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Abstract 

Atmospheric deposition can be an important source of nutrients and trace metals to 

oligotrophic alpine lakes, affecting their biogeochemistry. We measured trace metal 

concentrations and lead (Pb) isotope ratios in lake water, river water, ground water, and aerosol 

total suspended particles (TSP), as well as nutrient (NO3
-
, NH4

+
, PO4

3-
) concentrations in TSP in 

the Tahoe Basin.  The contribution of TSP deposition to the lake trace metal budget was 

assessed. Our results show seasonality in TSP and associated trace metal concentrations with 

higher concentrations during Oct – April. However, trace metal solubilities are higher during 

May – Sept, resulting in a higher contribution of soluble trace metals to the lake water. The 

source of most of the trace metals in TSP in the Lake Tahoe Basin is mineral dust; however, Zn, 

Cu, and Cd also have an anthropogenic origin. Among major nutrients, NO3
-
 concentrations are 

slightly higher during Oct – April, while NH4
+
 and soluble reactive phosphorus (SRP) are higher 

during May – Sept. The distributions of trace metal concentrations and Pb isotopic ratios are 

homogenous throughout the lake water column, suggesting that the residence time of the trace 

metals in the lake is longer than the lake water mixing time. The contribution of atmospheric 

TSP deposition to the upper 20 m of lake water trace metal inventory is low, ranging from 0.03% 

for V to 5.7% for Mn. A triple-isotopes plot of Pb indicates that riverine and groundwater inputs 

are the major Pb sources , but aerosols still contribute some Pb to the lake.  
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Introduction 

Atmospheric deposition is an important source of nutrients and trace metals to remote 

water bodies like the open-ocean and alpine lakes (Camarero et al., 2009; Duce et al., 1991; 

Mladenov et al., 2012; Prospero et al., 1996).  As a result atmospheric deposition can affect 

water quality by contributing major and minor nutrients for phytoplankton growth with 

implications to lake trophic conditions (Morales-Baquero et al., 2006). For example, 

anthropogenic nitrogen (N) deposition has been linked to increased nitrate (NO3
-
) levels in lakes 

and to changes in phytoplankton community structure (Saros et al., 2003; Wolfe et al., 2001; 

Wolfe et al., 2003), as well as changes in nutrient cycling, with negative impacts on lake 

ecosystems (Driscoll and Newton, 1985; Greaver et al., 2012). In fact, it has been suggested that 

an observed decrease in N deposition rates in the last decades contributed to the recovery of 

community dynamics and species richness in several aquatic ecosystems (Arseneau, 2011; 

Finlay, 2003) and specific changes were linked to altered lake N:P ratios (Gerson et al., 2016). 

Trace metals can also have impacts on freshwater organisms. For example Cd concentrations 

above 0.1 μg L
−1

 have been related to reduction in reproductive function (Tarvainen et al., 1997) 

and Zn above 0.5 μg L
−1

 or Mn above 50 μg L
−1

 have been deemed harmful to trout (Lydersen et 

al., 2002; Sayer et al., 1989). Aluminum (Al) at levels greater than 50 μg L
−1

 may also be toxic 

to some aquatic organisms (Baker and Schofield, 1982; Lydersen et al., 2002; Schofield and 

Trojnar, 1980). Copper (Cu) has been shown to inhibit chlorophyll a levels, photosynthesis, and 

nitrogen fixation of fresh water algae at concentrations of 5-10 μg L
−1

 (Elder and Horne, 1978). 

Notably, Cd, Zn, Mn and Pb in many lakes are associated with atmospheric deposition 

particularly related to anthropogenic origins and increases in their concentration in lake water or 

sediment have been documented in some lakes in Europe (Burton et al., 2013; Rippey et al., 
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2008). On the other hand, many trace metals are required by organisms for a wide range of 

metabolic processes (e.g., Fe) and low concentrations of these micro-nutrients can limit or co-

limit lake phytoplankton productivity, hence affecting lake biology and ecosystem structure 

(Sterner et al., 2004). 

Lake Tahoe is a remote subalpine lake situated at an elevation of 1,897 m and surrounded 

by mountains including the Carson Range and the Sierra Nevada (39°05.5’N 120°02.5’W). The 

unique characteristics of the watershed, including nutrient-poor soils, erosion resistant substrate, 

and dense forest, minimize terrestrial nutrient inputs from runoff to the lake. These watershed 

properties, along with the large lake size of 490 km
2
 (150 km

3
) compared to the size of the 

watershed (1300 km
2
), make Lake Tahoe oligotrophic, resulting in high water clarity. However, 

the clarity of Lake Tahoe has declined dramatically since the 1960s (TERC, 2016). There is 

evidence that increasing population, changes in land use and anthropogenic emissions contribute 

to the decreasing water clarity (Huang et al., 2013; Jassby et al., 1994; Juma et al., 2014). 

Specifically, atmospheric deposition has been suggested as an important source of nutrients that 

support phytoplankton growth and affect water quality (Brahney et al., 2014; Morales-Baquero et 

al., 2006). Accordingly, several studies including the Lake Tahoe Atmospheric Deposition Study 

(LTADS) by the California Air Resources Board (CARB) have been conducted to monitor gases 

(Tarnay, 2005; Zhang et al., 2002), atmospheric particulate matter (Gertler et al., 2006a; Sahoo et 

al., 2013; Zhang et al., 2002) and wet deposition (Jassby et al., 1994) at representative sites 

throughout the Lake Basin. These along with other studies provided important information on 

total particle deposition (Dolislager et al., 2012; Sahoo et al., 2013; VanCuren et al., 2012) and 

specifically on N (Jassby et al., 1994; Tarnay et al., 2001) and phosphorus (P) inputs (Dolislager 

et al., 2012; Jassby et al., 1994) and the distribution of these constituents within atmospheric 
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particulate matter of different size (Dolislager et al., 2012; Tarnay et al., 2001). Other studies 

focused on organic composition of TSP in the region (Cahill, 2010; Datta et al., 1998). All 

studies collectively suggested that airborne pollutants which may influence water clarity mainly 

originate from within the Tahoe Basin (Bytnerowicz et al., 2013; Gertler et al., 2006b)  

A bioassay incubation experiment using aerosol TSP addition has been carried out to 

understand how dry atmospheric deposition may affect phytoplankton growth and ecosystem 

dynamics in Lake Tahoe (Mackey et al., 2013). This study showed that atmospheric TSP 

deposition provides nutrients with a high ratio of N:P that favors the growth of picoplankton, 

thus can increase primary productivity without causing a substantial increase in chlorophyll (Chl 

a) or biomass. The study demonstrated the importance of understanding nutrient inputs from TSP 

deposition and, more importantly, the fate of TSP after deposition onto the lake surface. 

However, no detailed study evaluating the contribution of trace metals from TSP deposition 

relative to other sources has been conducted in Lake Tahoe. Specifically, seasonal changes in 

water quality may be controlled by temporal changes in TSP sources and their chemical 

composition (Dolislager et al., 2012). To our knowledge, none of the previous studies in the 

Tahoe Basin have reported multi-year seasonal variations of nutrients and trace metals in dry 

atmospheric deposition TSP or evaluated if and how TSP sources change seasonally. 

Considering the potential impacts of nutrients and trace metals on lakes biogeochemistry and the 

potential influence of atmospheric deposition (including TSP deposition) on their concentration, 

it is important to assess the contribution of TSP associated trace metals and nutrients to Lake 

Tahoe. To fill this gap, we use weekly collected TSP to determine seasonal changes in 

concentrations and solubility of trace metals and nutrients and calculate deposition rates and 
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contributions to lake water. We also use this information along with Pb isotopes to shed light on 

the sources of TSP in the basin (Véron and Church, 1997; Witt et al., 2006).  

 

Materials and Methods 

Total suspended particles (TSP) collection and treatment  

TSP samples were collected between 2005 and 2010. Weekly integrated samples were 

collected on acid washed quartz fiber filters (10” x 8”, Whatman
®
) using a Graseby Andersen 

TSP High Volume Sampler. Between November 2005 and May 2007, the sampler was located 

near the lake at the UC Davis Field Station (Hatchery) away from any local source of 

disturbance. After May 2007, the sampler was relocated about 300 m south to reduce local 

impacts due to remodeling at the Hatchery. The TSP sampler was placed 3.2 m above the ground 

and protected by trees from direct road dust inputs. TSP samples were collected at an airflow rate 

of 85 m
3
 hr

-1
. All filters were kept frozen until further analyses.  

For bulk composition of TSP, a 15 mm x 10 mm sub-sample of each filter was digested by 

adding 2 mL concentrated HNO3 and 1 mL HF to the filter in a sealed Teflon beaker and heating 

on a hotplate at 150° C overnight. The liquid was then dried down and brought up with 2% 

HNO3 for trace metal concentration analysis. To extract the soluble fraction of nutrients and 

trace metals in TSP samples, a 47 mm circular subsample of each filter was placed on an acid-

washed filter tower, and 100 mL of MilliQ water was passed through the sample under gentle 

vacuum pressure exposing the sample for about 10 seconds to the water (Buck et al., 2006). A 

100 μL of concentrated nitric acid was added to 5 mL of the MilliQ water for trace metal 

analysis and the rest of the sample was kept frozen for nutrient and ion chromatography analyses. 
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The MilliQ water pH was 7 when it came out of the MilliQ system and similar to that of lake 

water. We prepared MilliQ water freahly right before the extraction process, thus we expected 

that the solubility calculated using this treatment is representative of TSP solubility in the lake 

water. Procedure blanks for the bulk digestion and soluble fraction extraction were obtained by 

processing blank filters in the same way as other samples and the total processing blanks were 

subtracted when calculating concentrations.  

 

Deposition flux estimation 

  Deposition fluxes of nutrients and trace metals to the lake were calculated based on 

previous modeling results of TSP deposition fluxes in the Tahoe Basin (Dolislager et al., 2012). 

We calculated deposition fluxes of each compound or element (Fd) to the lake by multiplying 

their soluble concentrations (Cs) in the collected TSP sample by the model derived TSP 

deposition flux (Td).  

 𝐹𝑑 = 𝐶𝑠  ×  𝑇𝑑    (1) 

This calculation is based on an oversimplified assumption that all elements have the same 

deposition velocity. However, the deposition velocity varies as the square of the particle radius 

size (Jacobson, 2004). Particle size distributions vary spatially within the Tahoe Basin, and are 

also different close to the shoreline and at offshore sites (VanCuren et al., 2012). We did not 

measure the particle size distributions in our samples directly which may introduce considerable 

uncertainty to our calculated deposition fluxes. Moreover, we note that TSP represents only one 

fraction of atmospheric deposition and both wet deposition and gas phase reactions are not 

considered here. Hence our estimates are lower than the total atmospheric deposition 
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contributions to the lake. Despite these limitations, results reported here provide first order 

estimates which have not been previously available. To address this limitation and for 

comparison we also applied a fixed deposition rate of 2 cm s
-1

 for TSP, which has been used 

previously in Lake Tahoe (Mackey et al. 2013) and at coastal and nearshore areas for coarse 

particles (Duce et al. 1991) and a rate that is ten times smaller (0.2 cm s
-1

) that is sometimes used 

for deposition of fine fraction particles.    

 

Lake water collection  

Water depth profile samples from Lake Tahoe were collected seven times at different 

seasons between the Spring of 2013 and Summer 2016. Van Dorn bottles (Wildco Beta Plus 

acrylic 2.2L, with no metal parts that touch the sample) were used for water collection at depths 

of 50, 100, 150, 200, 250, 300, 350, 400 and 450 m and a one-liter HDPE bottle attached to a 2.5 

m long plastic rod was used to collect surface water samples. Samples were collected at the Mid-

lake Tahoe Profile (MLTP) station (39.09231 N; 120.00275 W). From each depth, one-liter of 

water was dispensed into an acid-washed sample rinsed LDPE bottle for trace metals and Pb 

isotope analyses  as described in Chien et al. (2017). Groundwater samples were obtained from 

two wells at the Lake Tahoe fire station and three wells at the Hatchery, and river water samples 

were collected from Third Creek, Trout Creek, Upper Truckee River, Ward Creek, Incline Creek, 

Blackwood Creek and General Creek. All water samples were filtered with acid washed 0.45 μm 

filters (SupaPore) before nutrient, trace metal and Pb isotope analyses. Samples for trace metal 

and Pb isotopes analyses were acidified to pH < 2 with concentrated double distilled nitric acid. 
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MilliQ water blanks were also collected and analyzed similarly. TSP and water sampling 

location sites are shown in Fig. 1. 

 

Nutrients, ions, trace metals and Pb isotopes analyses 

Nitrate+nitrite (NO3
-
 + NO2

-
), ammonium (NH4

+
) and soluble reactive phosphorus (SRP) in 

the soluble fractions of TSP samples were analyzed using a nutrient autoanalyzer (QuikChem 

8000 Flow Injection Analyzer). Detection limits of NO3
-
 + NO2

-
, ammonium and SRP are 0.29 

μmol N L
-1

, 0.53 μmol N L
-1 

and 0.1 μmol P L
-1

, respectively. Formate (CHOO
−
), acetate 

(C₂H₃O₂−
), chloride (Cl

-
), sulfate (SO2

4-
) and oxalate (C2O4

2-
) were separated and eluted using a 

4x250 mm AS18 column (DIONEX) with a KOH eluent and analyzed by Ion Chromatography 

(IC) using a DIONEX ICS-2000 system.  

Due to low trace metal concentrations in the lake water, about 200 mL of each water sample 

was first dried down on a hotplate and then reconstituted with 10 mL 2% HNO3 for 

concentration analyses (20-fold concentration increase).  TSP total and soluble trace metal 

concentrations, and lake, river and groundwater trace metal concentrations of Al, V, Cr, Mn, Fe, 

Co, Ni, Cu, Cd, and Pb were analyzed by a High Resolution Inductively Coupled Plasma Mass 

Spectrometry (Element XR) with triple detector mode. Na, Mg, Ca, P, Zn, Sr, Ti, and U were 

also measured in bulk TSP and in the TSP soluble fraction samples, while total concentration of 

Ba was determined only in bulk TSP samples. Low resolution mode was used for Cd, Ba, Pb and 

U and medium resolution for the rest of the elements. Instrument calibration was done using a 

gravimetrically prepared multi-element standards in the range of concentrations represented by 

our samples.  The coefficient of determination of calibration (RSQ) of the calibration curves for 
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the different elements were better than 0.99, which indicates that interferences were negligible, if 

any. The blanks for lake water, TSP bulk and soluble fractions are listed in Table S2. Details of 

trace metal analysis can be found in Chien et al. (2016). 

In order to separate Pb from the different sample matrices, 500 mL from each water sample 

and the digested TSP samples were dried down and re-dissolved in 100 μL of concentrated HBr 

(Optima grade, Fisher Scientific) three times. Pb was separated using AG1-X8 resin (adapted 

from Kamber and Gladu, (2009)). Briefly, the matrix of the samples was eluted with 1N HBr and 

the Pb fraction was eluted by 6N double distilled HNO3, this eluent was then dried down and 

brought up with 2% HNO3 to ~2ppb for analyses. Pb separation and trace metal pretreatments 

were done in the clean room in the Keck lab of UCSC. Accuracy of the procedure was evaluated 

by preparing and analyzing three 50 ng aliquots of NIST SRM-981 as unknowns and results 

showed that isotope fractionation and contamination was negligible (Table S1). 

To determine Pb isotopic composition, analyses were carried out on a Thermo Element XR 

HR-ICP-MS in the Marine Analytical Laboratory at UC Santa Cruz following the method 

developed by (Zurbrick et al., 2013). 
204

Pb, 
206

Pb, 
207

Pb and 
208

Pb were analyzed and 
200

Hg and 

202
Hg were also monitored for isobaric interference correction on 

204
Pb. Pb isotopes in the 

samples were corrected by bracketing to NIST SRM-981 values; NIST SRM-981 was analyzed 

between every five samples. Typically, a 2 ppb Pb solution resulted in a signal of about 4x10
6
 

counts per second on 
208

Pb, external precision (2) for 
206

Pb/
204

Pb, 
206

Pb/
207

Pb and 
208

Pb/
207

Pb 

are 5.7‰, 3.7‰ and 2.2‰, respectively (based on 33 NIST SRM-981 analyses).  

 

Groundwater discharge assessment  
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 We have implemented a radon (
222

Rn)-based tracer approach for assessing groundwater 

discharge for a better estimation of Pb input from groundwater to the lake. In August 2013, we 

carried a high-resolution 
222

Rn boat survey along the west shore of Lake Tahoe to measure 
222

Rn 

concentrations in surface water. Radon measurements were carried out with a three-detector 

system (RAD AQUA, Duridge, Inc) as described in Dimova et al. (2009). A map of the 

groundwater “hot spots’ distribution throughout the west shore was constructed (Fig. S1). We 

then use the same instrumentation and measured 
222

Rn concentrations at the identified hot spots 

for several hours to obtain a representative 
222

Rn measurement of the surface/lake water at these 

sites. Radon concentrations in groundwater collected from wells were also measured to obtain 

representative groundwater end-member values and a 
222

Rn mass-balance model that was used to 

calculate groundwater seepage rates (cm/day) using the approach described at Dimova and 

Burnett. (2011).   

 

Results and Discussion 

Temporal variation in TSP concentrations and in their chemical composition 

 Between December 2005 to February 2010, TSP concentrations in the air at the Tahoe 

Basin ranged between 2.7 to 76 μg m
-3

 of air, with an average and standard deviation of 26.3 ± 

14.2 μg m
-3 

(Table S3 and Fig. 2). In general, TSP concentrations in the Tahoe Basin air were 

higher in the cold periods during late Fall to early Spring (October to April) than in the warm 

periods during late Spring to early Fall (May to September). Average seasonal concentrations 

were 29.8 ± 16.1 μg m
-3

 and 20.6 ± 7.6 μg m
-3

, in winter and summer, respectively (Table S3). 

Variations in atmospheric mixing layer thickness due to differences in sensible heat in the 
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different seasons has been suggested as the cause for seasonal differences in air pollution gases 

such as CO and SO2 and in particulate matter concentration (Tang et al., 2015). Specifically, 

during the warm season when the mixing layer thickness is larger, particulate matter 

concentrations are lower because the vertical diffusion capability of the atmosphere is higher; in 

contrast, in the cold season the diffusion capability is lower since the mixing layer height is 

reduced. Similar mixing layer thickness trend was estimated for Sandy Way at the northwest of 

Tahoe Basin (CARB, 2006). 

The concentrations of bulk metals in the TSP samples are listed in Table S3. Aluminum 

(Al) has the highest mean concentration (1329 ± 920 ng m
-3

) among the trace metals, followed 

by Fe (776 ± 495 ng m
-3

) and Ca (698 ± 480 ng m
-3

). The metal with the lowest concentration is 

Cd (0.029 ± 0.025 ng m
-3

). Similar to TSP concentrations in the air, most trace metals 

concentrations were also higher in the cold periods (October to April) and lower in the warmer 

periods (May to September). For example, average concentrations of Al were 1697± 1042 ng m
-3

 

and 823± 294 ng m
-3

 in the cold and warmer periods, respectively. However, Zn and Cd do not 

follow this seasonal trend, suggesting they have different sources than the other trace metals 

(Table S3 and Fig. 3A). The contribution of crustal material (mineral dust) to the trace metals in 

TSP can be determined by correlating to Al and assuming Al mostly originates from crustal 

materials. Indeed, some of the elements were highly correlated with Al, including Ti, Fe, Sr, Co, 

Ca, V, Mg, Mn, K, Na, and U (correlation coefficient > 0.93, n=69), indicating a common source 

for these elements, primarily from mineral dust originating from the local soil and upper crust. 

However, Ba, Cu, Zn, and Cd were poorly correlated with Al (correlation coefficient  0.45) 

suggesting dominance by non-lithogenic anthropogenic sources, while Ni, Pb, Cr and P, show 

correlation coefficients between 0.6 – 0.8, suggesting mixed origin (anthropogenic sources in 
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addition to natural mineral dust). These elements can come from tires (Pb, Zn, and Cu) 

(McKenzie et al., 2009), vehicle emission (Cd, Pb, Zn and Cu) (Bilos et al., 2001), road dust 

from non-exhaust activities (Ni, Cr, Zn, Ba) (Pant and Harrison, 2013), fertilizer use (Cd, Cr, P, 

Pb and Ni) (Mortvedt, 1995; Tipping et al., 2014) and industry (Pb, Ni, Cd, Cr, Cu, and Zn) 

(Chen et al., 2005). Biomass burning is another source of trace metals and can contain Cr, Ni, 

Cu, Zn, P and Ba (Anderson et al., 2010; Chang-Graham et al., 2011), while firewood burning 

can be a source of Zn, P, and Ba (Anderson et al., 2010; Kleeman et al., 1999). Considering the 

limited industrial and agriculture activities within the basin, vehicle emissions, road dust, and 

wood and biomass burning are the most likely sources. However, further studies need to be 

carried out to identify the specific sources for each of these elements within the basin.   

Enrichment factors (EFs) can also be used to evaluate the source of various elements in the 

TSP. EF for each element is described as:  

  𝐸𝐹 =  
(

𝐸𝑙𝑒𝑚𝑒𝑛𝑡

𝐴𝑙
)𝑇𝑆𝑃

(
𝐸𝑙𝑒𝑚𝑒𝑛𝑡

𝐴𝑙
)𝑐𝑟𝑢𝑠𝑡

      (2) 

where (Element/Al)TSP is the mass concentration ratio of the trace element to Al in the collected 

TSP samples and (Element/Al)crust is the ratio in the upper continental crust (Taylor and 

McLennan, 1985) (Fig. 4). EFs that are close to one indicate that the specific constituent in the 

TSP originated primarily from the upper continental crust (e.g., mineral dust, soil). Higher EF 

suggest additional sources, specifically from anthropogenic activities, biogenic materials or 

wildfires. We calculated EFs using the average composition of upper continental crust as well as 

the composition of Californian soils and regional volcanic rocks (Table 1). In our samples, V, 

Co, and Fe have low EFs with average values lower than two, indicative of a mineral dust 

source, while the enrichment factor of Zn, Cu and Cd is higher than five, indicating that 
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anthropogenic inputs contributed to these elements. Overall metal EF of TSP collected in Tahoe 

Basin are low, typically less than 10 while in urban polluted areas EFs are much higher and can 

be >100 (Balasubramanian and Qian, 2004; Sarti et al., 2015). Even in areas dominated by 

mineral dust, like the Gulf of Aqaba, higher EFs were observed (Chen et al., 2008). The low EF 

suggest that anthropogenic impacts are low in this region. Differences in EF between the warm 

(May to September) and cold periods (October to April) suggest a seasonal change in the relative 

contribution of the sources of these elements to the TSP load. Specifically, Zn, Cu, Ni, and Cd 

have EF more than 50% higher during the warm periods than in the cold periods (Table 1) 

implying that the relative contribution from anthropogenic sources, such as transportation-related 

activity, is higher between May and September.     

 We also applied a principal component analysis (PCA) to the TSP bulk metals 

composition (Table 2). Overall, the majority of the metals have a common source (or 

combination of sources) based on their strong association with the first factor.  The common 

source is likely mineral dust based on the low EFs of these metals and the high correlations 

between these metals and Al. High loading of Cd in factor 2 (likely vehicle emissions) and Cu 

and Zn in factor 3 (likely biomass burning) indicate these metals are dominated by distinct 

anthropogenic sources as mentioned previously.  

  

Total suspended particles metals soluble fraction 

When considering nutrient and metal inputs to lakes, the soluble fraction of these nutrients 

and metals in the TSP is what affects the water chemistry and biology. The soluble fractions 

(soluble concentration/total concentration) of the various trace metals are largely controlled by 
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their solubilities. For example, although the average bulk concentration of Al is 1329 ng m
-3

, the 

average concentration of the soluble Al fraction is only 3.3 ng m
-3

, which is 0.25% of the bulk 

concentration, consistent with the low solubility of Al in mineral dust (Trapp et al., 2010). On the 

other hand, the average bulk concentration of Zn (7.1 ng m
-3

) is 180 times smaller than the Al 

bulk concentration, but the average concentration of soluble Zn (2.4 ng m
-3

; >30% of the bulk) is 

only slightly lower than that of soluble Al. The soluble fractions of most trace metals in the TSP 

we analyzed are higher during the warm periods (May to September) (Table S3 and Fig. 3). This 

could be due to changes in the TSP sources between seasons and source dependent solubility 

stemming from changes in composition (Sarti et al., 2015). Alternatively, it is possible that 

chemical transformations in the TSP that depend on seasonally changing conditions such as 

relative humidity, temperatures, or presence of volatile organic acids affect the solubilities. The 

latter explanation is more likely the cause for the seasonal changes in solubility in our samples, 

because the small differences in EFs (<10%) for most of the elements throughout the year is 

suggestive of a similar source; hence, change in sources is not the major cause of the significant 

seasonal variations in solubility (>100%, Table 1). Specifically, the low pH history of the TSP 

can increase the solubility of trace metals such as Al, Fe, and Mn (Spokes and Jickells, 1995). 

Other studies also observed increases of TSP Fe solubility related to sulfate content (Li et al., 

2017; Tang et al., 2015) or sulfate together with nitrate or oxalate (Buck et al., 2006), both of 

which reduce the TSP pH as they form sulfuric and nitric acids. Indeed, in our samples sulfate 

concentrations and the concentrations of several volatile organic acids (particularly oxalate) are 

higher during May to September (Fig. 3B). Interestingly, the seasonal differences in solubility 

for Na, Zn and Cd are smaller than for the other elements. This could be because these elements 

have relatively high solubility overall (41.4%, 33.8% and 22.3% for Cd, Zn, and Na, 
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respectively) hence the relative changes due to seasonal atmospheric conditions are muted. Our 

data also suggest low seasonal differences for Na. This is likely due to an extra source of Na in 

winter from salting of the road, reducing the seasonal differences. Indeed Cl
-
 concentrations in 

our samples are also higher in the winter (Table S3) suggesting a road salting source as there is 

no other apparent source for Cl
-
 in TSP.  

Annual average concentrations of soluble NO3
-
 + NO2

-
, NH4

+
 and SRP are 1.71 ± 0.86 μmol 

m
-3

, 2.93 ± 2.23 μmol m
-3

 and 0.05 ± 0.03 μmol m
-3

, with an average N to P ratio of 117 ± 71 

(Table S3). Major nutrients extracted from the TSP samples also show seasonal patterns (Fig. 5). 

Overall, NO3
-
 + NO2

- 
is slightly higher in the cold periods (1.93 ± 0.92 μmol m

-3
) than in the 

warm periods (1.38 ± 0.66 μmol m
-3

), but the difference is not statistically significant. In 

contrast, NH4
+
 and SRP are higher during the warm periods (May to September; 4.75 ± 1.95 

μmol m
-3

 and 0.08 ± 0.02 μmol m
-3

, respectively) than in the cold periods (October to April; 1.68 

± 1.39 μmol m
-3

 and 0.03 ± 0.02 μmol m
-3

, respectively). Similar to the metals, the causes for the 

seasonal variability could be seasonal changes in the TSP sources and/or processes in the 

atmosphere that impact the solubility of these nutrients. Based on the seasonal variability in the 

EFs and solubility for P (EF changes by 34% between warm and cold periods and solubility is 

215% higher in May through September than in October through April) we conclude that, like 

for the other elements we measured, it is the seasonal meteorological parameters and processes 

in the atmosphere that are affecting the solubility of phosphate and likely NH4
+
 . On the other 

hand, NO3
-
 + NO2

- 
solubility in water is high (~60%; Chen et al., 2007). Hence the seasonal 

differences seen were small. The annual average N:P ratio of 117 is higher than the ratio of 

16N:1P that phytoplankton generally need for growth. This ratio is even higher, reaching an 

average of 141 during the cold periods (October to April), likely due to the lower solubility of P 
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in the cold season as mentioned above. This finding is consistent with the report of Mackey et al. 

(2013) which was based on a smaller number of samples. Moreover, a N:P ratio of nutrients 

contributed from atmospheric deposition would be even higher when considering nitrogen 

deposition from gas phase inputs such as HNO3 and NH3, which were not included in this study. 

These N phases are major sources of N deposited into Lake Tahoe (CARB, 2006) and can 

account for 50% of total inorganic atmospheric N input. The high N:P ratio in atmospheric 

deposition could impact the N:P ratio in lake water thus influencing the growth of phytoplankton 

in Lake Tahoe. Indeed, a nutrient addition experiment indicated that phytoplankton tend to be P 

limited during October through April when atmospheric N:P in the Tahoe Basin is higher 

(Goldman et al., 1993). 

 

Nutrients and trace elements fluxes from TSP to the lake   

 Cumulative average (based on the different years) seasonal TSP deposition to lake Tahoe 

is 2.8 x 10
5
 kg for December to May and 3.1 x 10

5 
kg for June to November and the average 

annual flux is 5.9 x 10
5
 kg yr

-1
. TSP and associated nutrients and trace elements fluxes are listed 

in Table 3. The difference in TSP deposition between the warm and cold periods is small, 

however, when considering the solubility, the overall soluble fraction input to the lake is higher 

during the warm season. TSP deposition calculated using the deposition velocity from Dolislager 

et al. (2012) (5.9 x 10
5
 kg yr

-1
) is much lower than that obtained using a rate of 2 cm s

-1
 (8.2 x 

10
6
 kg yr

-1
) and slightly lower than the deposition calculated using 0.2 cm s

-1
 as the deposition 

velocity (8.2 x 10
5
 kg yr

-1
). The TSP deposition velocity modeled by Dolislager et al. (2012) is 

low compared to deposition velocities estimated for other locations. For example, a velosity of 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 18 

0.34 – 1.5 cm s
-1 

is the range reported for calculating metals deposition in Los Angeles (Lim et 

al., 2006), between 0.22 and 13 cm s
-1

 is used at Burnaby Lake Canada (Brewer and Belzer, 

2001) and from 0.0062 cm s
−1

 to 5.4 cm s
-1

 with an average of 0.2 cm s
−1 

in used some Great 

lakes (Pirrone et al., 1995; Zufall et al., 1998). The range represents the range of particle sizes 

that various metals are associated with. Most of the trace metals in our samples have low EFs 

(EF < 10) indicating their association with mineral dust; Duce et al., (1991) suggested that dry 

deposition velocities for mineral TSP range from 0.3 to 3 cm s
-1

 with an average 0.4 cm s
-1

, a 

value that is more than twice the modeled velocity of Dolislager et al. (2012). Hence, our 

calculations may be conservative estimates. 

 

Lake water trace metal concentrations 

The most striking feature of the TSP samples collected in Tahoe Basin is the seasonal 

variation of trace metal solubilities and corresponding higher soluble trace metal fluxes in the 

spring and summer between May and September, despite higher TSP concentrations in winter 

(October to April). This finding is important because Lake Tahoe’s water experiences 

stratification during the warm season (June – November) and previous studies indicated that 

during the stratification seasons, high N:P input from TSP deposition could alter the N:P in the 

surface lake water (Mackey et al., 2013). This poses the question whether TSP associated trace 

metal inputs to the lake during stratification also alter Lake Tahoe’s surface water trace metal 

composition. To address this question, we collected lake water samples in 2013 and 2016 at 

different seasons and analyzed them for trace metals. Although the water samples were collected 

during in different years than the TSP samples (2005-2010), the trends of higher deposition in 
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the summer is repeatedly seen across the five years of TSP sampling and stratification is also a 

known annual seasonal feature in the lake (TERC, 2016), thus we assumed these trends are 

representative of the respective seasons each year. Trace metal concentrations in the lake water, 

however, did not show apparent seasonal or depth variations except for Mn which shows a 

surface maximum in concentration (Fig. 6A and Table S4). Average  lake water concentration of 

Al, Fe, Co, V, Mn, Ni, Pb, Cr, Cu, and Cd at 50 m are 22.6, 11.2, 0.02, 9.2, 1.1, 0.37, 0.07, 0.54, 

1.1 and 0.04 nmol kg
-1

, respectively (Table S5). The concentrations for Al, Mn and Cd are well 

below the threshold concentrations that could be toxic to aquatic organisms. In general, the trace 

metal concentrations in Lake Tahoe are similar to those reported for Lakes Erie, Ontario and 

Superior (Nriagu et al., 1996). Compared to other lakes of similar size in California, trace metal 

concentrations in Lake Tahoe are lower. This could be due to higher inputs in lakes where 

agriculture activities are typical in the watershed (e.g. Clear Lake) or in arid environments where 

higher lithogenic inputs are expected (Walker Lake) (Romero et al. 2013). Alternatively, since 

the volume of Lake Tahoe is larger than that of these other California lakes it is possible that the 

low concentrations in Tahoe are resulting from a more significant dilution effect in the Lake 

Tahoe. Water volumes of Clear Lake and Walker Lake are about 1% of the volume of Lake 

Tahoe (150 km
3
), while water volumes are much larger in Lakes Erie, Ontario and Superior (480, 

1,640 and 12,000 km
3
, respectively).  Previously reported metal concentrations in north and 

south Lake Tahoe water, collected in 2009 and 2010 (Romero et al., 2013), are higher than those 

measured in this study, the concentrations in the middle of the lake reported in Romero et al. 

(2013), however, are similar to those measured in our study (Table S5).  

The lack of seasonal or depth variation in trace metal concentrations in Lake Tahoe’s water 

column is likely because of the relatively low input fluxes and the great depth, hence volume of 
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the lake. Typically, the lake mixes thoroughly to 500 m every 4 to 5 years, and in other years, the 

mixing depth is between 80-300 m (TERC, 2016). This vertical mixing redistributes the trace 

metals with depth and the net input of these metals over the stratified season is not sufficient to 

change the distribution to observe seasonal variation in surface water. For example, a 10 nmol 

kg
-1

 increase in Al above the 20 nmol kg
-1

 background deep water concentration (a 50% 

increase) during the stratified months, assuming a 20 m mixed layer based on the thermocline for 

the stratified season (Coats et al. 2006), would require an extra 2,700 kg of Al to be deposited 

onto the lake surface over that time interval. This flux is 35 times the typical warm periods 

(May-September) Al flux (based on the Al concentrations in TSP, Al solubility and the 

deposition velocities from Dolislager et al. (2012)). For elements with a lower atmospheric flux 

such as V, a more than 1,600-fold increase in deposition is required to increase the concentration 

by 50%. For elements like Pb, with very low concentrations in lake water, a more than 30-fold 

increase of the average atmospheric flux is needed to observe a measurable increase in 

concentration in the surface water. To estimate the contribution of atmospheric deposition of 

trace metals to the lake, we divided the TSP annual deposition of each dissolved trace metal 

calculated based on TSP deposition from Dolislager et al. (2012) by the respective dissolved 

trace metal inventories in the upper 20 m of Lake Tahoe (Table 4) calculated based on average 

metal concentrations at 0 to 20 m water depth. The calculated atmospheric contributions 

typically are low, ranging from 0.03% for V to 5.7% for Mn and are consistent with the lack of 

surface maxima for most of the metals at this site. 

In contrast to the trace metals, the atmospheric deposition is much higher for major 

nutrients (particularly when including gas phase contribution) with 20% for P and 57% for N 

attributed to atmospheric deposition (Sahoo et al., 2013). The input of fine particles to the total 
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fine particle inventory in the surface layer of the lake is also relatively high at 16% (Sahoo et al., 

2013). Overall, while trace metal fluxes from atmospheric deposition have been shown to 

contribute to lake budgets, biogeochemistry, and ecology at other sites worldwide (Bacardit and 

Camarero, 2009; Sweet et al., 1998), in Lake Tahoe atmospheric deposition of trace metals is 

low, but it is important for nutrients and fine particle loads which can affect lake clarity directly 

by fine particle addition or indirectly by increasing chlorophyll through an external input of 

limiting nutrients.  

 

Pb isotopic composition and the contribution of TSP deposition to Pb in lake water 

 To better determine possible sources of trace metals to Lake Tahoe, we analyzed the Pb 

isotopic composition in TSP, lake water, river water and groundwater samples. 
206

Pb/
204

Pb, 

206
Pb/

207
Pb and 

208
Pb/

207
Pb of 25 representative TSP samples were measured (Table S6). Fig. 6B 

shows the three Pb isotope ratios for samples representing the warm and cold periods. No 

seasonal trends in Pb isotope ratios are seen, suggesting that the sources of Pb do not vary 

seasonally or that different sources have similar isotope ratios. The average and standard 

deviation of 
206

Pb/
204

Pb, 
206

Pb/
207

Pb and 
208

Pb/
207

Pb are 18.11 ± 0.14, 1.162 ± 0.006 and 2.428 ± 

0.007, respectively. There is also no seasonal variation in the depth distribution of Pb isotopes in 

lake water, consistent with the homogenous distribution of dissolved metals (Fig. 6A). The 

average and standard deviation of 
206

Pb/
204

Pb, 
206

Pb/
207

Pb and 
208

Pb/
207

Pb in lake water are 19.09 

± 0.52, 1.197 ± 0.008 and 2.451 ± 0.010, respectively. Annual atmospheric Pb input contributes 

only 2.1% to the upper 20 m Pb inventory (Table 4). Both lake water isotope profiles and 
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atmospheric Pb contribution to the surface layer show that Pb from TSP deposition has a 

relatively weak effect on the Pb isotopic composition in the upper water layer of the lake.  

To assess the relative contribution of different Pb sources to the lake we measured the 

concentration and isotope ratios of several potential sources. Weighted average of 
206

Pb/
204

Pb, 

206
Pb/

207
Pb and 

208
Pb/

207
Pb in seven of the major rivers in the Tahoe Basin, based on their annual 

discharge, are 19.00 ± 0.27, 1.215 ± 0.016 and 2.474 ± 0.017, respectively, and groundwater 

samples 
206

Pb/
204

Pb, 
206

Pb/
207

Pb and 
208

Pb/
207

Pb ratios are 18.87± 0.27, 1.201 ± 0.012 and 2.459 

± 0.010, respectively. We also report published Pb isotope ratios for additional potential sources 

in the region (Cousens et al., 2011; Cousens et al., 2008). We plotted all Pb isotope data in a 

206
Pb/

207
Pb vs. 

208
Pb/

207
Pb tri-isotope diagram (Fig. 7). The Pb isotope ratios in lake water are 

similar to those of groundwater and some of the river water samples, suggesting that river water 

and possibly groundwater are likely the major Pb sources to the lake. To estimate the relative 

contribution of soluble Pb from groundwater, river water and atmospheric deposition, we used 

the average groundwater and flow-weighted average river water Pb concentrations (3.43 and 

0.143 nmol kg
-1

, respectively), a groundwater annual discharge that ranges from 3.7 to 6.4 x 10
7
 

m
3
 year

-1
 (Fogg, 2002; Thodal, 1997; USACE, 2003) and an annual streamflow of 4.05 – 4.32 x 

10
8
 m

3
 year

-1
 (Lahontan and NDEP, 2010; Thodal, 1997) to estimate contributions from these 

different sources. The annual Pb loads from rivers and groundwater were estimated to be 26.3 to 

45.4, and 12.0 to 12.8 kg year
-1

, respectively, while Pb loads from TSP deposition were 3.1 kg 

year
-1

. Based on this calculation, atmospheric deposition contributes only about 5 – 8 % of the Pb 

in the lake. The concentrations of Pb in groundwater is more than 10-fold higher than in river 

water and thus its proportional contribution to the lake is larger despite the lower water flux. Our 

groundwater Rn tracer surveys during August 2013 revealed extremely large spatial variability in 
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groundwater fluxes to the west shore of Lake Tahoe (Fig. S1).  Because currently there is no 

detailed comprehensive study assessing groundwater fluxes to Lake Tahoe, fluxes reported here 

and in previous studies are associated with high uncertainty when used to calculate metal (or 

other solute) fluxes. Nevertheless, based on our mass balance radon-based tracer method 

(Dimova and Burnett, 2011), we found that groundwater fluxes to Lake Tahoe specifically on the 

west shore, where we performed our Rn survey, can range from 0.02-7.5 cm day
-1

. Considering 

only the seepage areas of the two identified “hot spots” during the Rn survey (see Rn survey 

map, Fig. S1) at the Tahoe Pier (north-west Tahoe, area=2.0×10
6
 m

2
, ArcGIS) and Emerald Bay 

(seepage area=1.8×10
6
 m

2
, ArcGIS), water discharge in the area ranges from 7.6×10

2
 m

3
 day 

day
-1

 to 2.9 m
3
 day

-1
, or between 2.8×10

5
 and 1.0×10

8
 m

3
 annually. When we apply this 

discharge rate to the groundwater Pb flux, contribution from atmospheric deposition are 4 – 20 % 

of the total flux. This agrees with the calculation based on Pb concentrations and isotope ratios 

results from the lake water column.    

 

Conclusions 

 Our results indicate that TSP concentrations in the air in the Tahoe Basin are higher 

during October to April than during May to September, likely due to seasonal differences in 

atmospheric mixing layer thickness that result from different sensible heat conditions. Consistent 

with the TSP higher concentration, bulk trace metal concentrations (total concentrations) in the 

atmosphere are also higher during October to April. The solubilities of trace metals in TSP are, 

however, higher during May to September. We attribute this to seasonal differences in 

atmospheric processes rather than the changes in sources, specifically acids of sulfate and nitrate 
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which increase the solubility of metals and are also high between May and September. Base on 

the correlation between various elements and Al, the enrichment factors for these elements, and 

PCA analyses, we conclude that most of the elements are sourced primarily from mineral dust, 

while Zn, Cu and Cd are contributed also by anthropogenic inputs (transportation and biomass 

combustion). Among major nutrients, the soluble concentrations of NO3
-
 + NO2

-
 in TSP are 

slightly higher between October and April while NH4
+
 and SRP concentrations are higher 

between May and September. Typically trace metal concentrations and Pb isotopic ratios do not 

show much variability throughout the lake water column and lack surface maxima even during 

the stratified season, indicating that TSP is not a significant source of soluble metals to the lake. 

Based on calculations using Pb isotope ratios in TSP, rivers, and groundwater, TSP deposition 

only contributes about 4 – 20 % of soluble Pb, assuming rivers and groundwater are the only 

other sources.    
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Table 1. Element to Al Ratios in the upper continental crust, California soil, Lake Tahoe–Reno region volcanic rocks and the 

calculated enrichment factors based on average upper crust (EF upper crust), Californian soil (EF soil) and the volcanic rocks 

for trace elements in TSP collected in this study. EF upper crust in warm and cold periods and their differences are also listed, 

bold numbers indicate difference larger than 50%. Note that from P to Cd ratios the Element/Al ratios reported are multiplied 

by 1000. 

  Element/Al ratios   Calculated Enrichment Factors 

  California soil, 

Bradford et al.  

1996 

Lake Tahoe–Reno 

region volcanic rocks, 

Cousens et al. 

 2008 

Upper crust, 

Taylor and 

McLennan  

1985 

  EF California soil EF volcanic rocks EF upper crust 

   Warm-Cold

Cold
 

Al 1 1 1  1 1 1 0% 

Fe 0.51 0.42 0.44  1.17 0.72 1.35 10% 

Na 0.22 0.20 0.36  1.61 1.42 0.97 -17% 

Mg 0.14 0.45 0.17  1.33 0.41 1.07 11% 

Ca 0.20 0.79 0.37  2.65 0.66 1.41 -6% 

Ti 0.06 0.09 0.04  0.87 0.66 1.20 5% 

P 5.6 13.3 12  4.42 1.88 2.11 34% 

Mn 8.8 13.8 7.5  1.13 0.72 1.33 42% 

Ba 7.0 10.9 6.8  2.79 1.78 2.88 49% 

Sr 1.8 8.3 4.4  5.00 1.05 1.98 -24% 

Zn 2.04 ⎯ 0.88  3.20 ⎯ 7.42 51% 

V 1.53 2.04 0.75  0.96 0.72 1.96 12% 

Cr 1.67 0.83 0.44  0.34 0.68 1.29 18% 

Cu 0.39 ⎯ 0.31  6.33 ⎯ 8.18 78% 

Ni 0.78 0.30 0.25  0.40 1.05 1.30 56% 

Pb 0.33 0.09 0.25  2.88 10.04 3.87 35% 

Co 0.20 ⎯ 0.12  1.06 ⎯ 1.80 16% 

U 0.06 ⎯ 0.03  0.43 ⎯ 0.86 29% 

Cd 0.0049 ⎯ 0.0012   4.29 ⎯ 17.14 51% 
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Table 2. The rotated principal component matrix of annual TSP metals in Lake Tahoe, factor loadings larger than 0.5 are 

highlighted in bold.  

  F1      F2      F3 

Na 0.880 0.273 -0.233 

Mg 0.981 0.079 -0.119 

Al 0.980 -0.107 -0.091 

P 0.858 0.001 -0.038 

Ca 0.987 -0.005 -0.111 

Ti 0.980 -0.129 -0.056 

V 0.982 -0.126 -0.039 

Cr 0.861 -0.018 -0.002 

Mn 0.909 -0.008 0.052 

Fe 0.984 -0.116 -0.037 

Co 0.978 -0.139 -0.058 

Ni 0.906 -0.045 0.163 

Sr 0.963 -0.139 -0.131 

Ba 0.732 0.021 0.248 

Pb 0.857 -0.041 -0.216 

U 0.939 0.200 -0.024 

Cu 0.656 0.121 0.633 

Zn 0.543 0.408 0.532 

Cd 0.022 0.918 -0.300 
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Table 3. Calculated fluxes of TSP (kg), nutrients (kmole) and soluble trace metals (kg) in Summer/Fall, Winter/Spring and 

annual periods to Lake Tahoe, based on TSP annual deposition from Dolislager et al. (2012) and particle deposition rates of 

0.2 and 2 cm s
-1

 based on TSP concentrations in this study. 

 

June to November 

 

December to May 

 

Annual 

  

Dolislager 

et al. 2012 0.2cm/s 2cm/s   

Dolislager 

et al. 2012 0.2cm/s 2cm/s   

Dolislager 

et al. 2012 0.2cm/s 2cm/s 

TSP 3.1x10
5
 3.2x10

5
 3.2x10

6
 

 

2.8x10
5
 5.0x10

5
 5.0x10

6
 

 

5.9x10
5
 8.2x10

5
 8.2x10

6
 

NO3
-
 + NO2

-
 21 21 215 

 

18 32 323 

 

39 54 538 

NH4
+
 71 74 736 

 

16 28 281 

 

87 102 1017 

SRP 1.2 1.2 12.2 

 

0.3 0.5 5.0 

 

1.5 1.7 17.3 

Al 77 79 791 

 

20 35 352 

 

96 114 1143 

Fe 89 91 915 

 

19 34 335 

 

107 125 1250 

Ca 1237 1277 12766 

 

667 1190 11903 

 

1903 2467 24668 

Na 923 953 9531 

 

1361 2431 24308 

 

2285 3384 33839 

Mg 213 220 2202 

 

91 163 1626 

 

304 383 3828 

Ti 2 2 16 

 

0.5 0.8 8.4 

 

2.0 2.4 24.3 

P 56 57 574 

 

11 20 201 

 

67 77 775 

Mn 29 29 295 

 

10 18 184 

 

39 48 479 

Sr 7 7 74 

 

4 7 65 

 

11 14 140 

Zn 41 42 419 

 

21 37 369 

 

61 79 787 

Cu 10 11 105 

 

3 5 47 

 

13 15 152 

V 1.3 1.4 13.6 

 

0.2 0.4 3.5 

 

2 2 17 

Pb 2.4 2.5 24.8 

 

0.7 1.2 11.7 

 

3 4 37 

Cr 0.5 0.5 4.7 

 

0.3 0.6 5.7 

 

0.8 1.0 10.4 

Ni 0.4 0.4 4.3 

 

0.1 0.2 2.2 

 

0.5 0.7 6.5 

Co 0.3 0.3 2.6 

 

0.1 0.2 1.5 

 

0.3 0.4 4.1 

U 0.02 0.02 0.20 

 

0.00 0.01 0.06 

 

0.02 0.03 0.27 

Cd 0.2 0.2 1.9   0.1 0.2 2.0   0.3 0.4 3.9 
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Table 4. Trace metal inventories in the 0-20 m water column, annual TSP soluble 

trace metal fluxes and flux to inventory ratios.  

 

Metal inventory 0-20m    

(kg) 

TSP metal flux 

(kg yr
-1

) 

Annual flux to 

inventory ratio 

Cd 53 0.3 0.56% 

Pb 139 3.1 2.13% 

Al 5134 96 1.93% 

V 4647 1.5 0.03% 

Cr 276 0.8 0.28% 

Mn 679 39 5.73% 

Fe 6343 107 1.70% 

Co 19 0.3 2.52% 

Ni 203 0.5 0.27% 

Cu 725 13 1.77% 
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Figure Captions 

 
Figure 1. Map showing the location of Lake Tahoe and the sampling sites for 

TSP, river water,  

groundwater and lake water samples.  

Figure 2. TSP concentration (μg m-3, solid line) and calculated deposition 

flux to Lake Tahoe (kg day-1, dash line) from 12/12/2015 to 2/2/2010.  

Figure 3. (A) Bulk trace metal (solid lines, scales are on the left) and 

soluble fraction (dash lines, scales are on the right) concentrations in 

TSP (ng m-3). (B) Soluble ion concentrations (μmol m-3). The concentrations 

were normalized to air volume collected.  

Figure 4. Enrichment factor values (relative to Al in the upper crust) for 

various trace elements in TSP collected in Tahoe Basin. The bottom and the 

top of each box are located at the 25th and 75th percentiles, central 

horizontal line is drawn at the sample median.  

Figure 5. NH4+, NO2- +NO3-, SRP and (NH4+ + NO2- + NO3-)/SRP ratio in TSP soluble 

fraction collected between 2006 to 2009.  

Figure 6. (A) Trace metal concentration depth profiles. Samples were 

collected at MLTP at mid-lake. Three depth profiles were collected during 

June to November (open diamonds) and four during December to May (open 

circles) between Spring 2013 and Summer 2016. Error bars represent one 

standard error. (B) 206Pb/204Pb, 206Pb/207Pb and 208Pb/207Pb lake water depth 

profiles (open diamonds and circles) and median values of 25 TSP samples 

(solid circles) collected during Jan 2006 to Sep 2009, note that the two 

sides of the bars for the TSP samples data represent maxima and minima 

isotope ratios, and the dash lines and shaded area represent 1SD for June 

to November (open diamonds) and December to May (open circles), 

respectively. 

Figure 7. Triple-isotope plot of Pb in lake water, river water, ground water, 

TSP and volcanic rocks (1 and 2 are mean values of Pb isotopes from 

(Cousens et al. 2008) and (Cousens et al. 2011), respectively.). Numbers in 

parentheses are number of samples used. Note the river water ratio is an 

average of weighted ratios based on their individual annual discharges. 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 36 

 

Highlights 

1. TSP loads and trace metal solubilities in the Tahoe Basin are seasonally 

variable  

2. Trace metal concentrations and Pb isotopes are homogenous in Lake Tahoe 

water  

3. TSP is not a significant source of soluble metals to Lake Tahoe 

4. Riverine and groundwater inputs are the major Pb sources to Lake Tahoe 

ACCEPTED MANUSCRIPT



Figure 1



Figure 2



Figure 3



Figure 4



Figure 5



Figure 6



Figure 7


