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Abstract

The clumped isotope (D47) proxy is a promising geochemical tool to reconstruct past ocean temperatures far back in time
and in unknown settings, due to its unique thermodynamic basis that renders it independent from other environmental factors
like seawater composition. Although previously hampered by large sample-size requirements, recent methodological advances
have made the paleoceanographic application of D47 on small (<5 mg) foraminifer samples possible.

Previous studies show a reasonable match between D47 calibrations based on synthetic carbonate and various species of
planktonic foraminifers. However, studies performed before recent methodological advances were based on relatively few
species and data treatment that is now outdated. To overcome these limitations and elucidate species-specific effects, we ana-
lyzed 14 species of planktonic foraminifers in sediment surface samples from 13 sites, covering a growth temperature range of
�0–28 �C. We selected mixed layer-dwelling and deep-dwelling species from a wide range of ocean settings to evaluate the
feasibility of temperature reconstructions for different water depths. Various techniques to estimate foraminifer calcification
temperatures were tested in order to assess their effects on the calibration and to find the most suitable approach.

Results from this study generally confirm previous findings that there are no species-specific effects on the D47-temperature
relationship in planktonic foraminifers, with one possible exception. Various morphotypes of Globigerinoides ruber were
found to often deviate from the general trend determined for planktonic foraminifers.

Our data are in excellent agreement with a recent foraminifer calibration study that was performed with a different ana-
lytical setup, as well as with a calibration based exclusively on benthic foraminifers. A combined, methodologically homog-
enized dataset also reveals very good agreement with an inorganic calibration based on travertines. Our findings highlight the
potential of the D47 paleothermometer to be applied to recent and extinct species alike to study surface ocean temperatures as
well as thermocline variability for a multitude of settings and time scales.
� 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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1. INTRODUCTION
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the ocean a major player in the global climate system
responsible for storage and redistribution of heat; ocean
sediments also constitute vital archives that can be used
for climate reconstructions on various time scales (e.g.
Zachos et al., 2001). Several geochemical proxies have been
used to reconstruct ocean conditions, such as sea surface
temperature, prior to the instrumental era. These include
paleothermometers, for instance stable oxygen isotopes
(d18O) measured in calcareous tests of foraminifers (Urey,
1947; Epstein et al., 1951; Emiliani, 1966; Pearson, 2012),
Mg/Ca ratios of foraminifers (Nürnberg et al., 1996; Lea
et al., 1999), the unsaturation of organic ketone molecules
(UK

37) produced by marine nannoplankton (Brassell et al.,
1986; Prahl et al., 1988) and the TEX86 proxy based on
membrane lipids of archaea (Schouten et al., 2002).

Although each of these proxies is characterized by its
individual strengths and weaknesses, two sources of uncer-
tainty are particularly problematic for the application on
longer time scales: First, temperature proxies such as d18O
and Mg/Ca in foraminifers that depend on the fluid compo-
sition the signal is formed from require precise knowledge
of the seawater composition (d18Oseawater and Mg/Ca,
respectively) at the time of formation. Second, the recorded
signal in most proxies is to some extent influenced by bio-
logical processes that need to be accounted for. These so-
called vital effects can be species-specific (e.g. Bemis et al.,
1998; Turich et al., 2007; Regenberg et al., 2009; Ho
et al., 2014; Ezard et al., 2015; Jentzen et al., 2018; Polik
et al., 2018), thus increasing the uncertainty of environmen-
tal reconstructions, particularly for data that is derived
from extinct species. Clumped isotopes have the potential
to circumvent both of these problems.

The carbonate clumped isotope method is based upon
the fact that the abundance of doubly substituted carbonate
ions containing both rare isotopes 18O and 13C increases
with colder temperature. While carbonate formed under
equilibrium conditions generally contains more bonds
between two heavy isotopes than expected for a random
(stochastic) distribution, the amount of this excess is tem-
perature dependent (e.g. Bigeleisen and Mayer, 1947;
Urey, 1947; Eiler and Schauble, 2004; Schauble et al.,
2006). Temperature-dependent equilibrium constants deter-
mine the relative abundance of the 13C18O16O16O2� iso-
topologue in isotope exchange reactions (e.g. Wang et al.,
2004; Schauble et al., 2006).

The relative abundance of these multiply substituted
(clumped) isotopologues in a carbonate can therefore be
used as a measure for its formation temperature (e.g.
Eiler and Schauble, 2004; Ghosh et al., 2006; Schauble
et al., 2006; Eiler, 2007). An important aspect distinguish-
ing this paleothermometer from other approaches is its
independence from the isotopic composition of the aqueous
solution it precipitated from (Ghosh et al., 2006; Eiler,
2007). The D47 value measured in acid-liberated CO2

reflects the excess abundance (in ‰) of doubly substituted
molecules relative to a random distribution that is
calculated for each sample (Ghosh et al., 2006). The rela-
tionship between the normalized D47 value and carbonate
formation temperature has been defined by theoretical,
experimental, and empirical calibrations (e.g. Ghosh
et al., 2006; Ghosh et al., 2007; Tripati et al., 2010;
Grauel et al., 2013; Henkes et al., 2013; Zaarur et al.,
2013; Wacker et al., 2014; Kele et al., 2015; Bonifacie
et al., 2017; Kelson et al., 2017; Breitenbach et al., 2018;
Peral et al., 2018; Petersen et al., 2019).

The first two studies of foraminifers (Grauel et al., 2013;
Tripati et al., 2010) indicated that within their sample sets
there is evidence that foraminifers follow a single
D47-temperature relationship. Hence these studies paved
the way for the application of clumped isotope thermome-
try on foraminifers from sedimentary archives (e.g. Tripati
et al., 2014). However, due to a relative lack of data for the
cold temperature end of these foraminifer calibrations,
coupled with recent developments in data processing and
correction methods, additional studies have been under-
way: The more recent works (Breitenbach et al., 2018;
Peral et al., 2018; Piasecki et al., 2019) have utilized pro-
gress made in community-wide efforts to facilitate inter-
laboratory data comparison using the recalculation of
absolute isotope ratios (Daëron et al., 2016; Schauer
et al., 2016), and further redefinition of carbonate stan-
dards (Bernasconi et al., 2018), building on the definition
of an ‘‘absolute” reference frame by Dennis et al. (2011),
as well as newly developed analytical approaches (Hu
et al., 2014).

Peral et al. (2018) and Piasecki et al. (2019) focused
mostly on planktonic and benthic foraminifers, respec-
tively, and both concluded that foraminifer-based D47-T
calibrations agree with inorganic calibrations. Although
the two equations are statistically indistinguishable from
each other temperatures calculated with these calibrations
diverge towards the cold end of ocean temperatures
(�0 �C) by more than 2.5 �C. A challenge for surface
sediment-based calibrations using foraminifers is the diffi-
culty in determining the actual calcification temperature,
particularly for planktonic foraminifers.

Additionally, the small temperature range recorded in
foraminifers poses a persisting problem for foraminifer
D47-T calibrations, because large datasets are required to
extract an accurate linear relationship from the relatively
large uncertainty of individual measurements (Fernandez
et al., 2017). The relatively low signal to noise ratio com-
pared to other geochemical proxies such as d18O might mask
smaller, potentially species-specific, secondary effects. These
potential secondary effects include pH or kinetic effects sug-
gested for other types of marine biogenic carbonates/marine
invertebrate organisms (e.g. Bajnai et al., 2018; Daeron
et al., 2019; Davies and John, 2019). Divergences among
older foraminifer-based calibrations can partly be explained
bymethodological or inter-laboratory differences such as the
17O correction (Schauer et al., 2016; Bernasconi et al., 2018;
Petersen et al., 2019), the choice of standards (Bernasconi
et al., 2018), the acid digestion temperature (Defliese et al.,
2015) and the common acid bath vs. the micro-volume
approach (reviewed in Spencer and Kim, 2015).

These uncertainties underline the importance of further
studies investigating method- and laboratory-specific differ-
ences as well as potential species effects. Ultimately the aim
is to determine a common foraminifer calibration to enable
a widespread application of clumped isotope analysis in for-
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aminifers. At the same time, using clumped isotopes on for-
aminifers yields enormous potential for paleoceanographic
reconstructions when coupled with other proxies: As high-
lighted by Breitenbach et al. (2018) and Evans et al. (2018),
clumped isotope measurements can be combined with other
foraminifer-based proxies to disentangle ocean temperature
from other influences, such as changing seawater composi-
tion (e.g. past Mg/Ca changes, Evans et al. (2018)).

Similarly to other foraminifer-based proxies such as
d18O (e.g. Mulitza et al., 1997), the D47 signal in foramini-
fers could be used to reconstruct temperature gradients in
the water column by comparing species from different depth
habitats. In the case of D47 using a single calibration is
advantageous as it allows for a direct comparison of data
from various species without any additional uncertainty
introduced by individual, species-specific calibrations.

Here, we present new foraminifer-based D47 data ana-
lyzed on 14 species of planktonic foraminifers from surface
sediments from 13 sites, covering a calcification temperature
range of �0–28 �C. We study potential species-specific
effects on the clumped isotope measurements and compare
our results to recent D47-T calibrations. Data from our study
are combined with data from Peral et al. (2018) and Piasecki
et al. (2019) to determine a common foraminifer-based cali-
bration and compare it to inorganic D47-T calibrations.
Finally, we evaluate whether temperature reconstructions
for different depth levels of the water column are feasible
with the reduced sample requirements of our analytical
approach.

2. MATERIAL AND METHODS

2.1. Sites and samples

Surface sediment samples (mostly 0–1 cm, see Table 1)
from 13 sites in the Nordic Seas, the North Atlantic, Indian
Ocean, and Pacific Ocean were used in this calibration study
(Fig. 1 and Table 1). The sites were selected to cover a wide
range of oceanographic conditions and species of
foraminifers.

Monospecific samples of surface- as well as deep-
dwelling foraminifers covering a growth temperature range
of �0–28 �C (see Section 2.4) were measured. A total num-
ber of 43 samples from 14 species of planktonic foraminifers
was selected (Tables 1 and 2), including Globigerina bul-

loides, Globigerinoides conglobatus, Globigerinoides ruber

pink, Globigerinoides ruber white sensu lato (s.l.) and sensu
stricto (s.s.), Globorotalia hirsuta, Globorotalia inflata,
Globorotalia menardii, Globorotalia truncatulinoides,
Globorotalia tumida, Neogloboquadrina dutertrei, Neoglobo-

quadrina pachyderma, Orbulina universa, Pulleniatina

obliquiloculata, Trilobatus sacculifer, Trilobatus trilobus.
Species characteristics and assumptions regarding their

ecology are crucial to the interpretation of the D47 data, in
particular when various species are compared to each other.
Table 2 provides a summary of the species-specific charac-
teristics considered, such as the presence of photobiotic sym-
bionts, spatial and seasonal distribution, preferred habitat
depth, the tendency to form gametogenetic calcite prior to
reproduction and the accumulation of thick calcite crusts.
2.2. Sample preparation

All samples were wet-sieved over a 63 lm sieve and dried
at �50 �C. The coarse fraction was then dry-sieved into size
fractions of < 150 lm, 150–250 lm, 250–315 lm, 315–
355 lm and 355–400 lm, 400–500 lm and >500 lm. For
each sample, at least 2 mg of foraminifer tests of each species
were collected under the microscope. The preservation of all
individual specimens was assessed under the microscope and
translucent specimens were preferred for analysis where
available. Only fully intact pristine-looking tests were
selected for analysis. Broken specimens as well as specimens
containing substantial infillings, secondary calcite over-
growth or oxide coatings were excluded from analysis. Addi-
tionally, SEM images were used for selected samples to
confirm that the foraminifers were well preserved. The size
fractions used for the analysis were individually selected for
each sample (Table 3). We attempted to obtain enough adult
specimen of each species to allow an accurate isotope analysis
while keeping the size range as narrow as possible in order to
limit ontogenetic effects. Therefore, the size fraction in which
most of the adult specimens at a given site were found was
selected for analysis. Size fractions with a small number of
very large individuals were excluded as well as smaller size
fractions potentially containing juvenile specimens.

A modified version of the cleaning protocol for forami-
niferal Mg/Ca analysis published by Barker et al. (2003)
was used to remove contaminants. Batches of 200 to
1300 lg of foraminifer tests were cleaned at a time with
each sample being represented by at least three individually
cleaned sub-samples. The foraminifers were placed between
two glass plates and carefully crushed in order to crack
open all chambers and allow for subsequent cleaning. The
crushed tests were sonicated three times for 30 s with DI
water and rinsed with DI water after each sonication step.
Samples were then sonicated once for 15 s with methanol
and subsequently rinsed three times with DI water. After
removing excess DI water, the cleaned samples were dried
in an oven at �50 �C. The comparison of several cleaning
steps and intensities (Piasecki et al., 2019; see also Grauel
et al., 2013, Peral et al., 2018) led to the decision to leave
out the H2O2 treatment suggested by Barker et al. (2003)
to remove organic material for Mg/Ca analysis.

2.3. Measurement procedure

All measurements took place between November 2016
and March 2018 with replicate measurements of individual
samples spread over several weeks to months. Measure-
ments were performed using a Thermo Scientific MAT
253Plus mass spectrometer coupled to a KIEL IV carbon-
ate device (Thermo Fisher Scientific, Bremen, Germany)
equipped with a Porapak trap to capture organic contami-
nants (Schmid and Bernasconi, 2010). The Porapak trap
was operated at �20 �C during the measurement. Between
runs, the trap was heated to 120 �C for at least one hour for
cleaning. In the Kiel device, each aliquot is reacted individ-
ually with phosphoric acid at 70 �C.

We measured 15 to 30 (average n = 19) aliquots (100–
130 lg each) for every sample. Average values for stable



Table 1
Sites from which planktonic foraminiferal specimens used in this study were selected.

Station Latitude
�N

Longitude
�E

Region Depth
[m]

Depth in the core
[cm]

Age [ka BP] Species

GS15-198-63MC 70.5 �2.8 Nordic Seas 2995 0–1 <625 ± 20 conventional 14C
age

N. pachyderma

GS15-198-38MC 70.1 �17.7 Denmark Strait 1610 0–1 <410 ± 15 conventional 14C
age

N. pachyderma

GS15-198-62MC 70.0 �13.6 Iceland Plateau 1423 0–1 <2995 ± 15 conventional 14C
age

N. pachyderma

GS06-144-19MC 63.8 5.2 Nordic Seas 922 0–7 recent (Yu et al., 2013) G. bulloides, G. inflata

CD107 A ML 5A 52.9 �16.9 North Atlantic 3569 surface sediment G. bulloides, G. hirsuta, G. truncatulinoides, O. universa

CD94 17B (OMEX) 48.9 �11.8 North Atlantic 1484 surface sediment G. bulloides, G. inflata, G. truncatulinoides, O. universa

KL88 34.8 �27.7 North Atlantic 2060 surface sediment subrecent G. bulloides, G. inflata, G. ruber white s.l., G.
truncatulinoides

CD145 A150 23.3 66.7 Arabian Sea 151 0–1 N. dutertrei

SO164-25–3 14.7 �59.7 Caribbean /North
Atlantic

2720 0–1 1915 ± 30 (Regenberg et al.,
2006)

G. conglobatus, G. ruber pink, G. ruber white s.s., G. ruber
white s.l., P. obliquiloculata, T. trilobus

OJP2016 MW0691
1.5BC11

�1.0 157.8 Ontong Java
Plateau

2016 0–5 T. trilobus

WIND 33B �11.2 58.8 Indian Ocean 2871 0–2 G. menardii, G. ruber white s.s., G. tumida, N. dutertrei,

O. universa, P. obliquiloculata, T. sacculifer, T. trilobus

SO225-53–1 �13.5 �162.1 Manihiki Plateau 3154 0–1 6230 ± 50 (Raddatz et al.,
2017)

G. conglobatus, G. ruber white s.s., G. tumida, O. universa,

P. obliquiloculata, T. sacculifer, T. trilobus

SO213-84–2 �45.1 174.6 South Pacific 992 0–1 4952 ± 238 (Molina-Kescher
et al., 2014)

G. bulloides, G. inflata, G. truncatulinoides
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Fig. 1. Bathymetric chart generated using Ocean Data View (ODV, Schlitzer, 2018) showing surface sediment locations (pink filled circles),
from which foraminifer specimens were selected. Bathymetric data from GlobHR (reference available in Ocean Data View).
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carbon (d13C) and oxygen isotopes (d18O) as well as D47

were then calculated and used for the calibration. Samples
were measured using the long-integration dual-inlet (LIDI)
method described by Hu et al. (2014). This method mea-
sures the sample and reference gas separately with decreas-
ing pressure from a micro-volume. Samples were measured
first for 400 seconds with signals typically decreasing from
�16 V to �10 V (m/z = 44). Afterwards the reference gas
was adjusted to the same initial pressure and measured
accordingly. The shot noise limit for these intensities and
integration times is 0.03‰ when applying a typical scale
decompression factor for this system.

Peak scans (varying high voltage between 9.4 and 9.6 kV)
at m/z 44 intensities of 5, 10, 15, 20 and 25 V were performed
once a day for the pressure baseline correction following
Bernasconi et al. (2013) and Meckler et al. (2014). This
and subsequent corrections were applied using the Easotope
software package (John and Bowen, 2016). The ‘‘Brand
parameters” suggested by Daëron et al. (2016) and
Schauer et al. (2016) were used for the 17O correction. In
every run (maximum 46 aliquots), the sample measurements
were bracketed by five blocks consisting of the four ETH
carbonate standards ETH1 to ETH4 using the values
reported in Bernasconi et al. (2018). Three of these standards
were used to transfer the results into the absolute reference
frame (Dennis et al., 2011), which corrects the measurements
for offsets and scale compression, while the fourth standard
was treated like a sample to monitor the corrections applied
to the data. In addition, the long-term averages of ETH 1
and 2 were used to monitor the pressure baseline correction
which should result in the same D47 values (Bernasconi et al.,
2018). Baseline-corrected D48 values were used as a contam-
ination monitor. No contamination was detected in any of
the samples.

The average long-term reproducibility (1SD) of D47

measured in the carbonate standards after correction varies
from 0.031‰ to 0.038‰ (see Appendix Table A1). Each
replicate measurement was corrected using a total number
of 60–80 standard measurements from the same and adja-
cent days. The exact number was chosen according to the
instrument stability (see Piasecki et al., 2019 for more infor-
mation). In addition to correcting for instrumental drift
using carbonate standards, we distributed replicate mea-
surements of all samples over long time intervals of up to
several months to ensure that aliquots from as many sam-
ples as possible were measured in parallel.

The ETH standard values adopted in this study were
reported by Bernasconi et al. (2018), who used a
+0.062‰ correction (Defliese et al., 2015) for differences
in acid fractionation between digestion at 70 �C and the
classical 25 �C digestion temperature. Applying the recently
updated acid fractionation correction of 0.066‰ for this
temperature difference (Petersen et al., 2019) would increase
all of our D47 values by 0.004‰. Should the ETH standard
values be updated in the future it is possible to recalculate
the values from this study using the replicate level raw data
that is provided in the EarthChem database (https://doi.
org/doi:10.1594/IEDA/111435).

2.4. Foraminifer calcification temperature estimates

In order to establish a calibration relating the D47 signal
in planktonic foraminifers to water temperature, the calcifi-
cation temperature for each species at each site needs to be
estimated. Since our sample set comprises a large number of
different species from a wide range of geographical regions,
the estimation of calcification temperatures is subject to a
number of uncertainties. Calcification temperatures were
hence calculated using different approaches (Method 1 to
3) in order to find the optimal solution.

Method 1: If calcification depths and possible seasonality
effects are known for the species and geographical regions,
the water temperature can be taken from reanalysis data
presented in the World Ocean Atlas (WOA; Locarnini

https://doi.org/doi:10.1594/IEDA/111435
https://doi.org/doi:10.1594/IEDA/111435


Table 2
Summary of species-specific characteristics for the planktonic foraminifers analyzed in this study (Schiebel and Hemleben, 2017, and references therein).

Species Spinose Symbiont-
bearing

Typical habitat Spacial distribution Seasonality Gametogenic
calcite
reported

Other
secondary
calcite
reported

Remarks

Globigerina

bulloides

yes yes mixed layer temperate to sub-polar
waters and upwelling
regions

found year round with lower
abundances in summer, typical of the
spring bloom

yes no

Globigerinoides

conglobatus

yes yes mixed layer tropical and subtropical
waters

more abundant in fall yes no

Globigerinoides

ruber pink
yes yes mixed layer tropical to subtropical

waters in the Atlantic
Ocean

most abundant at highest T no no

Globigerinoides

ruber white s.l.
yes yes mixed layer tropical to subtropical

waters
low in stratified tropical waters no no

Globigerinoides

ruber white s.s.
yes yes upper mixed

layer
tropical to subtropical
waters

low in stratified tropical waters no no

Globorotalia

hirsuta

no no subsurface temperate to
subtropical waters

unclear no yes

Globorotalia

inflata

no no mixed layer to
subsurface

subtropical to subpolar
waters, hydrologic
fronts

depending on front dynamics no yes only specimens without calcite
veneer selected for analysis

Globorotalia

menardii

no yes thermocline tropical to subtropical
waters

low in stratified tropical waters no yes

Globorotalia

truncatulinoides

no no subsurface tropical to temperate
waters

more abundant in winter no yes

Globorotalia

tumida

no no thermocline tropical to subtropical
waters

low in stratified tropical waters no yes

Neogloboquadrina

dutertrei

no yes mixed layer to
thermocline

tropical to temperate
waters

low in stratified tropical waters no yes

Neogloboquadrina

pachyderma

no no mixed layer polar waters polar summer no yes only left-coiling specimens
selected for analysis

Orbulina universa yes yes mixed layer to
thermocline

tropical to temperate
waters

summer in temperate waters yes no

Pulleniatina

obliquiloculata

no no lower mixed
layer to
thermocline

tropical to subtropical
waters

more abundant in winter yes no only smooth tests without
gametogenic calcite selected
for analysis

Trilobatus

sacculifer

yes yes mixed layer tropical to subtropical
waters

low in stratified tropical waters yes no

Trilobatus trilobus yes yes mixed layer tropical to subtropical
waters

low in stratified tropical waters yes no
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Table 3
The specifications (site, species, size fraction, number of replicates) and average isotopic compositions (D47, d

13Ccalcite and d18Ocalcite) of individual samples with corresponding d18Oseawater data
(LeGrande and Schmidt, 2006), assumed calcification depth (Rippert et al., 2016, Schiebel and Hemleben, 2017, and references therein) and four different estimates of calcification temperature
based on the World Ocean Atlas 2009 (Method 1), Shackleton (1974) (Methods 2 and 3) and Kim and O’Neil (1997) (Method 2). The calculated apparent calcification depth (ACD) is given for the
Method 3.

Site and species Size
fraction
[lm]

N* D47

[‰]
SE d13Cc

[‰]
SE d18Oc

[‰]
SE Assumed

CD [m]*
d18Osw

[‰]
SE T

M1
[�C]*

SD T
S74
M2
[�C]*

SE T
S74 M3
[�C]*

SE ACD
M3 [m]*

T
K97
M2
[�C]*

SE

CD94 17B (OMEX)

G. bulloides 250–315 16 0.706 0.006 �0.440 0.030 0.72 0.02 0–100 0.57 0.20 12.9 1.9 15.5 1.0 13.5 0.2 15 14.1 1.2
G. truncat. 355–500 15 0.713 0.008 1.050 0.040 1.48 0.03 200–500 0.55 0.20 11.0 0.3 12.3 1.2 11.6 0.8 204 10.6 1.4
G. inflata 355–400 15 0.710 0.008 0.960 0.010 1.35 0.03 0–500 0.56 0.20 12.0 1.6 13.0 1.2 12.3 1.0 115 11.3 1.4
O. universa 355–400 15 0.707 0.008 2.080 0.040 1.18 0.03 20–150 0.57 0.20 12.2 1.5 13.6 1.3 13.1 0.8 46 12.1 1.5

CD107 A ML 5A

G. bulloides 250–355 30 0.714 0.006 �0.410 0.020 1.38 0.04 0–100 0.52 0.20 11.9 1.5 12.6 1.6 11.6 0.8 99 10.9 1.8
G. truncat.* 355–500 15 0.713 0.008 1.180 0.020 1.58 0.02 200–500 0.48 0.20 10.3 0.3 11.7 1.1 11.1 0.9 186 9.9 1.2
O. universa 355–500 15 0.704 0.005 2.030 0.020 1.05 0.02 20–150 0.52 0.20 11.5 1.2 14.0 1.2 12.1 0.5 32 12.4 1.3
G. hirsuta >355 19 0.723 0.007 1.170 0.020 2.08 0.02 500–700 0.44 0.20 9.4 0.4 9.5 1.2 9.6 1.1 497 7.5 1.2

CD145 A150

N. dutertrei 355–500 20 0.679 0.008 1.420 0.040 �1.12 0.02 25–125 0.72 0.21 23.4 2.1 23.5 1.2 23.3 0.7 62 23.6 1.4

GS06-144-19MC

G. bulloides 250–315 18 0.713 0.006 �0.410 0.030 1.61 0.02 0–100 0.29 0.22 8.6 1.6 10.8 1.2 9.0 0.2 12 8.9 1.3
G. inflata 250–315 18 0.719 0.007 0.920 0.010 1.95 0.01 0–500 0.37 0.23 7.6 1.8 9.7 1.1 8.7 0.4 39 7.7 1.2

GS15-198-38MC

N. pachyderma 150–250 20 0.755 0.008 0.540 0.010 3.60 0.01 0–50 �0.17 0.23 0.2 1.5 1.0 1.2 0.4 0.3 111 �1.2 1.2

GS15-198-62MC

N. pachyderma 150–250 28 0.756 0.006 0.770 0.010 3.66 0.01 0–50 0.01 0.21 0.8 1.5 1.5 1.1 0.8 0.5 65 �0.7 1.0

GS15-198-63MC

N. pachyderma 250–315 21 0.750 0.006 0.390 0.010 2.78 0.01 0–50 0.28 0.20 4.2 1.7 6.1 1.1 4.3 0.3 18 3.9 1.1

KL88

G. ruber w. s.l. 315–355 18 0.715 0.008 1.050 0.030 0.61 0.02 30–50 1.03 0.20 19.4 1.9 17.7 1.2 17.0 1.1 120 16.7 1.3
G. bulloides 250–315 15 0.708 0.006 �1.180 0.040 1.41 0.03 0–100 1.01 0.21 19.3 2.3 14.4 1.4 13.0 1.1 414 13.0 1.5
G. truncat.* 355–400 16 0.723 0.008 0.930 0.030 1.64 0.04 200–500 0.71 0.22 13.9 1.2 12.3 1.5 11.8 1.1 537 10.6 1.6
G. inflata 355–400 16 0.721 0.007 0.800 0.030 1.74 0.03 0–500 0.88 0.25 16.9 3.0 12.6 1.6 11.3 1.0 595 10.9 1.7

OJP2016 MW0691 1.5BC11

T. trilobus 355–400 16 0.669 0.005 2.220 0.030 �2.05 0.02 75–150 0.36 0.21 26.4 1.9 25.7 1.2 26.0 0.8 123 26.4 1.5

(continued on next page)
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Table 3 (continued)

Site and species Size
fraction
[lm]

N* D47

[‰]
SE d13Cc

[‰]
SE d18Oc

[‰]
SE Assumed

CD [m]*
d18Osw

[‰]
SE T

M1
[�C]*

SD T
S74
M2
[�C]*

SE T
S74 M3
[�C]*

SE ACD
M3 [m]*

T
K97
M2
[�C]*

SE

SO164-25-3
G. ruber w. s.s. 315–355 20 0.653 0.006 1.190 0.050 �2.29 0.02 0–30 0.72 0.20 27.4 0.8 28.1 1.2 27.3 0.2 20 29.5 1.6
G. ruber w. s.l. 250–315 18 0.682 0.006 0.670 0.050 �2.21 0.03 30–50 0.81 0.20 27.1 0.7 28.1 1.3 27.3 0.2 22 29.5 1.7
G. ruber pink 315–355 18 0.678 0.008 1.450 0.020 �2.18 0.02 0–50 0.74 0.21 27.3 0.8 27.8 1.2 27.3 0.2 24 29.0 1.5
T. trilobus 315–355 17 0.665 0.009 1.380 0.050 �1.85 0.04 50–100 0.98 0.23 26.0 0.9 27.4 1.6 27.0 0.4 42 28.6 2.0
P.

obliquiloculata

355–500 16 0.664 0.005 1.230 0.040 �0.91 0.02 100–125 1.13 0.20 24.2 0.8 24.2 1.2 24.2 0.8 113 24.5 1.4

G. conglobatus >400 16 0.670 0.008 2.300 0.060 �1.30 0.03 75–125 1.09 0.21 24.8 1.1 25.6 1.4 25.5 0.7 87 26.3 1.7

SO213-84-2
G. bulloides 315–355 30 0.729 0.005 0.400 0.030 2.02 0.03 100–150 0.01 0.20 8.3 0.4 8.0 1.4 7.7 0.9 271 6.0 1.5
G. truncat.* 315–355 16 0.731 0.007 1.010 0.030 2.17 0.03 200–500 �0.01 0.20 7.4 0.6 7.3 1.3 7.3 0.9 361 5.2 1.3
G. inflata 315–355 20 0.729 0.008 1.240 0.010 1.90 0.02 0–500 0.04 0.20 8.8 0.9 8.6 1.2 8.1 1.0 214 6.6 1.3

SO225-53-1
G. ruber w. s.s. 250–355 17 0.684 0.007 1.750 0.050 �1.59 0.02 50–150 0.68 0.21 26.6 1.4 25.1 1.2 25.4 0.9 132 25.7 1.5
T. trilobus 250–355 22 0.683 0.006 1.850 0.040 �1.40 0.03 75–150 0.71 0.21 26.2 1.2 24.6 1.5 24.6 0.9 147 25.0 1.8
T. sacculifer >355 15 0.676 0.005 2.480 0.060 �1.37 0.04 75–150 0.71 0.21 26.2 1.2 24.4 1.4 24.5 0.9 150 24.8 1.8
P.

obliquiloculata

355–500 21 0.678 0.006 1.500 0.030 �0.24 0.06 150–200 0.72 0.20 23.3 1.2 19.9 1.9 19.1 1.1 253 19.3 2.2

O. universa >355 16 0.672 0.007 3.170 0.050 �1.26 0.06 50–200 0.68 0.21 25.8 2.1 23.8 1.8 24.0 0.9 160 24.1 2.2
G. conglobatus 355–500 20 0.690 0.007 2.360 0.020 �1.23 0.04 100–200 0.72 0.20 24.8 1.8 23.9 1.6 23.9 0.9 163 24.1 2.0
G. tumida >355 16 0.688 0.006 2.280 0.040 0.10 0.06 125–300 0.61 0.25 21.6 3.5 18.1 2.1 17.3 1.1 282 17.2 2.4

WIND 33B

G. ruber w. s.s. 250–355 19 0.686 0.008 1.590 0.030 �1.74 0.02 0–30 0.40 0.20 26.9 1.2 24.6 1.1 24.6 1.0 58 25.0 1.4
T. trilobus 250–355 23 0.671 0.005 1.670 0.030 �1.51 0.02 50–100 0.32 0.21 23.0 2.1 23.4 1.2 23.5 1.0 71 23.6 1.4
T. sacculifer >355 25 0.675 0.006 2.350 0.030 �1.55 0.02 50–100 0.32 0.21 23.0 2.1 23.5 1.2 23.7 1.0 69 23.7 1.5
N. dutertrei 355–400 20 0.678 0.005 1.720 0.020 �0.64 0.03 20–125 0.34 0.21 23.5 3.2 20.0 1.4 19.7 0.8 112 19.4 1.7
P.

obliquiloculata

355–500 21 0.680 0.005 0.990 0.010 �0.80 0.03 100–125 0.31 0.21 19.6 2.5 20.5 1.4 20.4 0.8 104 20.0 1.7

O. universa >400 19 0.679 0.006 2.370 0.030 �1.37 0.03 20–150 0.34 0.21 22.6 3.8 22.9 1.4 22.8 1.0 78 22.9 1.7
G. menardii >400 20 0.702 0.006 1.520 0.020 0.40 0.06 20–100 0.35 0.21 24.5 2.5 15.9 1.8 15.6 0.9 182 14.6 2.1
G. tumida >355 20 0.700 0.005 1.660 0.020 0.71 0.05 125–300 0.29 0.20 15.1 2.5 14.4 1.6 14.2 0.9 215 12.9 1.8

* N = number of replicate measurements, CD = calcification depth, S74 = Shackleton 1974, K97 = Kim and O’Neil, 1997, M1-3 = Methods 1–3, G. truncat. = Globorotalia truncatulinoides.
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et al., 2010). Due to the fact that typical foraminifer water
depth habitats vary over time, both dependent on the avail-
ability of prey and ontogeny (Schiebel and Hemleben, 2017),
the environmental signal recorded by the bulk foraminifer
tests is rather an average across the entire life cycle of indi-
viduals and assemblages (e.g. Deuser and Ross, 1989). We
therefore used published apparent calcification depths from
studies utilizing other temperature proxies such as oxygen
isotopes and Mg/Ca on planktonic foraminifers (e.g.
Schiebel and Hemleben, 2017 and references therein) as
basis for atlas-based calcification temperatures (Table 3).
This approach suffers from insufficient information regard-
ing foraminiferal calcification depths for individual regions
and species. Also, the temperature information derived from
the World Ocean Atlas may not provide the same accuracy
everywhere because the data is interpolated to all ocean
regions and standard depth levels. Here we used the annual
mean water temperature of the assumed calcification depth
as basis for further calculations. Seasonal temperature vari-
ability was factored into the uncertainty calculations. For
Method 1, the overall temperature uncertainty is given by
the standard deviation of all monthly temperatures at the
assumed calcification depth of each species at a given site.

Method 2:Calcification temperatures can be derived from
oxygen isotope (d18O) measurements of each foraminifer
sample by applying empirical calibration equations, which
relate the d18O of the calcite tests (d18Ocalcite) to water tem-
perature (e.g. Shackleton et al., 1973). For this approach,
the d18O of the seawater (d18Oseawater) is needed, which we
obtained for the assumed calcification depths from the data-
base of LeGrande and Schmidt (2006). Due to species-
specific disequilibrium effects (suggested by Urey, 1947;
Shackleton et al., 1973), specific d18O-T calibrations have
been derived for certain species and ocean regions (reviewed
in Pearson, 2012). However, as such calibrations are only
available for some of the species studied here, we decided
to apply the multi-species d18O-temperature equations of
Kim and O’Neil (1997) and Shackleton (1974) for the entire
dataset, acknowledging that some of the reconstructed tem-
peraturesmay be biased by species-specific effects. The extent
of such effects, however, is still a matter of debate (Niebler
et al., 1999; Schiebel andHemleben, 2017).We tested the sen-
sitivity of our results to corrections for species-specific differ-
ences using the available information (Appendix Table A2).
Applying species-specific d18O corrections led to a calibra-
tion line within the error of the uncorrected d18O data
(Table A3). Furthermore, using species-specific corrections
hardly changes the influence of individual species on the
slope of the calibration line (Fig. A1). Because of the uncer-
tainty introduced by the large spread of published values for
species-specific corrections and the lack of improvement to
our fit when applying a correction, we decided against apply-
ing any correction to the d18Ocalcite data used for the calibra-
tion. Temperature estimates from two commonly used
calibrations (Shackleton, 1974, equation D; Kim and
O’Neil, 1997 modified by Bemis et al., 1998 Table 1) were
compared. Following the recommendation of Bemis et al.
(1998) and Pearson (2012), factors of 0.20‰ (Epstein et al.,
1953) and 0.27‰ (Hut, 1987) were used to convert from
VSMOW to VPDB for the d18O-T calibrations of
Shackleton (1974) and Kim and O’Neil (1997), respectively.
The uncertainty of each calcification temperature estimate
was calculated as a combination of several individual uncer-
tainties: We used the standard deviation of the measured
d18Ocalcite values to account for the variability of the sample
material and the uncertainty of the isotope measurement.
Mean d18Oseawater values were calculated for the depth inter-
vals that were assumed to best represent the calcification
depths (Table 3, same as in Method 1) of the samples. The
standard deviation of d18Oseawater over this depth interval
was taken as uncertainty. An additional 0.2‰ were added
to account for the uncertainty introduced by the gridded
dataset (following Peral et al. (2018)).

Method 3: In order to avoid relying on assumed depth
habitats, calcification temperatures were also estimated from
hypothetical d18O depth profiles of calcite formed in the
water column (d18Ocalculated). For this approach, the WOA
temperature data are used in combination with a published
d18O-T calibration (Shackleton, 1974) to produce vertical
profiles of hypothetical d18O to which the measured forami-
niferal d18Ocalcite is compared, in order to determine the
apparent calcification depth (ACD) and subsequently the
corresponding WOA temperature. This approach has previ-
ously been applied inMg/Ca-temperature calibration studies
on foraminifers (e.g. Groeneveld and Chiessi, 2011). The
d18Ocalculated of calcite is calculated for the entire water col-
umn at each sample site, combiningWOAwater temperature
data (Locarnini et al., 2010) and d18Oseawater values
(LeGrande and Schmidt, 2006). Method 3 has the advantage
that no assumptions regarding habitat depth are needed, nei-
ther for the atlas-derived water temperature nor for the d18O
of the water. This way, seasonal or ontogenetic variations in
the calcification depth are accounted for as well.

If the measured d18Ocalcite of a sample was not found in
the d18Ocalculated values (calculated temperatures warmer/
colder than the observed maximum/minimum annual mean
water temperature), the annual mean water temperature at
0 m depth was used. Therefore, extreme temperature cases
not represented in WOA are excluded with this method,
eliminating temperatures warmer or colder than observed
at these sites. Nonetheless, Method 3 is associated with sev-
eral uncertainties stemming from both the analytical and the
natural variability of foraminiferal d18O, as well as from the
atlas d18Oseawater. Uncertainties were propagated using a
Monte Carlo approach. First, assuming a conservative error
of 0.2‰ for the atlas d18Oseawater (following Peral et al.
(2018)), we generated 10,000 iterations of d18Ocalculated (Step
1 in Fig. 2A), using the equation of choice. For all these iter-
ations, we then performed Step 2 (Fig. 2B) considering the
uncertainty in d18Ocalcite measurements (estimated from
the standard deviation of replicate measurements) to obtain
the ACD and calcification temperatures. We then calculated
average ACDs and calcification temperatures for each sam-
ple from the individual iterations. Temperature estimates
using all three approaches are compared in Table 3.

2.5. Linear regression

In order to account for the uncertainty in both D47 and
calcification temperature, we calculate regression slopes and



Fig. 2. Schematic drawing illustrating the two-step process (Method 3) used to assess apparent calcification temperatures from a combination
of WOA-based temperature data and a d18O-T calibration. A: Annual mean temperature data (Locarnini et al., 2010) and d18Oseawater data
(LeGrande and Schmidt, 2006) are used to generate a vertical d18Ocalculated profile for calcite formed at any given location. B: The comparison
between the measured d18Ocalcite value of a foraminifer sample and the theoretical d18Ocalculated profile is used to find the apparent calcification
depth (ACD) of a foraminifer species. The annual mean water temperature at the ACD serves as best estimate for the calcification
temperature of the foraminifer.
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intercepts using the method of York et al. (2004). This
method is commonly used in regression analysis of clumped
isotope calibration data (e.g. Huntington et al., 2009;
Grauel et al., 2013; Peral et al., 2018), thus helps facilitate
the intercomparison of calibrations across studies. We esti-
mated the uncertainty on the slope and intercept and 95%
confidence envelopes on the regression lines using quantiles
of 100,000 bootstrap samples. These were obtained by ran-
domly resampling with replacement from the original data
with its associated uncertainties, therefore maintaining the
original sample size.

3. RESULTS

3.1. D47, d
18O and d13C data

Average data for each sample as well as environmental
parameters such as the estimated d18Oseawater values and cal-
cification temperatures reconstructed using various
approaches (see Section 2.4) are summarized in Table 3.
The average D47 data cover a range of 0.103‰ with a stan-
dard error of the mean for individual samples of 0.005–
0.009. The lowest (0.653‰) and highest (0.756‰) D47 value
correspond to the lowest (�2.29‰) and highest (3.66‰)
d18Ocalcite values, respectively (Fig. 3 A). Overall, there is a
strong positive correlation (0.95 using Pearson’s product-
moment correlation) between both variables for the
calculated averages. The standard deviation of replicate
d18O measurements is 0.05–0.26‰ (standard error: 0.01–
0.06‰). Mean d13C values for the samples measured in this
study range between �1.2‰ and 3.2‰ with standard devia-
tions between 0.04 and 0.24‰ (Fig. 3 B) and standard errors
between 0.01 and 0.06‰. The d13C values and the D47 signal
do not show a clear relationship. The standard errors of the
mean and the standard deviations are not correlated with
the mean D47, d

18O and d13C, respectively. Moreover, there
is no systematic difference in the isotopic composition
between species with and without photosymbionts.
3.2. Calcification temperatures

Because the calcification temperatures of planktonic for-
aminifers are challenging to estimate, we approximated
them using three approaches (see Section 2.4). All three
methods reveal strong correlations (correlation coefficient
between �0.91 and �0.95 using Pearson’s product momen-
tum correlation) between estimated calcification tempera-
ture (106/T2, T in K) and D47. Detailed information on
the regression lines derived from the different temperature
estimates can be found in the Appendix (Table A3). Despite
the strong correlations that were found for all the different
methods, calcification temperature datasets differ from each
other (Fig. 4A–D, Table 3).

The differences in estimated calcification temperature
are largest between Method 1 using the World Ocean Atlas
2009 and the methods using d18O-T relationships (Fig. 4D).
While the slopes of linear regression models for Methods 1
and 2 are similar (Fig. 4A), the dataset using WOA-based
temperatures is characterized by larger variability (up to
13 �C temperature difference for similar D47 values,
Fig. 4A). This is reflected in a lower correlation coefficient
(�0.91 compared to �0.95 using Pearson’s product-
moment correlation). Hence, the uncertainty related to
insufficient ecological information for certain species and/
or regions seems to lead to a larger uncertainty for temper-
ature estimates using Method 1 compared to d18O-based
approaches (Methods 2 and 3).

When comparing calcification temperatures which were
derived from two different d18O-T calibration equations
(Shackleton, 1974; Kim and O’Neil, 1997) using Method
2 (Fig. 4D), temperature estimates for the tropical species
largely agree (average temperature difference 0.7 �C), while
towards the cold end of the calibration temperature
estimates increasingly deviate from each other (maximum
2.2 �C). As a result, the regression calculated using the
Kim and O’Neil (1997) d18O-T calibration reveals a
flatter slope (Fig. 4B). The coldest temperature estimates



Fig. 3. Stable oxygen (A) and carbon isotopes (B) plotted against D47. Symbols and colors represent different planktonic foraminifer species.
Error bars illustrate one standard error for D47 and one standard deviation for d18O and d13C. Note the positive correlation between d18Ocalcite

and D47.
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calculated using Kim and O’Neil (1997) are well below 0 �
C. These temperature estimates do not agree with the avail-
able temperature data from the WOA, neither with the
annual mean temperature nor seasonal extremes. In con-
trast, temperatures calculated using the d18O-T calibration
of Shackleton (1974) are in agreement with the temperature
ranges reported in the WOA.

Temperatures estimated using Method 3 show a good
agreement within the error estimates with those derived
from Method 2 (Fig. 4C and D), and both datasets reveal
similar correlation coefficients with D47. The slopes of both
linear regressions agree within error (Fig. 4C). Most sam-
ples reveal less than 1 �C temperature differences between
both methods (Methods 2 and 3). In most cases with larger
offsets the measured d18O value of the sample is lighter (on
average 0.22‰) than the d18Ocalculated value at the sea sur-
face. As Method 3 uses the temperature at sea surface
whenever the d18Ocalcite value is lighter than the d18Ocalcu-

lated value at 0 m, the resulting temperature estimate is
lower than the one that is only based on the d18O-T
calibration.

4. DISCUSSION

4.1. Relationship between D47 and foraminifer calcification

temperature

The method used to estimate calcification temperatures
of planktonic foraminifers has an influence on the resulting
D47 vs. temperature calibration. Fig. 4D demonstrates that
the differences between Method 1 and Method 2 are pro-
nounced for some of the samples, whereas others are less
sensitive to the choice of method. We attribute this result
to the varying accuracy of the ecological assumptions made
for individual sites and species when using Method 1.
Therefore, the WOA-based temperature estimates gener-
ated using Method 1 appear less applicable for a tempera-
ture calibration than temperature estimates based on the
better established d18O-T-relationship (Methods 2 and 3).
Selecting an appropriate d18O-T calibration for the recon-
struction of calcification temperatures from the d18O values
is however crucial, as there are systematic differences
between temperature estimates generated with different cal-
ibrations (Fig. 4D).

It is unlikely that the coldest temperature estimates gen-
erated with the calibration of Kim and O’Neil (1997) are
accurate, as they do not agree with the WOA temperature
data at these sites. A possible cause for this discrepancy
between the two calibrations is inherent in the way they
were generated: Both calibrations use data from a temper-
ature range of 0–500 �C by combining foraminifer data
and inorganic calcite data from a study of O’Neil et al.
(1969). The calibration of Shackleton (1974) combined this
extensive inorganic dataset with foraminifer samples cover-
ing a temperature range of 0–7 �C and was specifically pro-
posed to represent cold temperature carbonate samples
(Shackleton, 1974; reviewed in Pearson, 2012). In contrast,
the calibration of Kim and O’Neil (1997) used samples
from a temperature range of 10–40 �C. Therefore, the latter
equation may be less suitable to be applied to foraminifers
calcifying at low water temperatures that are beyond the
calibrated range. While acknowledging a remaining uncer-
tainty related to the choice of d18O-T calibration, we sur-
mise that the calibration of Shackleton (1974) is the most
reliable basis for temperature reconstructions from diverse
settings and for a large number of different species based
on the arguments outlined above.

Whether this equation is used directly (Method 2) or
combined with available temperature data (Method 3) has
only minor influence on the resulting calibration line



Fig. 4. Calcification temperatures estimated from three different methods versus D47 (A-C) and against each other (D). A: Method 1 using
WOA-based temperature data (Locarnini et al., 2010) and a linear regression model (blue dots and blue dashed line) compared to Method 2
using the Shackleton (1974) equation (green filled squares and green dashed line). The 95% confidence intervals for Method 1 (blue) and
Method 2 (green) are shown as solid lines. B: Method 2 using the Kim and O’Neil (1997) equation (orange dots and orange dashed line) and
the Shackleton (1974) equation (green filled squares and green dashed line). Solid lines represent the 95% confidence intervals. C: Comparing
Method 2 (green filled squares and green dashed line) to Method 3 (pink dots and pink dashed line), both approaches using the same d18Ocalcite

vs. temperature calibration (Shackleton, 1974). Solid lines represent the 95% confidence intervals. D: Comparison of temperatures estimated
using Method 2 (Shackleton, 1974) with other temperature datasets used in A–C (blue dots: Method 1; orange dots: Method 2 using Kim and
O’Neil (1997); pink dots: Method 3). Error bars represent the temperature uncertainty (A–D) in x direction and one standard error of the
mean D47 (A–C) or the uncertainty of the temperature estimates (D) in y direction, as given in Table 3. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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(Fig. 4C and D). One potential weakness of Method 3 com-
pared to Method 2 is indicated by the observation that
some sea surface sample values are not represented by the
d18Ocalculated profile. This could be explained by some
unaccounted-for species-specific disequilibrium effects.
Another reason for these d18Ocalcite values that point to
warmer temperatures than the annual mean SST could be
seasonality effects in the life cycle of certain foraminifer spe-
cies. These effects may bias the signal towards summer tem-
peratures. This could for example affect samples of G. ruber
pink as well as N. pachyderma since both species may cal-
cify relatively close to the sea surface and are reported to
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reach maximum abundances during summer season
(Table 2).

On the other hand, assumptions regarding foraminifer
ecology might not represent all of the data equally well
and can potentially introduce errors, as evident from
Fig. 4A. Consequently, the advantage of Method 3 over
Method 2 is its independence from any assumptions con-
cerning the calcification depth of the analyzed specimens.
Moreover, since the calcification temperatures are derived
from WOA data, extreme temperature values outside the
observed annual mean temperature are excluded. We there-
fore use calcification temperatures derived with Method 3
for all subsequent calculations.

The relationship between D47 and calcification tempera-
tures, which were derived from Method 3 and the applica-
tion of the York regression, leads to the following
regression equation:

D47 ¼ ð0:0397 0:0021Þ � 106=T2 þ ð0:2259 0:0255Þ ðT in KÞ
ð1Þ

The D47 data for all measured species follow a clear linear
relationship (Fig. 5) albeit with noticeable scatter, which is
most pronounced at the warm end of the calibration
(>22 �C). Interestingly, earlier studies (Tripati et al., 2010,
Grauel et al., 2013) have observed the opposite (i.e., larger
variability at the cold temperature end, see Section 4.2).
The observed variability is not related to a specific site being
systematically offset from the general trend (Fig. 5A), but
may stem from a variety of reasons as discussed in the
following.

The small amounts (<5 mg) of sample material measured
in this study may have led to a slightly larger scatter than
observed in the recent foraminifer-based D47-T calibration
by Peral et al. (2018) where 16–20 mg were used. The sam-
ples in this study integrate over fewer individual specimens
(minimum �100) than studies measuring larger samples
and could be affected by individual tests that deviate from
the mean D47 values. Hence, the scatter of the D47 signal
could likely be reduced further by measuring more replicates
at the expense of slightly larger sample requirements.

Besides the measurement procedure, there are several
potential reasons for individual samples to deviate from
the described D47-T relationship, related to either the calci-
fication temperatures that were calculated from d18Ocalcite

or the D47 values. Because calcification temperatures can
only be estimated, any divergence from the true calcifica-
tion temperature can potentially cause affected samples to
deviate from the general trend. Surface water conditions
in particular can be highly variable (e.g. on a seasonal
scale), potentially influencing the isotopic signal recorded
by the foraminifers (e.g. Curry et al., 1983). However,
potential seasonal temperature effects are largely accounted
for by the combined approach of calculating d18O values
and using WOA-based water temperatures (Method 3).

Despite the fact that planktonic foraminifers appear to
calcify slightly offset from isotopic equilibrium with respect
to stable oxygen isotopes of ambient seawater (Daeron
et al., 2019), we do not see clear evidence that species-
specific disequilibrium effects on d18O enhanced variability
in our dataset. Species-specific correction for disequilibrium
effects using published values would result in colder temper-
ature estimates for several tropical surface species (Appendix
Table A2). However, since there is a wide range of published
disequilibrium correction factors (e.g. 0.0–1.0‰ for G. ruber
(white), Niebler et al. (1999)), it remains difficult to assess its
influence on the temperature estimates. Depending on the
choice of correction factor for each species, the scatter of
tropical surface-dwelling species in the D47 signal may in fact
increase. In any case, a disequilibrium correction of the
d18Ocalcite signal moves the data of several warm-water sur-
face species in the same direction and thus will not reduce
the scatter of the data (Appendix Table A2 and Fig. A1).

Early diagenetic alterations such as secondary calcite
precipitates grown at colder water temperatures may bias
calcification temperature reconstructions from d18O mea-
surements towards colder values (e.g. Pearson, 2012). How-
ever, such alteration should affect both the d18O and the D47

signal and bias all samples from the same site towards
colder temperatures. Especially if two species from the same
site are characterized by similar calcification depths, early
diagenetic effects should be similar for both. Yet, the calcu-
lated calcification temperatures from d18Ocalcite of different
surface-dwelling species from the same sites generally agree
well: For example, at site SO164-25-3 located in the Carib-
bean differences of up to 0.029‰ in the D47 signal were
observed for surface species assumed to calcify at similar
depth. For the same species the d18O-based temperature
estimates are characterized by a relatively small difference
�1.8 �C (see Fig. 5A) and SEM images taken for several
species at this site did not reveal any signs of secondary cal-
cification. Moreover, we take the aforementioned good
agreement between the temperatures calculated from d18O
(Method 2) and temperature estimates based on WOA data
in combination with published calcification depths (Method
1) as indication that the d18O signal is not altered (average
temperature difference for tropical species: 0.7 �C). Due to
the fact that clumped isotopes are only dependent on the
mineral formation temperature, a stronger influence of
early diagenesis on the D47 signal than on d18O is unlikely
and has not been observed, even in samples as old as
44 Ma (Leutert et al., 2019).

Possible short-term variability of the surface water d18O
due to salinity changes could introduce larger variability of
the d18Ocalcite signal of surface-dwelling species (reviewed in
Pearson, 2012). For instance, site SO164-25-3 is located in
an area that is influenced by the Amazon and Orinoco
River plumes and may thus be experiencing considerable
salinity changes (Schmuker and Schiebel, 2002). A
surface-water salinity effect that influences the oxygen iso-
tope signal of the upper water column could potentially
bias the estimated calcification temperature of surface spe-
cies at site SO164-25-3. For this site, however, we measured
several surface-dwelling species including three morpho-
types of the same species, G. ruber (G. ruber white s.s., s.l.
and G. ruber pink). Although the d18Ocalcite measurements
from all three morphotypes agree well, not only among this
species but also with other species from the same site, the
D47 signal of these three samples reveals notable differences
(�0.03‰). Moreover, none of the species measured for this
site is characterized by a particularly variable d18Ocalcite



Fig. 5. The D47-temperature relationship for planktonic foraminifers measured in this study by site (A) and species (B). Error bars represent
the standard error of the mean D47 values (in per mil) (Table 3). Calcification temperatures are given in 106/T2 (T in K) and �C. The blue line
and gray shaded area show the linear regression (Eq. (1)) and 95% confidence interval.
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signal (SD of 0.09–0.16) and the calculated calcification
temperatures are similar to the WOA-based estimates.

As suggested by various studies (e.g. Spero et al., 1997),
pH affects the d18O signal of foraminiferal calcite towards
more negative values with increasing pH. This effect was
estimated by Zeebe (1999) to amount to �1.42‰ per unit
of pH. The presence of photosymbionts is expected to
increase the internal pH of foraminifers by up to 0.5 pH
units (Rink et al., 1998) and thereby could bias tempera-
tures calculated from d18Ocalcite towards warmer values
(reviewed in Pearson, 2012). For benthic foraminifers, on
the other hand, Marchitto et al. (2014) found no clear pH
effect. If pH had a strong influence on the calcification tem-
peratures estimated from d18Ocalcite in this study we would
expect all symbiont-bearing species to reveal systematically
warmer temperatures and disagree with atlas-based
(Method 1) temperatures. Although this is not the case
we cannot exclude that pH effects contributed some
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additional scatter to the d18Ocalcite signal of surface-
dwelling species. Potential pH effects on the D47 signal will
be discussed in Section 4.2. We suggest that the number of
replicate measurements is the most important factor caus-
ing scatter in our foraminiferal D47-T dataset. Nonetheless,
we will investigate the data for species-specific effects possi-
bly contributing to the scatter of the D47 signal in the fol-
lowing section.

4.2. Species-specific effects

The question whether the D47 in planktonic foraminifers
is influenced by any species-specific effects is of vital impor-
tance to the application of this proxy for paleoceanogra-
phy, since the absence of species effects would imply that
D47 can be applied far back in time, despite evolutionary
changes in species composition. Previous D47-T calibration
studies on foraminifers found large scatter and a potential
discrepancy between foraminifers and inorganic calibra-
tions at the cold end of the calibration (Tripati et al.,
2010; Grauel et al., 2013), which were attributed to kinetic
effects during the calcification process on foraminifers in
cold-water conditions resulting in lower and more variable
D47 values. In this study, in contrast, we observe neither
increased scatter nor deviations towards low D47 in the
cold-end foraminifer samples (Fig. 5). Cold-water species
such as N. pachyderma from multiple sites do not reveal sys-
tematically negative, larger residuals. While most species
are distributed relatively close to the calibration line
(�0.01‰) and do not reveal any systematic offset, there
are a few exceptions (Fig. 6A): One of two samples mea-
sured on G. conglobatus (site SO225-53-1 from the Manihiki
Plateau) plots �0.015‰ above the linear fit. Furthermore,
all but one of the G. ruber samples from multiple sites are
Fig. 6. Evaluation of possible species-specific effects on the calibration; A
from the linear regression presented in Fig. 5 (individual species/specie
Fig. 5B). The residuals show no significant trend. B: Calculated slopes of
one species at a time to test the influence of individual species on the cali
(gray area: 95% confidence interval of the mean slope). Error bars repre
characterized by higher D47 values (residuals 0.01–0.02‰).
This includes all three morphotypes of G. ruber measured
in this study. Furthermore, all three samples of P.

obliquiloculata show lower D47 values with two of them
<�0.010‰.

Taking the uncertainty of the calcification temperature
estimates and the clumped isotope measurements into
account, the measured, species-specific D47 data from this
study do not reveal any statistically significant deviation
from the linear relationship determined for the entire dataset.
Some species are only represented by a single sample,
whereas up to six samples from different sites were included
for species that are frequently used for paleoceanography
(such as G. bulloides, G. ruber and N. pachyderma). The lim-
ited temperature ranges of individual species do not allow for
the calculation of individual, species-specific regression lines.

To further test the influence of individual species or gen-
era on the D47-T calibration, we removed consecutively cer-
tain taxa from the dataset and compared the resulting
slopes of the calibrations to the slope of the entire dataset
(Fig. 6B). All of the slopes calculated for such data subsets
fall within the 95% confidence interval of the slope calcu-
lated for the entire dataset. The two species that have the
largest influence on the slope are N. pachyderma and G.

ruber. This observation could be related to the position of
the data from these two species at the cold (N. pachyderma)
and warm end (G. ruber) of the dataset as the regression line
is particularly sensitive to data at both ends of the temper-
ature range. The dataset without N. pachyderma is charac-
terized by a flatter slope (0.0380 compared to 0.0397 for the
entire dataset). This deviation could be explained by the
fact that the exclusion of this cool (<10 �C), high-latitude
species from the dataset reduces the entire temperature-
range by 7 �C and hence raises the uncertainty of the
: D47 residuals of single foraminifer species, calculated as deviation
s groups are displayed by different symbols and colors similar to
the linear regression for subsets of the data (black dots) excluding
bration. The black line represents the slope of the complete dataset
sent the 95% confidence intervals of the slopes.



Fig. 7. Comparison of various D47-T calibrations. Clumped
isotope data from this study (blue symbols) and the calculated
linear regression (dashed blue line) including confidence intervals
(gray shaded area) is compared with published data and calibration
lines including the compilation of Bonifacie et al. (2017; yellow
dashed line), the travertine calibration of Kele et al. (2015; pink line
and symbols) recalculated by Bernasconi et al. (2018), and the
composite synthetic carbonate calibration of Petersen et al. (2019);
green dashed line). The calibration of Bonifacie et al. (2017) and
Petersen et al. (2019) contain data from several individual studies
that were measured, standardized, and corrected in various ways.
Therefore, the individual data of the Bonifacie et al. (2017) and
Petersen et al. (2019) compilations are characterized by a larger
variability and thus, are not presented here. Error bars in x and y-
direction represent the temperature uncertainty and one standard
error of the mean D47, respectively, as presented in Table 3. (For
interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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D47-T calibration (standard error raised from 0.0021‰ to
0.0025‰).

For G. ruber, all but one sample are offset by on average
0.015‰ to a higher D47 value (lower temperature) from the
calculated D47-T regression line of the entire dataset
(Figs. 5B, 6A). The linear fit calculated for the dataset with-
out G. ruber exhibits the steepest slope (0.0419) of any of
the subsets presented in Fig. 6B, suggesting that these data
exert the strongest influence on the regression, albeit not
significant at the 95% confidence level. This relatively large
effect on the slope despite the temperature range of the
dataset being largely unaltered may imply that the G. ruber
D47-T dependency is different from other planktonic fora-
minifer species. However, the observation that not all G.
ruber data show the offset to higher D47 values is inconsis-
tent with this hypothesis. For Caribbean site SO164-25-3,
for example, we analyzed three different morphotypes of
G. ruber (G. ruber white s.s, s.l. and G. ruber pink). Two
of these samples (G. ruber white s.l. and G. ruber pink) show
the offset to higher D47, whereas the third morphotype (G.
ruber white s.s.) reveals a lower (by �0.03‰) D47 value than
the other two and plots below the regression line (Fig. 5B).
Moreover, D47 in G. ruber was also analyzed in the recent
study by Peral et al. (2018), which did not reveal systematic
species-specific behavior of G. ruber, although one of three
samples was characterized by slightly higher D47. Overall,
evidence regarding species-specific effects in G. ruber is
inconclusive and we do not consider G. ruber to calcify sys-
tematically offset from other species of foraminifers with
respect to D47. Individual samples of other species (such
as G. conglobatus) also deviate from the linear regression
to a similar degree. A combination of the intrinsic uncer-
tainty of the clumped isotope measurement together with
natural variability of the sample material could explain
the observed scatter of the D47-T data, including the appar-
ent deviation of G. ruber from the trend.

However, we cannot rule out the existence of relatively
small and possibly variable secondary influences on the
D47 signal during the calcification process in the surface
water. The fact that the shallowest surface-dwelling species
G. ruber shows the strongest deviation of individual sam-
ples from the general D47-T relationship raises the question,
whether there could be additional effects besides tempera-
ture on D47 in species living close to the sea surface. This
has been described for other groups of marine calcifying
organisms as well. Tropical shallow-water corals, for exam-
ple, show increasing D47 with increasing calcification rates
(Saenger et al., 2012). Kinetic effects on the D47 signal
related to growth rates in brachiopods were shown by
Bajnai et al. (2018). Moreover, Davies and John (2019)
reported evidence for a constant offset of echinoid D47 val-
ues from inorganic calcite that might be related to internal
pH of the calcifying fluid in echinoids being offset from sea-
water pH. If this was true for foraminifers as well, the effect
would be expected to be larger for symbiont-bearing species
such as G. ruber because the internal pH in these species
was reported to be higher (Rink et al., 1998). In contrast
to this hypothesis, however, Tang et al. (2014) observed
in inorganic calcite precipitation experiments that the
D47-T relationship is largely insensitive to pH and growth
rate at the external and internal conditions expected during
foraminifer calcification. Tripati et al. (2015) also found
that even major changes in ocean chemistry (pH and salin-
ity) expected during the Cenozoic have only small to negli-
gible effects on the D47 signal of marine carbonates.

One potential explanation for increased scatter of the D47

values in surface-dwelling planktonic foraminifers could be
the additional influence of photosynthesis on the calcifica-
tion process: Photosymbionts may potentially cause disequi-
librium effects on the recorded D47 signal because they are
not only altering the microenvironment from which calcite
is excreted but also by affecting calcification rates (de
Nooijer et al., 2014). An effect of strong photosynthesis in
plants on D47 measured in residual CO2 gas was demon-
strated by Laskar and Liang (2016), who also reported plant
photosynthesis to decouple the d18O and D47 values. How-
ever, studies investigating photosynthesis in foraminifers
found that both the kind of symbionts and the concentra-
tion of chlorophyll as a measure for photosynthetic activity
in G. ruber are similar to other species, such as T. sacculifer
(Fujiki et al., 2014; Takagi et al., 2019). This would suggest
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that any effect photosynthesis may have on D47 in G. ruber

should also occur in other symbiont-bearing species,
whereas we do not observe any systematic difference
between symbiont-bearing and non-symbiotic foraminifer
species (Fig. 5B). Because G. ruber has a shallower habitat
depth than most other planktonic foraminifers (e.g. Wang,
2000), the influence of photosynthesis might be larger on
this species than on deeper-dwelling symbiotic species. A
higher symbiont density under high-light conditions likely
affects the calcification process of G. ruber as already sug-
gested for boron isotopes (see Hönisch and Hemming,
2004). However, this effect cannot explain the differences
of the D47 signal in three morphotypes of G. ruber from
the same site (see Fig. 5). In particular the G. ruber (white)
s.s. morphotype reported to live closest to the sea surface
yields D47 values closest to the calibration line. More work
is needed to test possible secondary influences on the incor-
poration of the D47 signal and evaluate whether there might
be any significant species-specific effects in G. ruber and sim-
ilar shallow-dwelling species.

4.3. Comparison with other clumped isotope calibrations

Our data is in overall good agreement with recent
clumped isotope calibrations of Bonifacie et al. (2017),
Kele et al. (2015) as recalculated by Bernasconi et al.
(2018), and Petersen et al. (2019) (Fig. 7). Our linear regres-
sion has a slope between the flatter Petersen et al. (2019)
calibration and steeper slopes published by Bonifacie
et al. (2017) and Kele et al. (2015) (Table 4). Since the slope
and intercept are negatively correlated for the regression
analysis the intercept of our regression is higher than the
ones published by Bonifacie et al. (2017) and Kele et al.
(2015). The Petersen et al. (2019) calibration, which is based
on a compilation of synthetic carbonate data shows a slight
but apparently systematic offset towards higher D47 values
compared to our data. Most of the datasets included in this
compilation, as well as in the compilation by Bonifacie et al.
Table 4
Our foraminifer-based D47-T calibration compared to recent clumped isot
for Bonifacie et al. (2017) and Petersen et al. (2019) were calculated us
dependend acid fractionation that was published by Defliese et al. (2015).
the 25 �C reference frame using a correction for temperature-dependent a
The intercept of the Petersen et al. (2019) calibration was lowered by �0.0
acid fractionation factors published by Defliese et al. (2015).

Regression Slope * 106/T2 ± 1 SE In

Bonifacie et al. (2017) 0.0422 ± 0.0019 0.
Breitenbach et al. (2018) (foraminifer dataset) 0.0315 ± 0.008 0.
Breitenbach et al. (2018) (Cambridge
calibration)

0.0448 ± 0.007 0.

Kele et al. (2015) (fully recalculated) 0.0449 ± 0.001 0.
Peral et al. (2018) 0.04163 ± 0.00084 0.
Petersen et al. (2019) 0.0383 ± 1.7E�6 0.
Piasecki et al. (2019) 0.0460 ± 0.005 0.
This study 0.0397 ± 0.0021 0.
Combined calibration (Breitenbach et al.,
2018, Peral et al., 2018, Piasecki et al., 2019,
this study)

0.0418 ± 0.0016 0.

Combined calibration (Peral et al., 2018,
Piasecki et al., 2019, this study)

0.0431 ± 0.0016 0.
(2017), however, used different analytical and data correc-
tion procedures compared to our study.

Bonifacie et al. (2017) combines data from various exist-
ing calibrations that were generated on a variety of analyti-
cal setups and using different standards. Also, several of the
datasets included in the Bonifacie et al. (2017) calibration
were calculated with the parameter set for 17O correction
by Gonfiantini et al. (1995), which were later shown to have
caused discrepancies among samples with very different bulk
compositions (Daëron et al., 2016; Schauer et al., 2016). For
example, the intercept of the travertine calibration of Kele
et al. (2015) decreased by 0.038‰ with the updated 17O
abundance correction of Brand et al. (2010) (Bernasconi
et al., 2018). However, the original data are included in
the compilation of Bonifacie et al. (2017). Recalculating
the calibration of Bonifacie et al. (2017) using the updated
Kele dataset might therefore lead to a lower intercept and
move this calibration closer to our calibration (Eq. (1)).

The underlying data of the (fully recalculated, see
Bernasconi et al., 2018) travertine calibration by Kele
et al. (2015) agree well with our foraminifer data (Fig. 7).
This is most likely due to similarity in analytical set-up,
raw data treatment and correction using the same carbon-
ate standard values. Differences in data correction and/or
analytical procedures may thus explain some degree of sys-
tematic offset between calibrations. In addition, Fernandez
et al. (2017) pointed out that a small temperature range of
some D47-T calibrations is among the important factors
that can explain discrepancies between various calibration
lines. Given the small temperature range biogenic samples
like foraminifers cover, the slight discrepancies between cal-
ibrations are not surprising.

4.4. Comparison of foraminifer-based calibrations

Comparing our data to recent D47-T calibrations of Peral
et al. (2018), Piasecki et al. (2019) and Breitenbach et al.
(2018) (Fig. 8) contributes to the ongoing debate regarding
ope calibrations in the 25 �C reference frame. All calibrations except
ing ETH carbonate standards and the correction for temperature
The equation published by Bonifacie et al (2017) was converted to
cid fractionation of 0.082‰ (Defliese et al., 2015) on the intercept.
04‰ (see Section 2.3) for comparability with equations based on the

tercept ± 1 SE Type of material

208 ± 0.0207 Various – compilation of existing calibration data
313 ± 0.1 Foraminifers
154 ± 0.08 Natural cave carbonates (cave pearls)

167 ± 0.01 Inorganic carbonates (travertines, tufas)
2056 ± 0.0011 Foraminifers
258 ± 1.7E�5 Compilation of synthetic carbonate data
159 ± 0.064 Benthic foraminifers
2259 ± 0.0255 Planktonic foraminifers
2017 ± 0.0195 Foraminifers

1876 ± 0.0189 Foraminifers



Fig. 8. Compilation of available foraminiferal D47-T calibrations.
The planktonic foraminifer data from this study (blue symbols and
dashed line) are compared to foraminiferal data from Peral et al.
(2018) with temperatures recalculated using Method 3 (orange
diamonds), benthic foraminiferal data (site averages) from Piasecki
et al. (2019) (green triangles) and planktonic foraminiferal data
from Breitenbach et al. (2018) with recalculated temperatures using
Method 3 (gray squares). Moreover, a combined foraminifer
calibration (black dashed line) including 95% confidence intervals
(gray shaded area) for the data from this study, Peral et al. (2018),
and Piasecki et al. (2019) is presented with the recalculated
calibration line of Kele et al. (2015; pink line) for comparison.
Error bars in y-direction represent one standard error of the mean
D47. Error bars in x-direction show the calculated temperature
uncertainty for Breitenbach et al. (2018), Peral et al. (2018) and this
study and an assigned constant uncertainty of ±1 �C for Piasecki
et al., 2019. Note that the foraminiferal data from Breitenbach
et al. (2018) were not included in the combined calibration due to
the larger variability of the dataset (also discussed in Breitenbach
et al., 2018). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this
article.)
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inter-laboratory differences and improves foraminifer-based
D47-T calibration efforts. In order to treat the datasets con-
sistently, we recalculated calcification temperatures for the
datasets of Peral et al. (2018) and Breitenbach et al. (2018)
using Method 3. The previously published bottom water
temperatures for the benthic dataset of Piasecki et al.
(2019) were kept. Bottom water conditions are assumed to
be relatively constant over time, such that instrumental mea-
surements can be regarded as reliable to calibrate D47-data
of benthic foraminifers. Such an approach independently
verifies that the calculated planktonic calcification tempera-
tures are realistic, provided that neither planktonic nor ben-
thic foraminifers record D47 values significantly offset from
the inorganic D47-T relationship.

In general, the datasets are in good agreement across the
entire temperature range from �1 to 28 �C. The benthic for-
aminiferal D47 data of Piasecki et al. (2019) was generated in
the same laboratory as the data from this study and seem to
indicate a slight deviation from our planktonic D47-T cali-
bration towards higher D47 values for temperatures below
15 �C. At the same time, the variability of the benthic D47

data at the cold end of the calibration is relatively large. This
can be explained by individual data points that contain less
replicate measurements due to sample limitations.

The planktonic foraminiferal D47-T data from
Breitenbach et al. (2018) are characterized by a larger scat-
ter. While all four datasets presented in Fig. 8 overlap for
the warm end of the D47-T calibration, D47 values at the cold
end (<13 �C) tend to be lower by �0.02–0.03‰ in the Breit-
enbach dataset. Breitenbach et al. (2018) acknowledge the
small number of samples and replicates as well as the rela-
tively large scatter of the dataset, which was generated with
the primary purpose of comparing D47 and Mg/Ca.

The data from Peral et al. (2018) show excellent agree-
ment with our measurements, with confidence intervals
overlapping for the whole temperature range. This is partic-
ularly noteworthy as the two datasets were derived with
completely different analytical setups: In this study, samples
were digested at 70 �C in a Kiel IV carbonate preparation
device with a short Porapak column and subsequently mea-
sured on a Thermo Fisher Scientific MAT 253 Plus in
microvolume mode with the LIDI approach. In contrast,
Peral et al. (2018) used a common acid bath operated at
90 �C, a GC column for contaminant removal, and carried
out the isotope measurements on a VG Isoprime mass spec-
trometer under constant gas pressure. The good agreement
of the data provides further evidence that different measure-
ment techniques provide comparable D47 data as long as
they are corrected using the same carbonate standards (in
this case ETH 1-4; Bernasconi et al. 2018) and the ‘‘Brand
parameters” for the 17O abundance correction (Daëron
et al., 2016; Schauer et al., 2016).

Based on these considerations, the various recent data-
sets containing foraminiferal D47 data with comparable
data treatment were combined to enhance the accuracy of
an overarching D47-T calibration valid for all foraminifer
species. We excluded the D47 data of Breitenbach et al.
(2018) due to the small number of replicate measurements
(although we report a version of a combined foraminifer-
based calibration including this dataset in Table 4). The
resulting D47-T calibration encompassing the data of Peral
et al. (2018), Piasecki et al. (2019) and this study (Eq. (2),
Fig. 8) falls within the error of the regression exclusively
derived from our data (which is characterized by a slightly
flatter slope) and emphasizes the conformity and compati-
bility of the three D47 datasets:

D47 ¼ ð0:0431 0:0016Þ � 106=T2 þ ð0:1876 0:0189Þ ðT in KÞ
ð2Þ

The recalculated version of the Kele et al. (2015) calibra-
tion (see Bernasconi et al., 2018) lies within the confidence
interval of the combined foraminiferal D47-T calibration
presented here. For the calibrated temperature range our
combined calibration yields temperature estimates within
1 �C of the Kele et al. (2015) calibration with the largest dif-
ference at the cold end of the calibrated temperature range.
Given the fact that the Kele et al. (2015) calibration used
the same carbonate standards for the corrections, this
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agreement suggests that foraminifers follow the same D47-T
relationship as the travertines. We note that this agreement
between our combined foraminifer-based calibration and
the Kele travertine calibration does not exclude the possi-
bility that all of these carbonates are influenced by some
degree of disequilibrium fractionation (Watkins and
Hunt, 2015; Daeron et al., 2019).

For future studies using foraminifer samples we recom-
mend applying our combined foraminifer-based calibration
(Eq. (2)) rather than the recalculated travertine calibration
of Kele et al. (2015). Although the Kele et al. (2015) calibra-
tion has the advantage of covering a much wider tempera-
ture range our combined calibration is based on a large
number of foraminifer samples from different studies and
laboratories. Hence it is characterized by a smaller uncer-
tainty within the normal ocean temperature range com-
pared to the Kele et al. (2015) calibration. However, the
reconstructed temperatures applying either of the two cali-
brations fall within less than 1 �C of each other. Using the
long-integration dual-inlet (LIDI) method a sample size of
2–5 mg of foraminifers is enough for 20 to 40 replicate mea-
surements, which is the equivalent of a temperature uncer-
tainty of 1.5 �C or less on the measurement.

4.5. Water column temperature gradients

Awidely accepted approach to gain a deeper understand-
ing on past oceanographic changes is to combine geochemi-
cal information (e.g. combined analyses of foraminiferalMg/
Ca and d18O) from calcitic tests of shallow and deep-dwelling
foraminifer species, allowing reconstruction of water column
Fig. 9. Atlas-based mean annual water temperature (solid lines) and sea
sites SO213-84-2 (blue) and WIND 33-B (pink) and clumped isotope te
recalculated by Bernasconi et al. (2018)) plotted against water depth/assum
the temperature uncertainty due to the standard mean error of the measur
calcification depth based on the available information presented in Table
stratification. Based on the notion that there are no dis-
cernible species effects on the D47-T calibration presented
above (Eq. (2)) and the close agreement with the travertine-
basedKele calibration (Kele et al., 2015), we test how reliably
vertical temperature gradients can be reconstructed from for-
aminiferal D47 data. We compare D47–derived temperatures
from various species from two Pacific and Indian Ocean sites
to annual mean water temperatures and seasonal extremes at
these locations (Locarnini et al., 2010) (Fig. 9). To avoid cir-
cular reasoning, the D47–temperature estimates were derived
from the Kele calibration and plotted at the respective
assumed calcification depths of the species, based on the
available ecological information (c.f. Table 3). This exercise
should be seen as a feasibility study.

Within error, the D47–temperature estimates from
almost all foraminifer species compare to the annual mean
temperature at the respective sample locations. The abso-
lute temperature difference of �15 �C between the two sites
is well reflected in the D47–temperature signal. On the verti-
cal scale, shallow-dwelling species commonly show higher
D47–temperatures than deep-dwelling species, and the
reconstructed temperature differences reflect the different
gradients at the two sites very well. Only G. menardii and
G. ruber from site WIND 33B in the Indian Ocean yield
D47–temperatures that appear too cold for their assumed
calcification depths (by 5 and 6 �C, respectively, Fig. 9).
The calcification temperature reconstructed for G. menardii

suggests a habitat in the lower thermocline at this site,
lower than commonly assumed, which is also seen in the
deeper d18O-based apparent calcification depth (Table 3).
The apparent cold bias of G. ruber is a recurrent feature
sonal temperature range (dashed lines) (Locarnini et al., 2010) for
mperatures (using the calibration published by Kele et al., 2015,
ed calcification depth (Table 3). Error bars in x-direction represent

ement while the error bars in y-direction show the uncertainty of the
3.



Fig. A1. Residual values for the resulting linear regression after
species-specific disequilibrium correction factors (Appendix
Table A2) were applied. The data are differentiated for each
species (displayed by different symbols and colors as in Fig. 5B).
Applying species-specific disequilibrium corrections to the d18-
Ocalcite data prior to calculating the calcification temperature dos
not result in smaller residual values compared to Fig. 6A.
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observed at various sites and ocean settings in this study as
discussed above. Overall, this exercise demonstrates that
D47 can be used to reconstruct vertical temperature gradi-
ents within the water column while avoiding the uncertainty
introduced by the use of individual, species-specific calibra-
tions for other foraminifer-based geochemical proxies.

5. CONCLUSION

By analyzing D47 in 14 species from 13 globally dis-
tributed core-top samples, this study confirms findings from
previous studies (Tripati et al., 2010; Grauel et al., 2013;
Peral et al., 2018) that found foraminifers to follow the
same relationship between D47 and the carbonate formation
temperature as inorganic calcite. The substantial number of
different foraminifer species analysed here, as well as the
large number of samples from different sites for some spe-
cies greatly increases confidence in this finding. Although
small species-specific effects within the analytical uncer-
tainty cannot be completely ruled out, no significant sys-
tematic effect could be identified in this study. The only
possible deviation from the D47-T relationship that cannot
be explained by the uncertainty associated with foraminif-
eral ecology is the mixed-layer species G. ruber, showing
apparent cold biases in some samples. However, the results
for this species remain inconclusive, warranting a more
detailed study on the clumped isotope signal in G. ruber.

We demonstrate that results from different laboratories
and various measurement setups are in good agreement
when the D47 data are corrected using the same carbonate
standards and the latest 17O abundance correction parame-
ters. The combination of natural variability, relatively large
uncertainties of the estimated calcification temperatures
and the comparatively small natural temperature range
affect the precision of any D47-T calibration based only on
foraminifers. We minimize this problem by combining sev-
eral available foraminifer-based calibrations and calculat-
ing a common D47-T calibration. Within the error, this
combined calibration is identical to the recalculated traver-
tine calibration of Kele et al. (2015) (see Bernasconi et al.,
2018). Temperatures reconstructed using either of the two
calibrations fall within less than 1 �C of each other. Because
of the smaller uncertainty within the ocean temperature
range, we recommend using our combined calibration
(Eq. (2)) for foraminifer samples. Finally, we show that
the reconstruction of temperature profiles through the
water column from clumped isotope measurements is feasi-
ble using micro-volume measurements on different species
within the same sample.
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Fig. A2. Histograms showing the distribution of slopes (A) and intercepts (B) of the combined calibration across the 100,000 iterations
calculated.

Table A1
External reproducibility of standard measurements. For the measuring interval from October 2016 to October 2017, the carbonate standards
ETH 1, 3 and 4 were used for correction and the carbonate standard ETH 2 for monitoring. From November 2017 to March 2018, ETH 1, 2
and 3 were utilized for correction and ETH 4 for monitoring.

Standard d13C VPDB SD external d18O VPDB SD external D47 CDES SD external

Measurement interval from 2016/10/21 13:14 to 2017/10/14 17:06

ETH-1 (n = 957) 0.021 0.042 0.036
ETH-2 (n = 967), monitoring 0.022 0.045 0.035
ETH-3 (n = 982) 0.027 0.048 0.033
ETH-4 (n = 967) 0.020 0.042 0.031

Measurement interval from 2017/11/30 16:17 to 2018/03/14 07:29

ETH-1 (n = 458) 0.045 0.087 0.037
ETH-2 (n = 402) 0.061 0.097 0.034
ETH-3 (n = 460) 0.063 0.106 0.036
ETH-4 (n = 456), monitoring 0.059 0.112 0.038

Table A2
Disequilibrium offset correction factors tested for the d18Ocalcite measurements that were used to estimate calcification temperatures.

Species Disequilibrium offset correction Reference

Globigerina bulloides 0.25 Niebler et al. (1999)
Globigerinoides conglobatus �0.2 Niebler et al. (1999)
Globigerinoides ruber pink �0.4 Steph et al. (2009)
Globigerinoides ruber white s.l. �0.4 Steph et al. (2009)
Globigerinoides ruber white s.s. �0.4 Steph et al. (2009), Rippert et al. (2016)
Globorotalia hirsuta �0.15 Niebler et al. (1999)
Globorotalia inflata 0 Niebler et al. (1999), Cléroux et al. (2013)
Globorotalia menardii �0.2 Niebler et al. (1999), Steph et al. (2009)
Globorotalia truncatulinoides �0.05 Niebler et al. (1999), Cléroux et al. (2013)
Globorotalia tumida 0 Niebler et al. (1999), Steph et al. (2009), Cléroux et al. (2013)
Neogloboquadrina dutertrei �0.27 Niebler et al. (1999), Cléroux et al. (2013)
Neogloboquadrina pachyderma �0.75 Niebler et al. (1999)
Orbulina universa �0.3 Niebler et al. (1999)
Pulleniatina obliquiloculata �0.3 Niebler et al. (1999)
Trilobatus sacculifer �0.6 Steph et al. (2009), Rippert et al. (2016)
Trilobatus trilobus �0.6 Steph et al. (2009), Rippert et al. (2016)
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Table A3
Correlation coefficients (Pearson’s product-moment correlation), slopes and intercepts calculated using various calcification temperatures for
the following linear regression: D47 = (m ± SE) * 106/T2 + (b ± SE) (T in K).

Method used to estimate calcification temperature Correlation coefficient Slope (m) SE Intercept (b) SE

Method 1 – World Ocean Atlas 2009 �0.9120348 0.0375 0.0022 0.2543 0.0269
Method 2 – Kim and O’Neil, 1997 �0.9494287 0.0360 0.0018 0.2677 0.0219
Method 2 – Shackleton, 1974 �0.9493258 0.0415 0.0021 0.2054 0.0253
Method 3 – Shackleton, 1974 �0.947849 0.0397 0.0021 0.2259 0.0255
Method 3 – Shackleton, 1974 – disequilibrium-corrected �0.9487466 0.0411 0.0021 0.2056 0.0263
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