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 1. Summary - Zusammenfassung

In the marine environment  elevated electrical  conductivities  may be caused by sulfide mineralizations  

within the seafloor as well as hot saline pore fluids. Such conductive targets may be studied with suitable  

electromagnetic systems like the novel coil-system MARTEMIS1, which we previously used to investigate 

a known zone of sediment covered mineralization at the Palinuro Seamount (cruises POS483 & POS509)  

and in the vicinity of the TAG hydrothermal mound at the Mid Atlantic Ridge (cruise JC138). Both the Pal-

inuro site as well as the sites in the vicinity of the TAG hydrothermal mound (Shinkai, Double Mound,  

MIR) are hydrothermally inactive and, thus, allowed to study, how the responses of an inductive EM sys-

tem is influenced and shaped by mineralizations within the seafloor without having to consider the effect of  

of heated pore fluids. In the interpretation of the collected data at these inactive sites we learned that the  

MARTEMIS system is able to detect conductivity anomalies in the vicinity of mineralizations. 

The main objective of cruise POS524 to the Grimsey Vent Field (GVF), to the North of Iceland, which is  

presented in this report, was to study the suitability of the MARTEMIS system (as well as other EM sys-

tems / configurations) for the characterization of an active hydrothermal system. The hydrothermal system 

had previously been studied during several GEOMAR cruises in the late 90s to early 2000s (POS229,  

POS253, POS291), during which high temperature venting was observed – temperatures between 200 –  

250°C were reported  by  Botz  et  al.  (1999)  – but  no  massive sulfide  mineralization,  which  would  be 

expected to some degree in such a geotectonic setting, were found (e.g. Hannington et al., 2001). Thus, as 

second objective it was projected that EM investigations would not only give insight into the hydrothermal 

structure, but could potentially also reveal covered mineralizations at depth. To facilitate interpretations,  

EM investigations were accompanied by geophysical (heat probe) and geological (gravity core) measure-

ments for ground truthing and to gain further structural insight.

During cruise POS524 successful measurements with the MARTEMIS coil system were carried out cover-

ing the hydrothermally active area as defined in Hannington et al. (2001) with about 15km of profiles. 

Additional measurements were carried out along 2.5km of profile around a second site of interest to the 

north of the hydrothermal field and, additionally, along a 2.5km long profile connecting the two working  

areas, which most likely cover background sediments. Signals transmitted with the MARTEMIS coil were  

also recorded by 12 stationary, remote OBEM receivers, which had been installed prior to the first experi -

ment. This “Coil2Dipole” experiment with a moving coil as transmitter and stationary OBEMs as receivers, 

has an increased depth of penetration (~100m) as compared to the pure MARTEMIS coil measurements  

(~30m) and will hopefully yield complementary information for the EM interpretation. As part of these  

experiment, measurements of the self-potential (… actually of the ambient horizontal electric field …)  

were also carried out. Additionally, we performed a novel EM experiment (working title: “Dual Polariza -

tion”), in which the coil frame of the MARTEMIS system was used to carry two perpendicular pairs of 

transmitter  electrodes,  thus,  allowing for a CSEM experiment with two independent  transmitter  dipole  

polarizations, which will yield an increased depth of investigation (~250m). The Dual Polarization experi -

ment was carried out along a 3.7km long W ↔ E profile crossing the active hydrothermal vent field. Trans-

mitted signals were recorded by 9 stationary OBEM receivers along the profile. Active EM experiments  

were concluded by running a second MARTEMIS experiment along 20km of profiles. A first review of the  

1 Marine transient electromagnetic induction system
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coil data revealed some problems caused by a damaged cable of the receiver coil and it is not clear if it will  

be possible to use this MARTEMIS data set. However, the data measured with the remote OBEM receivers  

during this last deployment, will yield an additional Coil2Dipole data set. 

EM investigations were accompanied by measurements with a 2.2m long heat probe. They may yield valu-

able data for the interpretation of EM data, potentially aiding in distinguishing between anomalies in the 

EM data caused by hydrothermal activity or anomalies caused by mineralizations. Successful temperature  

measurements were acquired at a total of 14 stations, at 8 of these stations thermal conductivity data was  

also acquired.

Finally, geological samples were collected with a 3m long gravity corer for ground truthing and to gain fur-

ther structural insight. In total about 20m of core material was collected at 8 stations. Temperature measure-

ments were directly performed on deck and sampling of the pore fluids will help in the interpretation of  

EM data by yielding in situ salinities of fluids taken from the active field as well as fluids taken in back -

ground areas.

The combination of experiments proved to be convenient in terms of handling on the ship, as EM experi -

ments on the one hand and measurements with heat probe and gravity coring on the other hand were usu-

ally performed in an alternating manner each other day. This alternating style of experiments gave each  

method time for adjustments and repairs as well as time to take a first look at measurements. 

In summary, the following first results were obtained during the cruise:

1. Highly elevated temperatures (>60°C) were measured with the heat-flow probe to the east of the 

previously depicted area (station HF04). This indicates that the extent of the active area is larger 

than previously known. In a gravity core which we tried to take at the same location (GC06), 

only 31.5°C were measured at deck in the core catcher. This seems to indicate that temperature  

varies significantly over short distances. This observation, distinct temperature measurement in a 

very short distance, points to a strong tectonic control in hydrothermal influence, with faults act-

ing as fluid pathways.

2. Increases in temperature and thermal conductivity towards the north (HF14) as well as strong 

H2S smell  and elevated temperatures  in  cores  (GC04 & GC05)  at  the  – up to  date  – most  

northerly sampled sites from the GVF show that the hydrothermal influence extent more than 

2.5 km north of the main hydrothermal mound along an inferred N-S fault.

3. Calibration measurements with the MARTEMIS system show that improvements to the mechan-

ical setup of the system, which were implemented after the 2017 cruise to Palinuro, were suc-

cessful in the sense that previous distortions in measurements, which had been caused by metal  

parts on the coil frame, are now completely absent.

4. A first interpretation of the MARTEMIS coil data shows systematically increased, anomalous 

amplitudes above and around the previously mapped hydrothermal area. Additional anomalies 

were detected further to the east, either showing that the active area is larger than previously 

known or, potentially giving a first speculative indication towards hidden massive sulfides.

Page 3 of 69



Upcoming work will aim to further integrate results of all methods into a joint interpretation, which will  

guide investigations to be carried out during the approved cruise POS535 in June 2019.

Im marinen Umfeld können erhöhte elektrische Leitfähigkeiten sowohl durch Vererzungen als auch durch  

heiße, saline Fluide verursacht werden. Solche leitfähigen Untersuchungsziele können mit geeigneten elek-

tromagnetischen Systemen wie dem am GEOMAR entwickelten Spulensystem MARTEMIS untersucht 

werden. Mit diesem System hatten wir bereits marine Massivsulfide untersucht, z.B. eine sedimentbedeckte 

Mineralisierung am Palinuro Seamount (Ausfahrten POS483 & POS509)  und geologische Ziele in der  

Nähe des TAG Hydrothermalfeldes am Mittelatlantischen Rücken (Ausfahrt JC138). Sowohl Palinuro als  

auch die Mounds in der Nähe des TAG-Hydrothermalfeldes (Shinkai, Double Mound, MIR) sind hydro-

thermal inaktiv und erlauben somit zu untersuchen, wie Messungen eines induktiven EM-Systems durch 

Mineralisierungen beeinflusst werden, ohne die Wirkung von erhitzten Porenfluiden berücksichtigen zu 

müssen. Bei der Interpretation der gesammelten Daten an diesen inaktiven Standorten haben wir festge-

stellt, dass das MARTEMIS-System in der Lage ist, Leitfähigkeitsanomalien in der Umgebung von Mine-

ralisierungen zu detektieren.

Das Hauptziel der Ausfahrt POS524 zum Grimsey Hydrothermalfeld nördlich von Islands, das in diesem 

Bericht vorgestellt wird, war die Untersuchung der Eignung des MARTEMIS Systems (sowie anderer EM-

Systeme / Konfigurationen) für die Charakterisierung eines aktiven hydrothermalen Systems. Das Hydro-

thermalfeld wurde bereits während mehrerer Ausfahrten des GEOMARs in den späten 90ern bis frühen 

2000ern  untersucht  (POS229,  POS253,  POS291).  Während dieser  Ausfahrten  wurde  eine  substantielle 

hydrothermale Aktivität beobachtet (Temperaturen zwischen 200 - 250°C in Botz et al., 1999). Es wurden 

jedoch  keine  Massivsulfide  gefunden,  die  zu  einem  gewissen  Grad  in  einer  solchen  geotektonischen 

Umgebung zu erwarten wären (s. z. B. Hannington et al., 2001). Zweites Ziel der EM-Untersuchungen war  

somit nicht nur Einblicke in die hydrothermale Struktur zu erhalten, sondern weiterhin auch Hinweise auf  

verdeckte Mineralisierungen in der Tiefe zu erhalten. Um die Interpretation zu erleichtern, wurden EM-

Untersuchungen mit geophysikalischen (Wärmesonde) und geologischen (Schwerelot) Messungen kombi-

niert, um die Interpretation der EM Daten zu unterstützen und weitere strukturelle Einblicke zu gewinnen.

Während  der  Ausfahrt  POS524  wurden  erfolgreiche  Messungen  mit  dem  MARTEMIS  Spulensystem 

durchgeführt, die den hydrothermal aktiven Bereich (s.  Hannington et al., 2001) mit Profilen mit einer  

Gesamtlänge von ca.  15km abdecken. Zusätzliche Messungen wurden entlang eines Profils  von 2,5km 

Länge an einer zweiten auffälligen Struktur nördlich des hydrothermalen Feldes und zusätzlich entlang 

eines  2,5km langen Profils  durchgeführt,  das  die  zwei  Arbeitsbereiche verbindet.  Signale,  die  mit  der  

MARTEMIS Senderspule gesendet wurden, wurden außerdem von 12 stationären, OBEM Empfängern auf-

gezeichnet, die vor dem ersten Experiment installiert worden waren. Dieses "Coil2Dipole" Experiment mit  

einer beweglichen Spule als Sender und stationären OBEMs als Empfänger hat eine erhöhte Eindringtiefe  

(~ 100 m) im Vergleich zu den reinen MARTEMIS Spulenmessungen (~ 30 m) und wird komplementäre  

Informationen für die EM-Interpretation liefern. Im Rahmen dieses Experiments wurden auch Messungen 

des Eigenpotentials (... eigentlich des natürlichen horizontalen elektrischen Feldes ...) durchgeführt. Zusätz-

lich führten wir ein neuartiges EM-Experiment durch (Arbeitstitel: "Dual Polarization"), bei dem am Spu-

lenrahmen des MARTEMIS Systems zwei orthogonale Senderelektrodenpaaren befestigt wurden, was ein  

CSEM Experiment mit zwei unabhängigen Senderdipolpolarisationen ermöglicht,  die eine erhöhte Ein-
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dringtiefe erlauben (~300m). Das "Dual Polarization"-Experiment wurde entlang eines 3.7 km langen W-E-

Profils durchgeführt, welches das aktive hydrothermale Feld kreuzt. Die ausgesendeten Signale wurden von 

9 stationären OBEM Empfängern entlang des Profils aufgezeichnet. Die aktiven EM-Experimente wurden 

mit einem zweites MARTEMIS Experiment entlang von Profilen mit einer Gesamtlänge von 20km abge-

schlossen. Eine erste Überprüfung der Spulendaten zeigt hier aber Probleme, die offensichtlich durch ein  

beschädigtes Kabel der Empfängerspule verursacht wurden. Es ist nicht klar, ob es möglich sein wird, die -

sen MARTEMIS Datensatz zu verwenden. Die Daten, die während dieser letzten Implementierung mit den 

entfernten OBEM Empfängern gemessen wurden, können jedoch als zusätzlichen Coil2Dipol-Datensatz 

ausgewertet werden.

EM-Untersuchungen wurden von Messungen mit einer 2,2m langen Wärmesonde begleitet. Diese können 

wertvolle Daten für die Interpretation von EM-Daten sowie Hinweise darauf liefern, ob eine Anomalien in 

den EM-Daten durch hydrothermale Aktivität oder durch Mineralisierungen verursacht wird. Erfolgreiche  

Temperaturmessungen wurden an insgesamt 14 Stationen durchgeführt, an 8 dieser Stationen wurden auch 

Messungen der thermischen Leitfähigkeit durchgeführt.

Weiterhin wurden Proben mit einem 3m langen Schwerelot gesammelt, die weitere strukturelle Einblicke 

ermöglichen. Insgesamt wurde an 8 Stationen ca. 20m Kernmaterial gewonnen und Temperaturmessungen 

wurden direkt an Deck durchgeführt. Die Probenahme von Porenfluiden erlaubt die in-situ Bestimmung 

von Salinitäten und liefert somit einen wichtigen Parameter für die Interpretation der EM-Daten.

Die Kombination der Experimente erwies sich im Einsatz auf dem Schiff als sehr gut abgestimmt, da durch 

den täglichen Wechsel der Methoden – EM Experimente an einem Tag, Wärmelanze und Schwerelot am 

nächsten Tag – den einzelnen Arbeitsgruppen jeweils genug Zeit blieb um Arbeiten an den Systemen durch-

zuführen und außerdem erste Ergebnisse zu produzieren, die dann wiederum zu einer zielgerichteten Ein-

satzplanung verwendet werden konnten.

Zusammenfassend wurden die folgenden ersten Erkenntnisse während der Fahrt gewonnen:

1. Stark erhöhte Temperaturen (> 60°C) wurden mit der Wärmelanze östlich des zuvor bekannten 

aktiven Gebiets (Station HF04) gemessen. Dies zeigt, dass das Ausmaß des aktiven Bereichs grö-

ßer ist als zuvor bekannt. In einem Sedimentkern, der an der gleichen Stelle genommen wurde 

(GC06), wurden jedoch nur 31,5°C an Deck gemessen. Dies deutet darauf hin, dass die Temperatur 

über kurze Distanzen stark variiert. Diese Beobachtung einer deutlichen Variation der Temperatur  

über kurze Entfernungen deutet auf eine tektonische Kontrolle des hydrothermalen Systems hin, 

wobei Störungen als Pfade für den Fluidtransport wirken.

2. Anstieg der Temperatur und Wärmeleitfähigkeit nach Norden (HF14) sowie starker H 2S-Geruch 

und erhöhte Temperaturen in Kernen (GC04 & GC05) an den - aktuell - nördlichsten beprobten  

Lokationen im GVF zeigen, dass der hydrothermal beeinflusste Bereich mehr als 2,5km nördlich 

des hydrothermalen Mounds nachgewiesen werden kann, woraus eine potentielle existierende N-S-

Verwerfung abgeleitet werden kann.

3. Kalibrierungsmessungen mit dem MARTEMIS-System zeigen, dass Verbesserungen am mechani-

schen Aufbau des Systems, die nach der Ausfahrt nach Palinuro 2017 durchgeführt wurden, erfolg-
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reich waren. Bei früheren Messungen vorhandene unerwünschte Verzerrungen in den Messungen,  

die durch Metallteile auf der Spule verursacht wurden, sind nicht mehr vorhanden.

4. Eine erste Interpretation der MARTEMIS Spulendaten zeigt systematisch erhöhte, anomale Ampli-

tuden über und in der Umgebung des bisher bekannten hydrothermalen Feldes. Weitere Anomalien 

wurden weiter östlich entdeckt, was entweder darauf hindeutet, dass die aktive Fläche größer ist als  

bisher bekannt, oder möglicherweise einen ersten spekulativen Hinweis auf verborgene massive 

Sulfide gibt.

Weiterführende Arbeiten werden sich auf die Integration der gewonnenen Datensätze in eine gemeinsame  

Interpretation konzentrieren, anhand welcher die Untersuchungen für die genehmigten Ausfahrt POS535 im 

Juni 2019 geplant werden können.

 2. Participants

Name Position (Affiliation) Function on board

1 Sebastian Hölz Senior Scientist (GEOMAR) chief scientist, marine EM

2 Sofia Martins Senior Scientist (GEOMAR) co-chief scientist, GC, heatflow

3 Amir Haroon Scientist (GEOMAR) marine EM

4 Konstantin Reeck PhD-student (GEOMAR) marine EM

5 Gesa Franz PhD-student (GEOMAR) marine EM

6 Shuangmin Duan PhD-student (GEOMAR) marine EM

7 Martin Wollatz-Vogt Technician (GEOMAR) marine EM

8 Patrick Schröder Technician (GEOMAR) gravity core, heatflow

9 Anna Jegen Bachalor student (CAU) gravity core, heatflow
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 3. Research Program

 3.1. General

Hydrothermal circulation is driven by heat and 

occurs mainly at marine plate boundaries such 

as mid ocean ridges, volcanic arcs and at back 

arc basins where heat is supplied by increased 

magmatic  activity.  In  Iceland the occurrences 

of  high-temperature  hydrothermal  systems  is 

clearly linked to the neovolcanic zone (Fig. 1), 

which crosses  the  island from the SW to the 

NNE. The neovolcanic zone is an expression of 

the Mid-Atlantic Rift system crossing the Ice-

land hot spot (Hannington et al., 2001). As part 

of the rift system, the neovolcanic zone extends 

into the submarine domain to the SW along the 

Reykjanes  Ridge  and  to  the  NNE  along  the 

Kolbeinsey Ridge. 

Investigations  of  geothermal  settings  on  and 

around Iceland are of special  interest  for  two 

main reasons:

1. At present, geothermal heat is already of major importance for Iceland's economy and infrastructure 

since 25% of the country’s electricity production, 66% of the primary energy use and about 90% of  

heating for households stem from geothermal energy (Orkustofnun, 2017)2. At present this hydro-

thermal potential is mainly exploited on the main island, but the potential of offshore reservoirs for  

smaller islands like Grimsey is investigated e.g. by Atkins & Audunsson (2013). For the Grimsey 

Vent Field (GVF), which is the geological target of this proposal, the authors state: “Although it has 

by far been the most extensively surveyed offshore resource around Iceland, only very limited infor-

mation is available on reservoirs temperature, size, and energy content.” This demonstrates that the 

economical interest for these offshore resources is at present not matched by adequate knowledge 

about the true potential, which demonstrates the need for fundamental research.

1. Hydrothermal circulation of seawater is a prerequisite for the formation of seafloor massive sulfides  

(SMS). Hot fluids leach out metal bearing ores from the host rocks at depth and the mineral rich 

fluid rises towards the seafloor. When cooling, e.g. in contact with cold seawater metals may precipi-

tate to form SMS deposits. Depending on the structure of the seafloor and the overall build up of 

hydrothermal circulation, the cooling of hydrothermal fluids may occur within the seafloor, in which 

case deposits may form at depth or within the water column, in which case venting of high-tempera-

ture fluids may build up chimney structures such as black smokers. Along oceanic plate boundaries 

2 http://www.nea.is/geothermal/ (Orkustofnun – National Engergy Authority of Iceland, accessed 10.2.2017)
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Fig. 1: Map of Iceland (from Hannington et al., 2001) showing  
the neovolcanic zone (white) with offshore extensions to the  
SW along the Rejkjanes Ridge and to the NNE in the Tjörnes  
Fracture Zone (TFZ) and the Kolbeinsey Ridge. The proposed  
study area (Fig. 7) to the E of the Grimsey island is part of the  
TFZ .

http://www.nea.is/geothermal/


approximately 330 vent sites have been observed at the seafloor. Of these sites, a majority of 237  

contain massive sulfide mineralization (Beaulieau et al., 2015; Monecke et al., 2016) and an estimate 

of the global potential yields a total accumulated volume of 600 million tons of SMS containing 30 

million tons of copper and zinc are present in the immediate vicinity of the oceanic plate boundaries  

(Hannington et al., 2010 & 2011). Due to the fact that SMS are compact (i.e. localized) structures 

close to the seafloor with potentially high ore grades, the possibility of mining such massive sulfide 

deposits has gained much attention on a national and international level (Boschen et al., 2013). How-

ever, in the case of the GVF no massive occurrences of have been reported, even though some indi-

cations for the existence of sulfides was found in cores (Hannington et al., 2001). This poses the  

question, if SMS are simply not present in the proposed working area or if they simply have not been  

found so far, because they are hidden underneath a sediment blanket.

 3.2. Geological Target

The Grimsey Vent Field (GVF) is  located on the eastern 

side of the Grimsey Graben on a 30 – 40m high. The graben 

is  a  pull-apart  basin  within  the  Tjörnes  Fracture  Zone, 

which is about 10km wide, 30 – 40km long and filled with 

glacial sediments from ice-fed rivers draining the northern 

coast of Iceland (Lackschewitz et al., 2006). 

Since its discovery in 1997 (Stoffers et al., 1997), the GVF 

has been studied during several scientific cruises with R/V 

Poseidon.  Hannington et  al.  (2001)  identified three main 

areas of venting (Fig. 2):

1. A northern field composed of isolated mounds and soli-

tary chimneys,

2. a  central  field  consisting  of  coalesced  anhydrite 

mounds, where the most active venting occurs along a 

300m long and 200m wide ridge and

3. a small and older southern field, in the form of a coa-

lesced mound with at least one active vent.

During cruise POS229 samples of chimneys, hydrothermal 

fluid and gas were collected using the submersible JAGO 

(Stoffers et al., 1997). In 1999, seventeen 3m and 5m grav-

ity cores were recovered during POS253 along with sam-

ples collected by the submersible JAGO (Scholten et  al., 

2000). The GVF was again sampled in 2002 during POS291 recovering fifteen 6 – 9m long gravity cores,  

from which sediment and pore water samples were retrieved (Devey et al., 2002).

All the information collected within these cruises allowed for a comprehensive picture of the GVF, which 

is a shallow water (400m) system covering an area of at least 1km2. It is characterized by hydrothermal 

Page 8 of 69

Fig.  2:  Contour  map of  the  Grimsey Vent  Field (GVF)  
with  locations  of  temperature  measurements  taken  
with  the  JAGO submersible  and the  deduced area  of  
active,  high-temperature  venting (shaded area)  (after  
Hannington et al., 2001).



anhydrite mounds comprising active and inactive anhydrite chimneys. Hannington et al. (2001) identified 

24 mounds and chimneys in JAGO dives, of which 14 were characterized as high-temperature vents (boil -

ing). They also observed acoustic scattering within the water column in echo-sounder profiles (their figure  

5), which they used to map out the extent of the hydrothermal field (shaded area in Fig. 2). 

Fluid analyses on core samples were reported with 

end-member chlorinity of 274mM, which is about 

half  of  seawater  chlorinity  (Lackschewitz  et  al., 

2006). Even though sulfur smell was apparent on 

fresh chimney samples, the lack of smoke in the 

venting fluids and the only patchy distribution of 

bacteria mats on the surfaces of mounts suggests 

that neither sulfur nor metals are abundant at the 

surface. However, it remains unclear if accumula-

tions of massive sulfides may exist at greater depth 

(Hannington et al., 2001).

Sediment  coring  results  shows  that  the  area  is 

underlain  by  pelagic,  clastic  and  hydrothermal 

altered  sediment  sequences.  The  cycle  of  forma-

tion, alteration, destruction and re-sedimentation of 

the  anhydrite/talc  chimneys  is  represented  by 

debris flow, turbiditic and hemipelagic deposits (Scholten et al., 1999). Sulfide deposition was identified as  

disseminated occurrences,  but  also filling veins,  fractures  and vugs in  hydrothermal  altered sediments  

(Hannington et al., 2001).

Within the high temperature vents, many showed boiling, 

and phase separation was visually observed. Temperature 

measured by JAGO ranged from 248 to 251°C (Botz et 

al.,  1999). The temperatures measured on deck, on the 

core catchers, reached 102°C in the central mound area 

and as low as 2°C in the more distal areas with back-

ground values sediments (Stoffers et al., 1997; Scholten 

et al., 2000).

Fig.  3 demonstrates  how  elevated  temperatures  of 

pore fluids are connected to a strong increase in the 

electrical conductivity. This relationship motivates the 

use of EM methods for the investigation of a hydro-

thermal system!

In a review of Icelandic geothermal areas Ármannsson 

(2016) lists 33 prospective high temperature geothermal 

systems, of which three are submarine. Of these subma-

rine  fields  Atkins  and  Audunsson  (2013)  consider  the 
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Fig. 4: Seismic activity offshore northern Iceland since 1994  
with recent activity indicated by green (January 2018) and  
red points (since 19th of February). Magnitude larger 4 are  
shown as black stars, the white star indicates the location  
of a M5.2 earthquake (IMO, 2018b).

Fig.  3:  Temperature  -  conductivity  relationship  for  0.1  
molal NaCl  solution at a pressure of  100bar (based on  
Fig. 10 in Quist and Marshal, 1968). The red area marks  
the temperature range observed in the GVF.



Grímsey field to be the most compelling site for offshore power production off Iceland due to the size of  

the field (comparable to geothermal areas on land) its temperature (at least 250°C) and its proximity to land 

(16km from Grímsey island and 50km from mainland Iceland). Their assessment for Grimsey seems to be  

mainly based on research results collected during  R/V Poseidon cruises POS229, POS253 and POS291 

(1997, 1999, 2002, respectively)

Seismic and geochemical investigations indicate high permeability in the deep crust which facilitates fluid  

and gas migration from the crust–mantle boundary to the seafloor (Riedel et al., 2001). Some additional  

data is presented by Magnúsdóttir et al. (2015) who show an E-W striking section of chirp seismic data, in  

which the GVF is associated with two separate, cone-shaped acoustic anomalies along a stretch of about  

500m. This is a first indication that the vent field is actually wider / larger than depicted in Fig. 2 and may 

actually consist of several separate centers of strong hydrothermal activity. They also present some stratig -

raphy from the approximately 38m long drill core MD-75, which was taken at a location about 6km to the 

SW of the GVF. Additional information about this core can be found in Gudmundsdóttir et al. (2011).

Recent news have reported that the area around the GVF has been shaken by swarms of earthquakes start -

ing in January 2018 (Fig. 14). The highest activity with about 2000 events was reported mid February 3 

(IMO, 2018a) and was centered in the Skajálfandadujúp submarine rift valley. The Icelandic Met Office 

(IMO, 2018b) reported the highest activity on February 19 th with the largest earthquake (M5.2) located 

14km ENE of Grímsey together with five smaller earthquakes (M4-4.9). Generally, such pattern of activity  

occur every few years with similar activity reported in May and September 1969, during the Christmas  

period in 1980, in September 1988 and April 2013. This activity was attributed to movements of the tec -

tonic plates which can cause a change in geothermal and hydrothermal activity in the area.

3 http://icelandreview.com/news/2018/02/19/magnitude-52-earthquake-near-grimsey
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 4. Narrative of Cruise

6.6. - 8.6.2018

After a seamless mobilization on the 6 th of June we left the harbor of Reykjavik (Iceland) on schedule the 

next morning. In the morning of the 7th of June, we were surprised by open pack ice to the NW of Iceland,  

which partially blocked the passage through the Greenland Strait. For the better part of the morning Cap-

tain Günther was busy trying to find a save passage, which delayed our transit by several hours. In the  

evening hours of the 8th of June we arrived in our working area, which is located about 15km to the West of 

the Island of Grimsey offshore Northern Iceland.

9.6.2018

To prepare experiments we first performed a pressure test of the releases and at the same time acquired a  

CTD-profile, which yielded data necessary for the calibration of the Posidonia USBL-system (sound-veloc-

ity profile) as well as for the later interpretation of the EM data (conductivity profile). The following instal -

lation and calibration of the Posidonia USBL-system was finished in the early afternoon. The calibration of  

the USBL system confirmed the correct operation of the system and yielded acceptable precision in the  

order of 5 – 8m. Later this afternoon, we deployed the first two OBEM receiver to locations, which were 

planned around the active hydrothermal field.

10.6.2018

Most of the day was spent on the deployment of seven additional OBEM receivers around the vent site and 

of three additional receivers to a site approximately 2.5km to the north of the vent field, which was identi -

fied as a point of potential hydrothermal activity in the bathymetric data. All OBEMs were lowered via the  

winch cable down to about 30m above the seafloor and then released and deployed to the predetermined 

positions.

The deployment of stations was finished ahead of schedule, which left just enough time for a first deploy -

ment of the gravity corer to the center of the active field. A full core (GC1) with high temperatures (84°C  

measured on deck) and abundant disseminated sulfides was recovered and during the evening analyzed and 

sampled in the wet lab.

11.6.2018

In order to minimize the necessary work on deck, work with the gravity corer was continued in the morning 

of the 11th. One gravity core (GC2) with full recovery was taken to the North of the vent field to recover 

some background sediments. 

Since space in the wet lab was limited, work could be carried out on a maximum of two 3m cores at the 

same time. Thus, the scientific program was continued with six measurements with the heat-flow probe 

along a W→ E profile crossing the vent field. Measurements within the active zones of the vent field were  

avoided, since the probe only allows for measurements up to 60°C.

During measurements with the heat probe and gravity coring the MARTEMIS coil system was assembled 

and dry tested on aft deck. A first deployment in of the system in the afternoon started at around ~15:00h 

after measurements with the heat-flow probe had finished. During this first deployment the rigging of the  
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system, which connects the upper and the lower frame, did not open up correctly in the water. After recov-

ery of the system the problems were analyzed and some adjustments to the rigging were made in the 

evening.

12.6.2018

Adjustments to the rigging and mechanical components of MARTEMIS system had to be continued in the 

morning hours. Therefore, it was decided to continue work by taking additional gravity cores, which recov-

ered about 1m of hydrothermally altered material with strong H2S smell (GC3) and 6m of background 

material in two additional cores (GC4, GC5).

After finishing work with the gravity corer, the MARTEMIS system was deployed for a second time. The 

applied adjustments to the rigging showed to have eliminated the problems encountered during the previ -

ous day. Consequently, the system was lowered to the seafloor to perform active measurements along a first 

profile to the west of the hydrothermal field (S0001 – S0245). Together with this active measurement, 

where the coil of the MARTEMIS system works as a transmitter and receiver at the same time (→ transient 

electromagnetic – TEM), measurements were also taken with the remote OBEM receivers (→ Coil2Dipole) 

and with two perpendicular pairs of electrodes attached to the coil frame, which allowed for the measure-

ment of the self-potential during the transmitter off times.

After recovery of the system, a first quality check of acquired data was carried out in the evening hours.  

While the transmitter and receiver of the coil looked OK, it was evident that the coil’s ranging system, 

which is used to measure the distance between the coil and the remote receivers for the Coil2Dipole experi-

ment, did not work properly. A repair of the system was performed during the night.

13. - 14.6.2018

Measurements with the MARTEMIS system were started in the early morning hours around 6:00am. After 

measurements along a first profile (S0246 – S0404), a check showed that repair attempts during the night 

had not solved the problems with the ranging system. After bringing the system back to deck, a second 

repair attempt was started. After two hours it was decided to continue without a functioning ranging sys -

tem, since TEM measurements with the MARTEMIS system do not require ranging measurements and the  

correct ranges for the Coil2Dipole experiment may still be reconstructed at a later stage from the USBL 

data. Starting at 11h00, measurements with the system were carried out until the next morning along about 

18.5km of profile lines (S0405 - S1743), which cover the previously reported extent of the vent field, the 

second site of interest to the north and a ~2.5km long profile connecting the two.

14. - 15.6.2018

In the  morning hours of the 14th wind and waves picked up considerably and measurements  with the 

MARTEMIS system had to be stopped. After recovery of the system, the captain decided to take shelter for  

the next 48h in the Eyjafjordhur Fjord. 

The down time in the fjord was used to finally repair the ranging system of the MARTEMIS system and to  

prepare a novel experiment, which uses the coil frame of the MARTEMIS system as fixation for two per-

pendicular transmitter dipoles (→ Dual Polarization).
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16.6.2018

After returning to the working area in the morning, measurements were continued with the heat-flow probe 

at three locations. 

Since the main objective of EM experiments – a full coverage of the hydrothermal system with TEM mea-

surements with the MARTEMIS system – had already been achieved on the 13 th – 14th, preparations were 

started for the “Dual Polarization” experiment by re-deploying three of the OBEM receivers to new posi-

tions along a profile line crossing the hydrothermal field. To save time, receivers were not lowered via the 

winch cable but instead were deployed free falling.

17.6.2018

Preparations were continued in the morning by re-deploying two additional  receivers to new positions 

along the new profile. The recovery of a 3rd receiver (RX11) had to be abandoned after the receiver seem-

ingly released (according to acoustic signals) but never rose to the surface. 

Scientific work in the morning was continued by taking another gravity core (GC6), which contained back-

ground sediments with strong H2S smell and elevated temperatures (31.5°C measured on deck).

Starting at 10h00, the MARTEMIS system was deployed with the attached pair of transmitter electrodes to  

perform the dual polarization experiment, this time with a working ranging system. After measurements  

along a 3.7km long profile crossing the vent field from W → E the experiment was finished after recovery  

around 16h00. 

Due to a bad weather forecast it was decided to again take shelter in the fjord.

18.6.2018

No work due to winds and waves.

19.6.2018

In the morning hours weather conditions improved and we were able to steam back to the working area. 

Scientific work was continued with six heatflow measurements in the afternoon.

20.6.2018

In the morning, geological work in the working area was finished by taking two gravity cores (GC7, GC8)  

with recovery of 150cm and 291cm, respectively. Both cores showed elevated temperatures of 66°C and  

45°C, respectively, on deck.

As  final  EM  experiment,  the  MARTEMIS  coil  system  (i.e.  without  the  transmitter  electrodes),  was 

deployed to measure along a total of about 20km of profiles, which covered the surrounding of the vent 

field to the E and W. During measurements the ranging system was operational, thus, good data for the  

Coil2Dipole experiment should also be available from this experiment. Measurements were continued until  

the next morning.

21.6.2018

With the recovery of the MARTEMIS system at around 6:00h, the scientific program was finished. 
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After the recovery of the OBEM receivers, which lasted from 6h00 – 13h00, the rest of the day was dedi-

cated to  the  attempt  to  rescue  the missing  receiver  RX11,  from which  acoustic  signals  could  still  be  

received. A first search in the vicinity of the original drop position yielded strange ranging measurements 

indicating that the station was no longer at its original position. A “regional” triangulation with ranging 

measurements taken at three different positions in the working area yielded a position about 2km to the 

south of the original drop position.

22.6.2018

In the morning hours the upper frame of the MARTEMIS system, equipped with a camera and some steel  

hooks, was lowered to the previously determined new position. By using the MARTEMIS ranging system, 

which allows for direct ranging at the seafloor, we could perform a “local” triangulation and were indeed 

able to find the station within 45min on video. Subsequent tries to get the station onto the hooks did not  

succeed.  Provided  that  we  did  not  have  dynamic  positioning  on  the  ship  and  no  thrusters  on  the  

MARTEMIS frame, we were already quite happy to have found the station at its new position. Rescue 

attempts were aborted around noon.

23. - 26.6.2018

After four days of transfer we arrived at our final destination port in Bergen, Norway.
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 5. Applied Methods & Preliminary Results

In the following sub-chapters we will present the experiments conducted with the various methods. To give  

a first overview, 

 5.1. Electric and Electromagnetic Instruments & Experiments

In land-based exploration it has been common practice for several decades to use electromagnetic methods 

to detect and characterize massive sulfide deposits (i.e. Palacky, 1987). Investigations on marine samples  

indicate that conductive anomalies may also be expected in the marine environment (e.g. Iturrino et al.,  

2000). Consequently, it seems promising to use both passive and active EM methods for the investigation 

of SMS and the associated hydrothermal systems:

1. active experiments rely on the fact that the generated electromagnetic field couples to the conductive  

ore body and is distorted by the coupled current systems, which are channeled into the ore body,

1. passive self-potential (SP) measurements detects naturally occurring anomalies in electrical potential  

which can arise from buried conductive bodies (e.g., massive sulfides, graphite shear zones) or from 

streaming potentials caused by fluid flow (e.g., groundwater). 
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Fig. 5: Overview map with all deployed OBEM receivers (white squares), heatflow stations (red circles) and locations  
of gravity coring (green triangles). Detailed maps with station names can be found in the following sub-chapters.As  
reference, the map of Hannington et al. (2001) marks the position of the vent field and previous investigations (com -
pare Fig. 2).



However, only a few electric and electromagnetic experiments have ever been conducted on marine SMS 

targets:

• The SP method has been shown to work in marine environments, where both graphite and massive 

sulfide bodies have been detected by marine SP systems (Brewitt-Taylor, 1975; Corwin, 1976; Von  

Herzen et al., 1996; Heinson et al., 1999, 2005; Beltenev et al., 2007; Cherkashov et al., 2010; Shilov  

et al., 2012; Cherkashev et al., 2013). However, prior to our study, the SP method had not been tested 

over a hydrothermally inactive SMS site which is buried under sediment.

• Cairns et al. (1997) report about an electromagnetic pilot study to image the TAG hydrothermal field 

(26°N, Mid-Atlantic Ridge) SMS deposit. However, at that time marine electromagnetic instrumenta-

tion was in its infancy and 3D modeling capabilities were just in development such that a 3D image  

of the sulfide deposit could not be derived

• Kowalczyk (2008) reports on a shallow penetration ROV based EM, which was used to map anom-

alies of the electrical conductivity at the Solwara site offshore Papua New Guinea. Later drilling con-

firmed that anomalous electrical conductivity anomalies were indeed associated with occurrences of  

SMS at or directly beneath the seafloor.

In 2012 our working group suggested to use a coil system for the detection of conductive features (Swidin -

sky et al., 2012). Starting in 2015, we have used the MARTEMIS system to perform investigations on the  

inactive Palinuro Seamount in the Tyrrhenian Sea (2015, 2017) and inactive mounds in the vicinity of the  

TAG hydrothermal field at the Mid-Atlantic Ridge (2016).

During cruise POS524, electric and electromagnetic measurements were carried out during four deploy-

ments of the MARTEMIS system (Fig. 6). A first test of the system was exclusively dedicated to familiar-

ize the crew with the deployment of the system and to test the rigging between the upper and the lower  

frame. Since the rigging did not open up correctly, some adjustments had to be implemented after which all  

following deployments went smooth. In the following experiments, measurements with different transmit-

ter  and receiver configurations were performed along various profiles  covering the working area.  The  

deployments are summarized in the following table, details about the instruments and the performed exper-

iments are given in the next sections.

Deployment

(Stations)
Date TEM Coil2Dipole

Dual
Polariza-

tion
SP Comment

Test 1 11.6 x x x x Problems with rigging.

1
(Coil/S0001 - S0245)

12.6. yes
yes

(no ranging)
x yes

TEM measurements,
problems with ranging system

2
(Coil/S0246 - S1743)

13. - 14.6. yes
yes

(no ranging)
x yes

TEM measurements,
Problems with ranging system,

3
(DualPolarization/

S0001 - S0193)
17.6. no no yes no

Dual Polarization measurements along
W → E profile

4
(Coil/S1744 - S3123)

20. - 21.6. ? yes no ?
TEM measurements,
problems with RX coil cable?
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 5.1.1. MARTEMIS Coil System – TEM Measurements

Fig. 6 shows a sketch of the MARTEMIS system, which consists of two 

frames which are connected by a rigging.

The lower square frame holds cables of the coincident transmitter (TX) 

and the receiver (RX) coils. The frame is constructed from glass fiber 

reinforced tubes. In previous experiments (2015 – 17) we had used cor-

ner connectors made of stainless steel,  which were identified as one 

cause of distortions in test measurements in late 2017. Therefore, dur-

ing this cruise we used a new set of custom made corner connectors 

made from glass fiber reinforced plastic. Generally, the robust connec-

tor system allows for flexible loop sizes by simply using tubes with dif-

ferent  lengths,  which  of  course  also  requires  a  coil  cable  with  a 

matching length.  Thus,  the  system may be adjusted to  the  available 

deck space and the size of the ship’s A-frame by up- or downsizing. For 

measurements  on R/V Poseidon during  this  cruise  we  used  a  4.2  x 

4.2m2 coil.  Additionally,  weights,  a  metal  free  attitude  sensor  and a 

small CTD – the only metal part on the lower frame – were mounted to 

the coil frame. For this experiment we used weights made from fluorite 

for the first time. Similar to the corner connectors, the previously used weights had not been metal free and 

had been identified as the second major cause for distortions in past experiments.

The upper frame holds several pressure tubes with the receiver, the transmitter electronics and the power  

supply,  an  altimeter  and  a  self  build  acoustic  ranging  system,  which  is  used  to  measure  the  distance 

between the MARTEMIS system and the remote OBEM receivers (see chapter 5.1.2). The upper and lower 

frame are connected via a rigging, which connects the corners of upper and lower frame. Cables, which are  

attached to the rigging connect the transmitter and receiver coils as well as a downward looking attitude 

sensor to the associated counter parts within the pressure tubes in the upper frame. The reason for separat -

ing the two frames by a distance of about 15m is simply that all metal parts (e.g. pressure tubes, …) and  

components, which create EM noise (e.g. transmitter electronics) should be kept as far away from the sen -

sor (i.e. the receiver coil) as possible. After all, the MARTEMIS system is in a sense a metal detector.
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Fig. 6: MARTEMIS system.



The receiver unit has three input channel with 24bit resolution, which are sampled at a frequency of 10kHz 

and have a storage capacity to acquire about 48h of continuous data. For TEM experiments we used one of 

the channels connected to the receiver coil to record the transient responses at the highest gain setting. The  

two additional channels were used to measure the selfpotential (see chapter 5.1.4). Due to improvements to 

the system prior to the cruise, we were able to download data from the receiver units directly from the labo -

ratory during the experiment. However, due to the coaxial link used, the data transfer was too slow to moni-

tor the data in real-time and we only downloaded receiver data every other hour check, if the receiver was 

still recording data. For future experiments on ships with fiber optical link, we plan to download all data 

near real-time to establish a quasi online monitoring of all system components in the laboratory during 

experiments.  Also, this  would allow for real-time quality checking and evaluation of incoming data to  

allow for direct detection of conductivity anomalies, which would offer the possibility to adapt the survey 

plan in the course of an experiment.

We use the same transmitter, which was previously developed for the Sputnik CSEM system. The transmit-

ter generates a bipolar square waveform with a 50% duty cycle. Repetition frequencies may be switched to 

0.25Hz for CSEM measurements (see chapter  5.1.3) or 2.5Hz for TEM measurements (this chapter) and 

signal amplitudes can be selected to be 19A, 38A or 57A. The transmitter current is supplied and regulated 

through DC/DC converters, buffer batteries and a microprocessor controller unit. These units are housed in  

titanium cylinders, which are mounted to the upper frame.

Generally,  for  experiments  the  MARTEMIS  system  is 

assembled on the aft of the ship (Fig. 7, left). After assem-

blage, the coil frame is lowered into the water (Fig. 7, mid-

dle) and attached at a vertical distance of 15m beneath the 

upper frame (Fig. 7, right). After deployment the whole sys-

tem is lowered towards the seafloor using the ship's winch 

cable and “flown” across the seafloor by moving the ship at 

a slow speed of  approximately 0.5kn.  By monitoring the 

altimeter, the position of the loop is kept at a close distance 

of about 5m above the seafloor by constantly adjusting the 

length of the winch cable (see Fig. 8).
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Fig. 7: Deployment of the MARTEMIS system on R/V Poseidon (pictures taken during cruise POS483).

Fig.  8:  Histogram  of  coil  altitude  during  TEM  
experiment.



The main TEM experiment was carried out on June 13 th – 14th (Fig. 9). General procedure for all measure-

ments with the MARTEMIS system was to keep the coil at a distance of about 4-6m to the seafloor while 

measuring along profile lines. At the end of each profile line, the system was lifted to about 150m above  

the seafloor to perform calibration measurements and to collect additional data with the transmitter being  

turned of for the drift correction of the selfpotential data (see chapter 5.1.4). 

After measurements along a first profile (stations S0246 – S0404), a check showed that the ranging system  

on the upper frame did not work properly. After a repair attempt on deck it was decided to continue the  

experiment without the ranging system, since TEM measurements with the MARTEMIS system do not 

require ranging measurements. Starting at 11h00, measurements with the system were carried out until the 

next morning along about 18.5km of profile lines (S0405 – S1743). Measurements were started in the SE 

and first covered the previously known extent of the vent field with six N ↔ S profiles followed by an W 

→ E profile. Total length of these profiles was about 16km. Measurements were then continued along a 

2.5km transfer profile to the NNE to a second area of interest, which was covered by another 2.5km of pro -

files. After about 18h and 45min the experiment was finished in the early morning hours of the 14 th of June. 

Thus, the average acquisition speed during the experiment was about 1km/h.
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Fig. 9: Track of MARTEMIS system in experiments during the 2nd deployment. Squares mark the positions of the OBEM  
receivers during this experiment (red square = displaced OBEM). As reference, the map of Hannington et al. (2001)  
marks the position of the vent field and previous investigations (compare Fig. 2).



Generally, for active measurements, a regular cycle of measurements was performed as follows:

• ranging measurement needed for Coil2Dipole (chapter  5.1.2) and Dual Polarization (5.1.3) mea-

surements (did not work during this TEM experiment),

• TX activation for 10s (50% duty-cycle, I = 19A, repetition frequency 2.5Hz), 10s pause,

• TX activation for 10s (50% duty-cycle, I = 38A, repetition frequency 2.5Hz), 10s pause.

Fig. 10 shows some typical TEM rawdata, which was acquired during the experiment. For the processing  

of data it is necessary to know the exact times of the TX turn-on and turn-off. As first step it is therefore  

necessary to determine these time points (red dots in Fig. 10, bottom), which is done by an automated pick-

ing routine, which still requires visual inspection of all picks and – where necessary – manual correction of  

possible  mistakes.  The  second  step  for  processing  is  then  to  assure  the  correct  time-synchronization  

between the transmitter and receiver clock(s). With these two steps finished it is possible to perform a batch  

processing of the TEM data, which simply comprises the import of the RX data for the correct time-inter -

val,  stacking of successive transients and log-gating of the stacked transient (see Hölz et al.,  2015 for  

details).
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Fig. 10: Example of TEM raw data measured at station S0444. The receiver data (top) is noisy while the transmitter  
(bottom) is turned on and decays rapidly (not visible in linear time scale) as the transmitter is turned off. The red dots  
mark picked times when the transmitter was either turned on or off. 



Since the first processing still require substantial work, data of only a few selected stations was performed 

directly after the recovery of the system. A first important result is shown in  Fig. 11: the displayed pro-

cessed transient with errorbars (black) was measured with 

the MARTEMIS system being elevated about 150m above 

the seafloor, i.e. halfway in the water column. Since the sys-

tem has a limited detection range (<50m), such a measure-

ment in the water column is perfectly suited to calibrate the 

system, since the surrounding conductivity structure is per-

fectly known from CTD measurements (… indeed, the mea-

surement  can  considered  to  be  a  measurement  in  a 

homogeneous fullspace !!!). The green line shows the to be 

expected theoretical response, which demonstrates that the 

MARTEMIS system is  perfectly  calibrated  for  the  better 

part of the transient, at least in a time range between ~200μs 

– 6ms. This is a huge improvement as compared to experi-

ments  during  previous  cruises,  where  metal  parts  (corner 

connectors,  weights)  had  caused  significant  distortions  to 

the measured transients.
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Fig. 11: Processing result of calibration measurement with the MARTEMIS system in  
the water column (black) and theoretical full-space response (green).

Fig.  12:  Processed transients measured at sta-
tions  over  background  geology  (black)  and  
above the vent field (red).



As second result, Fig. 12 shows a comparison of processed transients, which were measured at stations in 

regions where we expect background geology (black lines) and at stations which were located above the  

previously mapped out active area (red lines). As expected, amplitudes are elevated, which points towards  

an elevated conductivity in the subsurface, which is a direct indicator for elevated temperatures (compare 

Fig.  3).  Thus,  this  figure  serves  as  a  first  prove  of  principle  to  use  TEM  measurements  with  the 

MARTEMIS system for the investigation of a hydrothermal system!

Data processing of the TEM data acquired along the profiles displayed in Fig. 9 was finished a couple of 

months after the cruise. We include a first map of the processed data to demonstrate that the detection of  

the hydrothermal system did not only work at selected stations – as shown by the increased amplitudes in 

Fig. 12 – but seemingly worked in the whole working area. In Fig. 13 we show the amplitudes of transients 

at all processed stations at a certain time (4ms) together with the map of Hannington et al. (2001). Elevated 

amplitudes in transients (yellow) – similar to the elevated amplitudes at a certain time depicted in Fig. 12 – 

are evident above the vent field, but also in an area to the east of the field along the E  ↔  W profile in an 

area, which had not been investigated before. Displays of data for other times in the transients show similar  

results. Upcoming work will focus on creating apparent resistivity maps from the data (which is basically  

just a scaling) followed by 1D inversions of all data, which will give first insight into the distribution of the  

resistivities within and around the vent field.
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Fig.  13: Amplitude of transients (4ms) at stations with increased amplitudes evident above the GVF. As reference  
the map of Hannington et al. (2001) marks positions of the vent field and previous investigations (see Fig. 2).



As final EM experiment, the MARTEMIS coil system, was deployed on the 20 th of June for measurements 

along 20km of profiles, which covered the surrounding of the vent field to the E and W. Measurements 

were continued until the next morning. A first appraisal of the coil data indicated some data corruption,  

which might be related to a faulty connector or a broken cable or connector. At the moment it is not clear, if  

the coil data acquired during this deployment will be suitable for interpretation.

 5.1.2. Coil2Dipole

With the configuration described in the previous sub-chapter, the MARTEMIS system was used for TEM 

measurements. However, by using remote receivers, which are placed stationary onto the seafloor, one can 

perform an additional EM experiment, which offers an 

increased depth of investigation, thus, adding valuable 

information about the deeper structure of the hydrother-

mal system. Stationary OBEM (ocean bottom electro-

magnetic) receiver nodes (Fig. 15) are equipped with a 

three component fluxgate magnetometer, and can mea-

sure  two components  of  the  horizontal  electric  field. 

The components of the electric field are measured using 

Ag/AgCl-electrodes,  which are attached at  the end of 

four  flexible  arms.  The  total  length  of  each  receiver 

dipole  is  11.2m.  Additional  sensors  allow  measure-

ments of the attitude (pitch, roll) and the temperature. 

The receivers can either be used in MT-mode, in which 
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Fig. 14:Track of MARTEMIS system for the last experiment during the 4th deployment. Squares mark the positions  
of the OBEM receivers during this experiment. As reference, the map of Hannington et al. (2001) marks the position  
of the vent field and previous investigations (compare Fig. 2).

Fig. 15: OBEM receiver during deployment.



all sensors are logged at sampling rates of up to 10Hz, or switched into CSEM-mode, in which only two 

components of the E-field are recorded at a high sampling rate of 10kHz. This high frequency is necessary  

to acquire transient data at short offsets on the order of 100m and was used in this experiment. Generally,  

the switch from one mode to the other can be performed by using a preset timetable or alternatively by an  

external acoustic signal.

Since the MARTEMIS transmitter coil is used to transmit the signals which are picked up by the electric  

dipoles of the OBEM receivers, we call this experiment “Coil2Dipole”. Previously, we have conducted 

such an experiment at the Palinuro Seamount. Theoretical considerations for this type of experiment and  

first results from Palinuro can be found in Safipour et al. (2017a) and Safipour et al. (2018), respectively.
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Fig.  17: Station map OBEM receivers (squares) with names. As reference, the map of Hannington et al.  (2001)  
marks the position of the vent field and locations of previous investigations (compare Fig. 2).

Fig. 16: Example of measurement with MARTEMIS ranging system with the accoustic waveform (left) and the asso-
ciated spectrogramm (right). The initial interrogation pulse (11kHz) with high amplitudes (@0m) is followed by sev -
eral replies of transducers mounted to the remote OBEM receivers (e.g. ping of 12.0kHz @175m from OBEM11).



We used 12 OBEMs (Fig. 15 & Fig. 17) for experiments, which were synchronized to GPS time prior to 

deployment and after recovery. On June 9th and 10th – before the first experiments – the receivers were low-

ered via the winch cable towards the seafloor being hooked onto a release with USBL beacon. At an alti -

tude of approximately 30m above the seafloor the OBEMs where then released. Nine receivers were placed  

around the vent site and three additional receivers were deployed at a site approximately 2.5km to the north 

of the vent field, which was identified as a point of potential hydrothermal activity in the bathymetric data  

(see Fig. 9 for OBEM positions). Before the “Dual Polarization” experiment (see next chapter), some of the 

receivers were recovered and re-deployed free falling onto a W ↔ E profile line (see Fig. 14 for OBEM 

positions after re-deployment) on June 16th - 17th. One station (OBEM 11, red mark in Fig. 9) was released, 

but never returned to the surface. In a search on June 21st the location of this station was traced by acoustic 

navigation to a position about 2.5km to the south of the original drop position and on the next day the sta-

tion was indeed found laying upside down on video footage acquired with the MARTEMIS system. Due to 

the limited means and equipment, the following rescue attempts did not succeed. A couple of weeks after 

the cruise we were informed by Icelandic authorities that a fisherman had found the station and in mid 

August the station was returned to us at GEOMAR.

For experiments like the Coil2Dipole experiment, it is important to know the exact distance between the 

transmitter antenna and the remote receivers. While the USBL positioning system can provide locations 

with an accuracy of about ±5m at the given water depth of about 400m (value taken from the calibration 

measurements),  high accuracy is  needed in the  evaluation of  the  data,  especially  for  short  transmitter  

receiver offsets. Such improved distance measurements can be achieved with the MARTEMIS on-board  

ranging system, which is mounted to the upper frame of the MARTEMIS system. Past experiments have 

shown that measurements with the ranging system are repeatable with ranges varying by at maximum of a 

a few centimeters, even for large offsets, which of course assumes that the TX-RX distance does not vary 

between measurements. Thus, the accuracy of the ranging system is mainly determined by the knowledge 

of the sound velocity at the seafloor, which is measured with the external CTD, and we expect it to be bet-

ter than 1m for the ranges relevant in this experiment (<300m), possibly even better than 10cm.
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For the experiment at the GVF we used individual reply frequencies for each OBEM, which allows for a 

simple and unique identification of OBEMs by the frequencies of received signal. Fig. 16 shows an exam-

ple from TX station S2345 with the interrogation pulse (11kHz, 0m) sent out from the transducer mounted  

to the upper frame of the MARTEMIS system (see Fig. 6) and replies of the OBEM stations, the first one 

from OBEM11 indicating a distance of about 175m. As stated before, the ranging system did not work dur -

ing the first deployments of the coil system. Thus, for the first experiment (see Fig. 9) the evaluation of the 

Coil2Dipol data will have to rely on the USBL positions. For the last coil experiment (see Fig. 14, coil sta-

tions S1744 – S3123) the ranging system worked properly and evaluation of data will benefit from the 

increased accuracy of the positioning.

Turning to the data acquired with the OBEM receivers we found that one station (RX06, DEV45) did not 

record any E-field data, and at one station (RX13, DEV62) one E-field channel was dead. As mentioned 

above, OBEM station RX11 was displaced by a fisherman, but at the moment we don’t know at what time 

this happened. Thus, 14 of 17 stations recorded useful data during the MARTEMIS experiments and for  

one the status is currently unknown. The time synchronization between transmitter and receivers has not  

been verified, yet, and the evaluation of ranging measurements for the last MARTEMIS deployment is also  

pending. Thus, several steps in the data processing still need to be taken care of before the evaluation of 

data in terms of an imaging or inversion can be performed.
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Fig. 18: Data example for Coil2Dipole measurement with signal transmitted at TX station S0570  
(bottom) and received signal in the two electrical field channels of RX03 (top & middle). 



 5.1.3. Dual Polarization CSEM

In  addition  to  the  MARTEMIS  coil  experiment,  we  per-

formed a novel EM experiment, which we call “Dual Polar-

ization CSEM”. In this experiment, the ropes of the rigging, 

which  connect  the  lower  and  the  upper  frame  of  the 

MARTEMIS system, were used to install two perpendicular 

pairs of transmitter electrodes above the corners of the coil 

frame (Fig. 19). 

This, allows for a CSEM experiment with two independent, 

horizontal transmitter dipole polarizations, in which the TX 

dipoles  have  a  length  of  ~5.4m  and  should  yield  an 

increased depth of investigation down to about 300m.

The Dual Polarization experiment was carried out along a 

3.7km long W ↔ E profile crossing the active hydrothermal 

vent field (Fig. 20).
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Fig. 19: Transmitter electrode attached to one of  
the ropes, which connects the upper and lower  
frame of the MARTEMIS system.

Fig. 20: Station map during Dual Polarization CSEM experiment with the track line of the MARTEMIS system (white  
line), which carried the two TX dipoles, and the stationary OBEM receiver stations (squares). As reference, the map of  
Hannington et al. (2001) marks the position of the vent field and locations of previous investigations (compare Fig. 2).



Transmitted signals were recorded by seven stationary OBEM receivers along the profile and four addi-

tional receivers, which were located to the south of the profile. Fig. 21 shows a data example in which the 

transmitted signal in the two transmitter polarizations is shown in the upper panels and the received signal  

as measured with receiver RX17 is shown in the lower panels. It can be seen that first one full cycle (=4s)  

is transmitted in the first polarization direction (→ TX Ch1) and after that one full cycle is transmitted in 

the second polarization direction (→ TX Ch2). This alternate style of transmitting into the two polarization 

directions was implemented to facilitate the later data processing in terms of rotational invariants. A look at  

the lower panels shows that the time synchronization between transmitter and receiver is not correct at the 

moment (there seems to be a 1s time difference between the two). This will be checked and corrected in the  

upcoming data processing. 

As this experiment is novel and was conducted for the first time ever, the previously established processing 

routines for the “regular” CSEM data will need to be changed and extended to handle this new type of data.  

The established imaging (Swidinsky et al., 2015) and inversion routines (Hölz et al., 2015a) should then be 

applicable to the processed data without any further changes necessary.
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Fig. 21: Data example of Dual Polarization CSEM with the signal in transmitter channels 1 and 2 in the upper pannels  
and the received signal at RX17 in the lower channels.



 5.1.4. Selfpotential

With some modifications / additions the system, the MARTEMIS platform was also used for measurements 

of the self-potential during TEM measurements. Measurements of the self-potential (SP) – which actually 

measure the ambient horizontal electrical field – were carried out by attaching two pairs of Ag/AgCl-elec-

trodes to the coil frame: the four electrodes were mounted at the centers of the corner connectors of the  

coil. This allowed for measurements of two perpendicular components of the horizontal electrical field,  

from which the horizontal component of the ambient electrical field may be constructed. Signals were 

logged with the same data logger used for the TEM measurements.

SP data were collected during all deployments of the MARTEMIS system.  Fig. 22 shows the measured 

voltages of the horizontal receiver dipoles, which were mounted to the coil frame. Time intervals during 

which the transmitter coil was active have been removed from the data. However, it seems that some of the  

visible anomalies are still due to activations of the transmitter, which were not taken care of by the auto -

matic processing script. Also, channel two still shows a significant drift, which will need to be removed 

before analyzing / searching the data for any anomalies, which are related to hydrothermal activity.
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Fig. 22: Measurements of the ambient horizontal electrical field during the second MARTEMIS deployment (see Fig.
9). Times during which the coil transmitter was activated have been removed from the signal. 



 5.2. Heatflow

Sofia Martins and Patrick Schröder

All the recorded temperatures within the GVF were either performed by direct sampling with JAGO or 

with on-deck measurements on gravity cores (Stoffers et al., 1997; Scholten et al.,  2000; Devey et al.,  

2002). Thus, in-situ measurements at depth within the sediment coverage using heat probes have not been 

performed so far.

During this cruise, heat flow measurements were performed using GEOMAR’s short violin-bow type heat 

flow probe (Model FIELAX GmbH, Bremerhaven) which allows for data acquisition in seafloor sediments  

down to a penetration depth of 3m (Hyndman et al., 1979, Lister, 1979). The stainless-steel probe contains 

22 thermistors (NTC1 – NTC22) in the sensor string with a temperature resolution of < 0.01°C. The sensor  

string also contains a heating wire from which a heat pulse is released into the sediment.

The probe was deployed on the port-side of the ship and lowered to the seafloor at 1.0m/s winch speed.  

Upon arrival to the station site, the probe was stabilized for 5 minutes, after which it was “dropped” at a  

speed of 1.2 – 1.4m/s. Considering the time of temperature measurement, heat pulse duration and measure-

ment of the heat pulse decay, the entire sampling event at each heat flow station, lasted approximately 15  

minutes. Due to the distance between stations (up to 1.6km) the heat flow probe was heaved to 200m above 

seafloor in transit between stations to prevent the rise of the stabilization time upon arrival to the next mea-

suring point.
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Fig. 23: Heat flow lines measured during cruise POS524, encompassing measurements at 15 locations.



15 measurements were performed in total with the heat flow probe: Heat flow line 1 (6 points; HF01 –  

HF06), Heat flow line 2 (3 points, HF07 – HF09) and Heat flow line 3 (6 points, HF10 – HF15) (see Fig.

23 &  Appendix  9.2). The probe was operated in an autonomous mode, in which the acquired data was 

saved to the data logger and retrieved after recovery onboard. The operation in real-time mode was not pos-

sible, since a winch wire without cables for communication was used. 

Generally, the in-situ thermal conductivity is calculated using the heat pulse method (Lister, 1979). For  

measurements during this cruise, the first 7min after sediment penetration were used to record the tempera-

ture of the sediments. This leaves enough time to dissipate frictional heat to estimate the steady state tem -

perature. After a 10s long calibrated heat pulse of 1kJm−1, the temperature decay was measured for another 

7min to estimate the in-situ thermal conductivity. Due to the expected high temperature of the sediment 

around the GVF, the probe used the calibration file Mem21260.prb. See Villinger and Davis (1987) for a  

detailed description about the data processing leading to the in-situ temperatures and thermal conductivity  

values. Due to a technical problem, no heat pulse was generated in the first heat flow deployment along  

Line 1.
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Fig. 24: Maximum temperatures obtained by the heatflow probe during cruise POS524.

Fig. 25: Thermal conductivity (mW/m2) obtained around the GHF.



 5.3. Gravity Coring

Sofia Martins & Anna Jegen

The objective of the POS524 sampling was to extend the area of observations covered during previous 

cruises to more distal areas to assess the extent of the hydrothermal influence and complement the existing  

sampling concerning sediment samples and pore water. The recent seismic activity (see Fig. 4) was taken in 

consideration when choosing the sampling sites.  GEOMAR's short gravity corer (3m, 125mm diameter, 

900kg weight) was used at a total of eight stations from which a total of about 20m of sediment cores were  

collected (Fig. 4). Details can be found in the table below and in the appendix (core descriptions: pp. 48, 

pore fluid samples: pp. 69).

Station
Latitude

Longitude

Water 
depth

Recovery Description

POS524/01GC
66°36.413’ N

17°39.254’ W
390 m 302cm

Coarse grained anhydrite detritus atop a heterogeneous 
blueish altered sediment layer and indurated dark brownish 
clay layer, all with abundant disseminated sulphides. T max: 84°C

POS524/02GC
66°36.950’ N

17°39.233’ W
403 m 290cm

Background sediment composed of homogeneous non-indur-
ated greenish grey clay with a strong H2S smell. T max: 12.5°C

POS524/03GC
66°36.449’ N

17°39.664’ W
377 m 95cm

Homogeneous dark greenish silt/clay with intercalation of sand 
size anhydrite. Dehydrated very hard dark brown clay layer. T 
max: 10.7°C

POS524/04GC
66°36.440’ N

17°40.631’ W
413 m 290cm

Background sediment composed of homogeneous non-indur-
ated greenish grey clay with a strong H2S smell. T max: 6.3°C

POS524/05GC
66°37.631’ N

17°38.582’ W
393 m 290cm

Background sediment composed of homogeneous non-indur-
ated greenish grey clay with a strong H2S smell. T max: 7.8°C

POS524/06GC
66°36.400’ N

17°38.672’ W
419 m 288cm

Background sediment composed of homogeneous non-indur-
ated greenish grey clay with a strong H2S smell. T max: 31.5°C

POS524/07GC
66°36.184’ N

17°39.178’ W
396 m 150cm

Greenish grey clay with sand size anhydrite/talc grains interlaid 
with coarser anhydrite sand layers. T max: 66°C

POS524/08GC
66°36.310’ N

17°39.285’ W
390 m 291cm

Homogeneous dark olive-green clay interlaid with rhythmic 
lens/layers of coarse anhydrite/talc fragments. T max: 45°C
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Core handling and sampling

Upon recovery on deck, several parameters (pH, Eh, conductivity and temperature) were immediately mea-

sured in the material caught in the core catcher using two separate probes (Hach Multimeter MM110DL & 

Hach Multimeter MM150DL). Core catcher and core liner were then removed. The liner was then cut into 

3 x 1m long sections and measurements with the probes were being repeated on the bottom of each core 

section and on the top of the shallowest one.

After labeling of the core sections, ends were sealed with caps, after which the sections were moved from  

the deck to the wet lab for further handling. Afterwards the core sections were split lengthwise into working 

and archive halves using a power disc-saw (Fein-Multimaster) with special attention being paid to not dis-

turb the sediment inside. Both halves were then photographed, described and the color of sediment was 

retrieved by visual comparison with color charts of the Munsell color system (HVC) (see core description 

in Appendix 9.3). Work was continued by taking sub-samples of sediments and pore water from the work-

ing halves. Finally, both working and archive halves were stored in plastic sleeves within labeled D-tubes.  

The sections will be deposited at the core repository at GEOMAR.

Sediment Sampling

Several cm3 of sediment were recovered, for geochemical studies, in the center of the working half using a 

cut-off, tip-less syringe (20ml). Whenever possible, sediment and pore water were recovered within the  

same depth interval. The sediment samples were then transferred to properly labeled zip-lock plastic bags.  
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Fig. 26: Location of sediment cores collected during POS524 (red markers). The assumed fault lines were derived by  
seismic interpretation (see Devey et al., 2002). In addition, locations of sediment cores collected during previous RV  
Poseidon cruises POS291 (2001) and POS253 (1999) are also indicated by green and blue markers, respectively.



The  sampling  spots  were  also  analyzed  for  pH,  Eh,  temperature  and  conductivity  (Hach  Multimeter 

MM110DL & Hach Multimeter MM150DL). In total 69 samples were retrieved for subsequent analysis.

Porefluid Sampling

After the cores were split, pore fluids were collected on the 

working half using Rhizon CSS (Core Solution Samplers) 

(Fig. 27). These rhizons consists of a 4cm porous polymer 

tube (0.15 µm) with a flat tip and a diameter of 2.5 mm, 

supported by a glass fiber strengthener and connected with 

a  PEC/PVC tubing  of  12cm and  female  luer  lock.  The 

syringes (20 ml) were screwed directly on the luer and the 

piston was kept  in place with a retainer (wooden piece) 

that enabled vacuum to be created (Rhizosphere Research 

Products, 2018). Before usage, all the Rhizons CSS were 

soaked,  for  at  least  24  hours,  in  artificial  seawater  of 

approximately Atlantic salinity.

The pore fluids were stored in 20 ml, acid-cleaned, HDPE 

mini vials. For ICP analyses preparation, 3ml of each of 

the  collected  pore  fluid  was  transferred  into  an  acid-

cleaned 3 ml HDPE mini vial and acidified by adding 30 

µl of ultra pure HNO3. A total of 68 pore fluid samples 

were collected, including method blanks (every 8th sample, 

see Appendix 9.4, pp. 69).

Sediment description

From the eight gravity cores collected, four were in or in close proximity to the main hydrothermal mound 

(01GC, 03GC, 07GC, 08GC). Cores 01GC and 08GC were retrieved from the central hydrothermal field, 

07GC from the southern field and 03GC west of the central mound (350m). The highest temperatures were 

recorded on 01GC, 07GC and 08GC, reaching 84°C (see Fig. 26 & Appendix 9.3). Even though these cores 

are heterogeneous concerning the type of recovered sediment, all of them show evidence for strong hydro-

thermal influence such as indurated clay layers, blueish altered sediment, disseminated sulfides and mix-

tures of clay and anhydrite/talc sand. The remaining four gravity cores were retrieved from peripheral or  

more distal areas (02GC, 04GC, 05GC, 06GC) with core catcher temperatures ranging from 6.3 – 31.5°C.  

These cores are homogeneous in sediment type, consisting of undisturbed dark greenish gray clay with  

strong H2S smell (see Appendix 9.3, pp. 48).
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Fig.  27:  Pore  fluid  sampling  in  POS524/01GC  
using Rhizons CSS with 4cm porous polymer tubes  
(photo by Shuangmin Duan)



The core collected in the central mound (01GC) is the one 

that  shows the most  variety in  lithology and texture.  It  is 

composed of coarse grained anhydrite detritus with dissemi-

nated sulfides (probably derived from the collapse of anhy-

drite chimneys) in the upper 130cm. A heterogeneous blueish 

altered sediment layer occurs between 130 and 160cm bsf., 

showing patches  of  black material  in  the  first  10cm.  This 

layer  ends in  a  channel  that  penetrates  the  adjacent  layer. 

This is an indurated dark brownish clay layer with abundant 

disseminated sulfides. Towards the bottom of the core, the 

layer becomes drier and flakier,  containing abundant small 

cracks filled with sulfides. The cracks might result from sed-

iment baking by hot hydrothermal fluids and the consequent 

hardening of the layer and hydro-fracturing (Fig. 28).

Core 03GC had the shortest recovery (95cm) and is mainly 

composed of homogeneous dark greenish silt/clay with small 

shell fragments and a 5cm intercalation of sand size anhy-

drite and dark mottled clasts (red, black, reddish) with proba-

ble volcanic origin. The reduced core recovery was due to a 

very hard dark brown clay layer (baked sediment), sampled 

by the core catcher, that prevented the core penetrating deeper.

Core 07GC was recovered on the southern part of the GVF. The 

155cm core is made up of a mixture of greenish gray clay with 

sand size anhydrite/talc grains and occasional volcanic material. 

Interlaid  are  coarser  anhydrite  sand  layers  with  a  brown  to 

whitish color. Between 100 – 120cm bsf the clay/anhydrite mix-

ture is strongly dehydrated with visible cracks.

Recovered  at  the  edge  of  the  central  mound,  core  08GC  is 

mainly composed of homogeneous dark olive-green clay with 

scarce shells, anhydrite fragments and occasional black patches. 

Between 130 and 190cm bsf, the clay is interlaid with rhythmic 

lens/layers of coarse anhydrite/talc fragments.

The cores collected peripheral or distally of the main hydrother-

mal mound (02GC, 04GC, 05GC and 06GC) contain a homoge-

neous, non-indurated, greenish-gray clay with strong H2S smell 

and occasional shell fragments and dark patches (Fig. 29).
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Fig.  28:  Sediment  core  01GC retrieved in  the  
main central hydrothermal mound with strong  
evidence for hydrothermal influence.

Fig. 29: Sediment core 04GC, collected 1km  
west of  the main hydrothermal mound. is  
characterized  by  homogeneous  greenish  
grey clay with strong smell of H2S.



 5.4. CTD

CTD measurements were carried out using an autonomous Microcat CTD sensor from Seabird. Measure-

ments were carried out during the initial release test on the 9 th of June, which were used for the initial cali-

bration of the Posidonia USBL system, and during all deployments of the MARTEMIS system. 

Fig. 30 shows a color coded map of temperatures mea-

sured by the CTD probe during experiments  with the 

MARTEMIS  system.  Since  the  CTD  sensor  was 

mounted  to  the  lower  coil  frame,  most  measurements 

were  taken  at  elevations  of  less  than  10m above  the 

seafloor  (see  Fig.  8).  Quite  unexpectedly,  there  is  no 

anomaly of the temperature which relates to the previ-

ously  mapped  extent  of  the  hydrothermal  field  and 

instead elevated temperatures are evident especially to 

the west of the field. The reason for this finding can be 

understood  when  looking  at  the  temperature  data 

recorded  at  one  of  the  stationary  receivers  (Fig.  31), 

which is representative for all stations and demonstrates 

that there are large and rather quick temporal variations 

in the temperature. It should be noted that similar varia-

tions were measured at all stations, i.e. even at the three 
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Fig. 30: Map of temperatures measured with CTD probe during deployments of the MARTEMIS system. As reference,  
the map of Hannington et al. (2001) marks the position of the vent field and locations of previous investigations  
(compare Fig. 2).

Fig.  31:  Temperatures measured at receiver RX05,  
which is located directly east of the main vent field.  
Data gaps are due to the fact that temperatures are  
not logged while the receiver is in CSEM-mode.



remote stations to the north. This seems to indicate that temperature variations are not due to a change in 

the hydrothermal activity, but rather a reflection of warm water masses passing through the working area.  

Thus, an unexpected result of CTD measurements is that the temperature data from the mobile CTD probe,  

even though it was mostly collected close to the seafloor, is not by itself suitable to detect and characterize 

the hot hydrothermal system. If it is possible to correct the mobile data by means of the temperature data 

from the stationary OBEM receivers remains to be seen.

 6. Data and Sample Storage and Availability 

In Kiel a joint data management team of GEOMAR and Kiel University organizes and supervises data stor -

age and publication by marine science projects in a web-based multi-user system. The geophysical data that 

has been acquired will be for use of GEOMAR scientists and collaborators only for the first phase and can  

be made available to other researcher by request to Dr. Sebastian Hölz (shoelz@GEOMAR.de) or Dr. Sofia  

Martins (smartins@geomar.de). All metadata are immediately available publicly via the GEOMAR portal  

(https://portal.GEOMAR.de/metadata/leg/show/344880). 

In addition the portal provides a single downloadable KML formatted file (portal.GEOMAR.de/metadata/

leg/kmlexport/344880)  which  retrieves  and  combines  up-to-date  cruise  related  information,  links  to 

restricted data and to published data for visualization e.g. in Google Earth. 
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 9. Appendix

 9.1. Station Log

Activity 
Device Oper-

ation
Timestamp Device Action Latitude Longitude

Depth 
(m)

Speed 
(kn)

Course
Wind 

Dir
Wind 

Velocity
Comment

POS524_1-1 2018-06-08 22:46:35 Releaser Test in the water 66° 37,007' N 017° 41,414' W 402.1 0.0 63.0 247.0 4.6 Commence of research operations POS 524

POS524_1-1 2018-06-08 22:58:15 Releaser Test max depth/on ground 66° 37,029' N 017° 41,424' W 411.2 0.0 267.0 261.0 3.7 370 m max

POS524_1-1 2018-06-08 23:51:07 Releaser Test on deck 66° 37,037' N 017° 41,509' W 402.5 0.0 174.0 269.0 3.3

POS524_1-2 2018-06-09 08:23:35 USBL in the water 66° 36,981' N 017° 41,490' W 404.3 0.0 10.0 118.0 2.0 Transponder in the water

POS524_1-2 2018-06-09 08:28:20 USBL information 66° 36,995' N 017° 41,465' W 403.4 0.0 50.0 122.0 2.3 Deployed

POS524_1-2 2018-06-09 09:14:13 USBL profile start 66° 36,974' N 017° 41,501' W 404.0 0.0 172.0 133.0 2.4 Commence calibration

POS524_1-2 2018-06-09 15:05:32 USBL profile end 66° 37,061' N 017° 41,596' W 404.6 1.0 111.0 57.0 5.2 Calibration completed

POS524_1-2 2018-06-09 15:22:03 USBL information 66° 36,906' N 017° 41,683' W 405.3 0.0 282.0 64.0 5.0 Transponder released

POS524_1-2 2018-06-09 15:25:25 USBL information 66° 36,899' N 017° 41,683' W 406.8 0.0 216.0 66.0 5.2 Transponder at surface

POS524_1-2 2018-06-09 15:34:48 USBL on deck 66° 36,938' N 017° 41,541' W 403.4 0.0 14.0 65.0 5.3 Transponder on deck

POS524_2-1 2018-06-09 16:20:51 OBEM receiver in the water 66° 36,249' N 017° 39,593' W 382.1 0.0 26.0 52.0 5.7

POS524_2-1 2018-06-09 16:39:50 OBEM receiver deployed 66° 36,249' N 017° 39,600' W 381.8 0.0 338.0 59.0 5.7 SL max = 360m

POS524_2-1 2018-06-09 16:48:56 OBEM receiver information 66° 36,237' N 017° 39,561' W 385.3 0.0 145.0 60.0 5.8 releaser on deck

POS524_3-1 2018-06-09 17:03:35 OBEM receiver in the water 66° 36,154' N 017° 39,328' W 402.8 0.0 74.0 63.0 6.2

POS524_3-1 2018-06-09 17:21:50 OBEM receiver deployed 66° 36,164' N 017° 39,324' W 402.1 0.0 323.0 65.0 5.9 SL max = 380m

POS524_3-1 2018-06-09 17:29:15 OBEM receiver information 66° 36,156' N 017° 39,333' W 402.1 0.0 202.0 63.0 6.2 releaser on deck

POS524_4-1 2018-06-10 08:20:00 OBEM receiver in the water 66° 36,257' N 017° 38,979' W 419.3 0.0 20.0 84.0 9.6

POS524_4-1 2018-06-10 08:40:19 OBEM receiver information 66° 36,245' N 017° 38,963' W 418.9 0.0 120.0 86.0 9.7 Released and deployed

POS524_4-1 2018-06-10 08:48:17 OBEM receiver on deck 66° 36,245' N 017° 38,947' W 414.3 0.0 159.0 85.0 9.3 Releaser on deck

POS524_5-1 2018-06-10 09:09:07 OBEM receiver in the water 66° 36,403' N 017° 39,635' W 375.3 0.0 143.0 84.0 9.6

POS524_5-1 2018-06-10 09:21:58 OBEM receiver information 66° 36,391' N 017° 39,664' W 374.7 0.0 14.0 86.0 9.6 Released and deployed

POS524_5-1 2018-06-10 09:28:19 OBEM receiver on deck 66° 36,387' N 017° 39,655' W 375.1 0.0 106.0 88.0 9.6 Releaser on deck

POS524_6-1 2018-06-10 09:40:40 OBEM receiver in the water 66° 36,410' N 017° 38,880' W 418.9 0.0 118.0 88.0 10.1

POS524_6-1 2018-06-10 09:55:23 OBEM receiver information 66° 36,417' N 017° 38,884' W 416.0 0.0 10.0 88.0 9.5 Released and deployed



POS524_6-1 2018-06-10 10:02:14 OBEM receiver on deck 66° 36,413' N 017° 38,905' W 417.1 0.0 258.0 90.0 10.4 Releaser on deck

POS524_7-1 2018-06-10 10:22:12 OBEM receiver in the water 66° 36,576' N 017° 39,445' W 398.3 0.0 189.0 93.0 10.3

POS524_7-1 2018-06-10 10:37:32 OBEM receiver information 66° 36,562' N 017° 39,442' W 399.1 0.0 51.0 87.0 11.0 Released and deployed

POS524_7-1 2018-06-10 10:44:10 OBEM receiver on deck 66° 36,573' N 017° 39,416' W 403.9 0.0 9.0 86.0 9.5 Releaser on deck

POS524_8-1 2018-06-10 10:54:50 OBEM receiver in the water 66° 36,571' N 017° 38,939' W 413.8 0.0 290.0 90.0 10.5

POS524_8-1 2018-06-10 11:09:47 OBEM receiver information 66° 36,567' N 017° 38,937' W 414.6 0.0 134.0 85.0 11.7 Released and deployed

POS524_8-1 2018-06-10 11:16:36 OBEM receiver on deck 66° 36,571' N 017° 38,936' W 414.8 0.0 308.0 87.0 11.1 Releaser on deck

POS524_9-1 2018-06-10 11:59:09 OBEM receiver in the water 66° 36,756' N 017° 39,203' W 415.1 0.0 159.0 88.0 9.6

POS524_9-1 2018-06-10 12:16:09 OBEM receiver information 66° 36,774' N 017° 39,204' W 413.0 0.0 63.0 87.0 10.0 Released and deployed

POS524_9-1 2018-06-10 12:23:23 OBEM receiver on deck 66° 36,772' N 017° 39,203' W 415.1 0.0 302.0 87.0 10.5 releaser on Deck

POS524_10-1 2018-06-10 12:33:25 OBEM receiver in the water 66° 36,786' N 017° 38,703' W 409.8 0.0 108.0 87.0 10.7

POS524_10-1 2018-06-10 12:49:39 OBEM receiver information 66° 36,786' N 017° 38,676' W 410.0 0.0 31.0 85.0 12.2 released and deployed

POS524_10-1 2018-06-10 12:55:47 OBEM receiver on deck 66° 36,771' N 017° 38,705' W 414.4 0.0 208.0 87.0 11.3 Releaser on Deck

POS524_11-1 2018-06-10 13:35:08 OBEM receiver in the water 66° 37,554' N 017° 38,857' W 393.8 0.0 177.0 84.0 11.7

POS524_11-1 2018-06-10 13:47:43 OBEM receiver information 66° 37,534' N 017° 38,897' W 389.0 0.0 266.0 85.0 11.3 released and deployed

POS524_11-1 2018-06-10 13:53:43 OBEM receiver on deck 66° 37,531' N 017° 38,930' W 387.9 1.0 76.0 84.0 11.7 Releaser on Deck

POS524_12-1 2018-06-10 14:02:39 OBEM receiver in the water 66° 37,519' N 017° 38,385' W 394.6 0.0 83.0 84.0 10.4

POS524_12-1 2018-06-10 14:15:37 OBEM receiver information 66° 37,527' N 017° 38,405' W 385.1 0.0 251.0 85.0 10.8 Released and deployed

POS524_12-1 2018-06-10 14:23:35 OBEM receiver on deck 66° 37,526' N 017° 38,446' W 391.8 0.0 261.0 87.0 10.3 Releaser on Deck

POS524_13-1 2018-06-10 14:40:32 OBEM receiver in the water 66° 37,658' N 017° 38,701' W 391.2 1.0 105.0 90.0 11.0

POS524_13-1 2018-06-10 15:39:10 OBEM receiver information 66° 37,659' N 017° 38,617' W 355.6 0.0 225.0 85.0 11.4 released and deployed 

POS524_13-1 2018-06-10 15:39:46 OBEM receiver on deck 66° 37,658' N 017° 38,625' W 391.2 0.0 256.0 86.0 11.8 releaser on deck

POS524_14-1 2018-06-10 16:25:06 Gravity corer in the water 66° 36,410' N 017° 39,281' W 392.5 0.0 158.0 85.0 11.6

POS524_14-1 2018-06-10 16:32:04 Gravity corer max depth/on ground 66° 36,413' N 017° 39,256' W 1.0 0.0 133.0 85.0 12.2 SL max = 379m

POS524_14-1 2018-06-10 16:40:21 Gravity corer on deck 66° 36,413' N 017° 39,238' W 389.5 0.0 138.0 86.0 12.4

POS524_15-1 2018-06-11 08:01:40 Gravity corer in the water 66° 36,910' N 017° 39,228' W 406.2 0.0 311.0 88.0 10.0

POS524_15-1 2018-06-11 08:09:21 Gravity corer max depth/on ground 66° 36,915' N 017° 39,234' W 405.4 0.0 129.0 83.0 10.8 392 m max

POS524_15-1 2018-06-11 08:19:12 Gravity corer on deck 66° 36,913' N 017° 39,192' W 403.8 0.0 80.0 85.0 10.1

POS524_16-1 2018-06-11 10:21:42 Heat Flow Probe in the water 66° 36,432' N 017° 42,724' W 448.0 0.0 157.0 81.0 9.2

POS524_16-1 2018-06-11 10:36:55 Heat Flow Probe max depth/on ground 66° 36,435' N 017° 42,716' W 446.3 0.0 146.0 86.0 9.2 433 m max

POS524_16-1 2018-06-11 10:50:41 Heat Flow Probe hoisting 66° 36,427' N 017° 42,702' W 446.9 0.0 98.0 81.0 9.3



POS524_16-1 2018-06-11 11:21:17 Heat Flow Probe max depth/on ground 66° 36,454' N 017° 41,642' W 411.8 0.0 96.0 74.0 9.4 401 m max

POS524_16-1 2018-06-11 11:36:15 Heat Flow Probe hoisting 66° 36,455' N 017° 41,641' W 414.6 0.0 317.0 73.0 8.1

POS524_16-1 2018-06-11 12:09:07 Heat Flow Probe max depth/on ground 66° 36,435' N 017° 40,585' W 413.7 0.0 73.0 74.0 9.4 SL max = 402 m

POS524_16-1 2018-06-11 12:23:28 Heat Flow Probe hoisting 66° 36,428' N 017° 40,586' W 415.7 0.0 121.0 73.0 9.5

POS524_16-1 2018-06-11 13:09:15 Heat Flow Probe max depth/on ground 66° 36,412' N 017° 38,657' W 419.7 0.0 118.0 73.0 8.9 SL max = 410 m

POS524_16-1 2018-06-11 13:23:56 Heat Flow Probe hoisting 66° 36,398' N 017° 38,668' W 417.5 0.0 196.0 72.0 8.4

POS524_16-1 2018-06-11 13:47:45 Heat Flow Probe max depth/on ground 66° 36,418' N 017° 38,244' W 419.3 0.0 10.0 77.0 9.0 SLmax = 414 m

POS524_16-1 2018-06-11 14:02:15 Heat Flow Probe hoisting 66° 36,426' N 017° 38,201' W 420.8 0.0 125.0 72.0 8.8

POS524_16-1 2018-06-11 14:25:19 Heat Flow Probe max depth/on ground 66° 36,408' N 017° 37,646' W 406.6 0.0 128.0 72.0 8.2 SL max = 407 m

POS524_16-1 2018-06-11 14:40:28 Heat Flow Probe hoisting 66° 36,404' N 017° 37,625' W 404.6 0.0 312.0 70.0 8.5

POS524_16-1 2018-06-11 14:55:15 Heat Flow Probe on deck 66° 36,387' N 017° 37,562' W 401.1 0.0 105.0 71.0 8.7

POS524_17-1 2018-06-11 16:01:19 Martemis in the water 66° 36,314' N 017° 36,773' W 391.8 0.0 196.0 78.0 8.5 Test

POS524_17-1 2018-06-11 16:48:20 Martemis on deck 66° 36,270' N 017° 36,371' W 346.6 0.0 217.0 75.0 9.1

POS524_18-1 2018-06-12 09:18:43 Gravity corer in the water 66° 36,462' N 017° 39,619' W 383.2 0.0 230.0 93.0 9.3

POS524_18-1 2018-06-12 09:25:51 Gravity corer max depth/on ground 66° 36,449' N 017° 39,664' W 386.4 0.0 349.0 87.0 9.1 367 m max

POS524_18-1 2018-06-12 09:35:05 Gravity corer on deck 66° 36,447' N 017° 39,639' W 382.9 0.0 106.0 87.0 9.0

POS524_19-1 2018-06-12 10:11:47 Gravity corer in the water 66° 36,446' N 017° 40,662' W 413.7 0.0 108.0 95.0 9.0

POS524_19-1 2018-06-12 10:18:48 Gravity corer max depth/on ground 66° 36,441' N 017° 40,630' W 414.2 0.0 181.0 95.0 8.0 403 m max

POS524_19-1 2018-06-12 10:28:09 Gravity corer on deck 66° 36,434' N 017° 40,597' W 415.3 0.0 110.0 91.0 8.9

POS524_20-1 2018-06-12 12:21:52 Gravity corer in the water 66° 37,624' N 017° 38,615' W 392.8 0.0 85.0 92.0 9.9

POS524_20-1 2018-06-12 12:28:27 Gravity corer max depth/on ground 66° 37,631' N 017° 38,581' W 391.7 0.0 248.0 83.0 9.4 SL max = 379 m

POS524_20-1 2018-06-12 12:37:33 Gravity corer on deck 66° 37,625' N 017° 38,392' W 394.2 0.0 254.0 87.0 9.4

POS524_21-1 2018-06-12 15:05:29 Martemis in the water 66° 36,108' N 017° 40,733' W 411.3 0.0 222.0 83.0 9.6

POS524_21-1 2018-06-12 15:51:36 Martemis max depth/on ground 66° 36,139' N 017° 39,832' W 388.9 0.0 21.0 86.0 10.4 SL mx = 370 m

POS524_21-1 2018-06-12 15:54:07 Martemis profile start 66° 36,144' N 017° 39,812' W 388.6 0.0 72.0 88.0 10.5

POS524_21-1 2018-06-12 17:00:13 Martemis profile end 66° 36,561' N 017° 39,715' W 383.2 0.0 108.0 83.0 10.3

POS524_21-1 2018-06-12 17:16:43 Martemis on deck 66° 36,553' N 017° 39,683' W 381.9 0.0 68.0 84.0 11.5

POS524_22-1 2018-06-13 06:00:54 Martemis in the water 66° 36,089' N 017° 37,991' W 423.1 0.0 237.0 306.0 2.7

POS524_22-1 2018-06-13 06:30:10 Martemis max depth/on ground 66° 36,146' N 017° 38,488' W 425.1 0.0 329.0 327.0 3.8 SL max = 396m

POS524_22-1 2018-06-13 06:45:09 Martemis profile start 66° 36,255' N 017° 38,565' W 422.2 0.0 350.0 317.0 3.0

POS524_22-1 2018-06-13 08:33:24 Martemis information 66° 36,967' N 017° 39,055' W 420.1 0.0 288.0 316.0 2.4 Profile ceased, winch trouble



POS524_22-1 2018-06-13 11:25:54 Martemis information 66° 36,908' N 017° 39,093' W 410.0 0.0 58.0 76.0 0.9 Profile resumed

POS524_22-1 2018-06-14 05:39:13 Martemis profile end 66° 37,611' N 017° 38,798' W 390.7 0.0 256.0 58.0 12.3

POS524_22-1 2018-06-14 06:00:11 Martemis on deck 66° 37,624' N 017° 38,851' W 396.1 0.0 185.0 58.0 12.2 Cease of research due to weather forecast

POS524_23-1 2018-06-16 10:09:08 Heat Flow Probe in the water 66° 36,417' N 017° 42,653' W 353.9 0.0 17.0 46.0 5.8

POS524_23-1 2018-06-16 10:25:46 Heat Flow Probe max depth/on ground 66° 36,416' N 017° 42,691' W 1.1 0.0 149.0 43.0 6.1 436 m max

POS524_23-1 2018-06-16 10:40:20 Heat Flow Probe hoisting 66° 36,418' N 017° 42,665' W 1.5 0.0 327.0 38.0 7.3

POS524_23-1 2018-06-16 11:52:16 Heat Flow Probe max depth/on ground 66° 36,436' N 017° 41,060' W 1.0 0.0 144.0 48.0 5.8 396 m max

POS524_23-1 2018-06-16 12:07:19 Heat Flow Probe hoisting 66° 36,425' N 017° 41,087' W 3.8 0.0 303.0 53.0 6.1

POS524_23-1 2018-06-16 13:32:46 Heat Flow Probe max depth/on ground 66° 36,453' N 017° 39,630' W 1.0 0.0 336.0 64.0 5.3 SL max = 370 m

POS524_23-1 2018-06-16 13:55:13 Heat Flow Probe hoisting 66° 36,448' N 017° 39,446' W 396.7 0.0 78.0 57.0 5.8

POS524_23-1 2018-06-16 13:59:41 Heat Flow Probe on deck 66° 36,478' N 017° 39,297' W 401.0 0.0 77.0 60.0 5.7

POS524_24-1 2018-06-16 14:32:06 OBEM receiver information 66° 36,001' N 017° 39,566' W 395.6 0.0 74.0 54.0 5.6 Released

POS524_24-1 2018-06-16 14:39:24 OBEM receiver at surface 66° 36,055' N 017° 39,430' W 393.3 2.0 54.0 49.0 5.9

POS524_24-1 2018-06-16 14:55:13 OBEM receiver on deck 66° 36,159' N 017° 39,351' W 393.3 0.0 77.0 43.0 5.7

POS524_25-1 2018-06-16 15:15:55 OBEM receiver information 66° 36,660' N 017° 39,396' W 393.3 1.0 63.0 58.0 5.8 Released

POS524_25-1 2018-06-16 15:23:33 OBEM receiver at surface 66° 36,631' N 017° 39,415' W 393.3 0.0 231.0 60.0 5.7

POS524_25-1 2018-06-16 15:32:35 OBEM receiver on deck 66° 36,826' N 017° 39,210' W 393.3 0.0 68.0 57.0 5.6

POS524_26-1 2018-06-16 15:54:17 OBEM receiver information 66° 36,654' N 017° 38,762' W 393.3 0.0 132.0 60.0 6.0 released

POS524_26-1 2018-06-16 16:01:38 OBEM receiver at surface 66° 36,654' N 017° 38,731' W 393.3 0.0 126.0 62.0 5.5

POS524_26-1 2018-06-16 16:09:03 OBEM receiver on deck 66° 36,751' N 017° 38,602' W 393.3 0.0 106.0 71.0 6.4

POS524_27-1 2018-06-16 16:43:09 OBEM receiver deployed 66° 36,561' N 017° 41,275' W 393.3 0.0 93.0 65.0 6.0

POS524_28-1 2018-06-16 17:02:14 OBEM receiver deployed 66° 36,567' N 017° 40,780' W 393.3 0.0 13.0 68.0 5.6

POS524_29-1 2018-06-16 17:18:03 OBEM receiver deployed 66° 36,567' N 017° 40,193' W 393.3 0.0 60.0 64.0 6.6

POS524_30-1 2018-06-17 06:04:19 OBEM receiver information 66° 37,430' N 017° 39,845' W 390.6 0.0 165.0 98.0 6.3 released

POS524_30-1 2018-06-17 06:18:28 OBEM receiver at surface 66° 37,451' N 017° 39,669' W 399.0 0.0 72.0 107.0 8.7

POS524_30-1 2018-06-17 06:27:21 OBEM receiver on deck 66° 37,430' N 017° 39,197' W 397.4 0.0 192.0 106.0 8.2

POS524_31-1 2018-06-17 06:33:00 OBEM receiver information 66° 37,431' N 017° 39,175' W 392.6 0.0 57.0 102.0 8.0 released

POS524_31-1 2018-06-17 07:00:46 OBEM receiver information 66° 37,464' N 017° 38,987' W 392.6 0.0 44.0 110.0 7.7 stays at bottom, no surface movements detectable

POS524_32-1 2018-06-17 07:10:14 OBEM receiver information 66° 37,484' N 017° 38,950' W 392.6 0.0 352.0 109.0 7.6 released

POS524_32-1 2018-06-17 07:20:05 OBEM receiver at surface 66° 37,619' N 017° 38,818' W 392.6 2.0 15.0 107.0 7.3

POS524_32-1 2018-06-17 07:26:26 OBEM receiver on deck 66° 37,703' N 017° 38,750' W 392.6 0.0 14.0 108.0 6.9



POS524_33-1 2018-06-17 08:23:07 OBEM receiver deployed 66° 36,563' N 017° 38,346' W 392.6 0.0 354.0 108.0 6.2

POS524_34-1 2018-06-17 08:34:17 OBEM receiver deployed 66° 36,564' N 017° 37,786' W 392.6 0.0 189.0 107.0 5.3

POS524_35-1 2018-06-17 09:00:34 Gravity corer in the water 66° 36,394' N 017° 38,702' W 418.4 0.0 337.0 104.0 5.3

POS524_35-1 2018-06-17 09:05:47 Gravity corer max depth/on ground 66° 36,396' N 017° 38,666' W 419.2 0.0 339.0 104.0 5.2 406 m max

POS524_35-1 2018-06-17 09:15:23 Gravity corer on deck 66° 36,414' N 017° 38,694' W 415.4 0.0 339.0 100.0 5.2

POS524_36-1 2018-06-17 10:10:31 Martemis in the water 66° 36,526' N 017° 42,906' W 416.3 0.0 134.0 86.0 5.0

POS524_36-1 2018-06-17 11:01:38 Martemis profile start 66° 36,570' N 017° 41,796' W 414.4 0.0 71.0 86.0 6.8

POS524_36-1 2018-06-17 15:12:50 Martemis profile end 66° 36,572' N 017° 37,158' W 384.4 0.0 78.0 91.0 12.2

POS524_36-1 2018-06-17 15:35:14 Martemis on deck 66° 36,629' N 017° 36,649' W 377.4 0.0 76.0 96.0 12.1 Cease research operations due to weather situation

POS524_37-1 2018-06-19 12:37:45 Heat Flow Probe in the water 66° 35,814' N 017° 39,177' W 400.5 0.0 272.0 300.0 7.4 Resume of research operations

POS524_37-1 2018-06-19 12:45:20 Heat Flow Probe max depth/on ground 66° 35,826' N 017° 39,194' W 408.7 0.0 19.0 313.0 7.8 SL max = 398 m

POS524_37-1 2018-06-19 13:00:18 Heat Flow Probe hoisting 66° 35,854' N 017° 39,177' W 403.3 0.0 116.0 316.0 7.5

POS524_37-1 2018-06-19 13:09:06 Heat Flow Probe max depth/on ground 66° 35,855' N 017° 39,140' W 405.2 0.0 100.0 315.0 7.0 SL max = 401 m

POS524_37-1 2018-06-19 13:23:22 Heat Flow Probe hoisting 66° 35,859' N 017° 39,157' W 403.1 0.0 190.0 311.0 7.7

POS524_37-1 2018-06-19 14:24:01 Heat Flow Probe max depth/on ground 66° 36,723' N 017° 39,167' W 411.2 0.0 267.0 316.0 5.5 SL max = 407 m

POS524_37-1 2018-06-19 14:37:39 Heat Flow Probe hoisting 66° 36,715' N 017° 39,117' W 413.4 0.0 159.0 310.0 5.8

POS524_37-1 2018-06-19 15:16:05 Heat Flow Probe max depth/on ground 66° 37,105' N 017° 39,096' W 403.7 0.0 296.0 312.0 6.2 SL max = 398 m

POS524_37-1 2018-06-19 15:30:49 Heat Flow Probe hoisting 66° 37,119' N 017° 39,075' W 399.7 0.0 139.0 316.0 6.2

POS524_37-1 2018-06-19 16:02:04 Heat Flow Probe max depth/on ground 66° 37,597' N 017° 38,557' W 393.4 0.0 122.0 311.0 6.1 SL max = 382m

POS524_37-1 2018-06-19 16:16:20 Heat Flow Probe hoisting 66° 37,595' N 017° 38,530' W 393.4 0.0 340.0 303.0 6.0

POS524_37-1 2018-06-19 17:03:45 Heat Flow Probe max depth/on ground 66° 37,134' N 017° 38,167' W 393.0 0.0 117.0 318.0 6.0 SL max = 389m

POS524_37-1 2018-06-19 17:18:17 Heat Flow Probe hoisting 66° 37,134' N 017° 38,146' W 393.7 0.0 95.0 310.0 5.9

POS524_37-1 2018-06-19 17:41:51 Heat Flow Probe on deck 66° 37,149' N 017° 38,042' W 395.1 0.0 113.0 314.0 5.9

POS524_38-1 2018-06-20 08:02:00 Gravity corer in the water 66° 36,181' N 017° 39,166' W 396.7 0.0 238.0 288.0 6.9

POS524_38-1 2018-06-20 08:08:17 Gravity corer max depth/on ground 66° 36,183' N 017° 39,177' W 393.6 0.0 186.0 284.0 6.5 388 m max

POS524_38-1 2018-06-20 08:18:40 Gravity corer on deck 66° 36,189' N 017° 39,149' W 393.0 0.0 259.0 291.0 6.5

POS524_39-1 2018-06-20 08:42:18 Gravity corer in the water 66° 36,316' N 017° 39,311' W 391.2 0.0 186.0 292.0 6.9

POS524_39-1 2018-06-20 08:48:21 Gravity corer max depth/on ground 66° 36,310' N 017° 39,293' W 390.8 0.0 101.0 291.0 7.1 384 m max

POS524_39-1 2018-06-20 08:56:35 Gravity corer on deck 66° 36,314' N 017° 39,300' W 394.8 0.0 310.0 291.0 6.9

POS524_40-1 2018-06-20 09:29:33 Martemis in the water 66° 35,745' N 017° 40,053' W 406.5 0.0 286.0 296.0 7.4

POS524_40-1 2018-06-20 10:22:27 Martemis profile start 66° 35,990' N 017° 40,949' W 428.4 0.0 2.3 284.0 7.7



POS524_40-1 2018-06-21 05:54:02 Martemis profile end 66° 36,708' N 017° 37,470' W 396.6 0.0 94.0 192.0 5.3

POS524_40-1 2018-06-21 06:13:40 Martemis on deck 66° 36,604' N 017° 37,428' W 395.0 0.0 200.0 198.0 4.7

POS524_41-1 2018-06-21 06:46:27 OBEM receiver information 66° 36,328' N 017° 37,575' W 401.1 0.0 211.0 207.0 4.1 released

POS524_41-1 2018-06-21 06:53:20 OBEM receiver at surface 66° 36,395' N 017° 37,628' W 407.4 1.0 21.0 204.0 3.9

POS524_41-1 2018-06-21 07:06:38 OBEM receiver on deck 66° 36,631' N 017° 37,693' W 409.7 0.0 86.0 201.0 4.4

POS524_42-1 2018-06-21 07:54:59 OBEM receiver information 66° 36,728' N 017° 37,937' W 411.5 0.0 350.0 176.0 3.3 released

POS524_42-1 2018-06-21 08:01:15 OBEM receiver at surface 66° 36,759' N 017° 37,922' W 413.6 0.0 350.0 182.0 2.8

POS524_42-1 2018-06-21 08:11:01 OBEM receiver on deck 66° 36,605' N 017° 38,415' W 415.9 0.0 271.0 187.0 3.1

POS524_43-1 2018-06-21 08:27:15 OBEM receiver information 66° 36,616' N 017° 40,017' W 388.2 0.0 75.0 232.0 2.4 Released

POS524_43-1 2018-06-21 08:33:45 OBEM receiver at surface 66° 36,617' N 017° 39,940' W 392.0 0.0 89.0 231.0 2.6

POS524_43-1 2018-06-21 08:40:35 OBEM receiver on deck 66° 36,575' N 017° 40,255' W 375.1 0.0 269.0 209.0 3.1

POS524_44-1 2018-06-21 08:59:57 OBEM receiver information 66° 36,620' N 017° 40,213' W 380.3 0.0 73.0 220.0 2.8 Released

POS524_44-1 2018-06-21 09:05:56 OBEM receiver at surface 66° 36,656' N 017° 40,409' W 384.0 1.0 271.0 229.0 2.6

POS524_44-1 2018-06-21 09:11:36 OBEM receiver on deck 66° 36,637' N 017° 40,889' W 406.4 0.0 279.0 222.0 2.3

POS524_45-1 2018-06-21 09:23:26 OBEM receiver information 66° 36,661' N 017° 40,986' W 408.0 0.0 148.0 218.0 1.9 Released

POS524_45-1 2018-06-21 09:29:25 OBEM receiver at surface 66° 36,651' N 017° 40,944' W 408.0 0.0 149.0 220.0 2.3

POS524_45-1 2018-06-21 09:37:04 OBEM receiver on deck 66° 36,546' N 017° 41,530' W 408.0 0.0 237.0 206.0 2.4

POS524_46-1 2018-06-21 09:56:36 OBEM receiver information 66° 36,628' N 017° 39,659' W 408.0 0.0 40.0 166.0 1.6 Released

POS524_46-1 2018-06-21 10:08:44 OBEM receiver on deck 66° 36,534' N 017° 39,471' W 408.0 0.0 117.0 162.0 0.9

POS524_47-1 2018-06-21 10:18:02 OBEM receiver information 66° 36,500' N 017° 39,368' W 408.0 0.0 89.0 118.0 0.6 Released

POS524_47-1 2018-06-21 10:24:32 OBEM receiver at surface 66° 36,500' N 017° 39,289' W 408.0 0.0 73.0 119.0 0.7

POS524_47-1 2018-06-21 10:32:31 OBEM receiver on deck 66° 36,606' N 017° 38,900' W 408.0 0.0 107.0 130.0 0.6

POS524_48-1 2018-06-21 10:38:19 OBEM receiver information 66° 36,586' N 017° 38,853' W 408.0 0.0 170.0 91.0 0.4 Released

POS524_48-1 2018-06-21 10:44:40 OBEM receiver at surface 66° 36,548' N 017° 38,855' W 408.0 0.0 188.0 103.0 1.2

POS524_48-1 2018-06-21 10:51:10 OBEM receiver on deck 66° 36,431' N 017° 38,891' W 408.0 0.0 186.0 92.0 0.7

POS524_49-1 2018-06-21 10:58:21 OBEM receiver information 66° 36,386' N 017° 38,941' W 408.0 0.0 219.0 88.0 1.1 Released

POS524_49-1 2018-06-21 11:04:11 OBEM receiver at surface 66° 36,394' N 017° 39,211' W 408.0 0.0 289.0 66.0 1.4

POS524_49-1 2018-06-21 11:10:51 OBEM receiver on deck 66° 36,350' N 017° 39,593' W 408.0 0.0 220.0 47.0 1.2

POS524_50-1 2018-06-21 11:58:33 OBEM receiver information 66° 36,363' N 017° 39,774' W 408.0 0.0 213.0 49.0 1.7 Released

POS524_50-1 2018-06-21 12:03:31 OBEM receiver at surface 66° 36,340' N 017° 39,778' W 408.0 0.0 193.0 33.0 1.6

POS524_50-1 2018-06-21 12:13:08 OBEM receiver on deck 66° 36,119' N 017° 39,594' W 408.0 0.0 167.0 33.0 2.2



POS524_51-1 2018-06-21 12:26:37 OBEM receiver information 66° 36,161' N 017° 39,299' W 408.0 0.0 8.4 11.0 3.1 released

POS524_51-1 2018-06-21 12:32:40 OBEM receiver at surface 66° 36,183' N 017° 39,261' W 408.0 0.0 98.0 15.0 3.1

POS524_51-1 2018-06-21 12:50:19 OBEM receiver on deck 66° 36,209' N 017° 38,641' W 408.0 0.0 108.0 22.0 2.5

POS524_52-1 2018-06-21 14:02:34 OBEM receiver information 66° 37,522' N 017° 38,487' W 408.0 2.0 341.0 53.0 3.0 Start dredging attempt

POS524_52-1 2018-06-21 14:26:38 OBEM receiver in the water 66° 37,506' N 017° 38,379' W 396.8 0.0 125.0 40.0 2.7 Camera and dredging device to water

POS524_52-1 2018-06-21 14:38:41 OBEM receiver max depth/on ground 66° 37,515' N 017° 38,398' W 388.6 0.0 191.0 46.0 2.9 At bottom, 373 m max

POS524_52-1 2018-06-21 15:33:33 OBEM receiver on deck 66° 37,580' N 017° 38,249' W 386.3 0.0 33.0 46.0 4.0 No success

POS524_52-1 2018-06-21 23:41:55 OBEM receiver information 66° 37,474' N 017° 38,021' W 384.8 0.0 140.0 184.0 7.6

POS524_53-1 2018-06-22 06:00:03 OBEM receiver information 66° 37,043' N 017° 38,024' W 403.8 0.0 191.0 283.0 3.2 Start dredging attempt

POS524_53-1 2018-06-22 06:00:47 OBEM receiver information 66° 37,039' N 017° 38,026' W 403.5 0.0 189.0 282.0 3.1 camera and dredging device to water

POS524_53-1 2018-06-22 06:14:42 OBEM receiver max depth/on ground 66° 36,999' N 017° 38,037' W 403.9 0.0 237.0 281.0 2.7 SL max = 392m

POS524_53-1 2018-06-22 10:55:52 OBEM receiver on deck 66° 37,025' N 017° 38,232' W 403.7 0.0 32.0 270.0 13.8 No success. Completion of research POS 524



 9.2. Station Protocol Heatflow

HF Date Time
Position

Depth [m]
Penetration 

[cm]
Heat Pulse

Max. tension
[kN]

Tmax [°C]
dT/dz

[K / m]Latitude Longitude

01

11.06

10:36 - 10:43 66°36.43 -17°42.68 443 210 No 36 1.5 0.24

02 11:21 - 11:36 66°36.47 -17°41.65 420 180 No 29 2.0 0.34

03 12:08 - 12:24 66°36.44 -17°40.63 412 180 No 32 2.5 0.46

04 13:09 - 13:24 66°36.41 -17°38.65 420 - No 39 > 60.0 >30

05 13:47 - 14:02 66°36.42 -17°38.23 424 210 No 33 6.0 2.03

06 14:25 - 14:40 66°36.42 -17°37.68 409 170 No 33 4.5 1.45

07

16.06

10:25 - 10:40 66°36.43 -17°42.68 440 210 Yes 32 - -

08 11:52 - 12:07 66°36.44 -17°41.04 407 150 Yes 32 3.5 0.8

09 13:32 - 13:48 66°36.45 -17°39.65 385 120 Yes 21 12.0 6.24

10

19.6

12:45 - 13:00 66°35.82 -17°39.28 402 170 Yes 33 3.5 0.73

11 13:08 - 13:23 66°35.83 -17°39.29 402 160 Yes 36 3.5 0.82

12 14:23 - 14:37 66°36.71 -17°39.23 411 170 Yes 27 9.0 2.93

13 15:15 - 15:30 66°37.11 -17°39.12 401 150 Yes 25 4.0 0.64

14 16:01 - 16:16 66°37.60 -17°38.60 393 190 Yes 27 6.5 2.02

15 17:03 - 17:18 66°37.13 -17°38.19 396 90 Yes 28 3.0 -

• After ground contact (“BoKo”) an extra 5m of winch cable was given as slack.

• There was no change in tension during the bottom time for any measurement with penetration.

• USBL transponder 30m above the probe.



 9.3. Core Descriptions

100

80

60
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0

0 – 31 cm: Chaotic level of dark grey (7.5YR/4/0)clay
(10%) and anhydrite sand (80%)

22 – 24 cm 

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

7.60

7.43

22.2

21.6
44 39.2

PW 1  (32.5 cm)

31 – 33 cm 31 – 37 cm: Brownish layer of
coarse anhydrite fragments and clay
(7.5YR/7/2)

Brownish lenticular patch of anhydrite
sand

PW 2 (57 cm)

63 – 65 cm 

7.26

7.20

22.6

21.7
220 0.33

7.44

7.36

25.1

23.5
81 0.62

Dark grey clay with irregular anhydrite fragments
(7.5YR/4/0)

Core: POS524/01GC

Core section: C (1 of 3)
Recovery: 302 cm

Latitude: 66°36.42’N
Longitude: 17°39.25’W

PW 3 (79.5 cm)

PW 4  (97.5 cm)

78 – 80 cm 78 - 95 cm: Bluish clay layer with
areas of coarse size anhydrite
concentration

6.92

6.95

24.1

25.1
146 26.9

95 – 98 cm 
7.15

6.77

25.5

25.0
Er1 32.4

95 - 99 cm: Brownish layer of clay and
anhydrite sand, on top it seems to be
a coarser layer of anhydrite with
pyrite grains (7.5YR/7/2)

Dark greenish patch
(Gley1/7/5G)

99 - 102 cm: Bluish clay and anhydrite/talc sand (Gley1/7/5G)
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202

182

162

142

122

102

Faint smell of H2S when opening the core

136 – 138 cm 

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

127 - 140 cm: Silt/clay bluish grey layer with darker spots
(dark brown). Mottled appearance. Disseminated sulfides.
Gley18/5G

PW 6 (144 cm)

178 – 180 cm 

7.13

7.28

16.9

17.4
137 39.6

7.36

7.18

17.2

16.9
147 27.9

140 - 164 cm: Homogenous silt/clay layer with a bluish
grey colour that ends in a channel shaped area
Gley17/5GY

Core: POS524/01GC

Core section: B (2 of 3)
Recovery: 302 cm

Latitude: 66°36.42’N
Longitude: 17°39.25’W

164 – 202 cm: Dark brownish homogenous clay layer, very
compact with frequent disseminated sulfides

7.25

7.12

17.4

17.3
177 25.8

Disturbed section

146 – 148 cm 
7.36

7.15

17.6

16.9
166 Er1

PW 5 (134.5 cm) 

PW 7 (164 cm)

160 – 162 cm Change in colour to lighter shade of
blue/grey. Gley17/5G
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302

282

262

242

222

202

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

281 – 283 cm 

7.05

6.89

17.9

17.3
191 Er1

247 – 268 cm: Dark brown homogeneous clay layer with
abundant disseminated sulfides. 10YR/6/6

Core: POS524/01GC

Core section: A (3 of 3)
Recovery: 302 cm

Latitude: 66°36.42’N
Longitude: 17°39.25’W

272 – 302 cm: Homogeneous brown clay
layer with disseminated sulfides and
anhydrite flakes

Towards the bottom the layer becomes
more flaky and broken into pieces. The
sulfides are no longer disseminated, they
occur concentrated in small channels
(linear structures)

7.37

7.16

18.0

17.3
175 20.0

Empty section

6.95

6.54

17.2

16.8
212 31.5

PW 9 (270 cm)

263 – 265 cm 

268 – 272 cm: Layer of irregular greyish
anhydrite sand

POS524/01GC/CC
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Greenish grey clay with H 2S smell; very homogeneous;
5Y/6/2
Dispersed in the sediment are black patches (lines and
points)

10 – 12 cm 

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

7.80

7.71

15.3

14.2
- 148 26.8

PW 10 (34 cm)

PW 12 (72 cm)

50 – 57 cm: Black patches within the clay

Core: POS524/02GC

Core section: C (1 of 3)
Recovery: 290 cm

Latitude: 66°36.91’N
Longitude: 17°39.21’W

PW 13 (96 cm)

14 cm: small shell fragment (<0.5 cm)

53 – 55 cm 
7.77

7.99

15.2

14.2
- 32 20.5

PW 11 (54.5 cm)

92 - 94 cm 7.90

7.75

15.8

14.6
- 35 21.5
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200

180

160

140

120

100

Very homogeneous greenish grey clay with H 2S smell;
small black specks, but less frequente then the previous
section; 5Y/6/2

142 – 144 cm 

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

8.00

7.97

14.9

14.3
- 57 Er1

PW 14 (139.5 cm)

PW 15 (179.5 cm)

Core: POS524/02GC

Core section: B (2 of 3)
Recovery: 290 cm

Latitude: 66°36.91’N
Longitude: 17°39.21’W

189 - 191 cm 7.55

7.64

15.8

14.8
16 34.7
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300

280

260

240

220

200

Very homogeneous greenish grey clay with H 2S smell;
5Y/6/2

229 – 231 cm 

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

7.76

7.47

15.6

14.6
- 78 28.2

PW 17 (219.5 cm)

PW 18 (250 cm)

Core: POS524/02GC

Core section:A (3 of 3)
Recovery: 290 cm

Latitude: 66°36.91’N
Longitude: 17°39.21’W

269 - 271 cm 7.7

7.49

15.9

14.8
- 5 23.0

Shell (intact valve)

PW 19 (280 cm)

POS524/02GC/CC
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Homogeneous dark greenish grey clay/silt with small shell
fragments; 5Y/6/2

55 – 57 cm 

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

PW 20 (50 cm)

PW 21 (85 cm)

Core: POS524/03GC

Core section:  1 of 1
Recovery: 95 cm

Latitude: 66°36.45’N
Longitude: 17°39.65’W

PW 22  (95 cm)

7.75

7.50

15.2

14.8
14 27.2

85 - 87 cm 
7.89

7.64

17.2

14.9
143 Er1

There was about 5 cm of sediment above the top of the
section

POS524/03GC/top

84 – 89 cm: Dark grey anhydrite sand
layer with red/black/greenish clasts

89 – 95 cm: Dark greenish grey clay,
similar to the top sediment

The core catcher had a very hard, indurated, clay (as hard as rock among with
softer clay). Two samples of the core catcher were taken, the hard and soft
material

POS524/03GC/CC soft POS524/03GC/CC hard
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100

80

60

40

20

0

Homogeneous dark greenish grey clay/silt;smell of H2S;
ocasional small shell fragments; 5Y/6/2

80 – 82 cm 

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

PW 23 (30 cm)

PW 25 (70 cm)

Core: POS524/04GC

Core section:  C (1 of 3)
Recovery: 290 cm

Latitude: 66°36.44’N
Longitude: 17°40.63’W

7.75

7.50

15.2

14.8
14 27.2

7.98

Er1

14.8

13.7
37 23.4

14 – 16 cm 7.92

7.90

14.5

13.2
58 31.8

32 – 34 cm

7.93

7.94

13.8

14.1
64 21.8

Shell fragments
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200

180

160

140

120

100

Homogeneous dark greenish grey clay/silt; smell of sulfur;
5Y/6/2

190 – 192 cm 

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

PW 26 (125 cm)

PW 27 (175 cm)

Core: POS524/04GC

Core section:  B (2 of 3)
Recovery: 290 cm

Latitude: 66°36.44’N
Longitude: 17°40.63’W

7.79

Er1

14.9

14.0
47 21.1

7.57

7.62

15.2

14.9
- 126 21.2

120 – 122 cm

7.82

7.56

14.6

14.5
- 105 21.5

150 – 152 cm
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300

280

260

240

220

200

Homogeneous dark greenish grey clay/silt;smell of H2S;
5Y/6/2

POS524/04GC/CC

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

PW 28 (210 cm)

PW 30 (280 cm)

Core: POS524/04GC

Core section:  A (3 of 3)
Recovery: 290 cm

Latitude: 66°36.44’N
Longitude: 17°40.63’W

7.79

7.77

14.5

14.3
- 147 20.9

220 – 222 cm
7.67

7.73

15.5

14.8
- 107 20.6

250 – 252 cm

PW 29 (240 cm)



Page 58 of 69

100

80

60

40

20

0

Homogeneous dark greenish grey clay/silt;smell of H2S;
ocasional small shell fragments; with some faint
darker/black patches; 5Y/6/2

86 – 88 cm 

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

PW 31 (22 cm)

PW 33 (59 cm)

Core: POS524/05GC

Core section:  C (1 of 3)
Recovery: 290 cm

Latitude: 66°37.60’N
Longitude: 17°38.60’W

7.84

7.84

16.5

16.5
Er1 18.96

45 – 47 cm
8.00

7.90

17.4

15.6
11 21.1

Dark patch

PW 34 (85 cm)
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201

181

161

141

121

101

Homogeneous dark greenish grey clay/silt;smell of H2S;
ocasional small shell fragments; with some faint
darker/black patches; 5Y/6/2

189 – 191 cm 

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

PW 35 (130 cm)

Core: POS524/05GC

Core section:  B (2 of 3)
Recovery: 290 cm

Latitude: 66°37.60’N
Longitude: 17°38.60’W

7.85

7.72

16.8

16.2
- 137 18.79

135 – 137 cm 7.95

7.83

16.2

16.0
- 4 22.8

PW 36 (187 cm)
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301

281

261

241

221

201

Homogeneous dark greenish grey clay/silt;smell of H2S;
occasional small shell fragments; with some faint
darker/black patches; 5Y/6/2

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

PW 37 (230 cm)

Core: POS524/05GC

Core section:  A (3 of 3)
Recovery: 290 cm

Latitude: 66°37.60’N
Longitude: 17°38.60’W

7.77

7.64

16.9

16.1
- 239 23.4Anhydrite fragments ??228 – 230 cm

245 – 247 cm
PW 38 (248 cm)

7.83

7.85

16.7

16.4
- 11 16.91

PW 39 (283 cm)

POS524/05GC/CC
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100

80

60

40

20

0

Very homogeneous non-indurated greenish grey clay;
smell of H2S; occasional small shell fragments (not
broken); with scarce black patches;5Y/6/2

68 – 70 cm 

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

PW 41 (20 cm)

PW 42 (50 cm)

Core: POS524/06GC

Core section:  C (1 of 3)
Recovery: 288 cm

Latitude: 66°36.41’N
Longitude: 17°38.65’W

7.45

7.27

16.9

16.2
Er1 24.5

13 – 15 cm
7.67

7.36

16.7

16.0
Er1 22.2

PW 43 (80 cm)
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195

175

155

135

115

95

Very homogeneous non-indurated greenish grey clay;
smell of H2S ; with scarce black patches; 5Y/6/2

151 – 153 cm 

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

PW 44 (120 cm)

PW 45 (150 cm)

Core: POS524/06GC

Core section:  B (2 of 3)
Recovery: 288 cm

Latitude: 66°36.41’N
Longitude: 17°38.65’W

7.60

7.37

17.7

17.2
- 187 25.4

117 – 119 cm
7.54

7.50

17.3

16.3
- 273 21.5

PW 46 (181 cm)

182 – 184 cm 
7.41

7.37

17.7

17.1
- 90 22.7
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295

275

255

235

215

195

Very homogeneous non-indurated greenish grey clay; with
scarce black patches; smell of H2S; 5Y/6/2

248 – 250 cm 

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

PW 47 (261.5 cm)

Core: POS524/06GC

Core section:  A (3 of 3)
Recovery: 288 cm

Latitude: 66°36.41’N
Longitude: 17°38.65’W

7.23

7.18

19.1

16.5
- 132 23.2

218 – 220 cm 7.41

7.22

17.5

17.8
- 196 20.2

PW 50 (280 cm)

POS524/6GC/CC

PW 49 (260.5 cm)
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100

80

60

40

20

0

Greenish grey clay (5Y/6/2) with sand size anhydrite/talc
grains and dark patches (volcanic?);50% clay, 50% sand
size anhydrite

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

PW 51 (47 cm)

Core: POS524/07GC

Core section:  B (1 of 2)
Recovery: 155 cm

Latitude: 66°36.19’N
Longitude: 17°39.19’W

6.70

6.49

17.2

16.8
43 19.19

37 – 39 cm
6.70

6.59

16.8

16.3
21 24.2

46 – 48 cm

Similar layer, but with a higher clay component
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155

135

115

95

75

55
Greenish grey clay (5Y/6/2) with sand size anhydrite/talc
grains and volcanic fragments; 40% clay, 60% sand size
particle

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

PW 57 (110 cm)

Core: POS524/07GC

Core section:  A (2 of 2)
Recovery: 155 cm

Latitude: 66°36.19’N
Longitude: 17°39.19’W

5.95

5.71

21.2

21.1
213 17.97

87 – 89 cm
5.66

5.71

20.2

20.1
130 25.6

95 – 97 cm

62 – 66 cm: coarser layer of anhydrite
fragments

PW 52 (63 cm)

73.5 – 85 cm: Olive green layer (5Y/6/2) richer in clay

PW 53 (80 cm)
79 – 81 cm

5.84

5.50

19.6

19.4
162 26.1

PW 54 (89 cm)

85 – 92.5 cm: Coarse brownish layer with
sand to coarse anhydrite and talc
fragments
92.5 – 102 cm: Olive green layer
(5Y/6/2) with small volcanic and
anhydrite fragments; coarse brownish
layer with anhydrite fragments at the
bottomPW 55 (101 cm)

102 – 120 cm: Indurated green
homogeneous clay with anhydrite and
volcanic sand size fragments

110 – 112 cm
5.76

5.98

23.1

22.3
- 34 20.91

125 – 127 cm
5.62

5.57

23.6

22.7
129 21.9

120 – 124 cm: Coarse anhydrite sand layer; brown on top and
whiteish on the bottom

124 – 138 cm: Grey clay layer with
dispersed anhydrite fragments;
2.5YR/6/5; coarser anhydrite sand
layer betwen 129 and 130 cm

133 – 135 cm 5.99

5.96

22.8

22.4
165 23.1

138 - 150 cm: Grey clay layer with dispersed anhydrite
fragments; 2.5YR/6/5; coarser anhydrite sand layer
betwen 129 and 130 cm

POS524/07GC/CC
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100

80

60

40

20

0

17 – 100 cm: Homogeneous dark olive
green clay, with scarce shells and
ocasional black smudges (5Y/6/2)

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

PW 61 (95 cm)

Core: POS524/08GC

Core section:  C (1 of 3)
Recovery: 291 cm

Latitude: 66°36.32’N
Longitude: 17°39.30’W

7.56

7.39

16.7

17.2
73 24.3

48 – 50 cm

80 – 82 cm

15 – 17 cm: Coarse grain of volcanic material and
anhydrite

Core disturbance

PW 60 (24 cm)

7.72

7.55

17.8

16.8
Er1 29.1
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200

180

160

140

120

100

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

PW 62 (115 cm)

Core: POS524/08GC

Core section:  B (2 of 3)
Recovery: 291 cm

Latitude: 66°36.32’N
Longitude: 17°39.30’W

7.47

7.19

18.6

18.6
90 19.5

108 – 110 cm

7.49

7.40

18.6

17.3
Er1 20.71

100 - 132 cm: Homogeneous dark olive green clay, with
scarce anhydrite fragments (5Y/6/2)

7.70

7.46

17.8

16.7
79 23.3

132 – 155 cm: Dark olive green (5Y/6/2) clay with abundant
fragments of coarse anhydrite (< 0.5 cm)

PW 63 (142 cm)

147 – 149 cm

155 - 200 cm: Dark olive green
(5Y/6/2) clay, with rythmic
intercalations of coarse
anhydrite/talc, not always
continous (also in lens)

PW 65 (156 cm)

155 – 157 cm

158.5 – 160.5 cm

7.54

7.53

18.1

17.7
- 88 20.2

7.71

7.42

18.2

17.7
103 Er1

PW 66 (175 cm)

190 – 192 cm
To the bottom the clay becomes
more compact and with less
anhydrite/talc fragments
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300

280

260

240

220

200

pH T
(°C)

Eh
(mV)

EC
(µS/cm)

PW 67 (220 cm)

Core: POS524/08GC

Core section:  A (3 of 3)
Recovery: 291 cm

Latitude: 66°36.32’N
Longitude: 17°39.30’W

218 – 220 cm

5.99

5.95

19.0

18.8
19 23.3

Homogeneous dark olive green clay (5Y/6/2), with scarce
fragments of altered volcanic reddish material

6.95

6.80

18.5

18.0
- 41 21.5

Anhydrite sand level

PW 68 (250 cm)

254 – 256 cm

PW 69 (284 cm)

POS524/08GC/CC



 9.4. Pore Fluid Samples

Sample Core Depth Sample Core Depth
POS524_PoreWater_001 01GC/C 32.5 POS524_PoreWater_031 05GC/C 22.0

POS524_PoreWater_002 01GC/C 57.0 POS524_PoreWater_032 blank blank 

POS524_PoreWater_003 01GC/C 79.5 POS524_PoreWater_033 05GC/C 59.0

POS524_PoreWater_004 01GC/C 97.5 POS524_PoreWater_034 05GC/C 85.0

POS524_PoreWater_005 01GC/B 134.5 POS524_PoreWater_035 05GC/B 130.0

POS524_PoreWater_006 01GC/B 144.0 POS524_PoreWater_036 05GC/B 187.0

POS524_PoreWater_007 01GC/B 164.0 POS524_PoreWater_037 05GC/A 230.0

POS524_PoreWater_008 blank blank POS524_PoreWater_038 05GC/A 248.0

POS524_PoreWater_009 01GC/A 270.0 POS524_PoreWater_039 05GC/A 283.0

POS524_PoreWater_010 02GC/C 34.0 POS524_PoreWater_040 blank blank 

POS524_PoreWater_011 02GC/C 54.5 POS524_PoreWater_041 06GC/C 20.0

POS524_PoreWater_012 02GC/C 72.0 POS524_PoreWater_042 06GC/C 50.0

POS524_PoreWater_013 02GC/C 96.0 POS524_PoreWater_043 06GC/C 80.0

POS524_PoreWater_014 02GC/B 139.5 POS524_PoreWater_044 06GC/B 120.0

POS524_PoreWater_015 02GC/B 179.5 POS524_PoreWater_045 06GC/B 150.0

POS524_PoreWater_016 blank blank POS524_PoreWater_046 06GC/B 181.0

POS524_PoreWater_017 02GC/A 219.0 POS524_PoreWater_047 06GC/A 216.5

POS524_PoreWater_018 02GC/A 250.0 POS524_PoreWater_048 blank blank 

POS524_PoreWater_019 02GC/A 280.0 POS524_PoreWater_049 06GC/A 260.5

POS524_PoreWater_020 03GC 50.0 POS524_PoreWater_050 06GC/A 280.0

POS524_PoreWater_021 03GC 85.0 POS524_PoreWater_051 07GC/B 47.0

POS524_PoreWater_022 03GC 95 POS524_PoreWater_052 07GC/A 63.0

POS524_PoreWater_023 04GC/C 30.0 POS524_PoreWater_053 07GC/A 80.0

POS524_PoreWater_024 blank blank POS524_PoreWater_054 07GC/A 89.0

POS524_PoreWater_025 04GC/C 70.0 POS524_PoreWater_055 07GC/A 101.0

POS524_PoreWater_026 04GC/B 125.0 POS524_PoreWater_056 blank  blank

POS524_PoreWater_027 04GC/B 175.0 POS524_PoreWater_057 07GC/A 110.0

POS524_PoreWater_028 04GC/A 210.0 POS524_PoreWater_058 07GC/A 123.0

POS524_PoreWater_029 04GC/A 240.0 POS524_PoreWater_059 07GC/A 135.0

POS524_PoreWater_030 04GC/A 280.0 POS524_PoreWater_060 08GC/C 24.0

POS524_PoreWater_061 08GC/C 92.0

POS524_PoreWater_062 08GC/B 115.0

POS524_PoreWater_063 08GC/B 142.0

POS524_PoreWater_064 blank blank 

POS524_PoreWater_065 08GC/B 156.0

POS524_PoreWater_066 08GC/B 175.0

POS524_PoreWater_067 08GC/A 220.0

POS524_PoreWater_068 08GC/A 250.0

POS524_PoreWater_069 08GC/A 284.0
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