A new olivine reference material – MongOl Sh11-2 - for in-situ analysis has been prepared from a central portion of a large (20X20X10 cm) mantle peridotite xenolith from a ~0.5 Ma old basaltic breccia at Shavaryn-Tsaram, Tariat region, central Mongolia. The xenolith is a fertile mantle lherzolite with minimal signs of alteration during and after its transport to the surface. Around 10 grams of 0.5 to 2 mm gem quality olivine fragments were separated under binocular microscope and analysed by EPMA, LA-ICP-MS, SIMS and bulk analytical methods (ID ICP-MS for Mg and Fe, XRF, ICP-MS) in six Institutions worldwide for major, minor and trace elements. The results show that the olivine fragments are sufficiently homogeneous in respect to major (Mg, Fe, Si) and minor and trace elements. Significant inhomogeneity revealed only for phosphorus (homogeneity index of 12.4 (e.g. Boyd et al. 1967)), while Li, Na, Al, Sc, Ti and Cr show minor inhomogeneity (homogeneity index between 1-2). The possible presence of some mineral and fluid-melt micro-inclusions is probably responsible for the inconsistency in concentration obtained by local and bulk analytical methods for Al, Cu, Sr, Zr, Ga, Dy and Ho. Here we report reference and information concentrations for Si, Mg, Fe, Li, Na, Al, P, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Sr, Y, Zr, Dy, Ho, Er, Tm, Yb, and Lu.

Authors

Valentina G. Batanova
University Grenoble Alpes

Jay Michael Thompson

Leonid V Danyushevsky
University of Tasmania

Maxim Portnyagin
GEOMAR

C-Dieter Garbe-Schoenberg
University of Kiel

Erik Hauri

Jun-Ichi Kimura
JAMSTEC

Qing Chang
JAMSTEC Japan Agency for Marine-Earth Science and Technology

Ryoko Senda
JAMSTEC

Karsten Goemann
University of Tasmania

Catherine Chauvel
ISTerre Institute of Earth Sciences

Sylvain Campillo
University Grenoble Alpes

Dmitri A Ionov
University of Montpellier II

Alexander V Sobolev
University Grenoble Alpes

View Related Events

Day: Monday, 10 December 2018