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Abstract. Particle aggregation determines the particle flux length scale, possibly the marine oxygen concentration and thus 

affecting the volume of oxygen minimum zones (OMZs) that are of special relevance for ocean nutrient cycles and marine 

ecosystems, and that have been found to expand faster than can be explained by current state-of-the-art models. To 

investigate the impact of particle aggregation on global model performance, we carried out a sensitivity study with different 

parameterisations of marine aggregates and two different model resolutions. Model performance was investigated with 10 

respect to global nutrient and oxygen concentrations, as well as extent and location of OMZs. Results show that including an 

aggregation model improves the representation of OMZs. Moreover, we found that besides a fine spatial resolution of the 

model grid, the consideration of porous particles, an intermediate to high particle sinking speed and a moderate to high 

stickiness improve the model fit to both, global distributions of dissolved inorganic tracers and regional patterns of OMZs, 

compared to a model without aggregation. Our model results therefore suggest that improvements not only in the model 15 

physics, but also in the description of particle aggregation processes can play a substantial role in improving the 

representation of dissolved inorganic tracers and OMZs on a global scale. However, dissolved inorganic tracers are 

apparently not sufficient for a global model calibration, which could necessitate global model calibration against a global 

observational dataset of marine organic particles. 

1 Introduction 20 

Oxygen is – beside light and nutrients - fundamental for marine organisms, such as bacteria, zooplankton, and fish. Only 

few, specialised groups can tolerate regions of low oxygen, commonly referred as oxygen minimum zones (OMZs). These 

regions are located in the tropical upwelling regions, where nutrient rich water enhances primary production and subsequent 

transport of organic matter to deeper waters, which triggers respiration and consumes oxygen. Together with weak 

ventilation (which supplies oxygen), this results in oxygen concentrations well below 100 mmol m-3. Global models that are 25 

used to reproduce OMZ’s volume and location, and their evolution under climate change, differ with respect to the 

biogeochemical parameterisations as well as with respect to physics (Cabré et al., 2015), resulting in disagreements between 

projected OMZ extent (Cocco et al., 2013). To date, it is not clear, if these differences can be attributed to the differences in 

the model’s biogeochemistry or the physical model. 
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One potential parameter affecting distributions of dissolved oxygen and thereby the volume and location of OMZs is the 

biological carbon pump (Volk and Hoffert, 1985). Global ocean model studies show that the biological pump is important 

for the distribution of dissolved inorganic tracers in the ocean (Kwon and Primeau, 2006, 2008), as well as atmospheric 

pCO2 (Kwon et al., 2009; Roth et al., 2014). It further affects the feeding of deep sea organisms (Kiko et al., 2017) as well as 

the OMZs volume (Kriest and Oschlies, 2015). The biological carbon pump can be subdivided into three components: 5 

production of organic matter and biominerals in the euphotic surface layer, particle export into the ocean interior and finally 

their decomposition on the sea floor (Le Moigne et al., 2013). Estimates of the export of organic carbon out of the surface 

layer range from 5 to 20 Gt C yr-1, with the large uncertainty illustrating the gap in our understanding of this process (Henson 

et al., 2011; Honjo et al., 2008; Keller et al., 2012; Laws et al., 2000; Oschlies, 2001). Further uncertainties are associated 

with the exact shape of the particle flux profile (e.g. exponential function vs. power law; Banse, 1990; Berelson, 2002; Boyd 10 

and Trull, 2007; Buesseler et al., 2007; Lutz et al., 2002; Martin et al., 1987) and its possible variations in space and time. 

Recent studies suggest conflicting evidence with regard to the spatial variation of the particle flux length scale (Guidi et al., 

2015; Marsay et al., 2015). Also, the underlying mechanisms for a potential spatio-temporal variation remain unclear: some 

studies attribute this to variations in temperature and associated temperature-dependent variation in remineralisation (Marsay 

et al., 2015), while other studies derive this from variations in particle size distributions (Guidi et al., 2015). 15 

One mechanism, that leads to a variation in particle size distribution, consists in the formation of marine aggregates, which 

exhibit variable sinking speeds. For example, Alldredge and Gotschalk (1988) and Nowald et al. (2009) found sinking rates 

for aggregates ranging between 10 and 386 m d-1. Particle sinking speed, and thus the particle flux profile, depends on 

mineral ballast (Armstrong et al., 2002; Ploug et al., 2008), porosity and particle size (Alldredge and Gotschalk, 1988; 

Kriest, 2002; Smayda, 1970). Large particles are associated with high sinking speed and fast passage through the water 20 

column, resulting in low remineralisation and thus a small OMZs volume, and vice versa. It can therefore be expected that 

particle aggregation favouring fast sinking speeds can alter the volume of OMZs compared to small particles with low 

sinking speeds (Kriest and Oschlies, 2015). 

However, there are still some gaps in our understanding of the parameters that control the aggregation rate as well as the 

particles sinking behaviour. For example, in-situ measurements show almost no dependency between diameter and sinking 25 

speed (Alldredge and Gotschalk, 1988) whereas aggregates produced on a roller table show a noticeable relationship (Engel 

and Schartau, 1999). Furthermore, values for stickiness, which defines the probability that after collision two particles stick 

together, vary over a wide range. Stickiness depends on the chemistry of the particle’s surface (Metcalfe et al., 2006) and the 

particle type (e.g. Hansen and Kiørboe, 1997) and ranges between almost zero and one (e.g. Alldredge and McGillivary, 

1991; Kiørboe et al., 1990). Thus, aggregation as one process that induces variations in particle size, and thus sinking speed, 30 

is only loosely constrained through its parameters. 

To explore these relationships further and to examine whether a spatially variable sinking speed improves the fit of a global 

biogeochemical model to global distributions of dissolved inorganic tracers and regional patterns of OMZs, this study uses 

the three-dimensional Model of Oceanic Pelagic Stoichiometry (Kriest and Oschlies, 2015), coupled with a module for 
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particle aggregation and size-dependent sinking (Kriest, 2002). Given the large uncertainty associated with parameterisations 

of marine aggregates, we carried out 36 sensitivity experiments, in which we varied parameters relevant for particle 

aggregation and sinking. As in previous studies, the model`s fitness is evaluated by the Root Mean Square Error (RMSE) 

against observational data of dissolved inorganic tracers, namely PO4, NO3 and O2 (Kriest et al., 2017). This study 

additionally determines the model fitness with respect to extent and location of OMZs, following the approach by Cabré et 5 

al. (2015). 

To examine the above-mentioned questions, and explore the effects and uncertainties of a model that simulates particle 

dynamics on a global scale for a seasonally cycling stationary ocean circulation, our main questions are as follows: 

 

1. Does a model that includes explicit particle dynamics improve the representation of observed PO4, NO3 and O2? 10 

2. Does a model that includes explicit particle dynamics improve the representation of observed OMZs, and do the ‘best’ 

parameters with respect to this metric agree with those constrained by dissolved inorganic tracers? 

3. What are the effects of uncertainties in the parameterisation of organic aggregates on model results? 

4. Can the assumptions inherent in the model confirm either of the spatial particle flux length scale maps proposed by 

Marsay et al. (2015) or Henson et al. (2015)? 15 

 

This paper is organised as follows: we first describe the model and its assessment with regard to dissolved inorganic tracers 

and OMZs, including the sensitivity experiments carried out with the model. We then present the outcome of the sensitivity 

experiments, with special focus on the metrics defined above. We finally examine and discuss derived maps of particle flux 

length scales against the background of maps derived from observed quantities (Henson et al., 2015; Marsay et al., 2015). 20 

2 Model Description and Methods 

2.1 Oceanic transport  

In this study, we used the ‘Transport Matrix Method’ (TMM) (Khatiwala et al., 2005), as an efficient offline method to 

simulate biogeochemical tracer transport with monthly mean transport matrices (TMs). Additional fields of monthly mean 

wind, temperature and salinity extracted from the underlying circulation model are used to simulate air-sea gas exchange of 25 

oxygen, and to parameterise temperature-dependent growth of phytoplankton. For our experiments, we used two different 

types of TMs and forcing fields: one set derived from a coarser resolution (hereafter called MIT2.8), and one from a finer 

resolution version, based on a data-assimilated circulation (ECCO1.0) (Stammer et al., 2004). The MIT2.8 forcing and 

transport represent a resolution of 2.8° x 2.8° and 15 depth layers with a thickness ranging between 50 m and 690 m. 

ECCO1.0 TMs and forcing are based on a resolution of 1° x 1° and 23 depth layers, with a thickness ranging between 10 m 30 

and 500 m. Further details about the two setups can be found in Kriest and Oschlies (2013). 
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In general, we used a time step length of 1/2 day for physical transport, and a time step length of 1/16 day for 

biogeochemical interactions in the coarse resolution, MIT2.8. Because some parameter configurations allow a very large 

particle sinking speed, which may exceed more than one box per time step, in MIT2.8 we used a biogeochemical time step 

length of 1/70 day for all simulations with 𝜂 = 1.17 (see Table 1), in the finer resolution, ECCO1.0, we used in all 

experiments a time step of 1/80 day (see Table 1) but with exception of three experiments, where we used a length of 1/160 5 

day (these are the experiments for a strong increase of sinking speed with particle size, given by parameter 𝜂 = 1.17; see 

Table 1). Each model was integrated for 3,000 years until tracers approached steady state. The last year is used for analysis 

as well as misfit calculations. 

2.2 The biogeochemical model 

2.2.1 Model of Oceanic Pelagic Stoichiometry 10 

The Model of Oceanic Pelagic Stoichiometry, called MOPS (Kriest and Oschlies, 2015), is based on phosphorus, and 

simulates phosphate, phytoplankton, zooplankton, dissolved organic phosphorus (DOP) and detritus. The unit of each tracer 

is given in mmol P m-3. In addition, MOPS simulates oxygen and nitrate. The P-cycle is coupled to oxygen by using a fixed 

stoichiometry of R-O2:P=171.739, and to nitrogen by RP:N=16. 

The stoichiometry of anaerobic and aerobic remineralisation is parameterised following Paulmier et al. (2009). 15 

Remineralisation of detritus and DOM is fixed to a constant nominal remineralisation rate r and is dependent on oxygen but 

independent of temperature. If oxygen concentrations decrease, denitrification replaces aerobic respiration, consuming 

nitrate. If neither oxygen nor nitrate is sufficiently available, remineralisation stops as the model does not account for other 

electron acceptors such as sulphate. As both forms of remineralisation follow a saturation curve (Monod-type), the realised 

remineralisation rate may diverge from the constant nominal remineralisation rate.  20 

On long timescales, the loss of fixed nitrogen through denitrification is balanced by temperature-dependent nitrogen fixation. 

Therefore, it should be noted that while phosphorus is conserved, the inventory of fixed nitrogen as well as oxygen is 

variable, and dependent on ocean circulation and biogeochemistry (Kriest and Oschlies, 2015). 

In the basic model without aggregation the sinking speed of detritus increases linearly with depth. With constant 

remineralisation rate r, the particle flux can thus be described by 𝐹 𝑧 ∝ 𝑧%& with 𝑏 = )
*
 (Kriest and Oschlies, 2008), and is 25 

therefore comparable to the common power-law description of observed particles fluxes (Martin et al., 1987). The fraction of 

detritus reaching the seafloor follows two pathways: One fraction is re-suspended back into the deepest box of the water 

column and the other one is buried into the sediment and therefore responsible for P-removal. However, the P-budget 

remains annually unchanged by the resupply of buried P via river runoff. 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-122
Manuscript under review for journal Biogeosciences
Discussion started: 10 April 2019
c© Author(s) 2019. CC BY 4.0 License.



5 
 

2.2.2 Model for particle aggregation and size dependent sinking 

Different approaches have been applied to simulate particle aggregation in the marine environment. A detailed representation 

of the particle size spectrum can be accomplished by explicitly simulating many different size classes, which interact with 

each other via collision-based aggregation, particle sinking, remineralisation and breakup (Burd, 2013; Jackson, 1990). This 

flexible approach captures the details of the size spectrum and its spatio-temporal variation in a very detailed way. However, 5 

it is computationally expensive, and thus prohibitive to be applied to large spatial and long temporal scales. 

The aggregation module applied in MOPS parameterises a continuous log-log-linear size distribution of particles via the 

spectral slope e calculated from number and mass of particles (Kriest and Evans, 2000). The particle size distribution is 

influenced by size-dependent particle aggregation and sinking (Kriest, 2002; Kriest and Evans, 2000). Because aggregation 

reduces particle numbers (but not mass), and sinking preferentially removes large particles, number and mass change 10 

independently. By assuming a log-log-linear size spectrum, the slope e of this spectrum can, at each time step and grid point, 

be computed from the particle number and total particle mass. 

The model requires parameters for the power-law relationships between particle diameter, d, and mass, m, (m = Cd ζ) and 

between particle diameter and sinking speed, w, (w = Bd𝜂) to be specified. In our model experiments, we assign fixed values 

for the minimum diameter and mass of a primary particle of size of d1=0.002 cm and m1=0.00075 nmol P. The exponent for 15 

the relationship between size and mass is set to ζ = 1.62, as proposed for marine aggregates in Kriest (2002). For the 

relationship between size and sinking speed we test two alternative values for eta, namely 𝜂 = 0.62 and 𝜂 = 1.17 for the 

exponent, and w1 between 0.7-2.8 m d-1 for the minimum sinking speed (see below). Assuming a constant degradation rate, 

the average sinking speed of all particles combined would increase with depth due to higher sinking speed of large particles 

and their higher proportion in the deeper ocean interior. To prevent instabilities at very large sinking speeds (very flat size 20 

distributions), as in Kriest and Evans (2000) and Kriest (2002) we restrict size dependent processes (sinking, aggregation) to 

a maximum size of DL. In our model experiments, we let this parameter vary between 1, 2 and 4 cm. 

Changes of the number of marine particles are dependent on particle aggregation, described by the collision rate, and the 

probability that two particles stick together, a. In our model experiments we vary a between 0.2-0.8. The collision rate 

depends on turbulent shear and differential sinking and is parameterised as in Kriest (2002). We assume that the turbulent 25 

shear is high in the euphotic layers and zero in the deeper ocean layers. 

To avoid complications and non-linear feedbacks, in the experiments presented here, we assume that plankton mortality and 

zooplankton egestion as well as quadratic zooplankton mortality produce new detritus particles, but do not change the size 

spectrum. 

By using this setup, the module is similar to parameterisations of particle size applied in other large-scale or global models 30 

(Gehlen et al., 2006; Oschlies and Kähler, 2004; Schwinger et al., 2016). 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-122
Manuscript under review for journal Biogeosciences
Discussion started: 10 April 2019
c© Author(s) 2019. CC BY 4.0 License.



6 
 

2.3 Model simulations and experiments 

2.3.1 MOPS without Aggregation 

As a reference scenario, we used MOPS as described in Kriest and Oschlies (2015). The model has been implemented in 

both global configurations MIT2.8 (hereafter called noAggMIT2.8) and in the finer resolution ECCO1.0 (noAggECCO1.0). 

2.3.2 Adjustment of biogeochemical model parameters 5 

Introducing aggregates and a dynamic particle flux profile to the global model MOPS has a strong impact on biogeochemical 

model dynamics. Starting from parameter values of the calibrated model setup (without aggregation) of Kriest (2017), we 

calibrated parameters relevant for phytoplankton and zooplankton growth and turnover as described in Kriest et al. (2017) 

against observed global distributions of nutrients and oxygen. 

Parameters to be calibrated for this new model were the light and nutrient affinities of phytoplankton, zooplankton quadratic 10 

mortality, detritus remineralisation rate, particle stickiness and the exponent 𝜂 that relates particle sinking speed to particle 

size (see Table 2). After introduction of particle aggregation, the calibrated nutrient affinity of phytoplankton is now much 

higher, with a half-saturation constant for phosphate of KPHY = 0.11 mmol PO4 m-3 instead of 0.5 mmol PO4 m-3 in Kriest et 

al. (2017), very likely because the optimisation compensates for the higher export (and lower recycling) of phosphorus and 

nitrogen. Possibly for the same reason, detritus remineralisation rate in the optimised model is increased from 0.05 d-1 to 0.25 15 

d-1. Light affinity of phytoplankton deviates less from the value in the model without particle aggregation, but the quadratic 

mortality of zooplankton is strongly reduced (1.6 (mmol P m-3)-1 instead of 4.55 (mmol P m-3)-1); the latter might be regarded 

as an attempt of the optimisation to reduce the export of organic matter from the euphotic zone. The two parameters that 

affect aggregation and particle sinking remained at moderate values of α = 0.42 and 𝜂	 = 0.72, i.e. close to those applied in 

earlier model experiments with aggregation (e.g. Kriest, 2002). The residual cost function JRMSE of this pre-calibrated model 20 

with aggregation was 0.472, i.e. lower than noAggMIT2.8 (JRMSE = 0.529), but somewhat higher than achieved with a model 

version optimised against nutrient and oxygen concentrations (Kriest, 2017), that resulted in a misfit of JRMSE = 0.439. In the 

sensitivity experiment described below we will examine, whether this remaining misfit can be reduced even further, and 

evaluate the model sensitivity to changes in the parameters of this highly complex module. 

2.3.3 Sensitivity experiments at coarse resolution (MIT2.8) 25 

In the coarser model configuration of MOPS, MIT2.8, a first sensitivity study of 36 model simulations with different 

aggregation parameters was performed (see Table 1). We varied the values of four aggregation parameters, which control the 

rate of aggregation and the sinking behaviour of particles. The first parameter is the stickiness a, i.e. the probability that after 

collision two particles stick together, which was set to values of 0.2, 0.5 and 0.8, respectively. The second parameter is the 

maximum particle diameter for size dependent aggregation and sinking, DL, set to values of 1, 2 and 4 cm. A small value of 30 

DL reduces the maximum possible sinking speed of the detrital pool, and vice versa. Parameter w1 describes the sinking 
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speed of a primary particle with values of 0.7, 1.4 and 2.8 m d-1. One effect of a small value of w1 is that it reduces the loss of 

organic matter from surface layers, and thus has a direct effect on the recycling of nutrients at the surface. At the same time, 

it also affects the maximum possible sinking speed of the entire detritus pool. Finally, the exponent that relates particle 

sinking to diameter, 𝜂, is set to values of either 0.62 and 1.17. A high 𝜂 represents dense particles, and a fast increase of 

particle sinking speed with size, a low value stands for more porous particles, which show only a weak relationship between 5 

size and sinking speed (Kriest, 2002). 

2.3.4 Sensitivity experiments at fine resolution (ECCO1.0) 

The occurrence of aggregates, and their transport to the ocean interior, can furthermore depend on physical dynamics (e.g. 

Kiko et al., 2017). Therefore, in a second step, we repeated some of the experiments presented above in the finer resolution 

version ECCO1.0 to investigate possible improvements at higher resolution. In particular, we repeated all MIT2.8-10 

simulations with 𝜂 = 0.62 in this finer resolution configuration. Additionally, we carried out three more simulations with 𝜂 = 

1.17 but with the smallest DL = 1 cm to prevent particles from sinking through more than one box per time step (see Table 

1). All simulations together lead to 30 model runs in the finer resolution configuration. To compare the ECCO1.0 

simulations directly with results from MIT2.8, we re-gridded the result from ECCO1.0 simulations onto the coarser MIT2.8 

grid. 15 

2.4 Model Assessment and Diagnostics 

Because observational data of particle flux are either limited with regard to space and time (e.g. Gehlen et al., 2006) or are 

combined with assumptions, that yield no clear patterns (Gehlen et al., 2006; Henson et al., 2012; McDonnell and Buesseler, 

2010), this study restricts the model assessment to observations of nutrients and oxygen, in combination with the model fit to 

volume and location of oxygen minimum zones. 20 

2.4.1 Root Mean Squared Error of Tracers 

After a spin-up of 3,000 years into a seasonally cycling equilibrium state, the model results are evaluated in terms of annual 

means of oxygen, phosphate and nitrate. As in previous studies (e.g. Kriest et al., 2017) the misfit is calculated by the 

deviation between simulated results, m, and observed properties taken from the World Ocean Atlas (WOA), o, (Garcia et al., 

2006). The deviations are weighted by volume of each grid box Vi, expressed as the fraction of the total ocean volume VT. 25 

The sum of the weighted deviations is normalised by the observed global mean concentration of each tracer: 

𝐽𝑅𝑀𝑆𝐸 = 𝐽(𝑗)3
𝑗=1 = 1

𝑜𝑗
3
𝑗=1 𝑚𝑖,𝑗 − 𝑜𝑖,𝑗𝑁

𝑖=1
2
∗ 𝑉𝑖
𝑉𝑇

        (1). 

In this equation, j=1,2,3 describes the respective tracer (i.e. PO4, NO3 and O2). N is the total number of model grid boxes and 

oj is the global average observed concentration of each tracer (Kriest et al., 2017). Thus, a low misfit value represents a good 

agreement between model and observations (JRMSE = 0 would be a perfect fit), which enables a prediction about the model 30 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-122
Manuscript under review for journal Biogeosciences
Discussion started: 10 April 2019
c© Author(s) 2019. CC BY 4.0 License.



8 
 

accuracy with regard to these tracers. The model runs with the lowest JRMSE in the coarse and the fine resolution are called 

RMSEMIT2.8* hereafter and RMSEECCO1.0*, respectively. 

2.4.2 Fit to oxygen minimum zones 

To evaluate the extent and location of OMZs, we follow the approach of Cabré et al. (2015) by calculating the overlap 

between modelled and observed (Garcia et al., 2006; hereafter referred to as “WOA”) OMZs. As several marine processes 5 

are oxygen-dependent but have heterogeneous criteria for their minimum oxygen threshold, in this study, the OMZs are 

calculated for different oxygen threshold concentrations, C. Therefore, low-oxygen waters are characterised as O2 < c, with c 

ranging from 0 to 100 mmol O2 m-3. To calculate the overlap between simulated and observed OMZs, we use the following 

equation (Sauerland et al., accepted): 

𝐶 = A∩(C)
A∪(C)

= 	 A∩(C)
AE C F	AG C %	A∩(C)

          (2). 10 

In this equation, 𝑉∩ 𝑐  is the volume of overlap of suboxic waters between model and observations, with regard to the 

defined oxygen threshold concentration c. This overlap is divided by the union (total volume of low-oxygen waters occupied 

in the model or in the observations) and results in a value between 0, equal to zero overlap between model and observations, 

and 1, which represents an optimal overlap. To adjust the scale to JRMSE, we calculated: 

𝐽𝑂𝑀𝑍 = 1 − 𝐶            (3). 15 

In this equation, JOMZ varies between zero and one. Consequently, the scale of JOMZ is equivalent to the scale of JRMSE, which 

implies that a low misfit corresponds to a good agreement between model and observational data and vice versa. The model 

simulations with regard to lowest JOMZ are called OMZMIT2.8* and OMZECCO1.0* hereafter. In calculating the overlap, we 

distinguish between the global ocean and the Pacific as well as the Atlantic Ocean. 

 20 

2.4.3 Estimation of particle flux length scale b 

To investigate, if, and how, the model reproduced observed maps of the particle flux length scale, b derived by Marsay et al. 

(2015) and Guidi et al. (2015), we log-transformed the simulated, annual average flux of particulate organic matter as a 

function of depth and carried out a linear regression of these values. Highest b values (most positive) correspond to short 

particle flux length scale, i.e. many small particles, and thus a low sinking speed, shallow remineralisation and high oxygen 25 

consumption in shallow waters. For the reference models without aggregation these global maps should, in areas with 

shallow mixed layers, show spatially uniform values, as imposed by the model’s prerequisites. Deviations from uniform 

values can either be ascribed to oxidant limitation of remineralisation (see above model description), or from physical 

processes such as mixing or upwelling, which can result in an additional vertical transport of particles.  

The parameterisation of the aggregation model assumes a constant sinking speed for an upper size limit DL (see above), and 30 

therefore average particle sinking speed will remain constant below some depth. Also, the assumption of a particle size 
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spectrum, size dependent sinking and constant remineralisation will result in particle flux profiles that do not fully agree with 

those predicted by a power law (see Kriest and Oschlies, 2008). Thus, because the aggregation model’s prerequisites do not 

fully agree with a continuous increase of sinking speed with depth, we confine the regression of log-transformed particle flux 

to a vertical range between 100-1000 m, where the aggregation model still shows an increase of average sinking speed with 

depth (see also Kriest and Oschlies, 2008). 5 

3. Results 

3.1 Global patterns of particle flux profiles 

As could be expected, noAggECCO1.0 shows almost no spatial pattern of b, with values around the prescribed, nominal value 

of b = 0.858 (global mean: 0.64; Fig. 1a; please note the different scaling in (a) and (d)) indicating long particle flux length 

scales and deep remineralisation. Regions with particularly low diagnosed b values (< 0.2) result either from decreased 10 

remineralisation in OMZs (e.g. eastern tropical Pacific OMZ) or are found in areas of deep mixing (e.g. western boundary 

currents), where vertical mixing increases the inferred particle flux length scales. However, for the best simulation with 

regard to the sum of JRMSE and JOMZ of the aggregation model (called ECCO1.0* hereafter) we find highest (most positive) b 

values, corresponding to short particle flux length scales, or shallow remineralisation, in the oligotrophic subtropical gyres. 

In contrast, b is smallest in the equatorial upwelling and in the shelf regions (close to zero; Fig. 1d and g). This pattern is in 15 

accordance with the observed spatial pattern derived by Marsay et al. (2015). In our model, this very deep flux penetration (b 

close to zero) in the equatorial upwelling can be explained with low oxygen concentrations, which reduce the 

remineralisation rate. In contrast, when calibrating our model in another simulation with oxygen-independent 

remineralisation, we find a b close to the prescribed b value of 0.858 (Fig. S1). 

In the subtropical and the equatorial region, the spatial variance (marked transparent red; Fig 1g) of model-derived b values 20 

is quite high, which is caused by spatial variations in the physical environment, i.e. permanently stratified subtropical gyres 

and upwelling regions with low oxygen and reduced remineralisation. However, besides ECCO1.0* the four best model 

simulations with respect to the sum of JRMSE and JOMZ (simulation #14, #17, #28 and #29; Table 1) show essentially the same 

pattern of b (Fig. S2), although these four simulations exhibit quite different parametrisations (see Table 1). 

Regions with high (strongly positive) b values are characterised by a high spectral slope of the size distribution and therefore 25 

a high abundance of small particles, leading to slow sinking speeds (not shown) and low export rates in ECCO1.0* (Fig. 1f). 

ECCO1.0* simulates highest export rates at high latitudes and in the upwelling region and lowest export rates in the 

subtropical gyres (Fig. 1f and i). Although the spatial pattern of export rates is similar for both model simulations with and 

without aggregation, ECCO1.0* shows a 1.6-fold higher global mean export rate (161 mmol P m-2 a-1) than noAggECCO1.0 (98 

mmol P m-2 a-1). In ECCO1.0* export rates show a higher regional variability than in noAggECCO1.0 (Fig. 1c, 1f and 1i), 30 
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which is due to blooms in the high latitudes during summer season accelerating the size-dependent aggregation and thus the 

export signal. 

The oxygen concentration at a depth of 100 m shows the same global pattern in both simulations, with high oxygen 

concentrations at high latitudes, and decreasing concentrations towards the equator (Fig. 1b and 1e). However, the oxygen 

concentration at high latitudes is slightly higher in noAggECCO1.0 than in ECCO1.0* (Fig. 1h). Moreover, the global suboxic 5 

volume (for a criterion c = 50 mmol m-3) in ECCO1.0* (7.3x1016 m3) is larger than in noAggECCO1.0 (3.7x1016 m3). 

Comparing our model results with the dataset of Garcia et al. (2006), which yields a volume of 5.6x1016 m3, we find an 

underestimation of the suboxic volume for noAggECCO1.0 of 34% and an overestimation for ECCO1.0* of 30%. 

3.2 Representation of oxygen minimum zones 

The finer resolution and data-assimilated circulation of ECCO1.0 in general improves the representation of OMZs in 10 

comparison to MIT2.8 with regard to the overlap of OMZs for a criterion of 50 mmol m-3 (Fig. 2). Both simulations without 

explicit particle dynamics, namely noAggMIT2.8 and noAggECCO1.0, clearly underestimate the extent of the OMZ at a depth of 

500 m and 1000 m for an OMZ-criterion of 50 mmol m-3 in the Pacific basin (Fig. 2). The simulations including particle 

dynamics that are best with respect to the OMZ metric, OMZMIT2.8* and OMZECCO1.0*, exhibit a larger OMZ area for both 

resolutions (Fig. 2). Despite the improved representation of OMZs, all models including the particle aggregation module still 15 

tend to merge the OMZs of the Northern Hemisphere (NH) and the Southern Hemisphere (SH) at a depth of 500 m, which 

does not agree with the well separated northern and southern OMZ shown by the observations (Fig. 2 and Fig. S3). As 

reflected in a plot that shows the extent of OMZ in the northern and southern hemisphere, similar to Fig. 1a and 1b of Cabre 

et al. (2015), all models fail to represent the double structure of OMZ north and south of the equator. However, in our model 

the northern Pacific OMZ is fitted quite well (Fig. 2 and Fig. S3). 20 

Aggregation improves the representation of OMZs with respect to a criterion of c = 50 mmol m-3 compared to the 

simulations without aggregation for both resolutions in the NH, but not in the SH (Fig. 3). In noAggECCO1.0 the OMZ 

simulated in the NH is too small and too shallow (Fig. 3a). Even though OMZECCO1.0* tends to underestimate the suboxic area 

between ~700 m and 1300 m, it shows a considerably higher overlap of model results and observations compared to 

noAggECCO1.0 (Fig. 3b). However, in the SH noAggECCO1.0 represents the OMZs better than OMZECCO1.0*, which tends to 25 

overestimate the suboxic area in this hemisphere. In addition to differences caused by particle dynamics, circulation affects 

the performance in the two hemispheres: OMZECCO1.0* represents the highest overlap between ~100 and 500 m depth in the 

SH but this is surpassed by OMZMIT2.8* between 500 and 900 m depth. In the NH, OMZECCO1.0* outcompetes OMZMIT2.8* 

between 300 and 900 m depth as far as overlap is concerned (Fig. 3b). 

However, the improvement of the representation of OMZs in the simulations with aggregation depends on the criterion for 30 

OMZs. As could be expected, a higher oxygen threshold for the OMZ-criterion enhances the overlap between model 

simulations and observational data (Fig. 4). As for the fixed criterion of 50 mmol m-3, globally and in the Pacific the better 

circulation and finer resolution of ECCO1.0 improves the overlap for varying OMZ-criterions in comparison to MIT2.8 (Fig. 
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4a and c). While the OMZECCO1.0* simulation reaches globally a maximum overlap of 65.9% (for c = 100 mmol m-3), 

OMZMIT2.8* culminates only in a maximum of 58.7% for the same criterion.  

In the Pacific basin OMZECCO1.0* reaches an agreement with observations of 19.9% overlap for a criterion of 20 mmol m-3 

(Fig. 4c). The overlap then increases strongly until the 100 mmol m-3 criterion (68.2%). It is noteworthy that globally and in 

the Pacific area noAggECCO1.0 outperforms all models for a criterion of 20 mmol m-3, where it shows an agreement of almost 5 

31%. The Atlantic basin shows an inverse trend (Fig. 4b): here, OMZMIT2.8* represents the OMZ better than OMZECCO1.0* 

(26% and 12.2%, respectively, for a criterion of 70 mmol m-3). Further, in this region, the ECCO1.0 model that performs best 

with respect to RMSE (RMSEECCO1.0*) outperforms OMZECCO1.0* over the full range of criteria (Fig. 4b). Thus, there are large 

regional differences in the model's response to different circulations and particle dynamics. Because the dataset of 

observations used for comparison does not contain any concentrations below 30 mmol m-3 in the Atlantic, all models show 10 

no overlap at all in this basin. 

In summary, the improvement of model fit with regard to JOMZ depends not only on particle dynamics, but also on the 

definition of OMZs (i.e. the OMZ criterion c), the model resolution as well as the region considered (Fig. 2, Fig. 3, Fig. 4). 

3.3 Sensitivity of nutrient and oxygen distributions to aggregation parameters 

Table 3 shows that in six cases out of nine (MIT2.8), a model that represents porous particles (𝜂 = 0.62) outperforms the 15 

corresponding model with a sinking speed that describes rather dense, cell-like particles (𝜂 = 1.17). The same applies for the 

higher resolution (ECCO1.0), where in two cases out of three a porous parameterisation improves the fit with regard to JRMSE 

(see Table 1). Also, both JRMSE and JOMZ of the “dense” parameterisations are never among the best five models with respect 

to either metric (see Table 1). Thus, in the following we focus on model simulations with 𝜂 = 0.62. 

Among the sensitivity experiments performed, the best model with respect to JRMSE (hereafter referred to as RMSEMIT2.8*) is 20 

characterised by an intermediate stickiness α of 0.5, the largest diameter for size-dependent aggregation and sinking, DL, of 4 

cm and a minimum particle sinking speed w1 of 2.8 m d-1, representing a rather fast organic matter transport to the ocean 

interior. However, many other models with medium stickiness perform about equally well (Fig. 5, upper mid panel). Models 

with lower stickiness perform best with slow minimum sinking speed w1 and a large maximum size DL=4 for size-dependent 

sinking and aggregation (Fig. 5, upper left panel). In contrast, a large stickiness (which facilitates the formation of aggregates 25 

in surface layers) requires either small w1 or DL, which reduces the export of particles out of the euphotic zone, and into the 

ocean interior. 

Oxygen concentrations contribute most to the global JRMSE (Kriest et al., 2017). The influence of oxygen on global tracer 

misfit is dominated by the deep concentrations (Fig. S4), and thus to a large extent by the large-scale circulation. The OMZs, 

because of their small regional extent, contribute less to the global misfit (Kriest et al., 2017). This is confirmed by Fig. S4 30 

(d, e, f), showing that, in the eastern tropical Pacific region deep (>300 m) mesopelagic and deep oxygen concentrations 

scatter strongly among the different models (Fig. S4 a), despite their good global match in shallow waters. Likewise, 

although global mean profiles of nutrients are quite similar among the different circulations, and agree quite well with 
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observations, their concentrations scatter strongly in the eastern tropical Pacific. Most of the simulations tend to 

underestimate the oxygen and nitrate concentration in this region (Fig. S4 a and c). Too low oxygen concentrations lead to 

too high denitrification and thus widespread nitrate depletion in the eastern tropical Pacific region, which explains the 

simultaneous underestimate of oxidants in this region. 

To sum up, a moderate stickiness enhances the chance of a good model fit to nutrients and oxygen (JRMSE), but there is no 5 

unique trend for the parameters or combination of parameters, with the exception of the exponent that relates particle sinking 

speed to its size: here, we find an advantage of a parameterisation characteristic for porous marine aggregates. In the optimal 

scenario, the misfit is less than that of a model without aggregates, when this is simulated with fixed reference parameters 

(noAggMIT2.8). Because of the small spatial extent of OMZs, the model fit to nutrient and oxygen concentrations is mainly 

caused by the large-scale tracer distribution, even if some models show a considerable mismatch to these tracers in OMZs. 10 

The pattern for JRMSE does not change very much when applying a different, higher resolved and data assimilated circulation 

(see Table 1 and Fig. 6). Now, the optimal model (RMSEECCO1.0*) is improved with respect to JRMSE by about 13%, but many 

other, almost equally good solutions, can be found with moderate to high stickiness. Introducing aggregates in this coupled 

model system does not improve the model fit to nutrient and tracer concentrations, as evident from the comparison of 

RMSEECCO1.0* (JRMSE = 0.431) against a model without aggregate dynamics (JRMSE = 0.426; Table 1). The lack of 15 

improvement can likely be explained by the fact that the biogeochemical parameters of MOPS with particle dynamics were 

adjusted in the circulation of MIT2.8, and thus not optimal for the model when simulated in the physical dynamics of 

ECCO1.0. 

The sensitivity to the metric for OMZs differs from the one to the metric for nutrients and oxygen. Now, for the fit to oxygen 

minimum zones (JOMZ), a large stickiness, α, in combination with DL of 2 cm and slow to moderate minimum sinking speed 20 

w1 are of advantage (Fig. 5 and Fig. 6). Thus, a high rate of aggregation, and a maximum sinking speed of about 50-100 m d-

1 improves the model with respect to OMZs. This is also evident from comparison of the optimal models (OMZMIT2.8* and 

OMZECCO1.0*) to models without aggregate dynamics (noAggMIT2.8 and noAggECCO1.0), shown in Fig. 3 and Fig. 4 and 

subsection 3.2. Nevertheless, even the models that perform best with respect to JOMZ underestimate mesopelagic oxygen 

when averaged over the eastern tropical Pacific (Fig. S4 a). 25 

The sensitivity patterns with regard to JOMZ among both configurations MIT2.8 and ECCO1.0 diverge considerably from 

each other, which is in contrast to the patterns for JRMSE noted above (compare Fig. 5 with Fig. 6). Thus, model performance 

with respect to JOMZ seems to depend much more on circulation and physical details than the large-scale dynamics reflected 

in JRMSE. 

4. Discussion 30 

In our sensitivity study, we used a similar parameterisation of particle aggregation as Oschlies and Kähler (2004) applied in 

their biogeochemical-circulation model for the North Atlantic Ocean. The difference compared to our model consists in: 
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aggregates, which are composed of phytoplankton and detritus, the parameterisation, which is based on dense particles 

(dSAM, Kriest 2002) and a biogeochemical model, which is different. We found high values for the spectral slope of the size 

distribution (i.e. high abundance of small particles) and thus a low particle sinking speed in the subtropical gyres (Fig. S5), 

which corresponds with the findings by Oschlies and Kähler (2004) and Dutay et al. (2015). This, in turn, leads to highest b 

values in the oligotrophic subtropical gyres and lowest ones (close to zero) in the high latitudes and the upwelling region, 5 

and agrees with the pattern as shown in Marsay et al. (2015). These findings imply that such a b pattern cannot only result 

from temperature dependent remineralisation - as suggested by Marsay et al. (2015) - but also from particle dynamics and 

temperature-independent remineralisation. Beside particle dynamics, the low b values in upwelling regions found in our 

study (Fig. 1d), are also caused by the suboxic conditions, which suppress remineralisation. Such a tight link between 

suboxia and deep flux penetration is supported by the observations reported by Devol and Hartnett (2001) and Van Mooy et 10 

al. (2002). 

However, it should be noted that the range of b values in our model is larger than in most empirical studies (Berelson, 2001; 

Buesseler et al., 2007; Martin et al., 1987; Van Mooy et al., 2002). This is due to the fact that our model simulates too many 

small particles because other processes that modify the size spectrum, like the egestion of large fecal pellets by zooplankton, 

are not considered, resulting in a too steep particle distribution. 15 

As we used on the one hand two different model grid resolutions and on the other hand varied model parameterisations with 

regard to particle aggregation, changes in the location and extension of OMZs and the distribution of tracers within each 

resolution are exclusively driven by the aggregation parameters. A good parameterisation of particle aggregation parameters 

can therefore have a major influence on the representation of OMZs. Furthermore, a higher model resolution improves the 

depiction of equatorial currents and therefore the oxygen transport (Cabré et al., 2015; Duteil et al., 2014), which, in turn, 20 

results in an improved representation of OMZs in the finer resolution configuration, ECCO1.0, compared to the coarser 

resolution, MIT2.8. However, as physical processes at smaller scales affect the simulated shallow to mesopelagic oxygen 

and nutrient concentrations for the eastern tropical Pacific (Getzlaff and Dietze, 2013), the finer (1°x1°) resolution of 

ECCO1.0 is not sufficient to resolve the details of the equatorial current system (Duteil et al., 2014). This can explain the 

still high residual misfit of these simulations, and the missing double structure of OMZs in the Eastern Tropical Pacific. 25 

Furthermore, results of our sensitivity study confirm that dense particles do not constitute a realistic representation of 

particles, as indicated by Karakaş et al. (2009) and Kriest (2002). Porous particles seem to constitute a more appropriate 

parameterisation for good model fit with regard JRMSE and JOMZ (Table 1). Although the observed stickiness ranges between 

almost zero and one (e.g. Alldredge and McGillivary, 1991; Kiørboe et al., 1990), in our study a moderate stickiness, 

a, between 0.5 and 0.8 leads the model towards a good fit to observed nutrients, oxygen and OMZs. 30 

In summary, our study supports the results of Schwinger et al. (2016), who found an improved representation of nutrient 

distribution and OMZs when switching from constant particle sinking to either a power law or particle dynamics, similar to 

those presented here. However, the difference between the two latter schemes in that study were only small. A more 

extensive search of the parameter space within a given circulation may have further improved that model. Additionally, we 
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optimised noAggMIT2.8 against the same misfit function as MOPSoD of Kriest et al. 2017 and found that even though 

including an aggregation module improves our model, utilising an appropriate parameter optimisation would further enhance 

our model fit. Thus, without a comprehensive calibration of biogeochemical and aggregation parameters there only seems to 

be a slight advantage when using this more complex model of particle dynamics. 

Finally, we found a steep particle size spectrum in the subtropical oligotrophic region (Fig. 1d), which does not agree with 5 

observational data. Potentially, there are processes taking place, which are not considered in our model i.e. particle 

repackaging and active transport by zooplankton (vertical migration) (Kiko et al. 2017) based on a modified food web. Thus, 

particle aggregation seems not to be sufficient for a correct representation of the particle size spectrum. 

5. Conclusion and Outlook 

Najjar et al. (2007) applied different model circulations to the same biogeochemical model, and found that that physical 10 

processes are an important factor for modelling marine biogeochemistry. Our study furthermore showed that also 

biogeochemical parameterisations - in particular, those related to particle flux - can have an important impact on the 

representation of dissolved inorganic tracers, in line with earlier studies (e.g. Kriest et al., 2012; Kwon and Primeau, 2006, 

2008). These earlier studies applied and varied a globally uniform particle flux length scale, whereas it has been suggested 

that this parameter should vary in space and time (e.g. Guidi et al., 2015; Marsay et al., 2015). The sensitivity study 15 

presented here constitutes a first approach to systematically estimate the impact of marine particle aggregation - and thus a 

spatially and temporally variable flux length scale - on the location and extent of OMZs as well as the representation of 

phosphate, nitrate and oxygen under steady-state conditions in a global three-dimensional biogeochemical ocean model. 

We have shown that the assumptions inherent in the model confirm the general pattern of the spatial map of b values 

proposed by Marsay et al. (2015) (Fig. 1a and d). This, in turn, shows that the pattern of Martin’s b cannot only be depicted 20 

by a POC flux dependent on temperature but also by simulating explicit particle dynamics. 

We furthermore found that even though there are still a lot of gaps in understanding several processes e.g. the variation of 

export rates, particle stickiness and particle flux profile over space and time, as well as the link between particle diameter 

and sinking speed, the comparisons against observational data show a trend towards a model improvement by integrating 

particle dynamics (Table 1). While the parameterisation of aggregation leads the model towards an improved fit to OMZs for 25 

both model resolutions, this increase in model fit with regard to phosphate, nitrate and oxygen is only detectable in the 

coarse resolution MIT2.8, but not in the finer resolution and data-assimilated circulation of ECCO1.0. Moreover, model 

simulations show that besides effects of grid resolution, the model fit with regard to JRMSE and JOMZ is mainly driven by the 

particles’ porosity. Our results indicate that a best fit to both, tracers as well as OMZs (50 mmol O2 m-3 criterion), is 

achieved by parameterising porous particles in combination with an intermediate to large maximum particle diameter for size 30 

dependent aggregation and sinking, a moderate to high stickiness ranging between 0.5 and 0.8 and an intermediate to high 

initial sinking speed ranging between 1.4 and 2.8 m d-1 (Fig. 5). The strong sensitivity of the model fit to aggregation 
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parameters may point towards the importance of a spatially and temporally varying flux length scale; however, they also 

show, that the dynamics of the model depend strongly on the assumptions we make with respect to particle properties and 

processes. 

Finally, we have shown that uncertainties in the parameterisation of particle aggregation remain, leading to the inference that 

dissolved inorganic tracers offer only insufficient observational constraints for global particle parameterisation. Therefore, 5 

for an accurate representation it will be necessary to calibrate the model not only against observed phosphate, nitrate, oxygen 

distributions and volume and location of OMZs (Sauerland et al., accepted) but also against number and size of particles, 

using comprehensive datasets of observations (as in Guidi et al., 2015). 

 

Code and data availability 10 

The source code of MOPS including the aggregation module coupled to TMM as well as the model output are available at: 

https://data.geomar.de/thredds/catalog/open_access/niemeyer_et_al_2019_bg/catalog.html. 
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Tables 

Table 1: Model runs of sensitivity study, their parameter combinations and the calculated misfit of tracers (JRMSE) and OMZs 
(JOMZ) for MIT2.8 and the ECCO1.0 configurations. The best simulations with regard to RMSEMIT2.8, RMSEECCO1.0, OMZMIT2.8 
and OMZECCO1.0 are highlighted in red (JRMSE) and blue (JOMZ). OMZ is defined as 50 mmol m-3. 5 

Run 𝜂 𝛂 w1 DL wmax 
JRMSE 

MIT2.8 
JRMSE 

ECCO1.0 
JOMZ 

MIT2.8 
JOMZ 

ECCO1.0 

1 0.62 0.2 0.7 1.0 33 0.894 0.631 0.817 0.754 

2 0.62 0.2 0.7 2.0 51 0.730 0.499 0.791 0.739 

3 0.62 0.2 0.7 4.0 78 0.531 0.440 0.817 0.710 

4 0.62 0.2 1.4 1.0 66 0.938 0.735 0.836 0.767 

5 0.62 0.2 1.4 2.0 101 0.823 0.640 0.805 0.748 

6 0.62 0.2 1.4 4.0 156 0.655 0.535 0.791 0.736 

7 0.62 0.2 2.8 1.0 132 1.033 0.879 0.919 0.844 

8 0.62 0.2 2.8 2.0 203 1.032 0.877 0.919 0.844 

9 0.62 0.2 2.8 4.0 312 1.030 0.874 0.817 0.845 

13 0.62 0.5 0.7 1.0 33 0.714 0.510 0.771 0.737 

14 0.62 0.5 0.7 2.0 51 0.561 0.441 0.730 0.601 

15 0.62 0.5 0.7 4.0 78 0.618 0.567 0.919 0.585 

16 0.62 0.5 1.4 1.0 66 0.603 0.457 0.778 0.721 

17* 0.62 0.5 1.4 2.0 101 0.508 0.443 0.759 0.580 

18 0.62 0.5 1.4 4.0 156 0.848 0.627 0.919 0.652 

19 0.62 0.5 2.8 1.0 132 0.775 0.693 0.828 0.760 

20 0.62 0.5 2.8 2.0 203 0.570 0.566 0.805 0.745 

21 0.62 0.5 2.8 4.0 312 0.493 0.459 0.817 0.737 

25 0.62 0.8 0.7 1.0 33 0.690 0.495 0.748 0.719 

26* 0.62 0.8 0.7 2.0 51 0.570 0.465 0.723 0.551 
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27 0.62 0.8 0.7 4.0 78 0.667 0.622 0.936 0.644 

28 0.62 0.8 1.4 1.0 66 0.522 0.431 0.758 0.605 

29 0.62 0.8 1.4 2.0 101 0.661 0.560 0.620 0.578 

30 0.62 0.8 1.4 4.0 156 1.011 0.791 0.936 0.814 

31 0.62 0.8 2.8 1.0 132 0.501 0.456 0.788 0.727 

32 0.62 0.8 2.8 2.0 203 0.682 0.443 0.708 0.728 

33 0.62 0.8 2.8 4.0 312 1.004 0.597 0.805 0.656 

10 1.17 0.2 0.7 1.0 1007 0.780 0.654 0.927 0.868 

11 1.17 0.2 1.4 1.0 2013 0.945  0.936  

12 1.17 0.2 2.8 1.0 4027 1.028  0.919  

22 1.17 0.5 0.7 1.0 1007 0.606 0.506 0.932 0.927 

23 1.17 0.5 1.4 1.0 2013 0.677  0.912  

24 1.17 0.5 2.8 1.0 4027 0.930  0.911  

34 1.17 0.8 0.7 1.0 1007 0.698 0.521 0.947 0.949 

35 1.17 0.8 1.4 1.0 2013 0.595  0.894  

36 1.17 0.8 2.8 1.0 4027 0.784  0.895  

noAgg     234 0.529 0.426 0.791 0.640 
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Table 2: Model adjustment of biogeochemistry with aggregates compared to Kriest et al. (2017) and new parameters in this study. 

Parameters that 
remain fixed Kriest et al. (2017) this study unit description 

ro2ut 
 

171.7 171.7 mol O2:mol P Redfield ratio 

Subdin 
 

15.8 15.8 mmol NO3 m-3 no denitrification below this level 

Nfix 
 

1.19 1.19 µmol N m-3 d-1 N fixation 

ACkbaco2 1.00 1.00 mmol O2 m-3 half. sat.-constant for oxic 
degradation 

ACkbacdin 31.97 31.97 mmol NO3 m-3 half sat.-constant for suboxic 
degradation 

ACmuzoo 1.89 1.89 1 d-1 max. grazing rate 

Parameters that 
changed compared to 

Kriest et al. (2017) 
    

ACik 
 

9.65 6.52 W m-2 light half-saturation constant 

ACkpo4 0.5 0.106 mmol P m-3 half-saturation constant for PO4 
uptake 

AComniz 
 

4.55 1.6 m3 (mmol P * day)-1 quadratic zooplankton mortality 

detlambda 0.05 0.25 1 d-1 detritus remineralisation rate 

New parameters for 
the aggregation model 
(further modified in 

this study) 
    

SinkExp - 0.7164  exponent that relates particle 
sinking speed to diameter 

Stick - 0.4162  stickiness for interparticle collisions 
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Table 3: Number of simulations with different parameters for DL, α and w1 for the porous (𝜂 = 0.62) and dense (𝜂 = 1.17) particles 
which outperform the corresponding other size. The numbers are given with respect to two different criteria, JRMSE and JOMZ. 

 𝜂 = 0.62 𝜂 = 1.17	 resolution 

JRMSE 6 3 MIT2.8 
JOMZ 8 1 MIT2.8 
JRMSE 2 1 ECCO1.0 
JOMZ 2 0 ECCO1.0 
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Figures 

 
Figure 1: Global maps of b (left panels (a) and (d)), O2 at 100 m (mmol m-2, middle panels (b) and (e)) and export at 100 m (mmol 
P m-2 a-1, right panels (c) and (f)) for noAggECCO1.0 (top panels (a), (b) and (c)) and for the best aggregation model with regard to 5 
the sum of JRMSE* and JOMZ* (simulation #26; panels (d), (e) and (f)). The black line indicates the OMZ for a criterion of 50 mmol 
m-3. Lower panels: Global mean (dotted line) and standard deviation (transparent shaded) of b (panel g), O2 (panel (h)) and export 
(panel (i)) of noAggECCO1.0 (black) and the best aggregation model with regard to the sum of JRMSE* and JOMZ* (simulation #26; 
red). Please note the different scaling for b-values ((a) and (d)). 
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Figure 2: Comparison of Pacific Ocean OMZ (O2 <= 50 mmol m-3) between model simulations and observations. Panels (a) and (b) 
show the OMZ at a depth of 500 m and 1000 m for the coarse resolution, MIT2.8, and panels (c) and (d) for the fine resolution, 
ECCO1.0. 
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Figure 3: Area of OMZ (left panel) and overlap of OMZs between model and observations following Cabre et al. (2015) (right 
panel). In both panels, the left-hand side shows the Southern Hemisphere (0-40 °S), the right shows the Northern Hemisphere (0-
40 °N), plotted against the logarithmic depth. OMZs are defined as regions with O2<50 mmol m-3. 
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Figure 4: Overlap between modelled and observed OMZs (Eq. (2)) for varying criteria c, ranging from 0 < c < 100 mmol m-3) on a 
global scale (left panel), for the Atlantic Ocean (middle panel) and for the Pacific Ocean (right panel). 
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Figure 5: Sensitivity of JRMSE (Eq. (1)); upper panels) and JOMZ (Eq. (3)); lower panels) to minimum sinking speed w1 and 
maximum size DL for the coarse resolution MIT2.8, for three different values of stickiness (left to right), and 𝜂 = 0.62 (“porous” 
particles). The colorbar shows JRMSE and JOMZ (blue = good fit, red = bad fit), normalised by its minimum value across all model 
experiments. Black arrows indicate an improvement of JRMSE or JOMZ with increasing parameter values, while white arrows show 5 
an improvement with decreasing values. 
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Figure 6: As Fig. 5, but for simulations with ECCO1.0. 
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