, possibly in a ENE-WSW direction, which agrees with the transport direction of extension postulated
for the Alboran Basin during the Neogene (e.g., Rosenbaum et al., 2002) and with the mapped mantle aniso-
tropy (Diaz et al., 2010).

The continental basement thins northward toward the EAB as it is progressively affected bymagmatic activity
indicated by volcanic edifices visible in seismic images and bathymetry (e.g., Figure 13). Magmatic arc intru-
sions and volcanism heavily modified the basement in the Alboran Ridge area (Duggen et al., 2004, 2008),
although magmatism occurred before the uplift of the Alboran Ridge in the Pliocene. The ridge has a base-
ment ~7–8 s TWTT thick (~21–24 km; Figure 13), somewhat thicker than in typical magmatic arc basement
nearby, with a reflectivity similar to the basement of Habibas and Pytheas basins. We interpret that this region
forms a continental domain, although it has been affected by arc-related volcanism at the edge of the
continental margin (Figure 10, CMPs 8000–2000). Transpressive deformation occurred in the Late
Oligocene-Middle Miocene (~33–13 Ma, Booth-Rea et al., 2012; Jabaloy-Sánchez et al., 2015; Negro et al.,
2008), followed by tectonic denudation during the Late Serravallian-Tortonian (~12–7 Ma, Booth-Rea et al.,
2012). This deformation can be explained by strike-slip tectonics affecting the NAM, due to the westward
migration of the slab (e.g., van Hinsbergen et al., 2014).

5.2. Crustal Domains Configuration

The characterization of crustal domains of the Gibraltar Arc System onshore have been extensively discussed
(e.g., Platt, 2007; Platt et al., 2013; Sanz De Galdeano, 1990). Recent studies with wide-angle and multichannel
seismic profiles also constrain the crustal domains on the Gulf of Cadiz area (e.g., Martínez-Loriente et al.,
2013; Sallarès et al., 2011, 2013; Sanz De Galdeano, 1990). We integrate in a map of the entire system the
crustal domains of the Alboran Basin defined in this work (Figure 15a).

The Gulf of Cadiz is characterized by four main crustal domains that formed during the opening of the
Western Tethys and Central Atlantic Oceans, and later during the Neogene subduction of a slab of Tethys
lithosphere (Martínez-Loriente et al., 2013; Sallarès et al., 2011, 2013). The Gibraltar Arc System domains
onshore are related to the same subduction system, resulting from the collision between allochtonous
terrains (Malaguide, Alpujarride, e.g., Balanyá & García-Dueñas, 1987) with the Iberia and Africa margins.
The Nevado-Filabride terrain is considered as part of the Iberian basement (e.g., Booth-Rea et al., 2015).
The collision led to the formation of the foreland thrust belts, formed by sedimentary rocks of the margins
(Rif, Subbetic, and Prebetic units), and the Flysch through units, formed by marine sediments coming from
the offscraping from the subducted Tethys ocean slab (Chalouan et al., 2009; Gràcia, Dañobeitia, Vergés,
Bartolome, 2003; Luján et al., 2006; Platt et al., 2013; Sanz De Galdeano, 1990). The domains of the Alboran
Basin identified in this work appear as an extension of the rock units described onshore. The Ronda and
Beni Bousera peridotitic massifs with their thin crustal carapace appear to extend as the 3- to 6-km-thick
basement of the domain of theWAB, perhaps containing no crustal basement rocks but serpentinizedmantle
under the basin depocenter. The continental basement prolongs under the less extended MB. The magmatic
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rocks of Cabo de Gata continue as the basement of the Mazarron Margin (Gómez de la Peña et al., 2016) and
the magmatic basement of the EAB. The continental rocks along coastal regions of NE Morocco and NW
Algeria extend into the North African continental margin.

Limited magmatic activity of late Miocene age reached beyond the boundary between the magmatic arc and
continental domains, intruding continental basement, possibly because these were regions of relative thin-
ner lithosphere channeling some melt. Boundaries between the basement domains currently appear to be
tectonically reactivated by the largest active tectonic systems offshore: The Carboneras Fault (Figure 5b,
CMP 18000), the Yusuf Fault (Figure 8a, CMPs 7000–9000, Figure 8b, CMPs 7000–8000), the Al-Idrissi Fault,
and the Alboran Ridge front fault (Figure 10, CMPs 8000–6000) focus on the inherited weakness of bound-
aries between domains (Figure 15a).

5.3. Geodynamic Setting

On the basis of surface geology or local low-resolution crustal and upper-mantle tomographic studies, differ-
ent hypotheses were proposed for the origin of the Alboran Basin including orogenic collapse or delamina-
tion (e.g., Dewey, 1988; Lonergan & White, 1997; Seber et al., 1996). However, global tomographic models
were able to map a slab in the upper mantle, providing an unequivocal link of this system to a subduction
system (Spakman & Wortel, 2004) and providing the geodynamic setting to explain Neogene volcanism
(Duggen et al., 2004; Hoernle et al., 1999). The distribution of crustal domains across the Alboran Basin
described here provides further support to the formation of the Gibraltar Arc System in a subduction setting
(Figure 12). The entire Alboran Basin has typically been referred as formed in a back-arc setting, because of its
position with respect to structural high formed by the tectonic wedge of the Gibraltar Arc (e.g., Comas et al.,
1992). However, the domains can now be placed in a subduction setting and refer them with respect to the
volcanic arc and the subduction front: The WAB and MB form the fore-arc basin (Figure 15b); the magmatic
arc as originally postulated from geochemical analyses of basement samples (Hoernle et al., 1999) and seis-
mic images (Booth-Rea et al., 2007) extends across the EAB and Mazarron Margin, with large volcanic edifices
growing also in the fringes of the continental domains. The actual back-arc basin is found in the ABB.
The change in basement type between the volcanic arc and the back-arc oceanic crust is gradual in the seis-
mic images. The volcanic arc images show a complex reflectivity in the crust of 4–6 s TWTT thick (8–18 km;
Booth-Rea et al., 2007, 2018 and Figures 5–7), whereas back-arc oceanic crust—that is, formed at the spread-
ing center—is <2–2.5 s TWTT thick (~6–7 km) and exhibits reflections typically restricted to the lower crust
(Figure 14), similar to images of oceanic crust from the Pacific (Ranero, Reston, et al., 1997) and the Atlantic
(Ranero, Banda, et al., 1997).

The Gulf of Cadiz contains a submarine imbricated sedimentary unit at the front of the subduction system
(Figure 15b). However, the lack of a clear trench structure and the proposition that the deformed sediment
unit is made of gravity driven deposits (olistostrome) has triggered a debate on its origin that is still open
(Gràcia, Dañobeitia, Vergés, Bartolome, 2003; Gutscher et al., 2002; Iribarren et al., 2007; Martínez-Loriente
et al., 2013; Torelli et al., 1997). The subduction setting supports that the olistostromic body is the accretionary
wedge to the system (e.g., Torelli et al., 1997; Zitellini et al., 2009). The Betics and Rif mountain ranges repre-
sent the collisional belt of the system.

6. Conclusions

The analysis of crustal-scale seismic images together with basement samples reveals four different crustal
domains forming the basement of the Alboran Basin region: (i) thin continental crust under the WAB and
MB, (ii) thicker continental crust under the NAM, (iii) Magmatic arc crust under the EAB and the Mazarron
Margin, and (iv) oceanic crust under the ABB.

The thin continental crust ranges from ~1–2.5 s TWTT thickness (~4–6 km) under the WAB to 6–6.5 s TWTT
(~18–20 km) under the MB. Under the WAB, the basement is featureless and the Moho is a faint discontinu-
ous reflection with slightly higher amplitude than the background at ~7.5–9 s TWTT depth. Under the MB, the
basement is divided into two layers: a low reflectivity upper crust <4 s TWTT thick and a higher reflectivity
lower crust <2.5 s TWTT thick. The Moho is defined by a moderate amplitude reflection at ~10 s TWTT depth
that gains continuity toward the east. Metamorphic drilled rock samples support the same continental base-
ment nature for both subbasins.
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The NAM represents continental basement with up to ~10 s TWTT (~30 km) thickness under much of the con-
tinental shelf, thinning toward the north and the west—the domain edges in contact with the volcanic domain.
Along the edge, local magmatic intrusions have modified the continental crust. On seismic images, the base-
ment is characterized by a high reflectivity and comparatively abundant ICRs that may represent a mylonitic
fabric. The Moho is interpreted at the base of the ICRs at ~12 s TWTT depth, shoaling toward the west.

The magmatic arc crust under the EAB is characterized by ~4–8 s TWTT thickness (~10-~18 km). Based on the
reflectivity characteristics, the basement can be divided into three layers: (1) an upper unit <1 s TWTT thick,
with high-reflective reflections forming complex patterns and composed by the extrusive volcanic basement;
(2) a middle crust ~2 s TWTT thick, characterized by low reflectivity; and (3) a lower crust ~3 s TWTT thickness,
exhibiting high-amplitude banded reflections that possibly represent magmatic layering. The Moho is inter-
preted at the base of the lower crust reflectivity, at ~8–10 s TWTT depth. Several volcanic constructions are
found in this area.

The oceanic crust under the ABB is divided into three units: (1) an upper volcanic unit with high amplitude
that transitions to (2) a low reflectivity middle-crust, and (3) a lower crust characterized by higher reflectivity
and subhorizontal reflections. Total thickness of the crust is ~3–3.5 s TWTT (~9 km). The Moho is at ~9.5 s
TWTT depth.

The main active tectonic structures in the present-day compressional setting are located at the boundaries
between crustal domains. These boundaries represent the weakest zones in the crust, and thus, they favored
fault nucleation and propagation.

The distribution and nature of the crustal domains agrees with the structure expected in a subduction
system: a fore-arc basin formed by the WAB and MB, a magmatic arc at the EAB and NE Alboran, and a
back-arc basin represented by oceanic crust of the ABB, flanked on either side by continental crust of
South-Iberian and NAMs. The northern region of the NAM was deformed possibly by strike-slip tectonics
during the Miocene at the southern edge of the subduction system. The Gulf of Cadiz imbricated units are
interpreted as the accretionary wedge of the system.
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