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Abstract
Iron is represented in biogeochemical oceanmodels by a variety of structurally different approaches
employing generally poorly constrained empirical parameterizations. Increasing the structural
complexity of ironmodules also increases computational costs and introduces additional
uncertainties, with as yet unclear benefits. In order to demonstrate the benefits of explicitly
representing iron, we calibrate a hierarchy of ironmodules and evaluate the remainingmodel-data
misfit. Thefirstmodule includes a complex iron cycle withmajor processes resolved explicitly, the
secondmodule applies iron limitation in primary production using prescribedmonthly iron
concentration fields, and the thirdmodule does not explicitly include iron effects at all. All three
modules are embedded into the same circulationmodel.Models are calibrated against global data sets
ofNO3, PO4 andO2 applying a state-of-the-artmulti-variable constraint parameter optimization. The
model with fully resolved iron cycle ismarginally (up to 4.8%) better at representing global
distributions ofNO3, PO4 andO2 compared tomodels with implicit or absent parameterizations of
iron.We also found a slow downof global surface nutrient cycling by about 30%and a shift of
productivity from the tropics to temperate regions for the explicit ironmodule. The explicit iron
model also reduces the otherwise overestimated volume of suboxic waters, yielding results closer to
observations.

1. Introduction

Historically, global biogeochemical models have been
becoming more complex. There is some justification
for this; for example by a reduced misfit in global
models usingmultiple phytoplankton functional types
versus single-phytoplankton models (Friedrichs et al
2007). However, increasing structural complexity
requires careful assessment, if anything is to be learned
from themodeling study (Anderson 2005). Models are
also becoming more complex with respect to biogeo-
chemical processes. Similar model-data misfits
remaining after parameter optimization are possible
for both structurally simple and complex biogeochem-
ical ocean models (Kriest 2017), but resulting nutrient
pathways, i.e. routes taken by nutrients between

particulate and dissolved pools, can differ substantially
(Friedrichs et al 2007, Löptien and Dietze 2017).
Biogeochemical differences arising due to differences
in nutrient pathways can increase with climate change
forcing (e.g. Kvale et al 2015, Laufkötter et al 2016),
further underscoring the need for careful assessment
as part of model development. Differences in nutrient
pathways may also be relevant when modeling higher
trophic levels, including fish (Pauly and Christen-
sen 1995, Stock et al 2017).

Iron modeling is an excellent example of the chal-
lenges mentioned above. An insufficient supply of the
trace metal iron limits primary production in over
one-third of the surface ocean (e.g. Boyd et al 2007,
Boyd and Ellwood 2010, Moore et al 2013) and also
controls di-nitrogen fixation in nitrate-limited ocean
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regions (Schlosser et al 2014). Iron is therefore con-
sidered an important regulator of the strength of the
soft tissue pump (Volk and Hoffert 1985) and, via
atmospheric CO2, of the climate (Joos et al 1991).
Consequently, earth system models (including all
CMIP5 models; Laufkötter et al 2015) include some
parameterization of the marine iron cycle. However, a
comparison of 13 global ocean biogeochemistry mod-
els against a compilation of dissolved iron (dFe)mea-
surements showed that all of the models had clear
deficits in reproducing many aspects of the observed
patterns (Tagliabue et al 2016). The authors empha-
sized that iron scavenging parameters are particularly
poorly constrained. Iron scavenging (the adsorption of
dFe onto particle surfaces) is commonly hand-tuned
to achieve a goodmodel fit to observed dFe concentra-
tions (resulting in global mean model water column
concentrations of 0.58±0.14 μmol m−3 across the
range ofmodels, Tagliabue et al 2016). Tuning amodel
to dFe using the iron scavenging parameterization has
unclear consequences for model behavior. Pasquier
and Holzer (2017) calibrated a simple steady-state
model against multiple data fields (dFe, PO4, ( )Si OH 4

and chlorophyll) and found that they could achieve a
similar model misfit (differing by less than 1%) when
applying a wide range of assumed external iron source
strengths, however, resulting in differing parameter
values of the iron module. The Pasquier and Holzer
(2017) study advanced our understanding of the sensi-
tivity of simulated nutrient distributions to specific
parameterizations of the iron cycle. The impact of
including ironmodels of different structural complex-
ity on the cycling of nutrients in a seasonally varying
model environment is as yet un-quantified.

Nickelsen et al (2015) introduced a dynamic iron
module into an earth system model of intermediate
complexity and hand-tunedmodel parameters against
surface macro-nutrient observations and sparse
observations of iron concentrations. The module
resolved major components of the marine iron cycle,
e.g. iron sources including aerosol deposition, detrital
remineralization and sedimentary release, and iron
sinks including biological uptake, iron scavenging and
colloid formation. The focus of this earlier effort was
on exploring the impact of an explicit iron cycle on
model sensitivities to environmental change, while the
hand-tuning ensured that overall model performance
for present-day ocean state was not affected negatively
by the addition of the ironmodule.

In this study we present calibrations of three var-
iants of a global model of ocean biogeochemical cycles
(dynamic iron cycle, Nickelsen et al 2015; prescribed
iron mask, Keller et al 2012; without iron, disabled
iron limitation in Keller et al 2012). Model variants
share the same physical circulation but differ in their
representation of the micro-nutrient iron. We cali-
brate against oceanic observations of NO3, PO4 and
O2, using a recently developed framework (Kriest et al
2017). Our aim was to assess whether, and to what

extent, the incorporation of Fe-related processes in the
model improves the model skill of simulating NO3,
PO4 and O2 as well as global indicators of biogeo-
chemical cycles (described below).While it is generally
assumed that the inclusion of an explicit iron cycle
improves the capability of marine biogeochemical
models to simulate distributions and fluxes of biogeo-
chemical tracers also other than iron, this has, to our
knowledge, not yet been demonstrated in a quantita-
tivemanner.

2.Materials andmethods

2.1.Model description
Our ocean model is a coupling of the University of
Victoria Earth System Climate Model (UVic ESCM,
version 2.9; Weaver et al 2001, Eby et al 2013)with the
Transport Matrix Method (TMM; Khatiwala 2007)
architecture (an ‘offline’ physical circulation, Kvale
et al 2017, see appendix). For the biogeochemical
oceanmodel component, we deploy different versions
of the Kiel Marine Biogeochemistry Module
(KMBGC), which differ in their representations of
iron. The first one utilizes a full dynamic iron cycle
(FeDyn; Nickelsen et al 2015), while the second one
utilizes prescribed monthly dFe surface concentration
fields (FeMask; Keller et al 2012), which is output
from the Biology Light Iron Nutrient and Gas
model (BLING), coupled with MOM4p1 circulation
(Galbraith et al 2010), regridded to UVic2.9 ESCM
grid by Keller et al (2012), and the third one includes
no representation of the iron cycle (NoFe). NoFe is
created by turning off the iron control on primary
production in FeMask. Detailed descriptions of FeDyn
can be found in Nickelsen et al (2015); FeMask and
NoFe in Keller et al (2012). In FeDyn, we also include
hydrothermal vents as an additional source of dFe to
the deep ocean. The hydrothermal iron flux data was
compiled by Tagliabue et al (2010). The parameters
chosen for calibration are shown in table 1 (see the
appendix for details of parameter selection).

2.2. Calibration framework
The calibration framework used in this study is adapted
from Kriest et al (2017). It contains three components;
TMM, a biogeochemical model (either FeDyn, FeMask,
orNoFe) and theCovarianceMatrixAdaptionEvolution
Strategy (CMA-ES) (see appendix, Hansen 2006, Kriest
et al 2017). CMA-ES is an evolutionary algorithm
mimicking natural selection to search for an ‘individual’
(a set of parameter values) thatminimize the data-model
misfit. It starts with a random set of individuals (the first
generation) and evaluates the model-data misfit of each
individual. Individuals with lowest misfit are more likely
to be present in the next generation, but random
mutations are also permitted, that explore the search
space with amutation rate and intensity computed from
the convergence behavior of previous generations. In our
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study, each individual is represented by a set of
parameters used for a 3000 model-year model spin-up
and subsequent computation of the model-data misfit.
The CMA-ES stops when a pre-defined upper limit of
the number of generations is reached or when successive
generations do not yield a further reduction in the
model-data misfit. The individual with the lowest
model-data misfit is then the calibrated parameter set.
All model spin-ups are performed with the same
transport matrices as used by Kvale et al (2017, derived
from online simulations of the UVic ESCM; see
appendix).

2.3.Misfit function
Following Kriest et al (2017), we define the misfit (JT) of
themodel as the sumof the volumeweightedRootMean
Square Error (RMSE) between simulated and observed
annualmean concentrations of the tracersNO3, PO4 and
O2 (World Ocean Atlas 2013; Garcia et al 2013b, 2013a).
Volume weighting of the RMSE puts relatively more
weight on the ocean interior than the surface ocean
model-datamisfit. Themisfit function JT is calculated as:
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where j=1,.., M=3 denotes tracers NO3, PO4 and
O2; and i=1, K, N denotes the location of each
model grid cell, N=87307 for the UVic ESCM; VT is
the total volume of the model ocean and Vi is the
volume of the respective grid cell; oj is the global
average observed concentration of the respective
tracer; mi,j and oi,j are the modeled and observed

concentrations of tracer j at location i, respectively.
Note that, in order to allow for a fair comparison
between models with and without an iron cycle, dFe is
not included in themisfit function.

3. Results and discussion

3.1. Improvement ofmisfit and biogeochemical
indicators after calibration
For the dynamic ironmodel (FeDyn)we find amarked
improvement by 8.6% for the total misfit after
calibration, compared to the hand-tuned version of
FeDyn (FeDyn0). Individual misfits JNO3

and JPO4
are

reduced by 20.7% and 9.7%, respectively (table 2),
compared to FeDyn0. This significant gain in the
model’s ability to reproduce the observational pattern
of NO3 and PO4, comes at the expense of an increasing
misfit JO2

(5.8%), i.e. the ability to reproduce the
observed patterns of O2, after calibration. In our

Table 1.The parameters chosen for each calibration, their observational value and calibration boundary settings. The parameters chosen for
each calibration aremarkedwith√.

Parameter Description Observation Cali. bound
Uncalibrated value

Unit

NoFe FeMask FeDyn

a Maximumgrowth rate at 0 °C 0.04–0.60a 0.30–0.75 0.600√ 0.600 0.600 d−1

*mP Microbial loop recycling rate 0.001–0.035 0.015√ 0.015√ 0.015 d−1

KFe
P Ordinary phyto. half-satu. of Fe-

limitation

0.035–1.14b,c 0.04–1.14 — 0.1√ — μmol Fem−3

KFe
Pmax MaximumKFe

P 0.035–1.14b,c 0.04–1.14 — — 0.4√ μmol Fem−3

KFe
D Diazotrophs half-satu. of Fe-limitation 6.29–17.2d,e 0.05–1.50 — 0.1√ 0.1√ μmol Fem−3

gZ
0 Maximumgrazing rate at 0 °C 0.06–1.9f 0.2–2.0 0.4√ 0.4√ 0.4√ d−1

wDet
i Sinking speed slope 0.024–0.107g,h 0.001–0.160 0.06 0.06√ 0.06√ d−1

KFe
org POMdependent scavenging 0.079–6.62i,j 0.225–6.750 — — 0.45√

RO:N Molar O: N ratio 8.1–11.2k 8.0–12.0 10√ 10√ 10√

a LeQuere et al (2005).
b Timmermans et al (2004).
c Price et al (1994).
d Bucciarelli et al (2013) unpublished data.
e Jacq et al (2014).
f Calbet and Landry (2004).
g Berelson (2001).
h Jackson et al (2015).
i Honeyman et al (1988).
j Lerner et al (2016).
k Körtzinger et al (2001).

Table 2.A comparison of themisfit fromoptimizedmodel spin-
ups. Values for uncalibrated FeDyn (FeDyn0) are calculated
diagnostically (by us) and have not been used in the tuning process
ofNickelsen et al (2015). Theminimumvalue of each column is
marked in bold.

Experiment JNO3 JPO4 JO2 JT

NoFe 0.1575 0.1305 0.1786 0.4667

FeMask 0.1537 0.1293 0.1803 0.4632

FeDyn 0.1457 0.1254 0.1730 0.4442

Hand-tuned

FeDyn0 (0.1838) (0.1389) (0.1635) (0.4862)
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calibration, the objective is to minimize the overall
misfit, which produced a trade-off between individual
components of the misfit function, leading to an
increase in JO2

. In order to assess whether a better
overall misfit against observations of biogeochemical
tracer concentrations improves the representation of
themarine biogeochemicalfluxes,wediagnosed several
global indicators, i.e. net primary production (NPP,
GtC yr−1), export production (Export, GtC yr−1), flux
of organic carbon at a depth of 2 km (F 2 kmPOC ,
GtC yr−1), denitrification (Denit, PgN yr−1), the
volume fraction of the ocean with oxygen concentra-
tions less than 5mmolm−3 (OMZ5, ‰) and the
volume fraction of ocean with oxygen concentrations
less than 50mmolm−3 (OMZ50, %), and compared
them to observational or synthetic data. Three out of
six indicators (Denit, F 2 kmPOC , OMZ5) show
improvements for FeDyn against the hand-tuned
FeDyn0 by getting closer to the observational data
range (figure 1(a)). The estimations of Export are
similar. Although NPP is increased by 4.5% after
calibration, both the calibrated andhand-tunedmodels
fall within the range of observational data. While the
calibration improves the simulation of the OMZ5 by
decreasing its volume by 73.6%, a reduction by 42.4%
of OMZ50 size worsens the description of the volume
fraction of hypoxic waters where O2 is less than
50mmolm−3.

3.2. The calibrated dynamic ironmodel has the best
skill
When comparing themisfits from different calibrations,
FeDynwith a full dynamic iron cycle has amisfit JT 4.8%
smaller than NoFe, and 4.1% smaller than FeMask
(table 2). Also for the individual components (JNO3

, JPO4
,

and JO2
) FeDyn provides the smallest misfit against

observations. The most significant difference is in JNO3
,

with FeDyn having a 7.5 (5.2)% smaller JNO3
than NoFe

(FeMask). This improvement may be related to the
improvement inOMZ5, and associatedDenit, in FeDyn,
described below. However, even the smallest JT (FeDyn)
still amounts to about 15% of global mean tracer
concentrations of each tracer, which is on par with the
calibration result from Kriest et al (2017, conducted
using a somewhat simpler biogeochemistry coupled to a
different circulation) and considerably larger than the
5% obtained for PO4 by Pasquier and Holzer (2017).
This is not unexpected because their study utilized an
inverse model coupled with a data-assimilated, steady
circulation (Primeau et al 2013), where PO4 had been
used already as part of the constraint for obtaining a
circulation that can optimally represent the tracer field.
Themisfit for FeMask and FeDyn are around 15.4% and
15.6%of globalmean tracer concentrations, respectively.
This indicates that the differences between our biogeo-
chemical models are smaller than the differences
between either model and observations. We believe that
this relates to biases in our physical circulation model

Figure 1.Model global annual fluxes and oxygenminimumzone size against their respective observational data.We plot six global
indicators on lineal axis pointing to the pole and the units areGtC yr−1 (NPP), PgN yr−1 (Denit), GtC yr−1 (F 2 kmPOC ), GtC yr−1

(Export),‰(OMZ5),% (OMZ50). The dashed–dotted (dotted) line denotes the lower (upper) boundary of the observational value.
The solid lines present themodel annualmean values. (a) Shows the comparison between un-calibrated FeDyn (magenta)with
calibrated (blue); (b) Shows the comparison between three calibratedmodels, FeDyn, FeMask (green) andNoFe (red); the
observational data are fromCarr et al (2006,NPP), Kriest andOschlies (2015,Denit, compilation of rates fromother studies referred
to in their table 2), Honjo et al (2008, F 2 kmPOC andExport), Lutz et al (2007, Export), Dunne et al (2007, Export) andGarcia et al
(2013a,WOA). Here we use 2.5 (7.5) mmol m−3 as the lower (upper) boundary value forOMZ5 and 40 (60) mmol m−3 as the lower
(upper) boundary value forOMZ50Conversion between different elements followed =C: N: P 106: 16: 1.
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(see figure A1, available online at stacks.iop.org/ERL/
14/114009/mmedia), which would also be consistent
with the considerably smaller PO4 misfit obtained by
Pasquier and Holzer (2017) for their PO4-constrained
circulation field. In our model, annually-averaged basin
vertical profiles of macro-nutrients and O2 (figure A1)
display the circulation bias reported in Kvale et al (2017);
a deep ocean (>2000m) that is generally too old
(according to the radiocarbon), which produces an
overestimation of NO3 and PO4, and an under-estima-
tionofO2 in thedeepoceanbasins. ThePacificO2profile
is affected by an over-estimate of deep vertical mixing in
the Southern Ocean (not shown). Even with calibration,
thesebiases cannot be completely overcome.

For the six biogeochemical indicators, half of them
(Denit, OMZ5 and NPP) improve with respect to
observations after the inclusion of iron modules, two
(F 2 kmPOC and OMZ50) become worse and Export
was essentially unchanged (figure 1(b)). The indicators
most sensitive to iron areNPP andOMZ5: experiment
FeDyn resulted in a reduction of NPP by 31.4% and
OMZ5 by 71.9% compared to NoFe. Between the two
models with iron, FeDyn shows lower F 2 kmPOC

(3.6%), OMZ5 (50.6%) and OMZ50 (23.5%) than
FeMask. The former two values reflect improvements
compared to observations, while the latter does not.
When considering all indicators equally, the simula-
tion of biogeochemical indicators is improved when
iron modules are included, and a fully dynamic iron
cycle outperforms a model with an iron mask. Both
misfits (table 2) and biogeochemical indicators are
improvedwhen a full dynamic iron cycle is used.

An interesting feature of the calibrations is the dif-
ferent behavior of OMZ50 and OMZ5 upon the inclu-
sion of an explicit representation of the iron cycle,
namely an improved agreement of the OMZ5 volume

with observations while the agreement deteriorates for
the OMZ50 volume. Both volumes decreased after the
calibration of biogeochemical parameters (improving
the OMZ5 bias but exacerbating the underestimation
of the OMZ50 volume with respect to NoFe). The
OMZ volume is determined by a combination of phy-
sical and biogeochemical processes (Kriest et al 2012,
Kriest and Oschlies 2015). The circulation is held con-
stant across all model experiments, with only the bio-
geochemical parameters allowed to vary. The
calibrations utilize global misfit weighted by ocean
volume, which gives little consideration to the OMZ
volume that comprises less than 4% of the global
ocean. However, OMZ5 waters have a special role as
featuring the only permanent sink of NO3 (via deni-
trification) in ourmodel. TheOMZ5 volume therefore
strongly impacts the global nitrogen inventory and
associated nitrate distributions (Landolfi et al 2013,
Kvale et al 2019). The calibration against observed O2

and NO3 distributions emphasized the improvement
of JNO3

, via improved OMZ5 volume. In contrast,
there is no such control via simulated NO3 distribu-
tions on theOMZ50 volume.

3.3. Calibrated parameters and uncertainties
The calibrated parameter values and their rangewithin
a 1% increase in misfit around the minimum of the
misfit function JT for the respective calibrations define
a measure of uncertainty of the calibrated parameters
and are provided in table 3. Also shown are the
resulting uncertainties in NPP and Export. All para-
meters and fluxes are constrained within a relatively
small range. The more tightly constrained parameters
are the increase of sinking speed with depth and the
molar O: N ratio. Their uncertainty ranges amount to
9.7%–13.8% and 2.9%–7.0% in the different

Table 3.Calibrated parameter value and their resulting fluxes ranges with 1%ofmisfit. Herewe show the range of
parameter values and simulatedNPP and Export diagnosed from all simulations that yield notmore than a 1%
increase of themisfit functionwith respect to its globalminimum. The parameter values that are keptfixed
during the calibration are put in parentheses. The unit ofNPP and Export is -GtC yr 1. See table 1 for the units of
the individual parameters.

NoFe FeMask FeDyn

Parameter Value Rangea Value Rangea Value Rangea

a 0.698 0.650–0.780 (0.060) (0.060)
*mP 0.0157 0.0142–0.0212 0.0012 0.0000–0.0020 (0.015)

KFe
P

— 0.050 0.045–0.071 —

KFe
Pmax

— — 0.585 0.520–0. 598

KFe
D

— 0.406 0.387–0.494 0.377 0.326–0.479

gZ
0 1.282 1.223–1.474 0.668 0.551–0.691 0.567 0.526–0.685

wDet
i 0.065 0.063–0.072 0.062 0.058–0.064 0.060 0.059–0.065

KFe
org

— — 0.427 0.208–0.510

RO:N 10.44 10.18–10.91 9.54 9.34–9.62 10.502 10.27–10.58

Fluxes

NPP 75.9 70.1–81.44 49.1 44.0–49.9 52.0 50.4–54.5

Export 6.3 5.8–6.4 6.8 6.4–7.0 7.1 6.7–7.2

a Here is obtained by samplingmodel runswithin 1% range of smallestmisfit for the respected calibration.
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calibrations, with calibration results for NoFe having
the largest uncertainty. This is due to the higher misfit
of NoFe, which, via our 1% misfit criterion increases
the absolute misfit difference and therefore may lead
to a larger range of parameter values consistent with a
1% misfit increase. The less constrained parameters
are the microbial loop recycling rate, the diazotrophic
half-saturation of iron and the iron scavenging rate.
However, those parameters also have a relatively large
prior parameter range used as input in the calibration.
Interestingly, estimates of the tracer fluxes, such as
NPP andExport are relativelywell constrained, despite
large uncertainties in individual parameters (bottom
rows of table 3). For eachmodel, the uncertainty range
in NPP is diagnosed from the ensemble of simulations
and parameter combinations with a misfit function
value less than 1% larger than theminimumof the cost
function. The thus estimated uncertainties amount to
7.9%–14.9% for NPP and 7.0%–9.5% for Export
(bottom rows of table 3).

An encouraging result of the calibration is that
NPP and Export, which are not explicitly included in
themisfit function, turn out to bewell constrained and
in good agreement with independent observational
evidence. Some optimal parameters appear to be por-
table across model configurations (e.g. see the close
agreement between wDet

i values). However, other
parameters are model dependent (e.g. calibrated gZ

0

values vary up to 126%betweenmodels).

3.4. The impact of including an ironmodule on
surface ocean nutrient pathways
The different models reveal different surface ocean
biogeochemical pathways (figure 2). Although the use
of volume-weighted model-data misfits in the model
calibration emphasizes fitness in the deep ocean, the
biogeochemical parameters selected for the calibration
reflect mostly upper-ocean processes. The differences
inNPP are themost prominent, withNPP beingmuch
lower in FeDyn and FeMask (52.0 and 49.1 GtC yr−1)
compared to NoFe (75.9 GtC yr−1). However, the
corresponding total nutrient recycling (sum of the
microbial loop recycling, zooplankton excretion and
remineralization) also slows, which leads to relatively
similar export production rates (6.3–7.1 GtC yr−1) out
of the euphotic zone (130 m) for all three calibrated
models. The similarity of Export estimations between
calibrations is likely linked to the calibration setup,
which uses the same circulation to achieve the same
observational distribution of tracer concentrations
and, therefore, is likely to produce similar values of
export production. Kriest (2017) calibrated two no-
iron prognosticmodels with identical physical circula-
tion against observational data, and found similar
values of export production of between 6.0 and
7.4 GtC yr−1. In our calibrations, the inclusion of iron
seems to slightly increase Export, nevertheless our
global number (7.1 GtC yr−1 in FeDyn) is still lower

than the steady state model calibration from Pasquier
andHolzer (2017, 9.5–11.0 GtC yr−1) using a different
circulation model. Our 1% misfit range of NPP and
Export of respective calibrations can be found in
table 3.

The three calibrated model configurations result in
similar Export through different surface nutrient path-
ways. Zooplankton in ourmodel grazes not only on phy-
toplankton but also on detritus and itself. The net
nutrient flux from zooplankton to detritus represents
sloppy feeding plus zooplanktonmortalityminus grazing
on detritus. Increasing the zooplankton grazing rate
increases the flux in both directions, with the net effect
reducing the percentage of nutrient that goes directly
from zooplankton to detritus, e.g. NoFe has the highest
grazing rate and only 20.1% of NPP goes to detritus
through zooplankton, comparing to 25.3% in FeMask
and 27.9% in FeDyn. A higher grazing rate also reduces
the standing stock of phytoplankton and reduces phyto-
plankton loss viamortality.Hence, despite the differences
in NPP, detritus production rates are similar in the three
calibrations (3.3 PgN yr−1 in NoFe, 3.2 PgN yr−1 in
FeMask and 3.2 PgN yr−1 in FeDyn). In all our calibra-
tions, the remineralization rate at 0 °Cand its dependence
on temperature is identical. The higher remineralization
flux inNoFe is due to the high productivity in the tropical
(warmer) region in that configuration (figures 3(a) and
(d)). The higher remineralization of detritus keeps nutri-
ents in the surface ocean. In combination with the higher
phytoplankton growth rate and higher grazing rate this
accelerates the surface ocean nutrient cycling (47.3% fas-
terwhencomparingNoFe toFeDyn).

Differences in surface ocean nutrient cycling and
pathways such as identified here may have substantial
implications when projecting future changes to eco-
system services, e.g. sustainability and resilience of
fisheries, since catches are closely related to NPP,
trophic energy pathways and transfer efficiencies
(Stock et al 2017).

3.5. Geographical shifts inNPP, Export and surface
NO3

The geographical distributions of simulated marine
biogeochemical fluxes also differs across calibrations.
The NPP reductions per area are 150 gCm−2 yr−1 for
the Pacific, 30 gCm−2 yr−1 for the Atlantic, and
60 gCm−2 yr−1 for the Indian Ocean, when compar-
ing FeDyn to NoFe. The Pacific Ocean is most
impacted by iron limitation, since it hosts three major
HNLC regions, the subpolar North Pacific, tropical
Pacific, and part of the Southern Ocean (Cullen 1995,
Pitchford 1999). However, the reductions of NPP in
the Southern Ocean and North Pacific are small
compared to the tropical Pacific (see figure 3(a)). The
large reduction of NPP in the tropical Pacific in FeDyn
is due to the reduction of nutrient recycling as
compared to the NoFe model (described in
section 3.4), where a higher phytoplankton growth
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rate and higher grazing rate accelerate nutrient recy-
cling in the warm tropical waters in NoFe. This
recycling is reduced in FeDyn via iron limitation on
primary production, as well as this model having
generally lower biological rates. Reduction of NPP in
the tropical Pacific, caused by the inclusion of a
dynamic iron module and regional iron limitation,
results in higher annual mean euphotic zone NO3

concentrations (by up to 8 mmol m−3) in the east
Pacific upwelling region (see figure 3(c)). This residual
NO3, which has not been exported into the Pacific
OMZ, can be utilized further downstream of the
equatorial upwelling system, where iron is less limiting

(e.g. the subtropical regions). Meanwhile, higher
global Export in FeDyn (see figure 3(b)) produces
lower annual-mean euphotic zone NO3 concentra-
tions (by up to 14 mmol m−3) in the rest of the surface
ocean (e.g. equatorial Atlantic, see figure 3(c)).

Bopp et al (2013) report that the different CMIP5
models show little agreement in simulated trends in pri-
mary production in eastern equatorial regions despite all
models accounting for iron limitation. In our calibrated
iron models (FeDyn and FeMask), we also see different
changes in NPP and NO3 concentrations in this region
(figure 3), which suggests that the available observations
of NO3, PO4 and O2 together with a volume-weighted

Figure 2.ANPZDplot comparing the surface nutrient pathway in three calibratedmodels. NoFe is red, FeMask is green and FeDyn is
blue. The boxes represent nutrient (N), phytoplankton (P), zooplankton (Z) and detritus (D) and their inventory in the euphotic zone
for each calibration aremarkedwith numbers (unit PgN) in the boxwith respective color. The thicknesses of the arrows is
approximately proportional to the associated flux and allfluxes are in unit of PgN yr−1).
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cost function might not be sufficient to constrain the
model dynamics in this region.

4. Conclusions and futurework

This study describes a range of advantages of explicitly
including iron in a global biogeochemical oceanmodel
by comparing calibrated models that employ a hier-
archy of different iron implementations. The models
with explicit consideration of iron perform better
compared to the model without iron in two respects:
(a) improved representation of macro-nutrient and
oxygen distributions with around a 4.5% reduction of
total model misfit, and (b) generally improved estima-
tions of global indicators of biogeochemical cycles.
The inclusion of a calibrated iron module produces
more realistic global NPP, which is around 33%
smaller than in the model without iron. It also
produces a more realistic suboxic volume (O2 is less
than 5 mmol m−3), which is reduced by 72.0 (43.3)%
in the dynamic iron model (iron mask model)
compared to the no-iron model. A more realistic
suboxic volume benefits the global nitrate distribution
by constraining denitrification rates and is achieved in
the iron models via a combination of changes in both
tropical export production and oxygen demand for
organic particle remineralization.

We therefore conclude that it is worthwhile to
include a dynamic iron cycle in biogeochemical models
for research questions relevant to distributions of
macro-nutrients, oxygen, NPP and very low oxygen
thresholds. However, modeling of water masses with
somewhat higher oxygen concentrations (regions with
O2 less than 50mmolm−3), remains problematic. Fur-
thermore, for each individual model, calibration
improved the model performance against chosen
metrics compared to the hand-tuned model, regardless
of the structural model complexity. In our case, this
improvement was generally larger than the differences
between the calibrated models differing in the repre-
sentation of the iron cycle. This is an important point,
because not only does inclusion of iron improve the
model performance, but also does the calibration itself
offer substantial model improvements that cannot gen-
erally be achieved with hand-tuning. Systematic model
calibration also reveals, which parameters are portable
across biogeochemical model structures (in our
instante, the rate of increase of the sinking speed with
depth) andwhich are not (e.g. the grazing rate).

We also found that the iron scavenging parameter
in our calibration is less well constrained then other
parameters. This may be improved when we use direct
iron measurements as an extra observational con-
straint. However, in order to better reproduce
observed patterns of dissolved iron, we may need a

Figure 3.Difference of annualmeanNPP, Export and euphotic zoneNO3 concentration between calibrations. Note that after iron
limitation is introduced, not all regions reveal a reducedNPP (e.g. temperate region in the SouthernOcean,North Pacific and East
Equatorial Pacific). This is due to the strong grazing control on phytoplankton in those regions inNoFe.
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more sophisticated ligands parameterization, as indi-
cated by Völker and Tagliabue (2015). Ligands can
keep dissolved iron in solution instead of being sca-
venged (Gledhill 2012), which can directly impact the
iron scavenging parameter estimation. As Buck et al
(2015, 2017) point out, ligands have different iron-
binding strengths and life spans; Pham and Ito
(2018, 2019) suggest ligands may be responsible for
subsurface maxima of dissolved iron. Our model
assumes a constant ligand concentration, which prob-
ably underestimates the control of ligands on our
model biogeochemistry. It would be interesting to
calibrate a more complex representation of ligands in
the model in the future and to investigate if this can
further improve themodel performance.

The surface nutrient pathways differ across cali-
brated models, particularly with respect to total NPP.
These differences arise from both the differences in
model structure and the calibrated parameter values.
Whether different nutrient pathways result in sig-
nificantly different model responses to transient for-
cing (i.e. a changing climate) remains an open
question. The fact that different optimal nutrient
pathways arise in models of different complexity and
model structure despite an identical calibration objec-
tive, demonstrates that surface processes such as
microbial loop recycling cannot straightforwardly be
constrained by seasonally cycling patterns of biogeo-
chemical tracer concentrations. Lastly, the high sensi-
tivity of simulated tropical Pacific NPP and Export to
model structure emphasizes the importance of iron
limitation in this region.

After the benefit of including an explicit repre-
sentation of the iron cycle has been demonstrated in
the current study, future work will investigate the
effect of including direct iron measurements in the
calibration process of suchmodels. The impact of cali-
bration will also be studied with respect to the simu-
lated biogeochemical responses under a changing
climate.
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