
The JPetStore Suite: A concise Experiment Setup for Research

Reiner Jung
reiner.jung@email.uni-kiel.de
Kiel University, Kiel, Germany

Marc Adolf
mad@informatik.uni-kiel.de

Kiel University, Kiel, Germany

Abstract

Viable experiment suites are in high demand by sci-
entists in software engineering and especially for soft-
ware quality. In particular, easy to understand yet
feature rich case studies are needed to assess ap-
proaches, methods and tools for software qualities, like
performance, usability, privacy and security.

Several attempts have been made to create reusable
setups. Unfortunately, they focus on the software
alone, without or limited documentation, workloads,
and prepared deployments, harming reusability and
repeatability. This hinders our research.

To circumvent these limitations, we created a JPet-
Store based experiment suite. Our suite includes dis-
tributed and single service variants with and without
instrumentation, proper workload drivers, and experi-
ment setups. All parts are documented to support sci-
entists creating experiments. Using our suite fosters
comparability and reproducibility of research making
it more influential. Furthermore, our suite can be used
as blue print for more complex suites.

1 Introduction

Scientists rely on case studies to evaluate methods and
approaches addressing challenges in the software engi-
neering domain. Especially, in the context of software
quality, they require case studies close to and derived
from real world scenarios, to gain meaningful results.
In iObserve [6], case studies were in high demand to
assess all aspects of our software quality and user be-
havior modeling experiments. We used different case
studies, but setups from previous experiments where
always hard to reuse and rejuvenate.

The software engineering community uses a wide
range of case studies. For example Common Compo-
nent Modeling Example (CoCoME) [2] and the Kieker
Netflix setup [13] are complex distributed systems,
while the JPetStore [14] is a simple single service ap-
plication. Unfortunately, the complex systems are
difficult to set up and experiment replication is er-
ror prone and cumbersome, as documentation, exper-
iment setup, and workloads are no longer available.
This renders gained results void, as reproducibility
cannot be achieved.

That is why we need an experiment suite including
a software system, workloads, experiments, and doc-
umentation. It is tempting to use larger case studies,

like Netflix, in an experiment suite, as they resem-
ble real systems. However, their complexity can cause
more difficulties tainting results, development requires
more resources, and we have only limited control over
their evolution. Therefore, we selected the JPetStore
as basis for our experiment suite, because (a) it is easy
to understand and refactor into a distributed architec-
ture, (b) it is widely used by other scientists in their
research, and, (c) its simplicity allows to provide a
modular and configurable workload model, which can
be adjusted to all needs. Furthermore, our suite can
serve as a blue print for larger experiment suites.

We present our JPetStore suite, comprising sin-
gle service and distributed JPetStore variants, pre-
configured and instrumented variants, a config-
urable workload driver, and experiment setups for
Docker and Kubernetes.

In Section 2, we provide an brief overview of the
JPetStore experiment suite. Section 3 discusses the
different variants of the JPetStore and how we main-
tain and evolve them. Section 5 introduces our cus-
tomizable workload driver. While Section 4 illustrates
how to use our experiment set ups. Section 6 discusses
related case studies, which might be good candidates
to create experiment suites. Finally, we summarize
our efforts and provide an outlook in Section 7.

2 Suite Overview

Our JPetStore suite comprises different JPetstore
variants, a configurable workload driver, and exper-
iment setups for Docker, Docker-Compose and Ku-
bernetes. The variants include single service and dis-
tributed service architectures. We created three vari-
ants for each architecture: (a) without instrumenta-
tion, (b) with instrumentation for traces, and (c) with
instrumentation for geolocation and entry level events.

Single Service Experiment Setup (SSES) The
SSES, in Fig. 2, comprises an experiment host and a
JPetStore container, which can be a Docker container,
a Kubernetes pod or deployment. The experiment
host contains the workload driver and the monitor-
ing event collector service, which can be replaced by
any Kieker-compatible [3] analysis, like, the iObserve
behavior and privacy analysis services [7, 12].

Distributed Service Experiment Setup (DSES)
The DSES (see Fig. 1) divides the JPetStore into



jpetstore

Frontend
<<service>>

<<container>>

Database

<<service>>

<<container>>

Experiment Host

Event
Collector

<<service>>

<<host>>

Workload
Driver

<<service>>

Account

<<container>>

Catalog

<<container>>

Order

<<container>>

Figure 1: Experiment setup with distributed service variant of the JPetStore

jpetstore
<<container>>

JPetStore

<<service>>

Experiment Host

Event
Collector

<<service>>

<<host>>

Workload
Driver

<<service>>

Figure 2: Single service variant for experiments

services for frontend, account management, catalog
and orders including the shopping cart, each in its
own docker container supporting distributed deploy-
ment. All services except the frontend have their own
database, located on a shared database service.

The experiment control host comprises the same
services as the SSES setup, but the collector must be
able to accept multiple connections, as the distributed
JPetStore consists of multiple containers. The iOb-
serve project provides such collector.

3 Variants of the JPetStore

We forked the classic MyBatis JPetStore [15] and cre-
ated one branch for a single service JPetStore with-
out instrumentation and one distributed variant by
placing the internal components in REST services.
For both, we created two variants with instrumen-
tation probes pre-configured to send monitoring data
via TCP to an analysis or collector service. The first
produces Kieker trace events, and the second adds en-
try level events with payload data (e.g., productId).

The variants are accompanied by a Palladio Com-
ponent Model (PCM) [1]. We keep code and model in
sync by following an evolution strategy. Changes are
applied to the most common branch and then trans-
ferred to all derived branches. Each release is tagged
and automatically published on the long time archive
Zenodo [4]. This helps scientists to reproduce experi-
ments and compare their results with others.

4 Experiment Setups

Executing experiments is often complicated and error
prone. Scientists create scripts to put software de-
ployments, workloads, and data collection together.

Unfortunately, these scripts often run only on one ma-
chine and seize functioning after publication, as some
details get lost. We mitigate this issue by providing
documented scripts for experiment execution together
with a set of pre-defined workload [10] and deployment
configurations, which run out of the box. Therefore,
scientists do no longer need to create their own scripts
and setups and waste precious research time.

We provide two experiment repositories for sin-
gle [11] and distributed [9] deployments. They con-
tain scripts to execute the JPetStore with a workload
(execute-*-jpetstore.sh ∗kube or docker) or run
a complete experiment (execute-observation.sh).
The latter starts an event collector and subsequently
the JPetStore script. All scripts share a common con-
figuration which reduces errors.

5 Workload Driver

The JPetStore comprises 5 servlets for login, catalog
browsing, product and item selection, ordering, and
account management (depicted in Fig. 3). We iden-
tified specific tasks in this graph, which can be com-
bined to behaviors (cf. [12]).

Init Catalog

viewCategory, viewProduct,
viewItem

Account

editAccount,
signon,
signoff

addItemToCart,
viewCart

signoff, editAccount

Order

listOrders

viewCategory

removeItemFromCart,viewCart, updateCartQuantities

newOrderForm

viewCart

Cart

viewCart,
newOrder=continue

editAccount,
signon,
signoff

editAccount,
signon,
signoff

Figure 3: All servlets and transitions of the JPetStore

The workload driver uses Selenium and supports
different web drivers, like PhantomJS. The behavior
mix is specified in a YAML file with four sections for
global parameters, webdriver configuration, workload
intensities, and behaviors (cf. Listing 1).

Listing 1 depicts an excerpt with a constant in-
tensity provider (ConstantWorkloadIntensity) to-
gether with a behavior (AccountManager), which is
spawned every 10 s when active. The properties delays

2



and durations define when and how long a behavior is
active. Here, it is first inactive for 50 s, then active
100 s, inactive for 40 s, and then active again for 70 s.

workloads:
− name: AccountManagerWL
intensity:
type: org.iobserve.selenium.configuration.ConstantWorkloadIntensity
name: AccountManager
spawnPerSecond: 0.1
durations: [ 100, 70 ]
delays: [ 50, 40 ]

behaviors:
AccountManager:
name: AccountManager
subbehaviors:
− name: LoginJPetStoreTask
parameters:
username: ”j2ee”
password: ”j2ee”

− name: ChangeAccountInformationTask
repetition: { min: 1, max: 10 }
parameters:
attribute: ADDRESS2
value: ”Christian−Albrechts−Platz 4”

Listing 1: Excerpt of a workload configuration

Behaviors are composed from tasks. Each task has
its own parameters and can be executed repeatedly.
At runtime the repetition is computed within [min :
max]. Listing 1 depicts a behavior with two tasks,
where the latter can be executed multiple times.

6 Related Work

Scientists use a wide range of example applications,
which differ in complexity and application domain,
like shop systems and entertainment services. In re-
cent years four case studies have become more promi-
nent. Therefore, we use them here as examples.

The Common Component Modeling Example (Co-
CoME) [2] resembles a software system of a supermar-
ket chain. It addresses both enterprise and embedded
systems. While there exist PCM models for CoCoME,
they do not map perfectly with the source code and
there are no working workload drivers and experiment
setups. The Kieker Netflix setup [13] is a well de-
signed example derived from a real world software
system. It includes an JMeter workload script with
test plan, but it does not include a PCM model and
setup scripts. SPECjbb [8] is a performance bench-
mark to test infrastructure and software components,
like web servers and databases. It comes with a work-
load driver, but it is complicated to set up properly,
lacks Kieker monitoring probes, and experiment setup
scripts. Thus all of them involve complex tasks and
require extensive knowledge to get them running. In
contrast the JPetStore suite is simple to set up and
execute in state of the art environments.

7 Conclusion

We presented our easy to setup and execute JPetStore
suite comprising multiple JPetStore variants, work-
load drivers, and experiment setups ready to use in
various research efforts in software quality.

In future, we will extend code and models to sup-
port different databases, as present code uses an inter-
nal HSQL database. We will add service effect spec-

ifications to the PCM model to reflect internal func-
tionality and workload properties, we will additional
workloads intensities, and we will switch to Jupyter
notebooks [5] to ease result publication and enable us
to provide interactive publications.

References

[1] S. Becker, H. Koziolek, and R. Reussner. “The
Palladio component model for model-driven
performance prediction”. In: Journal of Systems
and Software 82.1 (2009), pp. 3–22.

[2] A. Rausch et al., eds. The Common Compo-
nent Modelling Example (CoCoME). Vol. 5153.
LNCS. Springer, 2011.

[3] A. van Hoorn, J. Waller, and W. Hasselbring.
“Kieker: A Framework for Application Perfor-
mance Monitoring and Dynamic Software Anal-
ysis”. In: ICPE 2012. Boston, USA: ACM, Apr.
2012, pp. 247–248.

[4] C. D. Centre. Zenodo. https://www.zenodo.
org. 2013.

[5] Jupyter Project. The Jupyter Notebook. http:
//jupyter.org/. 2014.

[6] R. Heinrich et al. “Architectural Run-Time
Models for Operator-in-the-Loop Adaptation of
Cloud Applications”. In: MESOCA. IEEE Com-
puter Society, Sept. 2015, pp. 36–40.

[7] E. Schmieders, A. Metzger, and K. Pohl. “Run-
time Model-Based Privacy Checks of Big Data
Cloud Services”. In: Service-Oriented Comput-
ing. Springer, 2015, pp. 71–86.

[8] Standard Performance Evaluation Corporation.
SPECjbb benchmark. 2015.

[9] R. Jung and M. Adolf. Distributed JPet-
Store Experiments. https : / / github .

com / research - iobserve / distributed -

jpetstore-experiment. 2017.

[10] R. Jung and M. Adolf. JPetStore Workload
Driver. https : / / github . com / research -

iobserve/selenium-workloads. 2017.

[11] R. Jung and M. Adolf. Single Service JPetStore
Experiments. https://github.com/research-
iobserve / single - jpetstore - experiment.
2017.

[12] R. Jung, M. Adolf, and C. Dornieden. “Towards
Extracting Realistic User Behavior Models”.
In: Softwaretechnik-Trends 37.3 (Nov. 2017),
pp. 11–13.

[13] A. van Hoorn and T. F. Duellmann. Kieker Net-
flix Case Study. https://github.com/kieker-
monitoring-docker. 2018.

[14] R. Jung. JPetStore Experiment Suite. 2018.

[15] M. Spring. MyBatis JPetStore. http://www.

mybatis.org/spring/sample.html.

3

https://www.zenodo.org
https://www.zenodo.org
http://jupyter.org/
http://jupyter.org/
https://github.com/research-iobserve/distributed-jpetstore-experiment
https://github.com/research-iobserve/distributed-jpetstore-experiment
https://github.com/research-iobserve/distributed-jpetstore-experiment
https://github.com/research-iobserve/selenium-workloads
https://github.com/research-iobserve/selenium-workloads
https://github.com/research-iobserve/single-jpetstore-experiment
https://github.com/research-iobserve/single-jpetstore-experiment
https://github.com/kieker-monitoring-docker
https://github.com/kieker-monitoring-docker
http://www.mybatis.org/spring/sample.html
http://www.mybatis.org/spring/sample.html

	Introduction
	Suite Overview
	Variants of the JPetStore
	Experiment Setups
	Workload Driver
	Related Work
	Conclusion

