
ar
X

iv
:1

90
9.

12
52

1v
1 

 [
cs

.S
E

] 
 2

7 
Se

p 
20

19

Comparing Static and Dynamic Weighted

Software Coupling Metrics

Henning Schnoor and Wilhelm Hasselbring

Kiel University, Software Engineering Group {hs|wha}@informatik.uni-kiel.de

Abstract. Coupling metrics are an established way to measure software
architecture quality with respect to modularity. Static coupling metrics
are obtained from the source or compiled code of a program, while dy-
namic metrics use runtime data gathered e.g., by monitoring a system in
production. We study weighted dynamic coupling that takes into account
how often a connection is executed during a system’s run. We investi-
gate the correlation between dynamic weighted metrics and their static
counterparts. We use data collected from four different experiments, each
monitoring production use of a commercial software system over a pe-
riod of four weeks. We observe an unexpected level of correlation between
the static and the weighted dynamic case as well as revealing differences
between class- and package-level analyses.

Keywords: software metrics, monitoring, dynamic analysis, static anal-
ysis

1 Introduction

Coupling [14,31]—the number of inter-module connections in software systems—
has long been identified as a software architecture quality metric for modularity
[29]. Taking coupling metrics into account during development of a software
system can help to increase the system’s maintainability and understandability
[7], in particular for microservice architectures [24]. As a consequence, aiming
for high cohesion and low coupling is accepted as a design guideline in software
engineering [11].

In the literature, there exists a wide range of different approaches to mea-
suring coupling. Usually, the coupling degree of a module (class or package)
indicates the number of “connections” it has to different system modules. A
“connection” between modules A and B can be, among others, a method call
from A to B or an exception of type B thrown by A. Many notions of coupling
can be measured statically, based on either source code or compiled code.

Static analysis is attractive since it can be performed immediately on source
code or on a compiled program. However, it has been observed [5,12,15] that
for object-oriented software, static analysis does not suffice, as it often fails to
account for effects of inheritance with polymorphism and dynamic binding. This
is addressed by dynamic analysis, where monitoring logs are generated while
running the software.

http://arxiv.org/abs/1909.12521v1


2 Henning Schnoor and Wilhelm Hasselbring

The results obtained by dynamic analysis depend on the workload used for
the run of the system yielding the monitoring data. Hence the availability of
representative workload for the system under test is crucial for dynamic analysis.
As a consequence, dynamic analysis is more expensive than static analysis.

Dynamic analysis is often used to improve upon the accuracy of static cou-
pling analysis [16]. Dynamic analysis uses monitoring data to find, e.g., all classes
B whose methods are called by the class A. In this case, the individual relation-
ship between two classes A and B is qualitative: The analysis only determines
whether there is a connection between A and B, and does not take its strength
(e.g., number of calls during a system’s run) into account. In contrast, a quanti-

tative coupling measurement quantifies the strength of the connection between
A and B by assigning it a concrete number.

The coupling metrics we consider in this paper are defined using a dependency
graph. The nodes of such a graph are program modules (classes or packages).
Edges between modules express call relationships. They can be labelled with
weights, which are integers denoting the number of occurrences of the call repre-
sented by the edge. Depending on whether coupling metrics take these weights
into account or not, we call the metrics weighted or unweighted. The main two
metrics we consider are the following:

1. Unweighted static coupling, where an edge from A to B is present in the
dependency graph if some method from B is called from A in the (source or
compiled) program code,

2. Weighted dynamic coupling, where an edge from A to B is present in the
graph if such a call actually occurs during the monitored run of the system,
and is attributed with the number of such calls observed.

Dynamic weighted coupling measures cannot replace their static counterparts
in their role to e.g., indicate maintainability of software projects. However, we
expect dynamic weighted coupling measures to be highly relevant for software
restructuring: In contrast to static coupling measures, weighted dynamic mea-
sures can reflect the runtime communication “hot spots” within a system, and
therefore may be helpful in establishing performance predictions of restructuring
steps. For example, method calls that happen infrequently may be replaced by a
sequence of nested calls or with a network query without relevant performance
impacts. Since static coupling measures are often used as basis for restructuring
decisions [11,26], dynamic weighted coupling measures can potentially comple-
ment their static counterparts in the restructuring process. This possible ap-
plication leads to the following question: Do dynamic coupling measures yield
additional information beyond what we can obtain from static analysis?

Initially, we expected static and dynamic coupling degrees to be almost un-
related: A module A has high static coupling degree if there are many method
calls from A to methods outside of A or vice versa in the program code. On
the other hand, A has high dynamic weighted coupling degree if during the ob-
served run of the system, there are many runtime method calls between A and
other parts of the system. Since a single occurrence of a method call in the code



Comparing Static and Dynamic Weighted Software Coupling Metrics 3

can be executed millions of times—or not at all—during a run of the program,
static and weighted dynamic coupling degrees do not need to correlate. Thus,
our initial hypothesis was to not observe a high correlation between static and
weighted dynamic metrics.

Our main research question is:Are static coupling degrees and dynamic

weighted coupling degrees statistically independent? If we observe

correlation, can we quantify the correlation?

To answer these questions, we compare the two coupling measures. We use
dynamically collected data to compute weighted metrics that take into account
the number of function calls during the system’s run. We obtained the data
from a series of four experiments. Each experiment consists of monitoring real
production usage of a commercial software system (Atlassian Jira [6]) over a
period of four weeks each. Our monitoring data contains more than three billion
method calls. We compare the results from our dynamic analysis to computations
of static coupling degrees.

Directly comparing static and weighted dynamic coupling degrees is of lit-
tle value, as these are fundamentally different measurements: For instance, the
absolute value of dynamic weighted degrees depends on the duration of the mon-
itored program run, which clearly is not the case for the static measures. We
therefore instead compare coupling orders, i.e., the ranking obtained by ordering
all programmodules by their coupling degree using the Kendall Tau1 metric [21].
This also allows to quantify the difference between such orders.

Our answer to the above stated research questions is that static and (weighted)
dynamic coupling degrees are not statistically independent. A possible interpre-
tation of this result is that dynamic weighted coupling degrees give additional,
but related information compared to the static case. In addition to this result,
we observe insightful differences between class- and package-level analyses.

Contributions

The results and contributions of this paper are:2

– Using a unified framework, we introduce precise definitions of static and
dynamic coupling measures.

– To investigate our main research question, we performed four experiments
involving real users of a commercial software product (the Atlassian Jira
project and issue tracking tool [6]) over a period of four weeks each. The soft-
ware was instrumented via the dynamic monitoring framework Kieker [20]
based on AspectJ [22]. From the collected data, we computed our dynamic
coupling measures. We compared the obtained results, using the Kendall-Tau
metric [8], to coupling measures we obtained by static analysis.

1 See [19] for a discussion of the relationship between this metric and Spearman’s
correlation.

2 A replication package inlcuding the collected data of our experiments will soon be
published on Zenodo, to allow other researchers to repeat and extend our work.



4 Henning Schnoor and Wilhelm Hasselbring

– The results show that all coupling metrics we investigate are correlated, but
there are also significant differences. In particular, when considering package-
level coupling, the correlation is significantly stronger than for class-level
coupling. As reason we assume that effects like polymorphism and dynamic
binding often do not cross package boundaries.

Finally, we note that this paper is an extension of a previous short poster
paper [30] in which a high-level overview of the research approach and the first
data set are presented. The current paper extends the previous short poster
paper (2 pages in length) as follows:

– This paper contains an in-depth explanation of the research approach, in-
cluding a precise definition of our coupling metrics.

– We report on the statistical properties of the data collected during the ex-
periments.

– We report on the findings of four experiments whereas the short paper only
discusses the first of our four data sets.

Paper Organization

The remainder of the paper is organized as follows: In Section 2, we discuss
related work. Section 3 provides our definition of weighted dynamic coupling. In
Section 4, we explain our approach to static and dynamic analysis. Section 5 then
describes the setting of our experiment. The results are presented and discussed
in Section 6. In Section 7, we discuss threats to validity and conclude in Section 8
with a discussion of possible future work.

2 Related Work

There is extensive literature on using coupling metrics to analyse software qual-
ity, see, e.g., Fregnan et al. [17] for an overview. Briand et al. [10] propose a
repeatable analysis procedure to investigate coupling relationships. Nagappan
et al. [27] show correlation between metrics and external code quality (failure
prediction). They argue that no single metric provides enough information (see
also Voas and Kuhn [32]), but that for each project a specific set of metrics can
be found that can then be used in this project to predict failures for new or
changed classes. Misra et al. [25] propose a framework for the evaluation and
validation of software complexity measures. Briand and Wüst [9] study the rela-
tionship between software quality models to external qualities like reliability and
maintainability. They conclude that, among others, import and export coupling
appear to be useful predictors of fault-proneness. Static weighted coupling mea-
sures have been considered by Offutt et al. [28]. Allier et al. [2] compare static
and unweighted dynamic metrics.

Our approach is different: We do not study correlation between software
metrics and software quality, but correlation between different software metrics.



Comparing Static and Dynamic Weighted Software Coupling Metrics 5

Dynamic (unweighted) metrics have been investigated in numerous papers
(see, e.g., Arisholm et al. [5] as a starting point, also the surveys by Chhabra
and Gupta [13] and Geetika and Singh [18]). None of these approaches considers
dynamic weighted metrics, as we do.

Dynamic analysis is often used to complement static analysis. As an notable
exception, Yacoub et al. [33] use weighted metrics. However, to obtain the data,
they do not use runtime instrumentation—as we do—but “early-stage executable
models.” They also assume a fixed number of objects during the software’s run-
time.

Arisholm et al. [5] study dynamic metrics for object-oriented software. Our
dynamic coupling metrics are based on their dynamic messages metric. The dif-
ference is as follows: Their metric counts only distinct messages, i.e., each method
call is only counted once, even if it appears many times in a concrete run of the
system. The main feature of our weighted metrics is that the number of occur-
rences of each call during the run of a system is counted. The dynamic messages

metric from [5] corresponds to our unweighted dynamic coupling metrics (see
below).

3 Dynamic, Weighted Coupling

3.1 Dependency Graphs

We performed our analyses with two different levels of granularity: on the (Java)
class and package levels. In the following we use the term module for either class
or package, depending on the granularity of the analysis. The output of either
types of analyses (dynamic and static) is a labeled, directed graph G, where the
nodes represent program modules (i.e., classes or packages), and the labels are
integers which we refer to as weights of the edges. An edge from A to B has label
(weight) nA,B, this denotes that the number of directed interactions between A

and B occurring in the analysis is nA,B.
In the case of a static analysis, this means that there are nA,B places in

the code of A where some method from B is called. For dynamic analysis, this
means that during the monitored run of the system, there were nA,B run-time
invocations of methods from B by methods from A.

Our graph G is a weighted dependency graph, hence we call the coupling
metrics we define below weighted metrics. When we disregard the numbers nA,B,
the graph G is a plain dependency graph, i.e., a directed graph where the edges
reflect function calls between the modules. We refer to metrics defined on the
unweighted dependency graph—i.e., metrics that do not take the weights nA.B

into account—as unweighted metrics. We study the following three conceptually
different approaches to measure coupling dependency between program modules:

1. The first approach is static analysis, which identifies method calls by ana-
lyzing the compiled code (we used BCEL to analyze Java .class and .jar

files). Here we do not take weights into account. We therefore compute our
static coupling measures from an unweighted dependency graph.



6 Henning Schnoor and Wilhelm Hasselbring

2. Our second approach is unweighted dynamic analysis. This analysis identifies
method calls between modules as they appear in an actual run of the system
(the data is obtained by monitoring), but does not take the weights nA,B into
account. It therefore does not distinguish between cases where a module A

calls another module B a million times or just once. This metric is essentially
the dynamic messages metric from [5].

3. Our third approach is weighted dynamic analysis, which differs from its un-
weighted counterpart only by taking the weights nA,B into account.

The distinctions between static/dynamic analyses and unweighted/weighted
analyses are orthogonal choices. In particular, we omit in the present paper a
weighted, static analysis, since our main motivation is the comparison of dy-
namic, weighted metrics unweighted, static metrics.

3.2 Definition of Coupling Metrics

We now define the coupling measures we study. Our measures assign a coupling

degree to a program module (i.e., a class or a package). We consider 18 different
ways to measure coupling, resulting from the following three orthogonal choices:

1. The first choice is between class-level and package-level granularity. Depend-
ing on this choice, a module is either a (Java) class or a (Java) package.

2. The second choice is between one of our three basic measurement approaches:
static, dynamic unweighted, or dynamic weighted analysis.

3. The third choice is to measure import- export- or combined coupling.

α: granularity

β: measurement approach
γ: coupling direction

class package

ex
po
rt

im
po
rt

co
m
bi
ne
d

static

dynamic
unweighted

dynamic
weighted

(p, u, i)

Fig. 1. Dimensions of Analyses



Comparing Static and Dynamic Weighted Software Coupling Metrics 7

To distinguish these 18 types of measurement, we use triples (α, β, γ), where
α is c or p and indicates the granularity, β is s, u, or w and indicates the basic
measurement approach, and γ is i, e, or c, indicating the direction of couplings
taken into account. Figure 1 illustrates these three orthogonal choices: The ex-
ample triple (p, u, i) denotes an analysis with granularity package-level, using
dynamic unweighted analysis, and considers coupling in the import direction.

Our coupling measures can be computed from the two dependency graphs
resulting from our two analyses (static and dynamic). For a module A, and
a choice of measure (α, β, γ), the (α, β, γ)-coupling degree of A, denoted with
coupdegα,β,γ(A), is computed as follows:

– We compute Gα,β . This is the weighted dependency graph between classes
(if α = c) or packages (if α = p) obtained by static analysis (if β = s) or
dynamic analysis (if β = u or β = w), where each weight nA,B is replaced
with 1 if the analysis is static or (dynamic) unweighted (i.e., if β ∈ {s, u}).

– Then, coupdegα,β,γ(A) is the out-degree of A, in-degree of A, or sum of
these, depending on whether γ = i, γ = e, or γ = c. The in (out) degree of
A is the sum of the weights of its incoming (outgoing) edges in the graph.

4 Static and Dynamic Analysis

We perform our static analysis (using the Apache BCEL [4]) on the compiled
code. This also implies that some optimizations have already performed by the
compiler, such as removal of dead code. Therefore, our static and dynamic anal-
yses are performed on the exact same code, without differences introduced in the
compilation process. For the dynamic analysis, we use the Kieker framework [20]
that allows to register every method call. Kieker uses AspectJ’s [22] load-time
weaver to instrument the analyzed software automatically at load-time. In order
to reduce the performance impact of monitoring, we restricted the monitoring
to a subset of the system, and adjusted the static analysis accordingly.

5 Experiment Design

We analyzed the software Atlassian Jira, versions 7.3.0, 7.4.3, and 7.7.1 [6]. The
system was instrumented using AspectJ technology. For each method call, we
recorded the time stamp, the class name of caller and of the callee.

To perform our analysis with realistic workload, we conducted four experi-
ments with real users using a software system (Atlassian Jira [6]) in production.
Jira was used by students participating in a mandatory programming course of
our computer science curriculum. In the course, the students develop a software
using the Kanban process management method [1]. The time span of the project
is four weeks, with full time participation by the students.

We report on four experiment runs, from February and September of 2017
and 2018. Each time, the software ran for a four-week period. The collected
monitoring data from each run includes the startup sequence, basic configuration



8 Henning Schnoor and Wilhelm Hasselbring

such as database access, initial tasks as user registration and setup of the Kanban
boards, and day-to-day usage. No person-related data is used for our analysis.
In Table 1, we list the number of method calls recorded as well as the number
of users of our Jira installation in each of the three experiment runs.

Obviously, there are differences # date users method calls

1 February 2017 19 196,442,044
2 September 2017 48 854,657,027
3 February 2018 16 475,357,185
4 September 2018 58 2,409,688,701

Table 1. Number of users and monitored
method calls

between the four runs of the soft-
ware that we analyze. For example,
different students took parts in the
course each time, the focus of the
project required using different fea-
tures of the Jira software in each
iteration, and we also instructed them
to use more features of the tool in
the later iterations (this is one reason why the number of method calls per stu-
dent is higher in the later runs of the experiment). Therefore, our four experiments—
even though they are conducted using the same software system—give us slightly
more variation in the data than running the exact same software with the exact
same group of users. However, our main analysis results do not vary signifi-
cantly between the different runs of the experiment, indicating that our findings
are invariant under small changes of the experiment setup.

6 Experiment Results

Compared Measures We compare the coupling degrees computed by these
different approaches. Comparing the actual “raw” values of coupdegα,β,γ(A) for
different combinations of α, β, γ and some class or package A does not make
much sense: The weighted values depend on the length of the measurement run
of the system, whereas the static analysis does not.

However, the absolute coupling values are usually not the most interesting
results of such an analysis. For a developer, the identification of the modules with
the highest coupling degree is among the most interesting results of applying a
software metric. Therefore, a useful approach is to study the relationship between
the orders among the modules in the different analyses: Each analysis yields an
ordering of the classes or packages from the ones with the highest coupling degree
to the ones with the lowest one; we call these orders coupling orders. These orders
can be compared between different analyses of varying measurement durations.

Given our coupling measure definitions, we have the following choices for a
left-hand-side (LHS) and a right-hand-side (RHS) analysis:

– The first choice is whether to consider class or package analyses (both the
LHS and the RHS should consider the same type of module).

– The second choice is which two of our three basic measurement approaches
(see Section 3.1) we intend to compare: static analysis, (dynamic) unweighted
analysis, and (dynamic) weighted analysis. There are three possible choices:
s vs. u, s vs. w, and u vs. w.

– For each combination, we consider import, export, and combined coupling.



Comparing Static and Dynamic Weighted Software Coupling Metrics 9

Hence, there are 18 comparisons we can perform in each of our four data
sets, leading to 72 different comparisons.

Kendall-Tau distance To study the difference between our different basic
measurement approaches, we compare the coupling orders of the analyses using
the Kendall-Tau distance [8]: For a finite base set S with size n, the metric
compares two linear orders <1 and <2. The Kendall-Tau distance τ(<1, <2)
is the number of swaps needed to obtain the order <1 from <2, normalized by

dividing by number of possible swaps n(n−1)
2 . Hence τ(<1, <2) is always between

0 (if <1 and <2 are identical) and 1 (if <1 is “reverse” of <2). Values smaller
than 0.5 indicate that the orders are closer together than expected from two
random orders, while values larger than 0.5 indicate the opposite.

Distance Values To present our results, we use the following notation to specify
the LHS and RHS analyses: We use a triple α : β1 ↔ β2, where – α is c or p

expressing class or package coupling, – β1 is s or u expressing whether the LHS
analysis is static or (dynamic) unweighted, – β2 is u or w expressing whether
the RHS analysis is (dynamic) unweighted or (dynamic) weighted.

For each of these combinations, we consider export, import, and combined
coupling analyses. This results in 18 comparisons for each data set, which are
presented in Tables 2, 3, 4, and 5 for our four experiments.

Statistical Significance To measure statistical significance, we computed the
absolute z-scores of our experiments. The smallest observed absolute z-score
among all our experiments is 9.41, and all but two absolute values are above
10. As a point of reference, the corresponding likelihood for z-score 10 is 7.6 ·
10−24, this is the probability to observe the amount of correlation seen in our
dataset under the assumption that the compared orders are in fact independent.
This indicates a huge degree of statistical significance, which is due to the large
number of program units appearing in our analysis.

c
:
s
↔

u

c
:
s
↔

w

c
:
u
↔

w

p
:
s
↔

u

p
:
s
↔

w

p
:
u
↔

w

import 0.31 0.36 0.13 0.33 0.36 0.08
export 0.41 0.41 0.24 0.30 0.32 0.21
combined 0.35 0.41 0.29 0.29 0.33 0.23
average 0.35 0.39 0.22 0.31 0.33 0.17

Table 2. Coupling Analyses (Data Set 1)

c
:
s
↔

u

c
:
s
↔

w

c
:
u
↔

w

p
:
s
↔

u

p
:
s
↔

w

p
:
u
↔

w

import 0.30 0.36 0.14 0.31 0.35 0.09
export 0.41 0.43 0.26 0.30 0.33 0.22
combined 0.34 0.41 0.31 0.28 0.33 0.23
average 0.35 0.40 0.24 0.30 0.33 0.18

Table 3. Coupling Analyses (Data Set 2)

c
:
s
↔

u

c
:
s
↔

w

c
:
u
↔

w

p
:
s
↔

u

p
:
s
↔

w

p
:
u
↔

w

import 0.38 0.42 0.12 0.37 0.39 0.06
export 0.38 0.40 0.22 0.28 0.31 0.20
combined 0.36 0.40 0.28 0.30 0.33 0.23
average 0.37 0.41 0.21 0.32 0.35 0.17

Table 4. Coupling Analyses (Data Set 3)

c
:
s
↔

u

c
:
s
↔

w

c
:
u
↔

w

p
:
s
↔

u

p
:
s
↔

w

p
:
u
↔

w

import 0.37 0.42 0.12 0.36 0.39 0.06
export 0.38 0.40 0.23 0.28 0.32 0.20
combined 0.35 0.40 0.29 0.30 0.33 0.24
average 0.37 0.41 0.21 0.31 0.35 0.17

Table 5. Coupling Analyses (Data Set 4)



10 Henning Schnoor and Wilhelm Hasselbring

Discussion The first obvious take-away from the values presented in Tables
2-5 is that all 72 reported distances (and of course also the average values) are
below 0.5, many of them significantly so. This indicates that there is a significant
similarity between the coupling orders of the static and the two dynamic anal-
yses. This was not to be expected: While in small runs of a system, one could
possibly conjecture that there might not be a large difference between the static
and dynamic notions of coupling, this changes when we analyze longer system
runs: In our longest experiment, we analyzed more than 2.4 billion method calls.
The dynamic, weighted coupling degree of a class A is the number of calls from
or to methods from A among these 2.4 billion calls, while its static, unweighted
coupling degree is the number of classes B such that the compiled code of the
software contains a call from A to B or vice versa. A single method call in the
code is only counted once in an unweighted analysis, but this call can be executed
millions of times during the experiment, and each of these executions is counted
in the weighted, dynamic coupling analysis. Therefore, it was not necessarily to
be expected that we observe correlation between unweighted static and weighted
dynamic coupling degrees.

However, our results suggest that all of the three types of analyses that we
performed are correlated, with different degrees of significance. In particular,
dynamic weighted coupling degrees seem to give additional, but not unrelated
information compared to the static case.

The static coupling order is closer to the dynamic unweighted than to the
dynamic weighted order in almost all cases. This was expected: In an hypothet-
ical “complete run” of a system, and in the absence of issues resulting from
object-oriented features these measures would coincide. On the other hand, the
dynamic weighted analysis is very different from the static one by design.

A very interesting observation is that in all 36 cases except for 3 cases in-
volving import coupling in our first two data sets, comparing c : β ↔ γ for some
coupling measure with β ∈ {s,u,w} and γ ∈ {i,e,c}.

to p : β ↔ γ shows that the distance from the analysis of the package case is
smaller than the corresponding distance in the class case, sometimes significantly
so. A possible explanation is that in the package case, the object-oriented effects
that are often cited as the main reasons for performing dynamic analysis are less
present, as, e.g., inheritence relationships are often between classes residing in
the same package.

7 Threats to Validity

Concerning external validity, our analysis is limited by the fact that we covered
only four runs, each with four weeks, of only one software system (Atlassian
Jira). To address this threat, we plan to monitor additional software tools such
as Jenkins and Tomcat (which are also used in the course). Concerning internal
validity, our dynamic analysis omits some of Jira’s classes in order to maintain
sufficient performance of the system. To ensure that our comparisons in Section 6
are conclusive, we only considered the classes and packages covered by both the



Comparing Static and Dynamic Weighted Software Coupling Metrics 11

static and dynamic analysis in the computation of the Kendall Tau distances.
Additionally, different interpretations of what is considered as coupling between
the static and in the dynamic analyses are always possible. However, since our
notion of coupling is rather simple (method calls between different classes), we
are confident that our static and dynamic analysis in fact use the same notion
of coupling. Finally, as discussed in Section 4, we examine compiled code, not
source code. When performing a similar analysis on source code, the differences
between the static and the dynamic analyses would likely increase, as the dy-
namic analysis of course also uses compiled code. However, this can also be seen
as an advantage, since this allows us to focus on the differences between static
code and a running system, which is the goal of this study.

8 Conclusions and Future Work

We studied three different basic measurement approaches: Static coupling, un-
weighted dynamic coupling, and weighted dynamic coupling. We performed four
runs of an experiment that allows to compare these metrics to static coupling
measurements. Our results, as discussed in Section 6, suggest that dynamic cou-
pling metrics complement their static counterparts: Despite the large (and ex-
pected) difference, there is also a statistically significant correlation. This sug-
gests that further study of dynamic weighted coupling and its relationship with
other coupling metrics is an interesting line of research.

A key question is how the additional information given by weighted dynamic
coupling measurements can be used to evaluate the architectural quality of soft-
ware systems, or more generally, to assist a software engineer in her design deci-
sions. Coupling metrics can be used as recommenders for restructuring [11], and
for static coupling measures, correlation between coupling and external qual-
ity has been observed [23]. A study of the relationship between static coupling
measures and changeability and code comprehension has been performed in [33].
In [3], it is argued that unweighted dynamic metrics can be used for maintenance
prediction. Since dynamic weighted metrics contain additional information com-
pared to their unweighted counterparts, it will be interesting to study whether
and how this additional information can be used in these contexts.

References

1. Ahmad, M.O., Markkula, J., Oivo, M.: Kanban in software development:
A systematic literature review. In: 2013 39th Euromicro Conference on
Software Engineering and Advanced Applications. pp. 9–16 (Sep 2013).
https://doi.org/10.1109/SEAA.2013.28

2. Allier, S., Vaucher, S., Dufour, B., Sahraoui, H.A.: Deriving coupling met-
rics from call graphs. In: Tenth IEEE International Working Conference
on Source Code Analysis and Manipulation, SCAM 2010, Timisoara, Ro-
mania, 12-13 September 2010. pp. 43–52. IEEE Computer Society (2010).
https://doi.org/10.1109/SCAM.2010.25



12 Henning Schnoor and Wilhelm Hasselbring

3. Anuradha Chug, H.S.: Dynamic metrics are superior than static metrics in main-
tainability prediction : An empirical case study. In: Reliability, Infocom Technolo-
gies and Optimization (ICRITO)(Trends and Future Directions), 2015 4th Inter-
national Conference on. pp. 1–6. IEEE (2015)

4. Apache Software Foundation: Commons BCEL: Byte code engineering library
(2016), https://commons.apache.org/proper/commons-bcel/

5. Arisholm, E., Briand, L.C., Føyen, A.: Dynamic coupling measurement for
object-oriented software. IEEE Trans. Software Eng. 30(8), 491–506 (2004).
https://doi.org/10.1109/TSE.2004.41

6. Atlassian: JIRA project and issue tracking (2017),
https://www.atlassian.com/software/jira/

7. Bogner, J., Wagner, S., Zimmermann, A.: Automatically measuring the maintain-
ability of service-and microservice-based systems: a literature review. In: Proceed-
ings of the 27th International Workshop on Software Measurement and 12th Inter-
national Conference on Software Process and Product Measurement. pp. 107–115.
ACM (2017)

8. Briand, L., Emam, K.E., Morasca, S.: On the application of measurement theory
in software engineering. Empirical Software Engineering 1(1), 61–88 (Jan 1996).
https://doi.org/10.1007/BF00125812

9. Briand, L.C., Wüst, J.: Empirical studies of quality models in object-oriented sys-
tems. Advances in Computers 56, 97–166 (2002). https://doi.org/10.1016/S0065-
2458(02)80005-5

10. Briand, L.C., Wüst, J., Daly, J.W., Porter, D.V.: Exploring the relationships be-
tween design measures and software quality in object-oriented systems. Journal
of Systems and Software 51(3), 245–273 (2000). https://doi.org/10.1016/S0164-
1212(99)00102-8

11. Candela, I., Bavota, G., Russo, B., Oliveto, R.: Using cohesion and coupling for
software remodularization: Is it enough? ACM Trans. Softw. Eng. Methodol. 25(3),
24:1–24:28 (Jun 2016). https://doi.org/10.1145/2928268

12. Carver, R.H., Counsell, S., Nithi, R.V.: An evaluation of the MOOD set of object-
oriented software metrics. IEEE Trans. Software Eng. 24(6), 491–496 (1998).
https://doi.org/10.1109/32.689404

13. Chhabra, J.K., Gupta, V.: A survey of dynamic software metrics. J. Comput. Sci.
Technol. 25(5), 1016–1029 (2010). https://doi.org/10.1007/s11390-010-9384-3

14. Chidamber, S.R., Kemerer, C.F.: Towards a metrics suite for object oriented design.
In: OOPSLA. pp. 197–211. ACM (1991)

15. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Software Eng. 20(6), 476–493 (1994). https://doi.org/10.1109/32.295895

16. Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., Koschke, R.: A sys-
tematic survey of program comprehension through dynamic analysis. IEEE Trans-
actions on Software Engineering 35(5), 684–702 (2009)

17. Fregnan, E., Baum, T., Palomba, F., Bacchelli, A.: A survey on software cou-
pling relations and tools. Information & Software Technology 107, 159–178 (2019).
https://doi.org/10.1016/j.infsof.2018.11.008

18. Geetika, R., Singh, P.: Dynamic coupling metrics for object oriented soft-
ware systems: A survey. SIGSOFT Softw. Eng. Notes 39(2), 1–8 (Mar 2014).
https://doi.org/10.1145/2579281.2579296

19. Gilpin, A.R.: Table for conversion of Kendall’s tau to Spearman’s
rho within the context of measures of magnitude of effect for meta-
analysis. Educational and Psychological Measurement 53, 87–92 (03 1993).
https://doi.org/10.1177/0013164493053001007

https://commons.apache.org/proper/commons-bcel/
https://www.atlassian.com/software/jira/


Comparing Static and Dynamic Weighted Software Coupling Metrics 13

20. van Hoorn, A., Waller, J., Hasselbring, W.: Kieker: A framework for application
performance monitoring and dynamic software analysis. In: Proceedings of the 3rd
ACM/SPEC International Conference on Performance Engineering (ICPE 2012).
pp. 247–248. ACM (Apr 2012). https://doi.org/10.1145/2188286.2188326

21. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), pp. 81–93
(1938)

22. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of AspectJ. In: ECOOP 2001 — Object-Oriented Programming: 15th
European Conference Budapest, Hungary, June 18–22, 2001 Proceedings. pp. 327–
354. Springer, Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-45337-7 18

23. Kirbas, S., Caglayan, B., Hall, T., Counsell, S., Bowes, D., Sen, A., Bener, A.:
The relationship between evolutionary coupling and defects in large industrial
software. Journal of Software: Evolution and Process 29(4), e1842–n/a (2017).
https://doi.org/10.1002/smr.1842, e1842 smr.1842

24. Knoche, H., Hasselbring, W.: Drivers and barriers for microservice adoption – a
survey among professionals in Germany. Enterprise Modelling and Information
Systems Architectures (EMISAJ) – International Journal of Conceptual Modeling
14(1), 1–35 (2019). https://doi.org/10.18417/emisa.14.1

25. Misra, S., Akman, I., Palacios, R.C.: Framework for evaluation and valida-
tion of software complexity measures. IET Software 6(4), 323–334 (2012).
https://doi.org/10.1049/iet-sen.2011.0206

26. Mitchell, B.S., Mancoridis, S.: Comparing the decompositions produced by
software clustering algorithms using similarity measurements. In: 2001 In-
ternational Conference on Software Maintenance, ICSM 2001, Florence,
Italy, November 6-10, 2001. pp. 744–753. IEEE Computer Society (2001).
https://doi.org/10.1109/ICSM.2001.972795

27. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures.
In: Proceedings of the 28th international conference on Software engineering (ICSE
2006). pp. 452–461. ACM (2006). https://doi.org/10.1145/1134285.1134349

28. Offutt, J., Abdurazik, A., Schach, S.R.: Quantitatively measuring object-
oriented couplings. Software Quality Journal 16(4), 489–512 (2008).
https://doi.org/10.1007/s11219-008-9051-x

29. Parnas, D.L.: On the criteria to be used in decomposing sys-
tems into modules. Commun. ACM 15(12), 1053–1058 (Dec 1972).
https://doi.org/10.1145/361598.361623

30. Schnoor, H., Hasselbring, W.: Toward measuring software coupling via weighted
dynamic metrics. In: Chaudron, M., Crnkovic, I., Chechik, M., Harman, M. (eds.)
Proceedings of the 40th International Conference on Software Engineering: Com-
panion Proceeedings, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018.
pp. 342–343. ACM (2018). https://doi.org/10.1145/3183440.3195000

31. Stevens, W., Myers, G., Constantine, L.: Structured design. In: Yourdon, E.N.
(ed.) Classics in Software Engineering, pp. 205–232. Yourdon Press, Upper Saddle
River, NJ, USA (1979)

32. Voas, J.M., Kuhn, R.: What happened to software metrics? IEEE Computer 50(5),
88–98 (2017). https://doi.org/10.1109/MC.2017.144

33. Yacoub, S.M., Ammar, H.H., Robinson, T.: Dynamic metrics for object oriented de-
signs. In: 6th IEEE International Software Metrics Symposium (METRICS 1999),
4-6 November 1999, Boca Raton, FL, USA. pp. 50–61. IEEE Computer Society
(1999). https://doi.org/10.1109/METRIC.1999.809725


	Comparing Static and Dynamic Weighted Software Coupling Metrics

