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Supplementary	Table	1	|	Environmental	and	growth	parameters	of	the	modern	brachiopods	investigated	in	this	study	

Sample	 Species	 Location	

(Lat.,	Long.)	

Water	depth	

(m)	

δ
18
Owater	

(‰	VSMOW)	

Temperature	

(°C,	annual)	

Temperature	

(°C,	max.)	

Temperature	

(°C,	min.)	

Growth	rate	

(mm/yr,	max.)	

Growth	rate	

(mm/yr,	min.)	

Valve	length	

(mm,	ventral)	

130	 Magellania	venosa	 Lilliguapi,	Chile	
-42.162030,	-72.598580	

18	 -0.31	
-1.21*	

11.36	 13.19	 9.77	 17.3	 3.8	 64.7	

143	 Magellania	venosa	 Punta	Gruesa,	Chile	
-42.409833,	-72.424333	

20	 -0.31	
-1.21*	

11.36	 13.19	 9.77	 17.3	 3.8	 55.9	

ChHP1	 Hemithiris	psittacea		 Churchill,	Canada	
58.786867,	-94.175450	

20	 -2.55	
-3.35*	

1.56	 3.20	 -1.05	 -	 -	 16.8	

D487L	 Terebratalia	transversa	 San	Juan	Is.,	WA,	USA	
48.4965,	-122.947	

64	 -0.76	
-1.84*	

8.59	 9.62	 7.70	 16.7	 2.9	 21.8	

DA5.25.1	 Argyrotheca	sp.	 Dahab,	Egypt	
28.51,	34.52	

10	 1.80	
1.86*	

24.84	 28.19	 21.83	 1.2	 0.5	 <	1	

DA5.25.2	 Megerlia	sp.	 Dahab,	Egypt	
28.51,	34.52	

9	 1.80	
1.86*	

24.84	 28.19	 21.83	 1.2	 0.5	 <	1	

DS288L	 Magasella	sanguinea	 Doubtful	Sound,	NZ	
-45.349,	167.0506	

20	 0.27	
0.30*	

13.27	 15.44	 11.68	 9.3	 1.6	 33.4	

DS420L	 Calloria	inconspicua	 Doubtful	Sound,	NZ	
-45.349,	167.0506	

20	 0.27	
0.30*	

13.27	 15.44	 11.68	 5.9	 1.6	 21.4	

DS430L	 Liothyrella	neozelanica	 Doubtful	Sound,	NZ	
-45.349,	167.0506	

20	 0.27	
0.30*	

13.27	 15.44	 11.68	 6.9	 1.8	 51.5	

DS431L	 Liothyrella	neozelanica	 Doubtful	Sound,	NZ	
-45.349,	167.0506	

20	 0.27	
0.30*	

13.27	 15.44	 11.68	 6.9	 1.8	 45.8	

FTD1	 Terebratella	dorsata	 Falkland	Islands	
-53.0,	-60.0	

50-400	 -0.17	 4.76	 5.59	 4.29	 -		 -	 26.3	

GS183L	 Magasella	sanguinea	 George	Sound,	NZ	
-44.85,	167.35	

18	 0.31	 13.85	 16.57	 12.20	 9.3	 1.6	 29.6	

NN2V	 Notosaria	nigricans	 Kaka	Point,	NZ	
-46.3866,	169.7823	

2-15	 0.10	 10.31	 12.72	 8.41	 8.0	 -	 14.5	

PA.01	 Pajaudina	atlantica	 La	Palma,	Canary	Is.	
28.455783,	-17.846747	

14	 1.16	
1.07*	

20.92	 23.24	 19.01	 1.2	 0.5	 2–6	

S006L	 Terebratalia	transversa	 San	Juan	Is.,	WA,	USA	
48.4919,	-122.94945	

73	 -0.76	
-1.84*	

8.39	 8.94	 7.87	 16.7	 2.9	 32.8	

SAMID10116	 Glaciarcula	
spitzbergensis	

Svalbard,	Norway	
79.911,	15.812	

46	 -0.34	 1.00	 3.89	 -1.32	 -	 -		 10.2	

TC.01	 Thecidellina	congregata	 Rock	Islands,	Palau	
7.272167,	134.380667	

2	 0.09	
-0.13*	

28.91	 29.37	 27.85	 1.2	 0.5	 2–3	

WMF1	 Magellania	fragilis	 Weddell	Sea,	Antarctica	
-69.950000,	-11.816667	

215	 -0.39	 0.06	 0.87	 -0.80	 1.2	 0.5	 –	

Ambient	habitat	temperatures	for	the	studied	brachiopods	were	acquired	from	the	World	Ocean	Atlas	20131.	Mean	temperatures	depict	the	yearly	average	temperatures,	while	the	minimum	and	maximum	
estimates	are	the	mean	monthly	temperature	of	the	coldest	and	the	warmest	month,	respectively.	Seawater	δ18O	values	were	acquired	either	from	the	Global	Seawater	Oxygen-18	Database2	or	were	measured	
directly3	(marked	with	an	asterisk*).	
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Supplementary	Table	2	|	Results	of	the	stable	isotope	and	trace	element	analyses	

Sample	 n	 MgCO3	

(mol%)	

∆47	[Gonfiantini]	
(‰	CDES	25)	

∆47	[Brand]	
(‰	CDES	25)	

δ
18
Oshell	[Gonfiantini]	

(‰	VPDB)	

δ
13
Cshell	[Gonfiantini]	

(‰	VPDB)	

130	 10	 0.37	
(±0.1)	

0.772	
(±0.008)	

0.765	
(±0.008)	

-0.40	
(±0.06)	

-0.65	
(±0.02)	

143	 10	 0.36	
(±0.1)	

0.758	
(±0.004)	

0.751	
(±0.004)	

-0.06	
(±0.04)	

-0.32	
(±0.01)	

ChHP1	 5	 0.31	
(±0.1)	

0.775	
(±0.004)	

0.767	
(±0.004)	

0.38	
(±0.01)	

1.73	
(±0.01)	

D487L	 6	 0.34	
(±0.1)	

0.765	
(±0.005)	

0.757	
(±0.005)	

-0.57	
(±0.02)	

-0.88	
(±0.02)	

DA5.25.1	 5	 4.06	
(±0.1)	

0.708	
(±0.010)	

0.701	
(±0.010)	

0.62	
(±0.03)	

2.06	
(±0.01)	

DA5.25.2	 4	 4.11	
(±0.1)	

0.689	
(±0.007)	

0.684	
(±0.007)	

0.75	
(±0.03)	

1.76	
(±0.02)	

DS288L	 6	 0.67	
(±0.1)	

0.739	
(±0.014)	

0.732	
(±0.013)	

1.12	
(±0.02)	

1.77	
(±0.01)	

DS420L	 6	 0.55	
(±0.1)	

0.747	
(±0.004)	

0.740	
(±0.004)	

0.51	
(±0.01)	

0.75	
(±0.01)	

DS430L	 6	 0.67	
(±0.1)	

0.728	
(±0.007)	

0.721	
(±0.007)	

1.02	
(±0.03)	

2.17	
(±0.02)	

DS431L	 6	 0.55	
(±0.1)	

0.736	
(±0.011)	

0.729	
(±0.010)	

1.06	
(±0.03)	

2.14	
(±0.01)	

FTD1	 4	 0.51	
(±0.1)	

0.761	
(±0.009)	

0.754	
(±0.009)	

2.30	
(±0.01)	

2.01	
(±0.01)	

GS183L	 5	 0.45	
(±0.1)	

0.754	
(±0.004)	

0.748	
(±0.004)	

0.81	
(±0.07)	

1.17	
(±0.01)	

NN2V	 6	 0.65	
(±0.1)	

0.748	
(±0.005)	

0.741	
(±0.005)	

1.68	
(±0.02)	

2.44	
(±0.00)	

PA.01	 5	 6.80	
(±0.1)	

0.704	
(±0.006)	

0.698	
(±0.006)	

0.52	
(±0.01)	

1.51	
(±0.01)	

S006L	 10	 0.27	
(±0.1)	

0.756	
(±0.007)	

0.749	
(±0.007)	

-0.03	
(±0.04)	

0.09	
(±0.03)	

SAMID10116	 4	 0.45	
(±0.1)	

0.773	
(±0.007)	

0.767	
(±0.007)	

3.12	
(±0.03)	

1.46	
(±0.01)	

TC.01	 5	 5.24	
(±0.1)	

0.671	
(±0.007)	

0.664	
(±0.007)	

-2.20	
(±0.02)	

0.82	
(±0.01)	

WMF1	 5	 0.76	
(±0.1)	

0.770	
(±0.007)	

0.765	
(±0.006)	

3.92	
(±0.02)	

1.72	
(±0.01)	

The	∆47	values	are	reported	on	the	carbon	dioxide	equilibrium	scale4	and	normalised	to	an	acid	digestion	temperature	of	25°C	from	the	original	acid	digestion	temperature	of	90	°C,	using	an	acid	fractionation	factor	
of	0.081‰5.	The	difference	between	the	[Gonfiantini]	and	the	[Brand]	δ13C	and	δ18O	values	are	around	0.01‰	(see	Supplementary	Data	1).	Standard	errors	(in	brackets)	for	the	isotope	analyses	are	calculated	on	
the	1σ	level	and	for	the	trace	element	analyses	on	the	2σ	level.	
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Supplementary	 Figure	 1	 |	 Effect	 of	 the	

magnesium	 concentration	 on	 the	 δ18O	

values.	 (a)	 Magnesium	 concentrations	 of	 the	

brachiopod	shells	analysed	in	this	study	plotted	

against	 the	 corresponding	 brachiopod	 growth	

temperatures.	 Our	 results	 are	 consistent	 with	

the	 expected	 range	 of	 modern	 brachiopod	

calcite	and	fall	along	the	Global	Brachiopod	Mg	

Line3.	 (b,c)	 Same	 as	 Figures	 1b,c	 in	 the	 main	

article	but	the	offset	δ18O	values	are	calculated	

according	 to	 Brand	 et	 al.3	 that	 includes	 a	

correction	for	the	Mg-effect,	which	accounts	for	

a	0.17‰	change	per	mol%	MgCO36.	The	range	of	

the	offset	δ18O	values	become	larger,	compared	

to	those	calculated	according	to	Kim	and	O'Neil7,	

if	 the	Mg-effect	 is	 considered	 (Figs	 1b,c	 in	 the	

main	article).	This	suggests	that	the	Mg-content	

of	the	brachiopod	shells	cannot	account	for	the	

observed	 deviations	 from	 apparent	 oxygen	

isotope	 equilibrium.	 For	 all	 plots:	 linear	

regression	 lines	 fitted	 to	our	data	consider	 the	

errors.	 Corresponding	 two-tailed	 p-values	 are	

computed	using	a	t-test.	Error	bars	for	the	offset	

δ18O	 values	 indicate	 the	 mean	 deviation	 from	

oxygen	isotope	equilibrium	calculated	using	the	

minimum	 and	 the	 maximum	 temperature	

estimates.	 Error	 bars	 for	 the	 offset	 ∆47	 values	

indicate	 the	 1σ	 S.E.	 of	 the	 replicate	

measurements.	 	
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Supplementary	Figure	2	|	Brachiopods	show	

an	 offset	 from	 equilibrium	 ∆47	 and	 δ18O	

values.	Same	as	Figure	1	in	the	main	article	but	

all	values	were	calculated	using	the	[Brand]	set	

of	 isotopic	 parameters8.	 (a)	 ∆47–temperature	

dependence	derived	from	the	eighteen	modern	

brachiopods	 analysed	 in	 this	 study.	 (b)	 The	

offset	 δ18O	 and	 offset	 ∆47	 values	 show	 a	

significant	negative	correlation.	Seawater	δ18O	

values	were	acquired	from	the	Global	Seawater	

Oxygen-18	 Database2.	 (c)	 The	 correlation	

between	offset	δ18O	and	offset	∆47	values	is	still	

present	 if,	 where	 available,	 the	 directly	

measured	 seawater	 δ18O	 values	

(Supplementary	 Table	 1)	 were	 used	 for	 the	

calculations.	 For	 all	 plots:	 linear	 regression	

lines	 fitted	 to	 our	 data	 consider	 the	 errors.	

Corresponding	 two-tailed	 p-values	 are	

computed	 using	 a	 t-test.	 Error	 bars	 for	 the	

offset	δ18O	values	indicate	the	mean	deviation	

from	 oxygen	 isotope	 equilibrium	 calculated	

using	 the	 minimum	 and	 the	 maximum	

temperature	 estimates	 (Supplementary	 Table	

1).	Error	bars	for	the	offset	∆47	values	indicate	

the	1σ	S.E.	of	the	replicate	measurements.	 	
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Supplementary	Figure	3	 |	Brachiopods	 show	an	offset	 from	equilibrium	∆47	 and	δ18O	

values	irrespective	of	the	calibration	characteristic	of	clumped	isotope	equilibrium.	The	

offset	δ18O	and	the	offset	∆47	values	show	a	significant	negative	correlation	even	 if	clumped	

isotope	equilibrium	is	assumed	to	be	represented	by	the	experimental	calibrations	of	Bonifacie	

et	al.9,	i.e.,	their	eq.	3,	or	Kelson	et	al.10,	i.e.,	their	eq.	1.	The	dataset	of	Kelson	et	al.10	represents	

the	 first	 calibration	 where	 raw	 data	 was	 processed	 using	 the	 [Brand]	 set	 of	 isotopic	

parameters8.	(a,c)	All	seawater	δ18O	values	were	acquired	from	the	Global	Seawater	Oxygen-

18	Database2.	(b,d)	Where	available,	the	directly	measured	seawater	δ18O	values	were	used	for	

the	calculations3.	For	all	plots:	 linear	 regression	 lines	 fitted	 to	our	data	consider	 the	errors.	

Corresponding	two-tailed	p-values	are	computed	using	a	t-test.	Error	bars	for	the	offset	δ18O	

values	 indicate	 the	 mean	 deviation	 from	 oxygen	 isotope	 equilibrium	 calculated	 using	 the	

minimum	and	the	maximum	temperature	estimates.	Error	bars	for	the	offset	∆47	values	indicate	

the	1σ	S.E.	of	the	replicate	measurements.	 	



	 7	

	

Supplementary	 Figure	 4	 |	 A	 model	 explaining	 the	 possible	 causes	 of	 kinetic	 effects	

occurring	during	biogenic	calcite	precipitation	in	modern	brachiopods.	(a)	A	simplified	

model	of	biogenic	calcite	precipitation	in	brachiopods11,12.	Isotope	fractionation	occurs	during	

the	diffusion	of	CO2(aq)	through	an	organic	membrane	and	during	the	transformation	of	CO2(aq)	

to	bicarbonate	(HCO3-)	via	hydration	and	hydroxylation	reactions.	For	a	detailed	discussion,	see	

the	main	text.	(b)	Each	specific	kinetic	effect	causes	a	different	gradient	on	the	plot	between	

offset	δ18O	and	offset	∆4713-16.	 	
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Clumped	isotope	analyses	

Clumped	isotope	analyses	were	made	between	July	2016	and	April	2017,	using	a	fully	

automated	 gas	 extraction	 and	purification	 line	 connected	 to	 a	ThermoFisher	MAT	253	 gas-

source	 isotope-ratio	mass	 spectrometer	 at	 the	Goethe	University,	 Frankfurt,	Germany.	Each	

sample	 was	 analysed	 in	 4–10	 replicates.	 At	 the	 extraction	 line,	 4–8	 mg	 of	 homogenised	

carbonate	 powder	was	 reacted	 for	 30	minutes	 at	 90	 °C	with	 >	 105%	phosphoric	 acid.	 The	

resultant	CO2	was	lead	through	a	U-trap	submerged	into	ethanol,	cooled	to	-80	°C	and	frozen	

out	immediately	using	a	second	U-trap	that	was	submerged	into	liquid	nitrogen.	On	completion	

of	the	reaction,	the	U-trap	containing	the	solid	CO2	was	submerged	into	-80	°C	ethanol	and	a	

third	U-trap	was	submerged	into	liquid	nitrogen.	The	CO2	sublimes	from	the	ethanol-cooled	U-

trap	and	freezes	out	in	the	subsequent	liquid-nitrogen-cooled	U-trap,	while	water	stays	frozen	

in	the	U-trap	kept	at	-80°C.	The	process	of	CO2	sublimation	at	-80	°C	was	repeated	altogether	

three	times.	For	further	purification,	the	CO2	gas	was	entrained	into	a	helium	carrier	gas	and	

led	 through	 a	 Porapak	Q	 trap,	 cooled	 down	 to	 -15	 °C,	 to	 filter	 out	 hydrocarbons	 and	 other	

contaminants.	Finally,	the	helium	carrier	gas	was	pumped	away	and	the	CO2	gas	enters	the	dual	

inlet	system	of	the	mass	spectrometer,	where	it	was	analysed	alternately	with	a	reference	gas	

of	 known	 isotope	 composition	 (Alphagas	 Izotop,	 Air	 Liquide,	 Paris,	 France;	 δ18OVSMOW	 =	

25.56‰,	δ13CVPDB	=	-4.30‰).	Each	analysis	output	of	the	mass	spectrometer	consisted	of	10	

acquisitions,	 made	 up	 of	 10	 cycles	 with	 20	 s	 integration	 time	 each	 and	 an	 additional	 pre-

measurement	of	the	reference	gas.	In	each	cycle,	the	peak	intensities	were	measured	for	m/z	44	

through	m/z	49	for	both	the	sample	and	the	reference	gas.	Bellow	pressure	was	adjusted	to	

16,000(±150)	mV	for	m/z	44	before	each	acquisition.	Background	correction	was	performed	

for	 the	 sample	 and	 the	 reference	 gas	 separately,	 as	 described	 in	 Fiebig	 et	 al.17.	 Isobaric	

contaminant	masses,	monitored	by	comparing	the	correlation	of	off-peak	m/z	47	and	on-peak	

m/z	 49	 intensities	 for	 both	 the	 sample	 and	 the	 reference	 gas,	 were	 not	 observed	

(Supplementary	Fig.	4).	

For	all	samples,	at	least	4	replicates	have	been	measured.	The	corresponding	shot	noise	

limit	for	4	replicates	is	0.004‰	and	further	decreases	with	increasing	number	of	replicates18.	

For	each	sample	analysed	the	1σ	standard	error	is	always	larger	than	the	corresponding	shot	

noise	limit.	Raw	∆47	data	was	transferred	to	the	absolute	reference	frame	of	Dennis	et	al.4	using	

empirical	transfer	functions	(ETF).	Two	ETFs	were	used	during	this	study	(Supp.	Data	1):	

Supplementary	Table	3	|	Empirical	transfer	functions	used	in	this	study	

	 Slope	[Gonfiantini]	 Intercept	[Gonfiantini]	 Slope	[Brand]	 Intercept	[Brand]	

06.06.2016	–	12.22.2016	 1.0797	 0.9627	 1.0586	 0.9432	

01.06.2017	–	04.05.2017	 1.0981	 0.9720	 1.0739	 0.9496	
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Supplementary	Figure	5	|	Background	correction.	(a)	Correlation	between	intensity	of	the	

on-peak	m/z	49	ion	beam	and	the	corresponding	off-peak	m/z	47	background	for	a	replicate	

analysis	of	the	sample	that	shows	the	highest	∆47	offset	with	respect	to	Passey	and	Henkes5.	(b)	

Correlation	between	intensity	of	the	on-peak	m/z	49	ion	beam	and	the	corresponding	off-peak	

m/z	 47	 background	 for	 a	 replicate	 analysis	 of	 a	 Carrara	 standard.	 If	 the	 sample	 gas	would	

contain	more	m/z	 49	 interferences	 than	 the	 reference	 gas,	 the	 two	 regression	 lines	would	

become	distinguishable	from	each	other.	In	this	case,	the	sample	gas	regression	line	would	shift	

to	the	right	relative	to	the	reference	gas	regression	line17,19.	Note	that	in	both	cases	the	slope	

and	intercept	of	reference	gas	and	sample	gas	measurements	agree	within	errors.	As	such	there	

are	no	indications	for	isobaric	interferences	on	m/z	49.	 	
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Oxygen	isotope	analyses	with	ion	probe	(SIMS)	

The	ion	probe	analyses	were	carried	out	using	the	Caméca	IMS	1280-HR2	at	CRPG-CNRS	

(Nancy,	 France)	 and	 the	method	described	 in	detail	 in	Rollion-Bard	 et	 al.20.	Oxygen	 isotope	

compositions	were	analysed	using	a	5	nA	Cs+	primary	beam	with	a	charge	compensation	by	a	

normal-incidence	electron	gun	and	mass	resolving	power	of	M/∆M	~5000.	Oxygen	 isotopes	

were	measured	simultaneously	in	multi-collection	mode	by	using	two	off-axis	Faraday	cups,	

L’2	and	H1.	Gains	of	Faraday	cups	were	calibrated	at	the	beginning	of	the	analytical	session.	

Each	analysis	was	performed	with	a	pre-sputtering	time	of	30	seconds	followed	by	30	cycles	of	

data	 collection,	 4	 seconds	 each.	Typical	 ion	 intensities	 of	 6	 x	 106	 cps	 and	3	 x	 109	 cps	were	

obtained	on	18O-	and	16O-,	respectively.	After	few	minutes	of	counting,	the	internal	2σn	error	was	

less	 than	 ±0.1‰.	 An	 in-house	 carbonate	 standard	 (CCciAg;	 δ18OVSMOW	 =	 18.94‰;	 δ13CVPDB	

=	-11.61‰)	was	measured	before	and	after	each	analytical	session	to	correct	for	instrumental	

mass	fractionation	(IMF).	The	external	reproducibility	(1σ	S.D.),	based	on	the	replicates	of	the	

carbonate	standard	was	between	±0.27–0.40‰,	depending	on	the	analytical	session.	The	IMF	

of	sample	was	also	corrected	from	Mg-content	by	applying	the	correction	-0.3	x	MgO%wt
21.	In	

addition	to	the	ion	probe	analyses,	the	δ18O	values	of	the	secondary	layer	of	the	studied	shells	

were	also	determined	by	conventional	mass	spectrometry	and	an	adjustment	was	applied	to	

the	ion	probe	δ18O	values	as	shown	in	Cusack	et	al.22.	

	

	

Supplementary	 Figure	 6	 |	

Location	 of	 the	 ion	 probe	

measurements	 on	 the	 two	

analysed	 M.	 venosa	 shells.	

(a,b)	Sample	130.	(c,d)	Sample	

142.	 In	both	 cases,	 the	 ventral	

valves	were	analysed.	
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Oxygen	isotope	fractionation	factors	

Our	δ18O	values	for	calcite	were	obtained	applying	a	90	°C	acid	fractionation	factor	of	

1.00813,	extrapolated	from	Kim	et	al.23.	For	25	°C	a	fractionation	factor	of	1.01031	is	obtained	

according	 to	 the	 same	 study.	 In	 their	 original	 calibration	 Kim	 and	 O'Neil7	 applied	 a	 25	 °C	

fractionation	factor	of	1.01050.	To	calculate	the	oxygen	isotope	fractionation	between	seawater	

and	calcite	we	used	the	following	modified	equation	of	Kim	and	O'Neil7:	

(S1)	 	 	 1000lnαcc–water	=	18.03	×	(1000/T)-	32.23,	

where	α	is	the	fractionation	factor	and	T	is	the	temperature	in	K.	Note	that	the	original	intercept	

of	-32.42	has	been	corrected	by	+0.19,	which	takes	into	account	the	difference	in	the	25	°C	acid	

fractionation	factors	of	Kim	et	al.23	relative	to	Kim	and	O'Neil7.	 	
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