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Abstract The Atlantic Subtropical Cells (STCs) are shallow wind-driven overturning circulations
connecting the tropical upwelling areas to the subtropical subduction regions. In both hemispheres, they
are characterized by equatorward transport at thermocline level, upwelling at the equator, and poleward
Ekman transport in the surface layer. This study uses recent data from Argo floats complemented by ship
sections at the western boundary as well as reanalysis products to estimate the meridional water mass
transports and to investigate the vertical and horizontal structure of the STCs from an observational
perspective. The seasonally varying depth of meridional velocity reversal is used as the interface between
the surface poleward flow and the thermocline equatorward flow. The latter is bounded by the 26.0 kg m=3
isopycnal at depth. We find that the thermocline layer convergence is dominated by the southern
hemisphere water mass transport (9.0 + 1.1 Sv from the southern hemisphere compared to 2.9 + 1.3 Sv
from the northern hemisphere) and that this transport is mostly confined to the western boundary.
Compared to the asymmetric convergence at thermocline level, the wind-driven Ekman divergence in the
surface layer is more symmetric, being 20.4 + 3.1 Sv between 10°N and 10°S. The net poleward transports
(Ekman minus geostrophy) in the surface layer concur with values derived from reanalysis data

(5.5+0.8 Svat 10°S and 6.4 + 1.4 Sv at 10°N). A diapycnal transport of about 3 Sv across the 26.0 kg m™3
isopycnal is required in order to maintain the mass balance of the STC circulation.

Plain Language Summary The Atlantic Subtropical Cells (STCs) are shallow wind-driven
overturning circulations connecting the tropics to the subtropical regions within the upper 300 m. In both
hemispheres, they are characterized by equatorward transport at subsurface level and poleward transport
in the surface layers. They are closed by upwelling at the equator and subduction in the subtropics.

STCs are suggested to impact sea-surface temperature variability in tropical upwelling regions thereby
influencing, for example, precipitation patterns. The boundary between the two branches is approximated
by the depth at which the meridional velocity reverses. The lower boundary of the deep equatorward
branch is defined by an isoline of potential density. We find that at subsurface level, the equatorward
branches converge in the tropics with more transport coming from the southern hemisphere. At the
surface, a more symmetric divergence of water mass is observed in the tropics. The surface layers are also
influenced by geostrophic transport generally counteracting the wind-driven divergence. In total, the net
surface divergence and the subsurface convergence yield a residual. It is suggested that this water mass
volume deficit originates from below the STCs and enters the subsurface layers in the tropics where it is
lifted to the surface.

1. Introduction

The subduction zones in the oceanic subtropical gyres are linked to the tropics by shallow meridional over-
turning circulations confined to the upper approximately 300 m: the Subtropical Cells (STCs). The STCs are
driven by poleward Ekman transport within the surface layer in the tropics, forming the equatorial diver-
gence. In the subtropics, Ekman pumping causes subduction of water masses to thermocline level. From
here, geostrophic transport brings the water back toward the equator along isopycnal surfaces. In the trop-
ics, equatorial upwelling due to Ekman divergence or coastal upwelling forms the last branch of the STCs
(e.g., Liu et al., 1994; McCreary & Lu, 1994; Schott et al., 2004).

The STCs upwell cool subsurface waters and thereby maintain the tropical thermocline (Schott et al., 2004).
Variations in the mean water mass transports due to STC dynamics enable advection of hydrographic and/or
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transport anomalies from the subtropics to the equator. Hence, STCs are suggested to influence equatorial
sea-surface temperature (SST) variability on interannual to decadal time scales in the tropical Atlantic Ocean
via two different processes (Schott et al., 2004). In the first process, temperature anomalies are subducted in
the subtropics and transported at the thermocline level toward the equatorial or eastern tropical upwelling
regions impacting tropical SST (Gu & Philander, 1997). The second process describes an anomalous equator-
ward thermocline transport that changes the amount of thermocline water entering the upwelling regions
rather than its properties (Kleeman et al., 1999). For the Pacific Ocean, the second process has been shown
to play an active role in both models and observations, resulting in pronounced SST anomalies in the eastern
equatorial upwelling area (Farneti et al., 2014; Liibbecke et al., 2008; McPhaden & Zhang, 2002, 2004).

Despite the simplified model of overturning described above, STCs are far from being two-dimensional and
exhibit rather complex pathways. Subduction in the subtropical Atlantic generally occurs in the eastern parts
of the basins driven mainly by Ekman pumping. From there, subducted water flows westward and equa-
torward (e.g., Lazar et al., 2002) while zonal currents distort their pathways. Malanotte-Rizzoli et al. (2000)
showed that for subducted water masses, three different pathways exist between the subtropics and tropics.
First, thermocline water can reach the equatorial upwelling zones on interior routes. Second, depending
on the latitude of subduction, thermocline water can reach the western boundary where it is entrained in
the western boundary current and travels equatorward. Third, thermocline water that reaches the western
boundary too far south in the southern hemisphere or too far north in the northern hemisphere is recir-
culated poleward within the subtropical gyre and does not participate in the subtropical-tropical exchange.
These theoretical pathways are modified in the northern hemisphere by the presence of the Intertropical
Convergence Zone (ITCZ) between 5° — 15°N. Upwelled waters within the ITCZ have a higher PV and are
more stratified than subducted waters at the same density range. Thermocline water is forced to circumvent
the PV barrier which extends roughly from 15°N in the central eastern part of the basin to 10°N near the
western boundary (Harper, 2000) causing thermocline water on equatorward pathways to take a westward
detour (Zhang et al., 2003) largely hindering interior pathways in the northern hemisphere.

The interhemispheric asymmetry is increased by the return flow of the Atlantic Meridional Overturning
Circulation (AMOC) superimposed upon the Atlantic STCs which is particularly apparent at the western
boundary (e.g., Fratantoni et al., 2000; Hazeleger & Drijthout, 2006). In the southern tropical Atlantic,
the upper ocean return flow of the AMOC is focused in the northward flowing North Brazil Undercur-
rent (NBUC) which loses its undercurrent character on its equatorward pathway after being augmented
by the shallower inflow of the South Equatorial Current (Schott et al., 2004). It then continues as the
surface-intensified North Brazil Current (NBC) crossing the equator and transporting warm water north-
ward. Hence, the upper ocean return flow of the AMOC strengthens the southern hemisphere STC while
counteracting southward thermocline transports in the northern hemisphere STC (e.g., Schott et al., 2004)
along the western boundary. As a consequence, the Equatorial Undercurrent (EUC) is predominantly fed by
thermocline water of South Atlantic origin (Fratantoni et al., 2000; Harper, 2000; Hazeleger et al., 2003; Liu
et al., 1994; Tsuchiya, 1986) leading to an asymmetry of origins of water masses within the density range of
the equatorward branch (Pefia-Izquierdo et al., 2015; Oschlies et al., 2018). Therefore, central and interme-
diate waters in the tropical North Atlantic are mainly ventilated by waters originating in the South Atlantic.
Analogously, the Indonesian throughflow is responsible for a similar asymmetry of the STCs in the Pacific
Ocean. There, an estimated 80-90% of EUC water originates in the southern hemisphere (Kuntz & Schrag,
2018; Schott et al., 2004) which is comparable to Atlantic Ocean estimates by Fratantoni et al. (2000) that
85% of the water masses transported by the EUC in the western Atlantic originate in the South Atlantic.

Most of the STC characteristics described so far have been derived from model studies. Observational esti-
mates of transport values for the individual branches of the Atlantic STCs (thermocline layer transport and
surface layer transport in both hemispheres) have been provided by Zhang et al. (2003) based on five decades
of hydrographic data mainly from the World Ocean Database and the World Ocean Circulation Experiment.
Their calculations showed that on average, 5 Sv (= 10° m3s~!) northern hemisphere waters (2 Sv interior
and 3 Sv western boundary) and 10 Sv southern hemisphere waters (4 Sv interior and 6 Sv western bound-
ary) reach the equator. Aside from Zhang et al. (2003), observational efforts studying the Atlantic STCs have
been rare. However, numerical model studies such as Hazeleger and Drijfthout (2006) estimate STC trans-
ports from a high-resolution model to be more than a factor of 2 smaller than the observational estimates
(4 Sv from the south and 1.5 Sv from the north). Moreover, Fratantoni et al. (2000) use an eddy-resolving
ocean circulation model to design different model experiments with and without a meridional overturning
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Figure 1. Number of Argo profiles (delayed mode) within horizontal boxes of (1°)? between 2004 and 2016. Note the
logarithmic color scale. Zonal sections at 10°N, 10°S and a repeated ship section at the western boundary are marked
(thick black lines). The 1,000-m isobath from the ETOPO1 bathymetry (Amante & Eakins, 2009) is superimposed
(black contours).

circulation. Their results show that the combination of wind and MOC forcing yields an asymmetric ther-
mocline convergence of 14 Sv southern hemisphere and 2 Sv northern hemisphere contribution while their
wind-only experiment shows a symmetric thermocline convergence among hemispheres of 8 Sv from the
southern hemisphere and 7 Sv from the northern hemisphere. However, the asymmetry between interior
transport and western boundary transport remains. In addition, the transports of the solutions of the wind
+ MOC forced run are a superposition of the transports of the wind-only and MOC-only runs. The linearity
does not hold for the mesoscale variability which is greatly enhanced in the MOC including runs. Other stud-
ies further emphasize how the choice of wind stress forcing influences the overall circulation patterns and
the exchange windows in general circulation models. For instance, Inui et al. (2002) and Lazar et al. (2002)
both show that a stronger wind stress forcing causes the interior exchange windows to be of smaller extent.
However, the discrepancy in STC transports between model studies and Zhang et al. (2003) emphasizes the
need of further studies based on observations.

When estimating their transport, STCs have to be distinguished from the tropical cells (TCs) which are
shallow tropical overturning circulations close to equator. The latitudinal extent of the TCs is approximately
+3.5° off the equator (e.g., Lu et al., 1998) suggesting that the TCs mainly recirculate tropical water masses
and do not participate in the subtropical-tropical water mass exchange. However, at equatorial latitudes, they
superimpose upon the STCs and therefore zonal sections of thermocline equatorward transport associated
with the STCs should be calculated poleward of the TCs. The present study focuses on the Atlantic STCs, and
in the following, any use of the abbreviation STC will refer to the cells of the Atlantic Ocean, unless otherwise
noted. Observations in the Atlantic Ocean have multiplied—especially due to the Argo program—since the
transport estimates of Zhang et al. (2003). Furthermore, the enhanced spatial and temporal coverage of the
last two decades calls for an updated observational estimate of the STC transports to allow for a more detailed
investigation of their structure.

This study is structured as follows. First, the different data sets are described in section 2. Section 3 provides
a summary of the methods used to calculate the individual STC branches and their error estimate. Section 4
describes the results which are divided into thermocline transports and surface transports. In section 5 the
presented results are summarized and discussed.

2. Data

2.1. Argo Climatological Data

Since its start in 2000, the Argo program has grown into a global array of nearly 4,000 profiling floats. This
coverage has been sustained for more than a decade, providing temperature and salinity profiles in the upper
2,000 m (Figure 1). Overall, more than 160,000 Argo profiles are available between 20°S and 20°N in the
Atlantic for the time period of 2004 to 2016. This is approximately the same number of hydrographic profiles
that Zhang et al. (2003) used for a period spanning five decades, though their latitudinal range (40°S to
50°N) is more than twice the range analyzed here (see their Figure 1), indicating a data density half of what
is available for this study.
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Within the framework of this study, monthly geostrophic transports are calculated from the 2017 version
of the Roemmich-Gilson Argo climatology (from here on called RG-clim; Roemmich & Gilson, 2009). The
updated version of the RG-clim is based on a similar analysis method as in Roemmich and Gilson (2009)
and available for the time period from 2004 to 2016 providing (a) a climatological mean and (b) monthly
anomalies of temperature and salinity both mapped on a 1° x 1°grid and on 58 depth levels. For a detailed
description of how the RG-clim is derived, the mapping methods and the additional quality control criteria
applied to the available Argo profiles, see Roemmich and Gilson (2009).

2.2. Western Boundary Ship Section

The western boundary is generally a region of sparse Argo float coverage (Figure 1). However, it is a
key region for equatorward STC transports. In order to better resolve the southern hemisphere west-
ern boundary, five individual sections of hydrographic and acoustic Doppler current profiler (ADCP)
measurements are used to construct mean sections of conservative temperature, absolute salinity, and along-
shore/meridional velocity. All cruises were carried out with the RV Meteor in July 2013 (M98), May 2014
(M106), October 2015 (M119), September 2016 (M130), and March 2018 (M145). Shipboard ADCP data are
combined with lowered ADCP profiles at hydrographic stations to construct full-depth velocity sections
(e.g., Hummels et al., 2015).

The mean section is an update of Hummels et al. (2015) but only implements sections from 2013 onward. All
cruise tracks followed 11.5°S between 32°W and 34.15°W before turning northwestward toward the Brazil-
ian coast where the sections end at 36°W and 10.2°S (Figure 1). Alongshore velocity from the cross-shore
ship section is combined with meridional velocities from the zonal part of the ship section.

Shipboard velocity measurements used in this study are in good agreement with the mean alongshore
velocity section derived from moored observations along 11.5°S (e.g., Hummels et al., 2015). Variability on
seasonal time scales has been estimated by Schott et al. (2005) for an earlier period of the mooring array.
They found a seasonal cycle of NBUC transport with a range of about 4 Sv between a maximum in July and a
minimum in October/November which is most likely covered by the somewhat evenly distributed sections
(March, May, July, September, and October). This encouraged us to use the spatially high-resolved mean
ship section for further analysis.

2.3. Monthly Isopycnal and Mixed-layer Ocean Climatology

The Monthly Isopycnal and Mixed-layer Ocean Climatology (MIMOC; Schmidtko et al., 2013) provides
hydrographic climatological monthly means based on Argo profiles, shipboard, and ice-tethered CTD data
and profiles archived in the World Ocean Database. Climatological profiles are mapped with a horizontal
resolution of (0.5°)? and on 81 pressure levels between 0 and 1,950 dbar. MIMOC is intended to represent
the modern state of the world oceans meaning that recent observations are emphasized. However, in regions
with poor data coverage, the climatology relaxes to historic data from as early as the 1970s. Due to the
incorporation of CTD data, MIMOC can provide useful insights inshore of the 1,000-m isobath where Argo
profiles are absent.

2.4. Ocean Reanalysis 4

Thermocline transport estimates are evaluated by comparison of observational data with the ECMWF Ocean
Reanalysis 4 (ORA-S4; Balmaseda et al., 2013). ORA-S4 has a horizontal resolution of (1°)? and covers a
time period between 1958 and 2017 of which we use hydrographic and velocity data between 2000 and 2017.
In addition to potential temperature and practical salinity profiles which are converted into conservative
temperature and absolute salinity profiles and from which geostrophic transports are calculated, ORA-S4
further provides zonal and meridional velocity data on 42 depth levels. Absolute velocity data are used here
for comparison and to determine the depth at which the meridional velocity reverses from poleward at the
surface to equatorward at thermocline depth. This depth is taken to represent the interface between the
upper and the lower STC branches as described in section 3.2.

2.5. Wind Products

Surface transports of the STCs are associated with poleward Ekman transport. In order to estimate the
meridional Ekman transport, wind stress data from several products are used. The Advanced Scatterome-
ter (ASCAT) satellite observations provide daily maps of surface wind speed with a horizontal resolution of
25 km for the time period between 2007 and 2018. Satellite observations from ASCAT are complemented by
the NCEP/NCAR Reanalysis I which provides 6-hourly wind speed data on a (2.5°)? horizontal grid and by
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JRA-55 6-hourly wind speed data on a (0.5°)? grid from which the zonal surface wind stress (z,) is calculated
via the Bulk formula:

T, =pg ¥ Cq ¥ U €y

using a reference density p, = 1.22 kg m=3, a drag coefficient ¢, = 0.0013 (used, e.g., in Kopte et al., 2018)
and the zonal surface wind speed u.

3. Methods

3.1. Thermocline Transport

In a first step, the gridded hydrographic data (available either as in situ temperature or potential temperature
and practical salinity) are converted into conservative temperature (CT) and absolute salinity (S,) following
the definitions of the TEOS-10 (McDougall, 2017). From CT and S ,, profiles of dynamic height are calculated
ateach longitude of the zonal sections at 10°N and 10°S. These latitudes are chosen because of their sufficient
distance from the TCs close to the equator on the one side and to the subtropical subduction zones on the
other side. In addition, we can combine estimates at 10°S with the close-by repeated ship section at 11.5°S.
All thermocline water associated with the STCs has to pass these latitudes on either interior or western
boundary pathways. Zonal sections of dynamic height are used to derive zonal pressure gradients (p, ) from
which relative meridional geostrophic velocities (v,) perpendicular to the zonal sections are calculated:

—ﬂﬁ%=—%m’ @
0

where f represents the Coriolis parameter at the specific latitude (y) of the section and p, a reference den-
sity. Absolute geostrophic velocities are inferred with a reference level based on the time-mean meridional
displacement of Argo floats at their parking level derived from the YoMaHa'07 data set (Lebedev et al.,
2007). The majority of the Argo floats drift at a deep parking level of around 1,000 dbar. Consequently,
absolute geostrophic velocities derived from the RG-clim and MIMOC are referenced to this level of known
motion. Note that absolute velocities at 1,000 dbar from ORA-S4 are indistinguishable from zero. Therefore,
geostrophic velocities from ORA-S4 are inferred with an assumed reference level of no motion at 1,000 dbar.

CT and S, are used to calculate mean sections of potential density along 10°N and 10°S. Equatorward
transports from geostrophic and absolute velocities are calculated between an upper boundary and a
lower boundary which is discussed in detail below in section 4.1. The layer thickness (Az) between these
boundaries at each longitude, latitude, and time step, the zonal grid space (Ax), and the monthly merid-
ional (geostrophic or total) velocity (v) within the layer are needed to calculate the monthly meridional
(geostrophic or total) volume transport (T) at each longitude (x), latitude (y), and time step (¢):

T(x, y,t) = Ax Az(x, y, t) v(x, y, b). 3)

The estimate of transport uncertainties in thermocline layer and surface layer transport (shown in Tables 1
and 2) is given by the temporal standard deviation at each longitude along the zonal sections at 10°N and
10°S. While the transport is accumulated along zonal sections by summing from east to west, the uncer-
tainties of the cumulative transport estimates (¢) are calculated by using the rules of error propagation:

€= /Zaf, 4

where o, is the temporal standard deviation at longitude i.

3.2. Surface Transport
The poleward surface transport of the STCs is calculated using wind stress data derived from several wind
products (see section 2.5): ASCAT, JRA-55, and NCEP/NCAR Reanalysis I. Under the assumption that the
poleward surface transport associated with the upper branch of the STCs is driven by the meridional Ekman
transport, the surface transport (Ty) is defined by

1 7060

Tp(e,y,f) = —— X222
B D=0 T

where 7, represents the zonal wind stress for a given horizontal cell (Ax). Surface transports are calculated
for each time step (t) before averaging over time.

Ax, ©)
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Figure 2. Zonal sections of (a)-(b) conservative temperature, (c)-(d) absolute salinity, and (e)—(f) meridional
geostrophic velocity along 10°N (left column) and 10°S (right column) from the RG-clim mean (see section 2.1 for
detailed description). Isopycnal surfaces are shown as black contour lines. A realistic topography from the ETOPO1
data set shows the eastern and western boundaries of the sections.

4. Results

4.1. Thermocline Transports

The STCs are divided into a subsurface equatorward and a surface poleward branch. In the following, the
transports of the equatorward branches are estimated individually along two zonal sections at 10°N and
10°S. Hydrographic properties, CT and S, along these sections are presented from the RG-clim (Figures 2a
to 2d). They show the tilted thermocline/halocline/pycnocline toward the east of the basin, which is steeper
in the southern hemisphere, as well as a fresh water lens at 10°N (Figure 2c) close to the western boundary
that is most likely associated with the Amazon and Orinoco river outflow a few degrees to the south. In
the central and eastern part of the northern section, the mean position of the ITCZ leads to decreased sea
surface salinity and a subsurface salinity maximum. The southern section generally exhibits higher salinity
in the surface layer and shows a subsurface maximum close to the western boundary.

Zonal sections of CT and S, are used to calculate meridional geostrophic velocity across 10°N and 10°S
(Figures 2e to 2f). Between the surface and approximately the 26.0 kg m=3 isopycnal, the meridional
geostrophic flow is mainly equatorward except for at the eastern boundary where both sections reveal pole-
ward flow. At 10°S, the western boundary shows the geostrophic part of the equatorward flowing NBUC with
maximum geostrophic velocities of about 0.2 m s71. This is about half the magnitude of absolute velocities
measured by Hummels et al. (2015). Since western boundary currents are mainly in geostrophic balance,
this difference likely indicates an underestimation of the NBUC by the RG-clim. On its equatorward path,
the NBUC is augmented by the shallower inflow of the low-latitude South Equatorial Current and contin-
ues northward as the surface intensified NBC (e.g., Schott et al., 1998). The NBC is poorly sampled at the
northern section due to sparse data coverage (Figure 1). Potential consequences of the deficient representa-
tion of the NBC for the transport estimates of the STCs are discussed below in section 5. Nevertheless, the
southward recirculation of the NBC between 50 and 55°W at 10°N is well captured.

In order to calculate equatorward volume transports associated with the STCs, first, the vertical extent of the
layer in which the lower branches of the STCs reside has to be defined. This layer is called the thermocline
layer. First, we focus on the lower boundary.

In general, the vertical structure of meridional geostrophic transports per 0.2 kg m~3 density bin agrees
well for the different geostrophic products (Figure 3). At 10°N, the deepest layers below 26.0 kg m~3 show
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Figure 3. Averaged meridional transport per 0.2 kg m~3 density bin for (a)
10°N and (b) 10°S from the African coast to (a) 55°W and (b) 32°W thereby
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excluding the western boundary. Values show the transport within
+0.1 kg m~3 of the isopycnal on the y-axis.

poleward transport in all products, with a peak at about 26.5 kg m=3 in
the RG-clim and slightly deeper in ORA-S4 and MIMOC indicating the
interior northward pathway of the thermohaline circulation (Figure 3a).
Generally, the sign of transport changes from poleward to equatorward
right above 26.0 kg m~3. Hence, the 26.0 kg m~3 isopycnal is chosen as the
lower boundary of the northern STC. Total meridional transport derived
from absolute velocity data from ORA-S4 includes the poleward Ekman
transport in the surface layer and therefore differs from the geostrophic
transports above a certain isopycnal surface which can be seen as a proxy
for the zonal mean potential density equivalent of the annual mean
Ekman depth. At 10°S, the vertical structure of meridional transport is
basically mirroring the structure of the northern section (Figure 3b).
Below 26.0 kg m~3, poleward transport represents the recirculation of the
South Equatorial Undercurrent (Stramma & Schott, 1999). Northward
transport below 26.5 kg m~3 as seen in RG-clim and MIMOC indicates
the northward flow of Antarctic Intermediate Water which is not seen in
ORA-S4 transports. Closer to the surface and above 26.0 kg m~3, equator-
ward transport is observed with peak values between 23.5 and 25 kg m3.
Analogously to the northern section, we choose the 26.0 kg m~3 isopycnal
as the lower boundary of the equatorward branch of the STC at 10°S.

In Figure 3, we observe a change of sign in ORA-S4 data at lighter water
masses and therefore closer to the surface, which could be indicative for

the upper boundary of the lower STC branches. However, Figure 2 shows that choosing an isopycnal for
the lower boundary is justified as the sign of flow follows isopycnal surfaces while in the surface layers,
isopycnal surfaces could intersect the Ekman layer in the east and the flow is not only a function of potential
density anymore. The choice of the upper boundary is crucial as the geostrophic velocities and consequently
the geostrophic transport increases toward the surface. Hence, in this study, we define the upper boundary
of the lower STC branch by using the seasonally varying depth of meridional velocity reversal.
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Figure 4. Zonally averaged vertical profiles of meridional velocity for boreal winter (blue), spring (green), summer
(red), and autumn (gray) composites as well as for an annual mean (black) along the two sections at 10°N and 10°S

from ORA-S4.
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Figure 5. Integrated equatorward geostrophic transport (from the RG-clim) between the seasonally varying interface
depth and the 26.0 kg m~3 isopycnal for zonal boxes of 1° together with the 1,000-m isobath from the ETOPO1 data set
(black contour). The thick black lines indicate the zonal sections at 10°N and 10°S. Note that red colours indicate
equatorward transport and blue colours poleward transport.

ORA-S4 provides absolute zonal and meridional velocity data of which the latter are used to determine
the depth of meridional velocity reversal d; (interface depth). The annual mean depth at which poleward
velocities change to equatorward velocities at 10°N and 10°S is 60 m. However, the interface depth under-
goes a strong seasonal cycle at both latitudes (Figure 4). Consequently, the interface between the horizontal
branches of the STCs is defined by a seasonally varying interface depth. The seasonal interface depths for
10°N are 65, 65, 50, and 30 m respectively for winter, spring, summer, and autumn; the corresponding depths
for 10°S are 45, 50, 70, and 65 m (Figure 4). In the zonal mean, the equatorward transports are accomplished
in the density layer between the seasonally varying interface depth and the 26.0 kg m=3 isopycnal in both
hemispheres.

The zonal mean is instructive to define the boundaries of the thermocline layer. With this definition, the
horizontal distribution of the different meridional pathways of thermocline layer transport can be estimated
(Figure 5). Note that at the equator, geostrophic balance does not hold due to the vanishing Coriolis force.
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Figure 6. Cumulative meridional transport along (a) 10°N and (b) 10°S integrated from east to west and between the
seasonally varying interface depth and the 26.0 kg m~3 isopycnal. The black line at 32°W in (b) indicates the most
eastern extent of the repeated ship section at 11.5°S at which the western boundary transport from the ship section is
added to the accumulated transport of RG-clim at 32°W.
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Table 1
Equatorward Transport Between the Seasonally Varying Interface Depth and the 26.0 kg m=3 Isopycnal for Different Products at the Two Zonal Sections at 10°N/°S
10°N 10°S
RG-clim MIMOC ORA-geostr ORA-total RG-clim MIMOC ORA-geostr ORA-total Ship section
INTe 0.2+0.5 0.9+0.3 0.7+0.7 1.2+0.7 3.8+0.8 4.6+0.2 3.0+0.6 2.5+0.5 =
WBe 2.7+1.2 1.4+0.5 2.3+0.7 1.0+0.8 3.3+0.6 2.0+0.2 3.9+0.5 6.2+0.7 5.2+0.8
TOTALe 2.9+1.3 2.3+0.5 3.0+1.0 2.2+1.1 7.1£1.0 6.5+0.3 6.9+0.7 8.7+£0.9 9.0£1.1

Note. At 10°N (10°S), the 50°W (32°W) longitude divides the sections into an interior part (INT) and a western boundary part (WB). Shown is also the zonally
accumulated transport (TOTAL) over the whole basin as well as the particular error estimates (see section 3.1 for details).

Hence, the calculations were only carried out poleward of +2.5°. In both hemispheres, the highest trans-
port values occur at the western boundary with values of more than 2 Sv per 1° close to the equator. The
intensified transports at the western boundary are a consistent feature starting at around 15° off the equator
in both hemispheres and increasing toward lower latitudes. Transports associated with the southern STC
are slightly higher compared to northern hemisphere values. Larger differences in thermocline layer trans-
port are revealed in the interior part of the basin. At 10°S, substantial equatorward transport is observed in
the interior basin. Although transport values do not reach the magnitude of the western boundary trans-
ports, the interior exchange window at 10°S exists between 30°W to 10°W. In contrast, at 10°N, interior
transports east of the western boundary are almost absent in our analysis. However, closer to the equator,
meridional transports are observed, though these are more likely to be associated with the TCs due to the
missing connection to the subtropics.

At 10°N, weak poleward transport is present east of about 30°W (Figure 6). West of 30°W weak equator-
ward transport in the interior basin steadily reduces the accumulated poleward transport leading to a net
equatorward transport between 0.2 and 1.2 Sv at 50°W (Table 1). Interior transport at 10°N is not obvious
in Figure 5 consistent with close to zero accumulated transport east of about 45°W. From 50°W toward the
western boundary, additional transport estimates vary between 1.0 Sv (ORA-S4-total) and 2.7 Sv (RG-clim)
with MIMOC (1.4 Sv) and ORA-S4-geostr (2.3 Sv) in between this range. Transports from MIMOC-geostr
are about 1 Sv smaller, presumably due to the northward flowing NBC at the western boundary which is
better resolved due to included hydrographic data from CTD profiles close to the coast and boundary cur-
rent mapping algorithm. In summary, all products agree for the majority of the 10°N section apart from the
most western part of the section where the spread in equatorward transport is highest.

Along 10°S, all geostrophic estimates agree well from the African coast to 32°W (the easternmost longitude
of the western boundary ship section). Interior transports in the southern hemisphere add up to about 3.8 Sv
(RG-clim). At the western boundary, the transport estimates from RG-clim and ORA-S4-geostr further agree
on 3.3 to 3.9 Sv additional transport while MIMOC shows slightly less transport with 2.0 Sv. As an indepen-
dent measure of the western boundary current transport, we use data from the repeated ship section at 11.5°S
(Figure 7). Geostrophic velocity data from the 11.5°S mean ship section at the western boundary produce
a contribution of 5.2 Sv resulting in a total southern STC thermocline layer transport of 9.0 Sv (Figure 6b)
when added to the RG-clim value at 32°W. In summary, we find a thermocline convergence between 8.8 and
10.9 Sv of which about 2.2 to 3.0 Sv come from the northern and 6.5 to 8.7 Sv are provided by the southern
STC. The difference between interior and western boundary transport is most prominent in the northern
hemisphere in the RG-clim estimates with essentially no interior transport.

4.2. Surface Transports

We have shown that the lower branches of the STCs encompass water masses toward the equator in a layer
between the seasonally varying interface depth and the 26.0 kg m~3 isopycnal with a contribution from the
southern hemisphere three times higher than that from the northern hemisphere and a higher contribution
from the western boundaries than from the interior ocean basins. Equatorward transport leads to conver-
gence in the equatorial regions at thermocline level. There, thermocline water is entrained into the EUC and
upwells either along its eastward pathway or reaches the eastern boundary upwelling systems. The STCs
are eventually closed by poleward transport in the surface layer driven by meridional Ekman transport. In
order to estimate the poleward transport of the upper branches of the STCs, several wind products are used
(described in section 2.5). Both hemispheres are divided into an eastern part, where the mean zonal wind
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Figure 7. Mean (a) conservative temperature, (b) absolute salinity, (c) meridional/alongshore absolute velocity, and
(d) meridional/alongshore geostrophic velocity from the repeated ship section at 11.5°S. Isopycnal surfaces are shown
as black contour lines. The black line at 34.2°W marks the longitude at which the ship section turns northwestward
(see, e.g., Figure 1). The western boundary of the section is depicted by the topography from the ETOPO1 data set.

stress leads to weak or no equatorward Ekman transports and a western part with poleward Ekman trans-
ports generally intensifying toward the western boundary (Figure 8). Meridional Ekman transport maps
derived from the other wind products (not shown) agree well on this structure. The accumulated meridional
Ekman transport values along the zonal sections at 10°N and 10°S are shown in Table 2. Here, negative trans-
port values indicate southward transport while positive values indicate northward transport. For individual
wind products, the Ekman divergence among 10°N and 10°S appears rather symmetric although differences
in the strength of the Ekman divergence between the products are found. The symmetry of transport in the
surface layer is in contrast to the asymmetric interhemispheric transport distribution at thermocline level.
Hence, between 10°N and 10°S, an Ekman divergence of about 20.4 Sv (mean value derived from three
wind products) is found and faces a thermocline convergence of about 11.9 Sv (RG-clim including western
boundary ship section mean at 10°S).
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5°S -0.1
10°S 0.2
15°S
<-0.3
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Figure 8. Mean meridional Ekman transport derived from daily ASCAT wind stress between 2007 to 2018. The thick
black lines indicate the zonal sections at 10°N and 10°S at which the meridional Ekman transport is accumulated from

east to west and the black contour lines show the 1,000-m isobath from the ETOPO1 data set. Note that red colours
indicate equatorward transport and blue colours poleward transport.
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Table 2
Geostrophic, Ekman, and Net Transport Between the Surface and the Seasonally Varying Interface Depth from Different Products at the Two Zonal Sections at
10°N/°S
10°N
Geostrophic Ekman Net
RG-clim MIMOC ORA-S4 ASCAT NCEP/NCAR JRA-55 ORA-S4 ASCAT + RG-clim
INT e —0.7+0.8 ~1.5£0.4 —1.0+0.9 6.1+0.6 5.8+1.9 5.440.7 3.4+1.2 5.4
WB e —1.4+0.9 -1.0+0.4 —0.9+0.6 3.540.3 4.4+1.2 3.3+0.4 3.0+£0.9 2.1
TOTAL e —2.1+1.2 —2.5+0.6 -1.9+1.0 9.6+0.7 10.242.2 8.7+0.8 6.4+1.4 7.5
10°S
Geostrophic Ekman Net
RG-clim MIMOC ORA-S4 ASCAT NCEP/NCAR JRA-55 ORA-S4 ASCAT + RG-clim
INT e 2.6+0.6 4.8+0.2 2.7+£0.7 —10.1+0.5 —10.6+1.6 —8.5+0.5 —6.2+0.7 -7.6
WBe 1.2+0.3 0.3+0.1 0.9+0.4 -1.1+0.1 —1.4+0.6 —1.0+£0.2 0.7+0.5 0.1
TOTAL e 3.7+£0.7 5.1+0.3 3.6+0.8 —11.2+0.5 —12.0+1.7 —9.5+0.5 —5.5+0.8 -7.5

Note. At 10°N (10°S), the 50°W (32°W) longitude divides the sections into an interior part (INT) and a western boundary part (WB). Shown is also the zonally
accumulated transport over the whole basin (TOTAL) as well as the particular error estimates (see section 3.1 for details).

However, as we have seen in Figure 2, geostrophic flow is also present in the surface layer and generally
counteracts the poleward Ekman transport. Hence, the upper branches of the STCs consist of two oppos-
ing meridional transports: poleward Ekman transport and equatorward geostrophic transport. Table 2 also
shows the surface layer geostrophic transport from RG-clim, MIMOC, and ORA-S4. We find good agree-
ment among the products as well as a further signature of the interhemispheric asymmetry in equatorward
geostrophic transport with about twice as much transport originating in the southern hemisphere (3.6 to
5.1 Sv vs. 1.9 to 2.5 Sv). In contrast to the thermocline layer, geostrophic transport in the surface layer is
higher in the interior basin, which is especially the case for the southern hemisphere. In the surface layer,
geostrophic transports are opposite to Ekman transports derived from wind products (Table 2). Therefore,
the sum of Ekman transport and geostrophic transport can be seen as a net transport. However, the net
transport can also be directly estimated from absolute velocities from ORA-S4 (Table 2). Interestingly, inte-
rior and western boundary net transport at 10 °N are close to being equal while the southern hemisphere
net transport is clearly dominated by interior transport. The same way the subsurface NBUC in the south-
ern hemisphere distributes water to the equator at thermocline level, the surface intensified NBC/Guyana
Current in the northern hemisphere withdraws water poleward in the surface layer but to a lesser extent.

The difference in net transports between both methods is relatively small (Table 2) and generally confirms
the choice of layer boundaries in this study. It also indicates that the choice of the interface between the
upper and the lower branch of the STCs (described in section 3.1) is plausible.

In summary, we observe a surface layer divergence of meridional transport of 14.6 + 3.4 Sv when considering
the sum of an averaged Ekman divergence (20.4 + 3.1 Sv) and the geostrophic surface convergence from
RG-clim (5.8 + 1.4 Sv). Overall, in combination with the thermocline layer convergence of 11.9 + 1.7 Sv, a
residual of 2.7 + 3.8 Sv is required to maintain the balance of the STC circulation regime. Sources for the
missing transport will be discussed in the next section.

5. Summary and Discussion

This study provides observational estimates for both branches of the Atlantic STCs and compares them to
results from a reanalysis product and previous studies. Based on the rapidly increasing data coverage of
the world's oceans by Argo floats within the last two decades, Roemmich and Gilson (2009) constructed a
hydrographic climatology of which an updated version considering Argo profiles between January 2004 and
December 2016 is available. Besides Argo float data, we have made use of another hydrographic climatology,
MIMOC (Schmidtko et al., 2013), that additionally includes shipboard CTD data. In this study, the issue of
sparse data coverage at the western boundary by Argo floats is further addressed by analyzing data from a
repeated ship section at 11.5°S (Hummels et al., 2015) to derive reliable estimates of the western boundary
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transport in the STC density range. The analysis is complemented by hydrographic and velocity data from
the ORA-S4 reanalysis (Balmaseda et al., 2013).

Previous to the Argo era, the study of Zhang et al. (2003), who estimated STC transports based on hydro-
graphic data, provided a benchmark against which numerical studies compared their results. Our study
provides an update of the temporal mean transport estimates of the STCs thereby presenting a 21st century
mean state of the Atlantic STCs based on hydrographic and velocity observations. Besides the data sets used
here, the most significant changes from this study to the estimates by Zhang et al. (2003) are the definition
of the vertical boundaries of the branches of the STCs and the choice of latitude for the southern section.
In agreement with Schott et al. (2004) and Rabe et al. (2008), we focused our analysis on zonal sections at
10°N and 10°S while Zhang et al. (2003) chose a southern section along 6°S. Both, 10°N and 10°S, are suf-
ficiently far away from the TCs and the subtropical subduction zones suggesting that transports associated
with the STCs must pass these sections. The southern section at 10°S is mainly chosen due to the availability
of a repeated ship section along 11.5°S close-by. With the help of spatially high-resolved observational data
at the crucial western boundary region, we could show that Argo based observational products as RG-clim
likely underestimate the transport at the western boundary at 10°S (e.g., Figure 6 and Table 1). From hydro-
graphic properties along the chosen sections, meridional geostrophic velocity—referenced to the 1,000 dbar
meridional displacement derived from YoMaHa'07 (Lebedev et al., 2007)—and isopycnal surfaces are cal-
culated (Figure 2). In general, equatorward geostrophic velocities are observed from the surface down to
approximately 26.0 kg m~3. However, in the surface layer, the wind-driven poleward Ekman transport is
counteracting the geostrophic flow. Therefore, we suggest to identify the interface depth between the pole-
ward and the equatorward STC branches as the depth at which the meridional velocity reverses and below
which the flow is in geostrophic balance. As shown in Figure 4, a seasonally varying interface depth (between
30 to 65 m at 10°N and 45 to 70 m at 10°S) is used for the transport estimation. This definition further takes
into account that the isopycnals are sloping upward toward the east (Figure 2). A purely isopycnal definition
of the interface leads to an upper boundary that crosses the Ekman layer in the eastern part of the basin and
underestimates the thickness of the thermocline layer in the western part. Consequently, it is suggested that
the STCs transport water masses toward the equator in a layer between the interface depth and an isopy-
cnal surface. This layer is called thermocline layer or pycnocline layer (e.g., Zhang et al., 2003). The lower
boundary of this layer is defined using the zonal mean of meridional transport per 0.2 kg m~3 density bin
(Figure 4). In both hemispheres, the lower boundary of the thermocline layer is set to 26.0 kg m~3. In previ-
ous studies, this thermocline layer has been enclosed by isopycnal layers at the top and bottom. For instance,
Zhang et al. (2003) defined their northern hemisphere thermocline layer between 23.2 and 26.0 kg m~3 and
their southern hemisphere thermocline layer between 23.6 and 26.2 kg m~3, whereas Fratantoni et al. (2000)
used two of their six model layers to describe thermocline transports between 25.2 and 26.8 kg m~* and
Hazeleger and Drijfhout (2006) used the mixed-layer-depth as the interface between the two STC branches.
The vertical resolution in numerical studies is often too coarse to define more precise boundaries.

Following our definition of the thermocline layer boundaries, meridional transports within this layer have
been calculated. Unless otherwise noted, the mentioned thermocline layer transports refer to the estimates
from the RG-clim. In general, equatorward transports can be divided into transports along the western
boundary and within the interior ocean. The boundary is set to 50°W for the northern section and to 32°W
for the southern section. We are able to show that for the northern hemisphere STC, the interior exchange
window is extremely small (Figure 5) and only exhibits a marginal equatorward transport, not significantly
different from zero (Table 1). This is most likely due to the presence of the previously described PV barrier
in the northeastern tropical Atlantic (e.g., Harper, 2000; Hazeleger & Drijthout, 2006) forcing a detour of
the equatorward flow. Hence, at 10°N, most of the equatorward transport is accomplished via the western
boundary within the recirculation pathway of the NBC (about 2.7 Sv). Closer to the coast, the northward
flow of the NBC at the western boundary within the thermocline layer is suggested to reduce the equator-
ward transport as indicated by MIMOC (see Figure 6a). Johns et al. (1998) found that the NBC at 3°N to 4°N
transports about 3 to 5 Sv over the continental shelf of which parts recirculate into the zonal current sys-
tem in the tropical Atlantic and would not be observed at 10°N. As part of the North Brazil Current Rings
Experiment, Garzoli et al. (2003) estimated the annual mean transport due to the rings to be 8 Sv based on
11 rings between November 1998 and June 2000. Clearly, the data coverage at the western boundary in the
northern hemisphere introduces an uncertainty to the budget-like transport estimates of the STC branches
in this analysis. The thermocline convergence contribution of the northern hemisphere STC is estimated to
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Figure 9. Schematic of particular meridional transport contributions to the Atlantic STCs in [Sv]. Shown are
geostrophic transports as estimated by RG-clim (dark orange in the thermocline layer and light orange in the surface
layer) in combination with mean ship sections for the western boundary in the southern hemisphere as well as the
mean meridional Ekman transport derived from three different wind products (gray). The equatorward transport
associated with the lower branch of the STCs occurs between the seasonally varying interface depth d; and the

26.0 kg m~3 isopycnal. At the equator, Ekman divergence within the surface layer forces upwelling and poleward
Ekman transport associated with the upper branch of the STCs. An estimated 2.7 Sv (light gray arrow) has to enter the
thermocline layer in the tropics to balance the transport estimates. Note that due to the uncertainty at the western
boundary at 10°N, this value is likely to be higher.

be approximately 2.9 Sv (2.7 Sv western boundary and 0.2 Sv interior). Due to the superposition of the AMOC
on equatorward transport at the western boundary and the absence of a PV barrier in the eastern part of
the basin, the southern hemisphere STC is significantly stronger than its northern counterpart (e.g., Fratan-
toni et al., 2000). We show that at 10°S, an interior transport of about 3.8 Sv is observed in a window from
about 10°W to 32°W (Figure 6b). At the western boundary, the horizontal resolution and the representation
of the western boundary current among the products introduce an uncertainty and a range of equatorward
transport between 2.0 and 6.2 Sv is estimated (Figure 6b and Table 1). When transport from the mean ship
section is added to the 32°W value of the RG-clim, an equatorward thermocline transport of 9.0 Sv along
10°S results (Figure 9). Note that the mean section consists of five individual sections of shipboard velocity
measurements. Although those sections are distributed relatively even throughout the seasons, an uncer-
tainty remains about the representation of the mean state. However, moored observations reassuringly show
a similar mean (Hummels et al., 2015).

In summary, we find a thermocline layer convergence of 11.9 Sv equatorward transport (considering
RG-clim estimates in the northern hemisphere and combined RG-clim and ship section estimates in the
southern hemisphere) between 10°N and 10°S which is about 3 Sv less than previously estimated by Zhang
et al. (2003). This difference can at least partly be explained by the different choices of vertical thermocline
layer boundaries as described above. Especially in the eastern part of the basin, choosing the depth of merid-
ional velocity reversal as the upper boundary leads to a smaller layer thickness compared to an isopycnal
boundary as used by Zhang et al. (2003).

In the surface layer, wind products are averaged to a mean Ekman divergence of 20.4 Sv (Table 2) which is
slightly smaller than in previous studies such as Schott et al. (2004) who report 21 and 23 Sv of zonally inte-
grated annual-mean Ekman divergence for NCEP reanalysis and ERS.1,2 scatterometer data respectively for
an earlier time period. The wind-driven Ekman transport is reduced by the geostrophic transport (integrated
from the surface to the interface depth) and results in the net meridional transport in the surface layer.

The sum of the STC related equatorward and poleward transport contributions yields a residual of 2.7 Sv
which is suggested to be upwelled from below the thermocline as part of the interhemispheric AMOC return
flow (Figure 9). This number is smaller than in previous studies in which estimates of the return flow
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of the thermohaline circulation ranged between 6 and 10 Sv from below the thermocline layer across the
26.2 kg m~3 isopycnal (Roemmich, 1983). Hazeleger and Drijthout (2006) and Lux et al. (2001) arrived at
similar values of 5.5 and 7.5 Sv, respectively. The most likely explanation for this discrepancy is the underes-
timation of the northward western boundary current north of the equator in our study. Especially estimates
at the western boundary in the northern hemisphere are still uncertain and more ship sections and Argo
float data are needed to derive more reliable transport values and to decrease the uncertainty.

This study provides an update for observational estimates of Atlantic STC transports and aims to represent
the 21st century mean STCs from an observational perspective. Observations from the Argo program are
suitable to represent the geostrophic branches of the Atlantic STCs. This improvement in data coverage is
especially important when considering interannual to decadal variability of STC transports which so far
could not be captured by observations. Building on the definitions for the STC branches and their boundaries
developed here, future work will focus on the impact of seasonal to interannual variability of both transport
and water mass properties on SST variability to gain more insight on the responsible mechanism (Gu &
Philander, 1997; Kleeman et al., 1999).
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