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H2O strongly influences physical properties of the mantle and its ability to melt or convect 22 

and can trace recycling of surface reservoirs down to the deep mantle1,2. This makes 23 

knowledge of water content in the Earth's interior and its evolution through time crucial to 24 

understanding global geodynamics. Komatiites (MgO-rich ultramafic magmas) result from 25 

high-degree mantle melting at high pressures3  and thus are excellent probes of H2O contents 26 

in the deep mantle.  A significant excess of H2O over elements of similar geochemical 27 

behavior during mantle melting (e.g. Ce) was recently found in melt inclusions in the most 28 

Mg-rich olivine in 2.7 Ga old komatiites from Canada4  and Zimbabwe5. These data were 29 

taken as evidence for a deep hydrated mantle reservoir, probably the transition zone, in the 30 

Neoarchean time. In this paper we confirm the mantle source of this H2O by measurement 31 

of deuterium to hydrogen ratios in these melt inclusions and present similar data for 3.3 Ga 32 

old komatiites from the Barberton Greenstone Belt. Using hydrogen isotopes, we show that 33 

the mantle sources of these melts contained excess H2O which implies that a deep mantle 34 

hydrated reservoir has been present in the Earth's interior at least since the Paleoarchean. 35 

The reconstructed initial hydrogen isotope composition of komatiites is significantly more 36 

depleted in deuterium than all surface reservoirs and typical mantle but resembles that in 37 

dehydrated subducted slabs. Together with a significant excess of chlorine and a temporal 38 

trend of Pb/Ce in the mantle sources of komatiites, these results argue that lithosphere 39 

recycling into the deep mantle, arguably via subduction, started before 3.3 Ga. 40 

 41 

 42 

A common way to determine H2O concentrations in the Earth's mantle is to measure them 43 

in submarine basaltic glasses (quenched and differentiated melts of mantle origin) or in glassy melt 44 
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inclusions in early crystallizing minerals of these lavas1,2,6. Because H2O and Ce partition in a 45 

similar way between minerals and melt, the H2O/Ce ratio is independent of both fractionation and 46 

degree of mantle melting and represents that of the mantle source. Most glasses from mantle 47 

derived basalts at mid-ocean ridges and ocean islands show nearly constant H2O/Ce = 200±100 48 

implying a relatively narrow range of H2O concentrations in the modern mantle (Fig. 1a). Magmas 49 

originating over subduction zones gain H2O through dehydration of the subducted slab and have 50 

higher H2O/Ce ratios (Fig 1a). The H2O excess in these magmas positively correlates with the 51 

excess of elements such as Ba and Rb that are concentrated in slab-derived hydrous fluids. 52 

 53 

Melt inclusions in olivine from komatiites of different ages have Ba/Nb ratios similar to 54 

Bulk Silicate Earth (BSE) but much higher H2O/Ce ratios (Fig 1a). Our previous study of melt 55 

inclusions in ca. 2.7 billion-year-old komatiites from the Abitibi4 and Belingwe5 greenstone belts 56 

showed that their primary melts contained moderate water contents (0.2 to 0.6 wt% H2O), but very 57 

large excesses of H2O over Ce. This feature was interpreted to indicate the presence of excessive 58 

H2O in their mantle sources, possibly entrained into the komatiite source as it passed through the 59 

transition zone4. However, some melt inclusions in olivine also show an excess of H2O over Ce 60 

that was thought to originate from diffusive gain of H through the host olivine when the external 61 

pressure of H2O exceeded that inside the inclusion7-9. Such inclusions are identified in figure 1a. 62 

However, the much more melt inclusions display significant H2O depletion (H2O/Ce ratios lower 63 

than for syngeneic submarine glasses on Fig 1a) due to diffusive loss of H through the host olivine, 64 

or by degassing of melt prior to entrapment10,11.  65 

 66 
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Hydrogen isotopes are frequently used to trace the source of H2O in mantle derived 67 

magmas because of apparent disequilibria between deuterium enriched surface reservoirs and 68 

deuterium depleted mantle6. They also efficiently record post-entrapment hydrogen exchange 69 

between melt inclusions and external magma through host minerals as this process changes the 70 

primordial H isotopic composition of melt inclusions because hydrogen (1H) diffuses through 71 

olivine much faster than deuterium (D) changing dD (the deviation in the ratio of D/1H in per mille 72 

relative to the standard ratio in modern seawater, VSMOW) in melt inclusions10-12 and also because 73 

1H and D fractionate between melt and fluid11. The latter processes produce a negative correlation 74 

between the dD and concentration of H2O10,11. Despite these changes, hydrogen isotopes remain 75 

sensitive tracers of the H2O source - mantle, surface reservoirs or recycled material because their 76 

fractionation between minerals and fluid at low and medium temperatures6. 77 

 78 

In this paper, we report the results of an investigation of melt inclusions in high-Mg olivine 79 

phenocrysts in 3.3 billion-year-old komatiites from the Weltevreden Formation in the Barberton 80 

greenstone belt (S. Africa)13,14. We used melt inclusions in olivine rather than bulk rock 81 

compositions because these micro portions of melt were isolated by the host mineral and preserve 82 

original contents of volatile and other highly mobile elements as shown before4,5 and later in the 83 

present study. We analyzed homogenized melt inclusions by electron microprobe for major and 84 

minor elements, by laser ablation ICP-MS for trace elements and by ion probe for H2O contents 85 

(see METHODS). Hydrogen isotopes were analyzed by ion probe in selected melt inclusions (see 86 

METHODS). Here we use these data to constrain the amount and origin of H2O in the mantle 87 

sources of these komatiites. Results are presented in Supplementary Tables 1-3. 88 

 89 
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H2O/Ce ratios of melt inclusions display significant ranges for the same composition of the 90 

host olivine (Fig 1b), a feature we attribute to H2O loss or gain due to diffusion of H through 91 

olivine or melt degassing prior to entrapment. The maximum H2O/Ce ratio in each sample of 92 

Weltevreden komatiites reversely correlates with the Fo content of host olivine. Because olivine 93 

fractionation does not change the H2O/Ce ratio, this suggests assimilation of H2O-enriched 94 

material during crystallization and emplacement of the Weltevreden komatiite. 95 

 96 

Most measured hydrogen isotope compositions (dD) of melt inclusions in Weltevreden and 97 

Abitibi komatiites show very high values that do not match any terrestrial reservoirs (Fig 2). In the 98 

Weltevreden komatiite samples, dD increases with decreasing H2O concentrations along tight 99 

trajectories like those predicted for diffusional H loss10. Moreover, in samples 1521 and 1523, dD 100 

correlates with the inclusion size (Extended data Fig 4). In Belingwe and sample 1521 from 101 

Weltevreden komatiites, the dD values of the melt inclusions with the highest H2O contents are 102 

similar to that of Archean mantle (Fig 2). None of the measured dD values match the highly 103 

negative numbers expected for melt inclusions that gained H by diffusion (Fig 2). These features 104 

preclude diffusive gain of H2O in the studied melt inclusions, and instead suggest partial diffusive 105 

loss of H2O from them. This result is in accord with that of our earlier study of melt inclusions in 106 

olivines from Abitibi komatiites4 in which we used Sc/Y olivine-melt geothermometry to estimate 107 

the depression of crystallization temperatures caused by the presence of H2O. 108 

 109 

The original H isotope composition of the trapped melts was calculated using a model of 110 

diffusional loss of hydrogen10. In our calculations, we used estimated initial H2O contents of the 111 

melt inclusions, their chemical compositions and size. The initial H2O contents were inferred 112 
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assuming that the maximum H2O/Al2O3 ratios in olivine-hosted melt inclusions in each sample 113 

represents the minimum original amount of H2O (see METHODS for further details). The 114 

calculated mean isotopic compositions of hydrogen (Fig. 2) for Belingwe and Abitibi komatiites 115 

and sample 1521 from Weltevreden are depleted in deuterium (dD< -120‰), and have 116 

compositions that differ significantly from any surface H2O reservoirs: in the latter, dD values are 117 

thought to be close to 0 or slightly negative6. In contrast, the reconstructed dD values of melt 118 

inclusions from samples 1523 and 1522 from Weltevreden are more enriched in deuterium and 119 

their dD values are shifted towards those of hydrated rocks at the Earth's surface (sediments, 120 

serpentinites), supporting their surface contamination proposed earlier based on evolution of 121 

H2O/Ce ratio (Fig 1b). 122 

 123 

Our new data, as well as those reported earlier4,5, rule out shallow contamination as a source 124 

for H2O excess in primitive komatiite melts from Abitibi, Belingwe and Weltevreden (except for 125 

samples 1523 and 1522). Also, a primary source of the excess H2O has been confirmed for 126 

Gorgona komatiites15. None of these melts show the geochemical features of magmas from 127 

subduction zones but are relatively enriched in chlorine (Fig 3). This suggests the persistence of a 128 

deep hydrated mantle source from the Paleoarchean to at least the Tertiary (Fig 4a).  129 

 130 

According to recent experimental data on the solidus temperature of fertile peridotite16, 131 

mantle plumes with potential temperatures over 1630oC, as is the case for the sources of Abitibi 132 

and Belingwe komatiites5, must have been partially molten in the mantle transition zone. The 133 

composition of the primary melt for Weltevreden komatiites, calculated assuming equilibrium with 134 

the most Mg-rich olivine (Fo 96, ref13), contains over 31 wt% MgO. This indicates an eruption 135 
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temperature of 1600oC (ca. 0.2 wt% H2O) and a potential temperature over 1800oC [ref]17. The 136 

Weltevreden komatiites are more depleted in moderately incompatible elements than other 137 

komatiites (Fig 3) and are thought to have originated by melting of a refractory source after the 138 

extraction of partial melts in the plume, which also was partially molten in the mantle transitional 139 

zone18. Ringwoodite and wadsleyite in the mantle transition zone have high storage capacities for 140 

H2O and Cl19-21, and a significant amount of water appears to be present at these depths22,23. These 141 

observations support an idea that water and possibly chlorine in these komatiites were entrained 142 

into their plume sources during their passage through the hydrated transition zone4. The presence 143 

of partial melt in the plume at the transition zone depths is thought to be essential for the 144 

entrainment of volatiles4. The absence of H2O excess in the magmas from classical Phanerozoic 145 

mantle plumes like Hawaii or Iceland, which should also pass through the hydrated transition zone, 146 

is attributed4 to their lower temperature, which was not sufficiently high to produce partial melts 147 

at transition zone depths.  148 

 149 

The eruption temperature of Gorgona komatiite24, calculated assuming an initial H2O 150 

content of 0.6 and 17 wt% MgO in the primary melt equilibrium with the most Fo-rich olivine 151 

(Fo91.5) is only about 1360oC. On the other hand, the eruption temperatures of Gorgona picrites, 152 

estimated from olivine compositions up to Fo93.6, and those of the picrites from Tortugal in 153 

another part of the Caribbean large igneous province, are higher (up to 1570°C) and very close to 154 

those of Archean komatiites25,26. This suggests that parts of the plume that produced the Gorgona 155 

and Tortugal picrites were sufficiently hot that they were partially molten too when they passed 156 

through the transition zone. In this case, the H2O and chlorine reported in the Gorgona komatiites 157 

could have been also derived from a hydrated reservoir in the transition zone. 158 
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 159 

The reconstruction of the original isotopic compositions of H in the trapped melts yields 160 

an average dD less than -120‰. This is much more depleted in deuterium than any currently 161 

accepted mantle composition (Fig 4b). Such a low dD could, however, correspond to that of a 162 

lithospheric slab that was initially altered by seawater and then dehydrated during subduction6,27. 163 

This, and the excess of Cl, argue that the H2O and Cl in the transition zone came from reacted 164 

seawater that was transported into the deep mantle by partially dehydrated oceanic lithosphere. 165 

Additional support of this hypothesis is the temporal trend of Pb/Ce in the mantle sources of 166 

komatiites (Fig 4c). The canonical ratio Pb/Ce of mantle derived melts is a sensitive indicator of 167 

the segregation of continental crust from the mantle28,29. Furthermore, because continental crust 168 

production is a multistage process involving shallow recycling of materials processed at or close 169 

to the Earth surface28,29, the complement of this process in the deep mantle requires global 170 

recycling of lithosphere down to the core-mantle boundary. As seen from Figure 4c, the deep 171 

mantle sources of komatiites mimic the proposed global production of continental crust30 with a 172 

highly productive initial stage and a steady-state second stage. In addition, as shown recently31, 173 

the relatively low Si contents of 2.7 Ga old Abitibi komatiites suggest elevated carbon contents in 174 

their mantle sources. Taken together, these results argue that subduction or other process able to 175 

recycle surface materials down to deep mantle operated well before 3.3 Ga in accord with 176 

consequences of recent geochemical and geodynamic modelling implying efficient crustal 177 

recycling in Hadean and Archean eons32.  178 

 179 

The alternative explanation for the origin of deuterium-depleted mantle was recently 180 

proposed based on the data on hydrogen isotope composition of melt inclusions in olivine from ca 181 
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60 million years old Baffin Island picrites33. These authors suggested the existence of primordial 182 

reservoir with low deuterium to hydrogen ratio inherited from the protosolar nebula. However, the 183 

reported melt inclusions do not show Cl and H2O excesses typical for studied komatiites and thus 184 

likely sampled a different reservoir.  185 

 186 
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 201 

Figures captions 202 

 203 

Figure 1. Compositions of glasses and melt inclusions in olivine phenocrysts.  204 

a. H2O/Ce and Ba/Nb ratios of melt inclusions in olivine in basalts (small grey dots), komatiites 205 

(large filled circles) and glasses (coloured fields) from modern basalts (reference34 and GEOROC 206 
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database: http://georoc.mpch-mainz.gwdg.de/georoc/) and from komatiites (references4,5,15,24 207 

and this study). 208 

Coloured fields correspond to submarine glasses of mid-ocean ridge basalts (MORB), ocean island 209 

basalts (OIB), back arc basin basalts (BAB), island arc basalts (IAB), and continental margin basalts 210 

and andesites (CMB). MORB and OIB form in mid-ocean ridges and intraplate settings while IAB 211 

and CMB are directly related to subduction zones, BAB are barely related to subduction zones. 212 

Primitive mantle composition after reference35. Specially marked by empty circle are melt 213 

inclusions in olivine from basalts with gained H by diffusion through host olivine8,9. 214 

b. Compositions of melt inclusions versus Fo content of host olivine for komatiites. Variations of 215 

H2O/Ce ratios of inclusions in olivine of the same composition of host are attributed to post-216 

entrapment diffusional H loss. The increase of H2O/Ce with decreasing Fo of host olivine in 217 

Weltevreden samples is attributed to fractional crystallization plus wall-rock assimilation (AFC), 218 

because olivine fractional crystallization (FC) alone does not change H2O/Ce ratio of the melt. The 219 

composition of hydrated transition zone (empty diamond) is estimated from H2O contents of a 220 

ringwoodite inclusion in diamond22 and the Ce content of primitive mantle35 assuming olivine 221 

Fo90. The composition of mantle (pink field) is from34,35. Errors (2ste) are within symbol size. 222 

 223 

Figure 2. Measured and modelled H2O contents and H isotope compositions of melt inclusions 224 

in olivine from komatiites.  225 

Small symbols - measured compositions; Larger symbols - initial H2O-δD (‰ VSMOW) in melt 226 

inclusions reconstructed using the model of Buchloz et al,(2013) 10 (Methods) and  measured 227 

data.  Error bars correspond to 2 standard errors. Reconstructed compositions for Weltevreden 228 



 11 

komatiite samples 1522 and 1523 are marked by intermediate-sized symbols because they are 229 

likely affected by contamination by surface materials. Dashed and dotted lines correspond to 230 

trajectories due to diffusion H loss or gain through the host olivine10. Compositions of Archean 231 

mantle and surface reservoirs are from reference 6. 232 

 233 

Figure 3. Primitive mantle normalized patterns of incompatible trace elements in trapped 234 

melts in high-Mg olivine phenocrysts from komatiites. 235 

Compositions of melt inclusions in olivine Fo>91 from Gorgona komatiite (average of analyses by 236 

reference15) and Archean komatiites studied in this paper (Extended data Table 1). Incompatible 237 

element concentrations in the primitive mantle are from Hofmann et al, (1988)35; H2O (266 ppm) 238 

and Cl (26 ppm) are from Kentrick et al, (2015)34. 239 

 240 

 241 

Figure 4. The temporal evolution of the komatiite mantle source composition and other Earth 242 

reservoirs.  243 

a. Evolution of H2O/Ce ratio in the mantle. The composition of hydrated transition zone is 244 

estimated using the H2O content of a ringwoodite inclusion in diamond22, the Ce content of 245 

primitive mantle35 (large diamond; assigned an arbitrary age of 1.0 ± 0.5 Ga), and H2O/Ce ratios 246 

of  melt inclusions in olivine (this paper and references4,5,15) and spinel36 in komatiites. The 247 

compositions of Phanerozoic mantle and bulk silicate earth (BSE) are from references34,35. 248 
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b. Evolution of hydrogen isotope composition of mantle. Compositions of BSE, CRUST, MANTLE 249 

and DEHYDRATED LITHOSPHERE and evolution of EARTH SURFACE AND EARTH MANTLE are from 250 

reference6.  251 

c. Evolution of the Ce/Pb ratio in mantle sources of komatiites and the estimated production rate 252 

of continental crust30. BSE composition after35 and Phanerozoic mantle after34. Ce/Pb ratios of 253 

melt inclusions of studied komatiites: Weltevreden 1521-26-9h, Abitibi 819-26-23, Belingwe Z6-254 

8-10; Lapland komatiite - calculated average of the least contaminated  melt inclusions in spinel, 255 

from Hanski and Kamenetsky (2013) 37. 256 

All data plotted with 2 standard errors of mean (not seen if they are smaller than symbol size). 257 

RDL-stands for Recycling of Dehydrated Lithosphere. 258 

 259 
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 365 

METHODS (1764 words) 366 

Samples 367 

Weltevreden Formation komatiites. We selected three samples of 3.3 Ga Weltevreden komatiites 368 

for this study that came from the well-preserved parts of the cumulate zones of three separate flows 369 

(Extended Data Figure 1) of Saw Mill area of the Weltevreden Formation of Barberton Greenstone 370 

Belt, South Africa38. These are the massive komatiite cumulates consisting of partially unaltered 371 

olivine, spinel and clinopyroxene grains of different size and composition. Details of the samples 372 

are as follows: 373 

Sample 1521 (Gary’s flow #2) is an olivine cumulate that contains large (up to 2 mm in diameter) 374 

partially serpentinized euhedral olivine grains with high-Fo contents (93.5–95.5 mol% Fo). The 375 

interstitial groundmass of the rock is made of acicular clinopyroxene (up to 1 mm in diameter), 376 

equant or skeletal spinel (up to 100 µm in diameter, Cr-number up to 81 [Cr/(Cr+Fe3++Ti+Al)] 377 

and the altered volcanic glass. Sample 1522 (Keena’s flow #1) is an olivine cumulate made of 378 

partially serpentinized euhedral olivine grains (1.5 mm in diameter, with a range of olivine 379 

compositions – 93.7-95.1 mol% Fo), acicular (up to 0.5 mm in diameter) clinopyroxene, skeletal 380 

and to lesser extent equant spinel grains (up to 100µm) and interstitial completely altered volcanic 381 
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glass. Sample 1523 (Keena’s flow #2) – olivine cumulate consisting of partially serpentinized 382 

euhedral olivine grains of different size (mainly 1-1.5 mm, with individual grains up to 2.5 mm in 383 

diameter; 93-93.9 mol% Fo). The interstitial groundmass is made of acicular clinopyroxene (up to 384 

1 mm in diameter), equant and skeletal spinel crystals (up to 100 µm in diameter, Cr-number 77-385 

82) and completely altered volcanic glass. 386 

Abundant partially crystallized melt inclusions (few-200 µm in diameter) composed of glass, 387 

olivine, clinopyroxene and spinel occur in the olivine grains (Extended Data Figure 2a). 388 

Abitibi and Belingwe Greenstone Belts. Studied samples M810 (Pike Hill) and Z6 (Zimbabwe) 389 

are described in references [4] and [5] correspondingly.  390 

Analytical methods 391 

To study the compositions of minerals and glasses we used the following in situ analytical 392 

techniques: electron probe microanalysis (EPMA), secondary ion mass-spectrometry (SIMS) and 393 

laser-ablation ICP-MS. 394 

EPMA. Melt inclusions, host olivine and spinel were analysed for major and minor elements on 395 

a JEOL JXA 8230 microprobe at ISTerre in Grenoble, France using methods and protocols 396 

described in ref. [4]. 397 

SIMS. Hydrogen abundance and D/H ratios of olivine-hosted melt inclusions were analysed by 398 

the CAMECA IMS 1280 HR2 ion microprobe at the Centre de Recherches Pétrographiques et 399 

Géochimiques (CRPG, Nancy, France). The inclusion-bearing olivine grains recovered from the 400 

laboratory heating experiments, mounted in epoxy resin beds and analysed for major elements by 401 

EPMA, were carefully re-polished to remove carbon coating, using consequently 1-µm-grain-size 402 

Al2O3 and 0.25-µm-grain-size SiO2 suspensions. The grains were then removed from the epoxy, 403 
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remounted by pressing them into two indium metal mounts, which were ultrasonically cleaned and 404 

stored in a laboratory heating and drying oven at about +70 °C for 24 hours. Immediately after 405 

gold coating and about 24 to 48 hours prior to analysis, the mounts were placed into a sample 406 

storage of the ion probe and held at a pressure of ~10-8 Torr to lower H2O blank.  407 

 408 

The samples were sputtered with a 10-kV, 1.5–3.2-nA, 133Cs+ primary beam focused to a spot of 409 

5–10 µm, rastered to 20 µm × 20 µm during 180 s pre-sputtering (in order to further clean the 410 

sample surface), and to 10 µm × 10 µm during analysis. A normal-incidence electron gun used for 411 

sample charge compensation was tuned by limiting the H- emission from the sample surface to 412 

<1000 cps. A mechanical field aperture of ~1,000 µm was set at the secondary ion image plane 413 

in order to eliminate the secondary ion signal from the spot margins. A liquid-nitrogen cold trap 414 

and a sublimation pump were used to maintain a sample chamber pressure of ≤10-10 Torr during 415 

analyses. An energy slit was centred and opened to 30 eV.  416 

 417 

After pre-sputtering, the intensities of 17O- (counting time 2 s), 16OH- (6 s), 18O- (4 s), 17OH- (4 s) 418 

and 16OD- (20 s) secondary ions were measured in monocollection mode during 30 to 60 cycles 419 

(depending on the H2O concentration in the analysed glasses), using axial electron multiplier 420 

(EM). The EM dead time correction (45 ns measured during the analytical session) was applied to 421 

all masses. A mass-resolving power (M/DM) of ~13,000, suicient to resolve 16OD mass from 16OH2 422 

(M/DM = 11,632) and 17OH (M/DM = 8,739) interferences, was applied.  423 

 424 
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The analyses were performed during one 7-day-long analytical session from 29 January through 425 

4 February, 2018. To establish calibration curves between measured 16OH-/18O- the respective 426 

H2O concentrations, a set of 7 natural and synthetic reference glasses of basaltic composition 427 

(Extended fig. 3a, Supplementary Table 4ab) were analysed at the beginning and throughout the 428 

analytical session, with at least 3 to 7 replicate measurements. In addition, a synthetic forsterite 429 

(4.5 ± 1 µg/g H2O) and a synthetic Suprasil 3002 quartz glass (0.99 ± 0.36 µg/g H2O)39 were 430 

repeatedly analysed during the analytical session to monitor the 16OH- background level. Under 431 

these analytical conditions, typical count rates were ~7.6 ´ 10+5 cps for 16OH- and ~152 cps for 432 

16OD- on ETNA-0 (1.35 wt.% H2O) and ~1.1 ́  10+5 cps for 16OH- and ~23 cps for 16OD- on CL-DR01-433 

5V (0.17 wt.% H2O) reference glasses. For comparison, ~3.3 ´ 10+2 cps for 16OH- and ~0.54 cps 434 

for 16OD- were measured on the Suprasil 3002 quartz glass and ~4.8 ´ 10+2 cps for 16OH- and 435 

~0.57 cps for 16OD- on the synthetic olivine. The calibration curve for H2O yields a relative error 436 

of ±5.1% (Extended Data Figure 3a). 437 

 438 

The hydrogen isotopic compositions are reported as dD values calculated as:  439 

 440 

dD (‰) = [(D/H)sample / (D/H)VSMOW-1] ´ 1000, (1) 441 

where (D/H)VSMOW = 155.76 ´ 10-6   442 

 443 

The measured dD values (dDmeas) are biased by instrumental mass fractionation of H and D 444 

isotopes (IMF, ‰, see details in Supplementary Table 4), which depends on matrix composition40. 445 

To determine matrix effect for our measurements we applied a multivariate linear correlation (p-446 
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value <0.002, R2 ~0.75) between the IMF values and the concentrations of Al2O3 and H2O in the 447 

5 glass standards (60701, 40428, CY82-29-3V, VG-2 USNM111240 and ETNA-0, Extended Data 448 

Figure 3b,c):  449 

 450 

IMF = 439.74711 - 20.34088 ´ H2O + 4.76916 ´ Al2O3  (2) 451 

 452 

Using the equation (2), the matrix effect on the IMF was ceased and the dDtrue values were 453 

calculated as 454 

 455 

dDmeas – IMF = dDtrue       (3) 456 

 457 

The reported error, calculated as average residuals for the obtained regression, is ±6.3‰.  458 

Laser-ablation ICP-MS 459 

Trace-element concentrations in melt inclusions and host olivine were analysed by laser ablation 460 

ICP-MS using an Agilent 7900 quadrupole mass-spectrometer coupled with a 193 nm Excimer 461 

Laser Ablation system GeoLas Pro (Coherent) at the Institute of Geosciences of Kiel University, 462 

Germany. Analyses were performed with 24-µm and 60 to 90-µm spots for inclusions and olivine, 463 

respectively, 10 Hz pulse frequency, and a laser fluence of 5 J cm-2. In total, 41 elements were 464 

measured. Dwell times ranged from 2 ms for major elements to 20 ms for the least abundant trace 465 

elements (e.g., Pb, Th, HREE) with total time per cycle of 0.61 s. The other instrumental conditions 466 

and data reduction scheme were the same as in reference [4]. 467 
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Melt inclusions 468 

Olivine fractions were placed into the platinum capsules and heated at 1 atm pressure in the CO2-469 

H2 gas mixture corresponding to QFM-1 oxygen fugacity in a vertical furnace at Vernadsky 470 

Institute in Moscow, Russia41 in order to homogenize the partially crystallized melt inclusions. 471 

Samples were heated to 800°C for 5 min to exhaust the atmosphere gas then the experimental 472 

temperature was raised to 1450-1520°C for 5 min. Olivine grains were then quenched, mounted in 473 

epoxy and polished to expose the glassy melt inclusions on the surface. Though the melt inclusions 474 

contain a shrinkage bubble (Extended Data Figure 2b-d) some of them were completely 475 

homogenized (Extended Data Figure 2e,f). The melt inclusions that were analysed were larger than 476 

20 µm in diameter because smaller inclusions commonly demonstrate bias in their chemical 477 

compositions due to the boundary layer effects. Melt inclusions that had been altered and cracked 478 

before or during the experiment were identified by the low S concentrations (below 100 ppm) and 479 

were excluded.  480 

The composition of the glasses of melt inclusions are commonly modified by the Fe-Mg 481 

diffusional exchange with the olivine hosts and by the olivine crystallization on the walls of the 482 

melt inclusions42. Thus, the measured compositions were corrected using the reverse Fe-Mg 483 

exchange43,44 and applying the olivine-melt equilibrium model45 and the estimated FeO contents 484 

of the trapped melts. For the Weltevreden samples the FeO contents of the included melts were 485 

estimated as a function of Fo contents of equilibrium olivine through modeling the crystallization 486 

of random spinifex komatiite KBA 12-10 [46], which is suggested to represent the initial magma 487 

composition. The original trapped melt compositions of the Belingwe and Abitibi komatiites were 488 

reconstructed as described in [4] and [5]. 489 
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Hydrogen isotope modelling. 490 

Hydrogen isotope compositions of melt inclusions indicate H loss from inclusions to external 491 

system by volume diffusion through host olivine (Figure 2; Extended data Figure 4). In order to 492 

reverse this process and estimate the initial isotope composition of hydrogen the initial content of 493 

H2O in melt inclusions is required to be known. These concentrations were inferred assuming that 494 

the maximum H2O/Al2O3 ratios in olivine-hosted melt inclusions in each sample represent the 495 

minimum original amount of H2O. We use the Al2O3 content of the trapped melt inclusions as a 496 

reference because being incompatible with olivine it mimics perfectly the olivine crystallization 497 

trend (Extended Data Figure 5a). Thus, the ratio of H2O (other component incompatible with 498 

olivine) to Al2O3 has to be constant during olivine crystallization and could decrease due to H loss 499 

from inclusion. Corrected for H loss initial H2O contents of trapped melt inclusions of the 500 

Weltevreden komatiites also yield olivine control trends for each sample but show significant 501 

difference between samples (Extended Data Figure 5b).   502 

The original H isotope composition of the trapped melts was calculated using a model of 503 

diffusional loss of hydrogen14. In our calculations, we used estimated initial H2O contents of the 504 

melt inclusions, their chemical compositions and sizes. The external pressure and H2O content 505 

were assumed to be 1 bar and 0%, the size of olivine crystals was taken as 1 mm, and the 506 

temperature as 1400oС, oxygen fugacity QFM-1. 507 

Hydration of melt inclusions by diffusional gain of H was modelled using the same protocol14, but 508 

assuming external pressure and H2O contents of 100 bars and 0.5 wt% respectively, inclusion size 509 
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of 50 µm in diameter, composition of melt inclusion as 1521-26-9h and different initial water 510 

concentrations of melt inclusions.  511 

 512 
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Figure 1. Compositions of glasses and melt inclusions in olivine phenocrysts.  

a. H2O/Ce and Ba/Nb ratios of melt inclusions in olivine in basalts (small grey dots), komatiites (large filled circles) and glasses 
(coloured fields) from modern basalts (reference34 and GEOROC database: http://georoc.mpch-mainz.gwdg.de/georoc/) and from 
komatiites (references4,5,15,24 and this study). 
Coloured fields correspond to submarine glasses of mid-ocean ridge basalts (MORB), ocean island basalts (OIB), back arc basin 
basalts (BAB), island arc basalts (IAB), and continental margin basalts and andesites (CMB). MORB and OIB form in mid-ocean 
ridges and intraplate settings while IAB and CMB are directly related to subduction zones, BAB are barely related to subduction 
zones. Primitive mantle composition after reference35. Specially marked by empty circle are melt inclusions in olivine from basalts 
with gained H by diffusion through host olivine8,9. 
  
b. Compositions of melt inclusions versus Fo content of host olivine for komatiites. Variations of H2O/Ce ratios of inclusions in 
olivine of the same composition of host are attributed to post-entrapment diffusional H loss. The increase of H2O/Ce with 
decreasing Fo of host olivine in Weltevreden samples is attributed to fractional crystallization plus wall-rock assimilation (AFC), 
because olivine fractional crystallization (FC) alone does not change H2O/Ce ratio of the melt. The composition of hydrated 
transition zone (empty diamond) is estimated from H2O contents of a ringwoodite inclusion in diamond22 and the Ce content of 
primitive mantle35 assuming olivine Fo90. The composition of mantle (pink field) is from34,35. Errors (2ste) are within symbol size. 
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Figure 2. Measured and modelled H2O 
contents and H isotope compositions of 
melt inclusions in olivine from 
komatiites.  

Small symbols - measured compositions; 
Larger symbols - initial H2O-δD (‰ 
VSMOW) in melt inclusions 
reconstructed using the model of 
Buchloz et al,(2013) 10 (Methods) and  
measured data.  Error bars correspond 
to 2 standard errors. Reconstructed 
compositions for Weltevreden komatiite 
samples 1522 and 1523 are marked by 
intermediate-sized symbols because 
they are likely affected by 
contamination by surface materials. 
Dashed and dotted lines correspond to 
trajectories due to diffusion H loss or 
gain through the host olivine10. 
Compositions of Archean mantle and 
surface reservoirs are from reference 6. 

 
 
 
 
 

 

 

 

Figure 3. Primitive mantle 
normalized patterns of 
incompatible trace elements in 
trapped melts in high-Mg olivine 
phenocrysts from komatiites. 

Compositions of melt inclusions in 
olivine Fo>91 from Gorgona 
komatiite (average of analyses by 
reference15) and Archean 
komatiites studied in this paper 
(Extended data Table 1). 
Incompatible element 
concentrations in the primitive 
mantle are from Hofmann et al, 
(1988)35; H2O (266 ppm) and Cl (26 
ppm) are from Kentrick et al, 
(2015)34. 
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Figure 4. The temporal evolution of the komatiite mantle source composition and other Earth reservoirs.  

a. Evolution of H2O/Ce ratio in the mantle. The composition of hydrated transition zone is estimated using the H2O content of a 
ringwoodite inclusion in diamond22, the Ce content of primitive mantle35 (large diamond; assigned an arbitrary age of 1.0 ± 0.5 
Ga), and H2O/Ce ratios of  melt inclusions in olivine (this paper and references4,5,15) and spinel36 in komatiites. The compositions 
of Phanerozoic mantle and bulk silicate earth (BSE) are from references34,35. 

b. Evolution of hydrogen isotope composition of mantle. Compositions of BSE, CRUST, MANTLE and DEHYDRATED LITHOSPHERE 
and evolution of EARTH SURFACE AND EARTH MANTLE are from reference6.  

c. Evolution of the Ce/Pb ratio in mantle sources of komatiites and the estimated production rate of continental crust30. BSE 
composition after35 and Phanerozoic mantle after34. Ce/Pb ratios of melt inclusions of studied komatiites: Weltevreden 1521-26-
9h, Abitibi 819-26-23, Belingwe Z6-8-10; Lapland komatiite - calculated average of the least contaminated  melt inclusions in 
spinel, from Hanski and Kamenetsky (2013) 37. 

All data plotted with 2 standard errors of mean (not seen if they are smaller than symbol size). RDL-stands for Recycling of 
Dehydrated Lithosphere. 
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Extended Data Figure 1 |a. Generalized geologic map of the western half of the Barberton Greenstone 
Belt (modified after46). b. Field locality of the sampling area (Saw Mill area, Weltevreden formation, 
modified after38).  
  



 

 
 
Extended Data Figure 2 |Olivine hosted melt inclusions (sample 1521) from the 3.3 Ga Weltevreden 
komatiites: a - untreated partially crystallized melt inclusion containing clinopyroxene, glass and the 
shrinkage bubble; b, c, d, e and f – glassy melt inclusions after the quenching experiments (see 
METHODS); b,c and d – contain shrinkage bubble; d – contains fine olivine spinifex textures due to very 
high MgO contents of the melt (>26 wt.% MgO); e and f – homogeneous melt inclusions, f- the 1521-9h 
melt inclusion reported in this study. 
  



 
 
Extended Data Figure 3 |a – H2O calibration line obtained for the series of standards (see Methods, 
Supplementary table 4a, 4b) to calculate H2O contents of the samples; b and c –the correlation lines between 
IMF and H2O and Al2O3 contents, multivariant correlation between IMF and both H2O and Al2O3 contents 
(p-value <0.002, R2 ~0.75, equation 2, METHODS) was used to correct the matrix effect of the 
analyzed materials. R- correlation coefficient. 
  



 
 
Extended Data Figure 4 |Significant correlation between isotope composition of H and size of melt 
inclusion in olivine of Weltevreden komatiites. Inclusion 1521-ol12 was excluded as a size outlier (120 
µm).  

 
Extended Data Figure 5 |Reconstruction of initial H2O contents in melt inclusions. a- Al2O3 versus MgO 
of melt inclusions in olivine of Weltevreden komatiites. Alumina contents apparently follow olivine 
crystallization path of the initial komatiite melt calculated for 1521 sample47. b- Uncorrected (open circles) 
and corrected (filled circles) initial H2O contents of melt inclusions. Corrected initial H2O contents of melt 
inclusions follow olivine crystallization trajectory within each sample. All error bars reported as 1 S.E. 
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