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Miocene restriction of the Pacific-North Atlantic
throughflow strengthened Atlantic overturning
circulation
Valeriia Kirillova1, Anne H. Osborne 1, Tjördis Störling 1 & Martin Frank 1

Export of warm and salty waters from the Caribbean to the North Atlantic is an essential

component of the Atlantic Meridional Overturning Circulation (AMOC). However, there was

also an active AMOC during the Miocene, despite evidence for an open Central American

Seaway (CAS) that would have allowed low-salinity Pacific waters to enter the Caribbean. To

address this apparent contradiction and to constrain the timing of CAS closure we present

the first continuous Nd isotope record of intermediate waters in the Florida Strait over the

past 12.5 million years. Our results indicate that there was no direct intermediate water mass

export from the Caribbean to the Florida Strait between 11.5 and 9.5Ma, at the same time as

a strengthened AMOC. After 9Ma a strong AMOC was maintained due to a major step in

CAS closure and the consequent cessation of low-salinity Pacific waters entering the

Caribbean.
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Of the 30 ± 1.5 Sverdrup (Sv, 1 × 106 m3 s−1) of water
transported via the Florida Current today, 13 Sv continue
to flow northwards as the Gulf Stream1, thus constituting

a major contribution to the Atlantic Meridional Overturning
Circulation (AMOC), which has a mean deep volume transport of
18 ± 2.5 Sv at 24°N2. Most model experiments suggest that an
open Central American Seaway (CAS) allowed low-salinity waters
from the equatorial Pacific to enter the Atlantic at mid-latitudes
resulting in an overall weaker AMOC (e.g.3–6), and a possible link
between CAS closure and changes in North Atlantic Deep Water
production has been widely discussed (e.g.7–10). The timing of
CAS closure is thus of crucial importance but available recon-
structions are controversial, with much of the controversy hin-
ging on the definition of closure11. On the basis of geochemical
and geochronological data and paleomagnetic reconstructions,
recent studies have argued that the CAS essentially disappeared
completely as early as 15Ma12–14, although allowing that tran-
sient and shallow seaways may have persisted until 10 Ma14. This,
however, contradicts biostratigraphic evidence for a gradual
shoaling from 15Ma onwards, with the seaway still 1000-m deep
at 12Ma15. The appearance of a significant and permanent sur-
face water salinity difference between the eastern equatorial
Pacific and the Caribbean after ~4.7 to 4Ma16–20 points towards
a later CAS closure, although changes in sea-surface properties
could alternatively be explained by a switch from predominantly
El Niño-like to predominantly La Niña-like conditions21,22. What
constitutes ‘closure’ is also under debate where the fossil record is
concerned. If shallow seaways with sufficiently high currents,
similar to the Indonesian throughflow23, were present in the
Pliocene CAS, this may have prevented migration of species
between North and South America20 and could explain the
divergence of marine molecular DNA on either side of the CAS
after 3 Ma20 and the fossil evidence for the Great American Biotic
Interchange24 from 2.6 Ma onwards25. If the currents in the CAS
were not strong, or if the seaways were transient, then this could

explain why a recent study combining fossil and molecular data
found waves of terrestrial organism dispersal at ~20 and 6Ma and
divergence of Atlantic and Pacific marine organisms at ~23 and
~7Ma26.

In the light of the ambiguous evidence for the timing of CAS
closure, it is pertinent to examine the progressive restriction of
water mass exchange via the CAS in more detail and to compare
these results with model predictions of the consequences of
variations in Pacific water export to the Caribbean and the
Atlantic. The radiogenic Nd isotope composition of past seawater
has been used extensively to reconstruct changes in the mixing
and provenance of water masses (cf. ref. 27). The longest record of
the Gulf Stream εNd evolution from 850 m water depth in the
northwest Atlantic extends back to 8.5 Ma and shows a shift
towards less radiogenic compositions between 8.5 and 5Ma,
which was interpreted as a reduction in the advection of
intermediate-depth Pacific water to the western North Atlantic28,
a conclusion supported by model results29. For deep waters,
sedimentary εNd records from the Caribbean extending back to
18Ma show that the irreversible shift away from Pacific-like
compositions already occurred earlier, at 10.7 Ma10. However, in
apparent contrast to most model predictions (ref. 5 and references
therein), episodes of increased Pacific through-flow in the Middle
to Late Miocene Caribbean (between ~12.5 and 10Ma) were
shown to have coincided with increased AMOC strength10.

In this contribution, we specifically compare the evolution of
the export of intermediate-depth Pacific waters to the western
North Atlantic to records of AMOC strength30–32. We present a
continuous new 12.5 Myr seawater εNd record obtained from
sedimentary foraminifera coatings of Ocean Drilling Program
(ODP) Site 1006 (658 m water depth) located on the leeward
slope of the Great Bahama Bank (GBB) (Fig. 1), which together
with Site 1000 in the central Caribbean (916 m water depth) for
the first time constrains the timing of CAS closure to
intermediate-depth Pacific waters and also allows reconstruction
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of the origin of western North Atlantic (Gulf Stream) waters
during the Miocene–Pliocene.

Results
Seawater and detrital Nd-isotope signatures. Comparison of
surface sediment and water samples from the vicinity of ODP Site
1006 confirms that uncleaned planktonic foraminifera reliably
recorded the local bottom water εNd signal33 (Supplementary
Figs. 1 and 2). The oldest part of the new seawater record of Site
1006 reveals highly radiogenic εNd(t) values of up to −4.6 prior to
11.5 Ma dropping sharply to −8.1 at 10.8 Ma (Fig. 2). Seawater
εNd(t) values then became slightly more radiogenic again between
9.5 and 8Ma (−6.6 to 7.3 εNd(t)) before decreasing to −8.8 εNd(t)
by 6.8 Ma. Thereafter, the εNd signatures at Site 1006 fluctuated
between −8.4 and −6.2 until 3.1 Ma to finally become less
radiogenic, approaching core-top values of ~−9 to −10 from
0.85Ma onwards. The εNd(t) signature of the detrital fraction at
Site 1006, with the exception of a single sample at 7.5 Ma, varied
between −5.6 and −8.5 from 12.5 to 4Ma and became less
radiogenic thereafter (−8.6 to −10.7 εNd(t)) (Supplementary
Fig. 3).

New Miocene data were also produced to extend the existing
foraminiferal and detrital εNd(t) records of Site 100034 and now
allow direct comparison of the long-term changes at the two
intermediate-depth sites (Fig. 2, Supplementary Fig. 3). The early
part of the Site 1000 seawater record is significantly more
radiogenic than that of ODP 1006 with εNd(t) values reaching
−2.6 to −3.1 between 13.6 and 12.1 Ma (Fig. 2). This is followed
by an εNd(t) decrease to −7.8 between 12.1 Ma and 8.4 Ma and a
slight increase to −6.6 between 7.3 and 6.8 Ma. Unlike the Site
1006 record, the detrital fraction of Site 1000 sediments shows a
distinct step-change from εNd(t) values between −2.2 and −7.6

prior to 9.4 Ma to between −8.3 and −10.5 after 8.4 Ma
(Supplementary Fig. 3).

Discussion
Prior to 12.1 Ma, seawater εNd(t) at Sites 1006 and 1000, as well as
at deep Caribbean Sites 998 and 99910, was within a range from
−4.6 to −2, reflecting a strong Pacific throughflow into the
western North Atlantic (Fig. 2). Pacific waters could have been
transported to Site 1006 either via the Florida Strait or, as shown
in model simulations6, through entrainment in the Atlantic gyre,
or a combination of both. Some contribution of radiogenic Nd
derived from partial dissolution of volcanic ashes may be
expected in this tectonically highly active region but a previous
study10 found no correlation between εNd signatures and volcanic
ash mass accumulation rates at Caribbean Sites 999 and 998. An
overall less radiogenic seawater εNd(t) signal at Site 1006 com-
pared to Sites 998, 999 and 1000 is consistent with decreasing εNd
signatures with increasing distance from the CAS, given that the
Pacific signal was continuously mixed with Atlantic waters with a
less radiogenic εNd signature28,35,36. Likewise, any particulate
material from the Pacific transported across the CAS would more
likely have been deposited in the vicinity of Site 1000 than at Site
1006, which explains why the detrital fraction at Site 1000 was on
average ~2.5 εNd units more radiogenic than at Site 1006 prior to
9Ma (Supplementary Fig. 3). Partial dissolution of volcanic
particles along the path of the recirculated gyre waters or a
marked change in the Southern Atlantic end-member composi-
tion would be further possible sources of radiogenic Nd, but there
is no evidence to support this (see Supplementary Discussion).

After 12.1 Ma, seawater εNd(t) at Caribbean Site 1000 became
progressively less radiogenic by more than 3 εNd units to reach
−7.8 by 8.4 Ma. This decrease is similar to the overall trend at two
deep Caribbean Sites, which together with increasing sediment
accumulation rates was attributed to a decrease in the inflow of
more radiogenic and corrosive Pacific waters entering the basin
via the closing CAS10. Our new data show that the composition of
the intermediate-depth Caribbean was strongly impacted by CAS
closure in the Late Miocene, as reflected by a marked drop to less
radiogenic detrital εNd signatures after 9 Ma. The εNd(t) and 87Sr/
86Sr signatures of the detrital material (Fig. 3) suggest that the
main source of the material delivered to Site 1000 between 14 and
9Ma was the Mexican volcanic belt. After 9 Ma, the supply of� N
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periods of time when Caribbean and Florida Strait seawater εNd signatures
diverged between 11.5 and 9.5Ma and converged again between 9.5 and 9
Ma. The detrital composition at ODP Site 1000 changed after 9Ma
(Supplementary Fig. 3)
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Orinoco sediments played the most important role, despite evi-
dence that uplift and mountain building in the Northern Andes
from ~12Ma actually re-routed the drainage system in northern
South America away from the Caribbean and towards the tropical
Atlantic37. The shift in detrital material composition at Site 1000
therefore indicates a major change in the overall Caribbean
subsurface circulation pattern.

We find that an initial decrease in seawater εNd at Site 1006
occurred earlier than at the Caribbean Sites and reached −8.1 at
10.8 Ma. This marked divergence from the Site 1000 record
suggests that there was a change in the regional hydrography
between ~11.5 and 9.5 Ma and that Atlantic waters with a less
radiogenic Nd isotope composition dominated the signal at Site
1006. Continuous sedimentation of the Santaren Drift since
12.4 Ma38 argues against tectonic uplift of a sill in close vicinity of
Site 1006 being responsible for the divergence between the Car-
ibbean and Florida Strait signals. The disconnection was more
likely caused by a hydrographic barrier caused by the dominance
of the circum-tropical current between the Pacific and Caribbean
over the intra-Caribbean current connecting the Northern and
Southern Caribbean, as was suggested on the basis of nannofossil
assemblages39. Whatever the exact cause of the disconnection
was, the evidence from the seawater εNd records clearly shows
that there was no significant export of radiogenic intermediate-
depth Pacific waters to the western North Atlantic during this
time interval.

The convergence of the Caribbean and Florida Strait εNd
records between 9.5 and 8Ma documents the full hydrographic
reconnection of the two intermediate-depth Sites (Fig. 2). ODP
Site 1000 is located in the Pedro Channel, which crosses the
Northern Nicaraguan Rise40. According to tectonic reconstruc-
tions41, the Nicaraguan Rise was fully accessible for northward
flow only after 9 Ma, which likely explains the convergence of all
seawater εNd records between 9.5 and 8Ma. Moreover, the
essentially identical εNd compositions of a Blake Ridge record28

support an unrestricted export of Caribbean water into the wes-
tern North Atlantic during this time interval (Fig. 2).

Between 8 and 6.8 Ma, the Florida Strait record again diverges
somewhat from the Caribbean records (Fig. 2), which may also
have been a result of a hydrographic barrier. However, during this
period, the deep Caribbean seawater εNd composition remained
constant10, and the detrital composition of Site 1000 had already
shifted towards that of Orinoco sediments, suggesting that the
influence of Pacific intermediate waters was at most minor and
any observed changes originated from the Atlantic. On the basis
of nannofossil assemblages, it was proposed that the north and
south Caribbean basins were separated between 8.35 and 3.65
Ma39, but the seawater εNd records do not support this inter-
pretation given that Sites 998 and 1000 were similar to the south
Caribbean Site 999 record for the majority of this time
interval10,34.

The vast majority of modelling simulations find that an
enhanced supply of low salinity Pacific waters to the North
Atlantic reduces the production of Northern Component Water
(NCW, pre-cursor of North Atlantic Deep Water (NADW)) and
hence the strength of the AMOC (ref. 5 and references therein).
However, Newkirk and Martin10 found apparently contradicting
evidence that the interval of high Pacific water throughflow into
the deep Caribbean between ca. 12.4 and 9.5 Ma corresponded to
an increase in the production of NCW, as estimated from δ13C
gradients between the Atlantic and the Pacific31. Lear et al.32 also
found evidence for a proto-NADW between 12.5 and 10.5 Ma on
the basis of cooler benthic Mg/Ca temperatures and higher δ13C
signatures. Our new record from Site 1006 now shows that this
interval of high NCW production30–32 (Fig. 4) occurred at a time
when there was little or no export of intermediate waters from the

Pacific to the western North Atlantic and thus, importantly, the
low-salinity Pacific waters present in the Caribbean at that time10

could not be transferred to the high northern latitudes of the
Atlantic (Fig. 5). Following the same reasoning, lower NCW
production between 9.5 and 9Ma may be attributed to the re-
establishment of the Pacific-North Atlantic connection, either
directly via the Florida Strait or indirectly via the Atlantic gyre
(Figs. 4 and 5). These findings support model predictions that
changes in the supply of Pacific waters to the North Atlantic
affected the AMOC and highlights the importance of inter-
mediate water mass exchange.

According to the results of an εNd-enabled ocean–atmosphere
general circulation model, the Atlantic became the dominant
source of intermediate-depth Caribbean waters once the CAS had
shoaled to between 500 and 200 m6. Our new records constrain
the timing of this significant change away from a Pacific supply to
~9Ma, therefore providing support to studies that found a major
step in CAS closure during the Late Miocene12–14. However,
the new data do not support a complete closure of the CAS by
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Fig. 4 Comparison of seawater Nd isotope records with estimates of
Northern Component Water production. Seawater εNd(t) signatures of
Caribbean and Western Atlantic sites (this study10, 34) together with two
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10Ma14 and instead allow for a shallow seaway or seaways until
at least 9 Ma and possibly much later.

Methods
Regional setting. ODP Site 1000 is today bathed by diluted Antarctic Intermediate
Water (AAIW)42 that can be traced by its salinity minimum as far as 20°N in the
North Atlantic43. ODP Site 1006 is located in the Santaren Channel and receives a
mixture of waters from the Caribbean and recirculated gyre waters44,45 (Fig. 1).
AAIW today largely preserves its Atlantic εNd signature of −10.6 to −11 during
transit across the Caribbean42. Consequently, intermediate-depth waters close to
Site 1000 in the Central Caribbean have an εNd value of ~−10, whereas Site 1006 in

the Florida Strait shows an εNd value of −9 (ref. 42) as a result of admixture of
waters from the western North Atlantic subtropical gyre46,47. Similar Nd isotope
compositions in the Florida Strait33 and the Atlantic gyre47 preclude any calcu-
lation of the exact contributions from each source at Site 1006 but low flow speeds
in the deep Santaren Channel45 would allow for mixing between the two. On the
Pacific side of the Isthmus of Panama, the εNd signatures of intermediate-depth
eastern equatorial Pacific water masses are much more radiogenic (−4 to −1.6)48.

Age models. The age models for Site 1006 and for the Miocene part of Site 1000
are based on published biostratigraphy49,50.

Sample preparation. Sediment samples from ODP Sites 1000A and 1006A were
obtained from the IODP Core Repository in Bremen. A further seven core-top
samples from the GBB area were obtained from the Seafloor Samples Laboratory of
the Woods Hole Oceanographic Institution (Supplementary Fig. 2). All samples
were freeze-dried and weighed and an aliquot of 2.5 g of each sample was separated
and ground using an agate pestle and mortar. The remaining sample aliquot was
wet sieved, oven dried and separated into size fractions ready for microscope work.

Approximately 35 mg of mixed planktonic foraminifera were picked (mostly
Globigerinoides ruber and Neogloboquadrina dutertrei) from the >350-μm size
fraction for the extraction of the bottom water Nd isotope composition from the
ferromanganese coatings of the uncleaned foraminifera51. The shells were crushed
between two glass plates to open the chambers, and were then ultrasonicated with
alternate rinses of distilled (MQ) water and ethanol to remove any detrital particles.
A final visual check for removal of particles was performed under the microscope
before dissolution of the foraminifera samples in 0.5 M HNO3.

To extract the detrital fraction, the 2.5 g powdered aliquots were leached
following the procedures fully described in refs. 52,53. Samples were rinsed with
distilled (MQ) water, followed by a decarbonation procedure using an acetic acid/
sodium acetate buffer (with a pH around 4). A hydroxylamine hydrochloride
solution was used as a leaching agent for removing the Fe–Mn oxyhydroxide
fraction, and was buffered with acetic acid/sodium hydroxide to reach the pH value
of 4. This initial leach solution was removed and an additional 12 h of leaching
with newly added leaching solution was carried out to completely remove any
authigenic coatings. After a triple rinse with MQ water and oven drying, an aliquot
of 0.05 g of the remaining detrital fraction underwent total dissolution via hotplate
digestion using a mixture of HNO3, HF and HCl. Hydrogen peroxide and HClO4

were included in the procedure for the removal of organic material.
Further separation of Nd and Sr and purification of the sample solutions was

carried out ion chromatographically. All samples were put through cation exchange
columns (AG50W-X12 resin, mesh 200–400 µm)54 to collect rare earth elements
(REEs) and, in the case of the detrital samples, the Sr cut also was collected.
Thereafter, Nd was separated from the other REEs (Ln Spec resin columns, mesh
50–100 µm)55 and Sr was separated from Rb and other interfering elements
(Sr spec resin column, mesh 50–100 µm)56.

Nd and Sr isotope analysis. Isotope ratios were measured on a Nu Instruments
Multiple Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS)
at GEOMAR. The 143Nd/144Nd results were mass bias corrected to a 146Nd/144Nd
ratio of 0.7219 and normalized to the accepted JNdi-1 standard 143Nd/144Nd value
of 0.512115 (ref. 57). For downcore samples, εNd(t) values were calculated by cor-
recting the measured εNd(0) for ingrowth of 143Nd using an Sm/Nd ratio of 0.139
for uncleaned foraminiferal calcite58 and 0.109 for detrital material, based on the
average upper crustal ratio59. The external reproducibility (2σ) was between 0.21
and 0.40 εNd units for the detrital samples. The external reproducibility (2σ) for the
measurements of the foraminifera samples was higher (0.98 εNd units) due to
smaller sample sizes that required a time resolved measurement method.

After correction for Kr and Rb interferences, Sr results were mass bias corrected
to an 86Sr/88Sr ratio of 0.1194 and normalized to the widely accepted 87Sr/86Sr
value of 0.710245 for the NIST SRM987 standard. The 87Sr/86Sr results were
corrected for ingrowth of 87Sr using an 87Rb/87Sr ratio of bulk earth of 0.09
(ref. 60). The external reproducibility (2σ) was between 0.000019 and 0.000022.
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Total procedural blanks for Nd chemistry were ≤360 pg and for Sr chemistry
were ≤4600 pg. In both cases, these blanks were below 1% of the total sample size
and therefore considered insignificant.

Data availability
Data generated during this study are available in the PANGAEA database (https://doi.
org/10.1594/PANGAEA.904251).
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