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"Tatsachlich ist der Fortschritt der Wissenschaften wie ein alter Wilstenpfad 
ilbersat mit den Gerippen fallengelassener Theorien, die einstmals ewiges 
Leben zu besitzen schienen. "Arthur Koestler (1905-1983) 

"All collecting trips to fairly unknown regions should be made twice; once to 
make mistakes and once to correct them." from 'The log from the Sea of 
Cortez" by John Steinbeck (1902-1968) 
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HABILITATION OUTLINE 

The two central themes of the publications submitted here in support of my 

habilitation are: 

(A) To decipher the distribution and formation processes of oceanic N20 

and 

(B) To quantify the oceanic emissions of N20. 

During the period of my habilitation (1999-2006, which was delayed by two 

years due to my move from the Max-Planck-lnstitut fur Chemie, Mainz to the 

former lnstitut fur Meereskunde, Kiel, now IFM-GEOMAR, Leibniz-lnstitut fur 

Meereswissenschaften) the following articles have been written: 

Theme A: Distribution and formation of oceanic N20 

1) Bange, H.W., and M.O. Andreae, Nitrous oxide in the deep waters of the 
world's oceans, Global Biogeochem. Cycles, 13 (4), 1127-1135, 1999. 

- Describes the N20 distribution in deep waters (>2000m). Identification of 
the deep water mass agelN20 concentration relationship 

2) Bange, H.W., S. Rapsomanikis, and M.O. Andreae, Nitrous oxide cycling in 
the Arabian Sea, J. Geophys. Res., 106 (C1 ), 1053-1065, 2001. 

- Presents the N20 distribution and its formation processes in the Arabian 
Sea based on measurements during four cruises. Suggestion of a four 
compartment scheme to explain the N20 depth profiles in the central 
Arabian Sea as a result of nitrification and denitrification processes. 
Suggestion of an alternative microbial formation process via reduction of 
103- near the shelf break along the Arabian Peninsula. 

3) * Walter, S., I. Peeken, K. Lochte, A. Webb, and H.W. Bange, Nitrous oxide 
measurements during EIFEX, the European Iron Fertilization Experiment in 
the subpolar South Atlantic Ocean, Geophys. Res. Lett., 32, L 23613, 
doi:10.1029/2005GL024619, 2005. 

- Describes N20 measurements during a Fe fertilization experiment. In 
contrast to a previous study no increase in the N20 concentrations during 
the course of the experiment was found. 
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4) • Walter, S., H.W. Bange, U. Breitenbach, and D.W.R. Wallace, Nitrous 
oxide in the North Atlantic Ocean, Global Biogeochem. Cycles, in 
preparation, 2006. 

- Summarizes the N20 distribution in the subpolar, subtropical and tropical 
North Atlantic Ocean. The N20 distribution is attributed to formation via 
nitrification in the subtropical and tropical Atlantic, whereas mixing 
processes largely influence N20 in the subpolar Atlantic. 

5) * Walter, S., U. Breitenbach, H.W. Bange, G. Nausch, and D.W.R. Wallace, 
Nitrous oxide water column distribution during the transition from anoxic to 
oxic conditions in the Baltic Sea, Biogeosci., submitted, 2006. 

- Shows the effect of rapidly changing 0 2 concentrations on the formation 
and consumption of N20 in a natural laboratory (i.e. the central Baltic 
Sea). During the ventilation process by North Sea Water, N20 was 
produced, but did not reach the atmosphere due the stable stratification 
of the central Baltic Sea. N20 production rates and nitrification rates were 
estimated. 

Theme B: N20 emissions 

6) Bange, H.W., M.O. Andreae, S. Lal, C.S. Law, S.W.A. Naqvi, P.K. Patra, 
T. Rixen, and R.C. Upstill-Goddard, Nitrous oxide emissions from the Arabian 
Sea: A synthesis, Atmos. Chem. Phys., 1, 61-71, 2001. 

- Computation of high-resolution (1°latitude x 1°longitude) seasonal and 
annual N20 concentration fields and subsequent emissions for the 
Arabian Sea surface layer using a data base of more than 2400 values. 

7) Bange, H.W., Air-sea exchange of nitrous oxide and methane in the Arabian 
Sea: A simple model of the seasonal variability, Indian J. Mar. Sci., 33 (1), 
77-83, 2004. 

- Presents a one-dimensional coupled ocean/atmosphere box model in 
order to investigate the seasonal variability of N20 in the surface layer of 
the Arabian Sea. 

8) * Walter, S., H.W. Bange, and D.W.R. Wallace, Nitrous oxide in the surface 
layer of the tropical North Atlantic Ocean along a west to east transect, 
Geophys. Res. Lett., 31 (23), L23S07, doi:10.1029/2004GL019937, 2004. 

- Reports continuous N20 surface measurements and the associated N20 
emissions to the atmosphere in the tropical North Atlantic Ocean. 
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9) Bange, H.W., Nitrous oxide and methane in European coastal waters, 
Estuar. Coastal Shelf Sci., submitted, 2005. 

- Overview about the distribution and formation/consumption pathways of 
N20 in the European coastal waters such as estuaries, deltas, lagoons, 
fjords, continental shelves etc. Provides a comprehensive data base for a 
first reasonable assessment of N20 emissions from European coastal 
areas, which contribute significantly to the global oceanic N20 emissions. 

10) Bange, H.W., New Directions: The importance of the oceanic nitrous oxide 
emissions, Atmos. Environ., 40 (1), 198-199, 2006. 

- Shows that the often-cited global estimate of oceanic N20 emissions is 
underestimated. Proposes a considerable upward revision (2x) of the 
common estimate that has far reaching consequences for the overall 
budget of atmospheric N20. 

* these articles are part of the PhD thesis by Sylvia Walter, "N20 in the Atlantic 
Ocean and the Baltic Sea", 154 pp., University of Kiel, 2006. 

My contribution to the articles listed above can be assessed as follows: 

Article no. Conceptual Sample and data Contribution to the 

contribution analysis written manuscript 

Theme A 

1 1 1 1 

2 1 1 1 

3 2 2 1 

4 2 2 2 

5 2 3 2 

Theme B 

6 1 1 1 

7 1 1 1 

a 1 2 1 

9 1 1 1 

10 1 1 1 

1 = major contribution; 2 = significant but not major contribution; 3 = small contribution 
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Further articles have been written during the time of the habilitation. These 
articles are closely related to the themes of the habilitation, but are not 
attached: 

Bange, H.W., It's not a gas, Nature, 408, 301-302, 2000. 

Bange, H.W., Gaseous nitrogen compounds (NO, N20, N2, NH3) in the ocean, 
in Nitrogen in the marine environment, edited by D.G. Capone, D.A. Bronk, 
M.R. Mulholland, and E.J. Carpenter, submitted, Academic Press I Elsevier, 
2006. 

Bange, H.W., S.W.A. Naqvi, and L.A. Codispoti, The nitrogen cycle in the 
Arabian Sea, Progr. Oceanogr., 65, 145-158, 2005. 

Bange, H.W., T. Rixen, A.M. Johansen, R.L. Siefert, R. Ramesh, V. lttekkot, 
M.R. Hoffmann, and M.O. Andreae, A revised nitrogen budget for the Arabian 
Sea, Global Biogeochem. Cycles, 14 (4), 1283-1297, 2000. 

Dahlke, S., S. Wolff, L.-A. Meyer-Reil, H.W. Bange, R. Ramesh, 
S. Rapsomanikis, and M.O. Andreae, Bodden waters (southern Baltic Sea) 
as a source of methane and nitrous oxide, in Proceedings in Marine 
Sciences, Volume 2: Muddy Coast Dynamics and Resource Management, 
edited by B.W. Flemming, M.T. Delafontaine, and G. Liebezeit, pp. 137-148, 
Elsevier Science, Amsterdam, 2000. 

Gebhardt, S., S. Walter, G. Nausch, and H.W. Bange, Hydroxylamine (NH20H) 
in the Baltic Sea, Biogeosci. Discuss., 1, 709-724, 2004. 

Lendt, R., A. Hupe, V. lttekkot, H.W. Bange, M.O. Andreae, H. Thomas, 
S. Al Habsi, and S. Rapsomanikis, Greenhouse gases in cold water filaments 
in the Arabian Sea during the Southwest Monsoon, Naturwissenschaften, 86 
(10), 489-491, 1999. 

Naqvi, S.W.A., H.W. Bange, S.W. Gibb, C. Goyet, A.O. Hatton, and 
R.C. Upstill-Goddard, Biogeochemical ocean-atmosphere transfers in the 
Arabian Sea, Progr. Oceanogr., 65, 116-144, 2005. 

Wallace, D.W.R., and H.W. Bange, Introduction to special section: Results of 
the Meteor 55: Tropical SOLAS expedition, Geophys. Res. Lett., 31, L23S01, 
doi:10.1029/2004GL021014, 2004. 
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1 INTRODUCTION 

Nitrous oxide (N20, dinitrogen monoxide, commonly called laughing gas) was 

isolated and characterized for the first time by the English chemist Joseph 

Pristley in 1772 [Greenwood and Earnshaw, 1984]. 166 years later, in 1938, 

Adel [Adel, 1938] discovered that N20 occurs in the Earth's atmosphere. The 

physical properties of the colourless gas N20 (mw 44.01 g mor1
, mp 182.3 K (-

90.90C), bp 184.7 (-88.5°C), asymmetrical linear structure N=N=O), are 

comparable to the isoelectronic carbon dioxide (C02). For example, both gases 

show similar solubilities and diffusivities in water [King et al., 1995; Wilhelm et 

al., 1977]. Like C02, N20 is a radiatively active atmospheric trace gas, however, 

its global warming potential is, on a 100 years time horizon, about 296 - 340 

times higher than that of C02 [Jain et al., 2000; Ramaswamy et al., 2001]. 

Formation or decomposition reactions of N20 in the troposphere are of minor 

importance resulting in an almost inert behaviour of tropospheric N20. The 

atmospheric lifetime of N20 is estimated to be about 114 - 120 years [Prather 

et al., 2001]. Due to its relatively long atmospheric lifetime, N20 is mixed into 

the stratosphere where it is photochemically decomposed. Moreover, by 

reaction with excited oxygen atoms (0(1D)) in the stratosphere, it forms nitric 

oxide (NO) radicals, which are involved in one of the major catalytic ozone (03) 

reaction cycles [Crutzen, 1970]. In sum, atmospheric N20 is important in 

controlling both the radiation and the stratospheric 0 3 balances of the Earth. 

Comprehensive reviews of the chemical, physical and climate-related properties 

of N20 are given in recent publications such as the current reports of the 

Intergovernmental Panel on Climate Change (IPCC) [IPCC, 2001] and the 

World Meteorological Organization (WMO) [WMO, 2003], the textbook by 

Warnack (2000] and in a review article by Trogler (1999]. 

Atmospheric N20 concentrations, depicted from the Antarctic and Arctic ice 

cores as well as from Antarctic firn, show relatively uniform tropospheric N20 

mixing ratios in the range from 260 to 275 ppb (ppb, parts per billion = 1 o-9
) 

during the period from 1 OOO to 1900 AD and an increase to the present values 

during the last 100 years [Khalil et al., 2002; Prather et al., 2001; Sowers, 

2001]. The global mean tropospheric N20 mole fraction in 2003/2004 was about 
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318 - 319 ppb associated with a mean interhemispheric gradient of about 0.7 -

0.8 ppb [Khalil et al., 2002; Prather et al., 2001 ; Prinn et al. , 2000]. Time series 

of monthly mean N20 atmospheric mole fractions and annual growth rates 

measured from 1978 to 2004 within the ALE/GAGA/AGAGE program are shown 

in Figure 1. 
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Figure 1: Monthly mean tropospheric N20 dry mole fractions from the six baseline stations of 
the ALE/GAGE/AGAGE monitoring program in the northern Hemisphere (Adrigole/Mace Head, 
Ireland; Cape Meares, Oregon; Ragged Point, Barbados; Trinidad Head, California) and 
southern hemisphere (Cape Grim, Tasmania; Cape Matatula, American Samoa). The mean 
annual growth rates are calculated from monthly mean data, which have been smoothed with a 
12-point moving average in order to minimize seasonal effects. The actual updated version 
(2 May 2005) of the ALE/GAGE/AGAGE data set (Prinn et al. [20001) is available from the 
anonymous ftp site cdiac.esd.ornl.edu (subdirectory /pub/ale_gage_agage/) at the Carbon 
Dioxide Information Analysis Center in Oak Ridge, Tennessee, USA. 

Higher N20 values are measured in the northern hemisphere because the 

majority of the sources of atmospheric N20 are located the northern 

hemisphere [Khalil et al., 200; Prather et al., 2001; Prinn et al., 2000). Due to 

the lack of significant sink and source reactions, almost no vertical tropospheric 

N20 gradient is observed, whereas stratospheric N20 mixing ratios decrease 

due to its photochemical decomposition (e.g. down to 120 ppb by 30 km in the 

mid-latitudes) [Prather et al., 2001]. A summary of the key data of atmospheric 

N20 is given in Table 1. 
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Table 1: Summary of key data of atmospheric N20 (for references see text). 

Mean tropospheric dry mole fraction in 2003/2004 

Pre-industrial dry mole fraction (before 1900) 

Annual tropospheric growth rate 

Atmospheric life time 

Global warming potentialc 

Northern hemisphere3
: 318.7 ppb 

Southern hemisphereb: 317. 7 

ppb 

260 - 275 ppb 

0.7 - 0.8 ppb year-1 

114 - 120 years 

296 - 340 x C02 

a Calculated as the mean of the stations Mace Head, Ragged Point and Trinidad Head for the 
period March 2003 to March 2004 (see also Figure 1 ). Data were taken from the updated 
version of the ALE/GAGE/AGAGE data set (released May 2005). 
b Calculated as the mean of the stations Cape Grim and Point Matatula for the period March 
2003 to March 2004 (see also Figure 1 ). Data were taken from the updated version of the 
ALE/GAGE/AGAGE data set (released May 2005). 
c Calculated for a 100 years time horizon. 

Major natural sources of atmospheric N20 are emissions from the oceans and 

soils. Agricultural soils and a variety of smaller sources such as biomass 

burning, various industries and cattle farming/feedlots have been identified as 

directly or indirectly anthropogenic influenced sources of atmospheric N20 

[Prather et al., 2001]. An overview of the major N20 fluxes is given in Table 2. 

Since oceanic N20 emissions are of significant importance for the Earth's 

climate, deciphering the distribution of oceanic N20 is crucial to understand the 

formation pathways of N20 and to quantify its oceanic emissions to the 

atmosphere. 

I 
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Table 2: Compilation of sources and sinks of atmospheric N20 (in Tg N yr- 1
) [Prather et al. , 

2001 . 

Range Mean 

A) Natural sources 

Ocean 1-5 3.0 

Atmospheric NH3 oxidation 0.3 - 1.2 0.6 

Tropical and temperate soilsa 3.3-9.7 6.0 

8) Anthropogenic sources 

Agricultural soils 0.6-14.8 4.2 

Biomass burning 0.2-1.0 0.5 

Industrial sourcesb 0.7-1.8 1.3 

Cattle and feedlots 0.6 -3.1 2.1 

Sum sources(= A+ B) 17.7 

C) Sink 

Stratospheric decomposition 9-16 12.6 

D) Atmospheric trend (imbalance) 3.1 -4.7 3.8 

Implied total source(= C + D) 16.4 

a incl. wet forest, dry savannas, forest, and grasslands. 
b incl. nylon production, nitric acid production, fossil fuel fired power plants, emissions 
from automobiles. 

2 N~Q DISTRIBUTION IN THE WORLD'S OCEANS 

Historical development. The very first study of oceanic N20 (from the South 

Pacific Ocean) was published by Craig and Gordon from Scripps Institution of 

Oceanography (SIO) in La Jolla, California, in 1963 [Craig and Gordon, 1963], 

followed by studies in the North Atlantic Ocean by Junge and Hahn from the 

Max Planck Institute for Chemistry in Mainz during the late 1960s/early 1970s 

(see Figure 2) [Hahn, 1974; Hahn, 1981; Junge and Hahn, 1971]. In a 

retrospective view it is obvious that these early measurements suffered from 

analytical deficiencies (e.g. calibration problems, sensitivity). In 1976 Yoshinari 

published his, now "classical", study on N20 profiles in the North Atlantic Ocean 

(Sargasso and Caribbean Seas), which turned out to be groundbreaking since it 

was the first study to report the linear ~N20-02 relationship [Yoshinari, 1976]. 

He also introduced 6N20 (= [N20]measured - [N20]equilibrium) as a measure of N20 

production and found the linear correlation between 6N20 and AOU (apparent 
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oxygen utilization) [Yoshinari, 1976]. It was not until the advent of the electron 

capture detector (ECD, for an overview see Lovelock [1997]) and the 

development an appropriate ECD calibration routine when precise and reliable 

N20 measurements were made possible [Cohen, 1977; Elkins, 1980; 

Rasmussen et al., 1976; Weiss, 1981]. The next step towards a better 

understanding of the oceanic N20 distribution was the fundamental work on 

N20 solubility in seawater by Weiss and Price [1980], which allowed the 

application of equilibration techniques for high-resolution surveys of surface 

N20 concentrations, which are prerequisites for estimates of the N20 flux 

across the ocean/atmosphere interface. Up to now the use of an ECD in 

combination with equilibration or purge-and-trap techniques followed by gas 

chromatographic separation is state of the art for the determination of dissolved 

N20 . 

Figure 2: Device for purging and pre­
concentration of oceanic N20 onboard 
RN Meteor in June 1970 [Hahn, 1987]. 
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2. 1 Formation and consumption pathways in the ocean 

The formation and consumption pathways of oceanic N20 form integral parts 

of the nitrogen cycle in the ocean (and its underlying sediments1
) (Figure 3). 

c;v ~ 
• t 

....... .. /Nf)\ 
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: : ·Oz 
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Figure 3: Simplified sketch of the oceanic nitrogen cycle [Karl et al., 2002]. 

Depth profiles of N20 show (apart from of a few exceptions found in suboxic 

and anoxic waters, see below) positive concentration anomalies, expressed 

as !1N20 (= [N20]measured - [N20]equilibrium; [N20]equilibrium is a function of water 

temperature, salinity, atmospheric N20 dry mole fraction and the ambient air 

pressure [Weiss and Price, 1980]). Positive 1'1N20 values are interpreted as 

an indicator for in-situ N20 formation. This caused Yoshinari [1976] to coin 

the term 'apparent N20 production' for 1'1N20. Today's prevailing view is that 

there are only two microbial processes (i.e. nitrification and denitrification) 

during which oceanic N20 is formed either as a by-product or as an 

intermediate (Figure 4 ). 

1 Since sediments are not subject of the presented studies, the further discussion will only 
focus on water column processes. 
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Nitrification 
Denitrification 

coupling 

coupling 

Figure 4: Overview of processes, which influence the N20 distribution in the ocean. The 
dashed arrows indicate N20 reduction during N2 fixation (see e.g. Yamazaki et al. [19871). 
Note that during the oxidation of NH4 • oxygen (02) is used as oxidizing agent, whereas 
during the oxidation of NO, water (H20) is used (see Ostrom et al. [2000] and references 
therein). 

Nitrification is the oxidation of ammonium {NH4 +) to nitrate {N03 -) via 

hydroxylamine {NH20H), nitric oxide {NO) and nitrite (N02-). Autotrophic 

nitrification represents the final step of the oceanic remineralisation and is 

performed in two steps by ammonia-oxidizing bacteria {AOB, e.g. 

Nitrosomonas and Nitrosospira ) and nitrite-oxidizing bacteria {NOB, e.g. 

Nitrobacter and Nitrospira), respectively [Arp and Stein, 2003; Bothe et al., 

2000; Kowalchuk and Stephen, 2001]: 

NH/ ~ NH20H ~ NO ~ N02- {AOB) 

N02- ~ N03-{NOB). 

Interestingly, an ammonium-oxidizing archaeon has been isolated recently 

[Konneke et al., 2005]. 
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During autotrophic nitrification N20 can be formed by AOB either via the 

pathways NH20H ~ N20 and NO ~ N20 [Arp and Stein, 2003; Stein and 

Yung, 2003] or via the pathway N02-~ NO ~ N20 (the latter is part of the 

so-called nitrifier-denitrification process) [Stein and Yung, 2003; Wrage et al., 

2001]. Nitrification is an aerobic process, however, under low-oxygen 

conditions, N20 yields are enhanced [Oe Bie et al., 2002; Gareau et al., 

1980] (Figure 5). Alternatively, N20 can be formed during heterotrophic 

nitrification (i.e. nitrification linked to aerobic denitrification) via the reaction 

N02- ~ NO ~ N20 as well, but, the enzymes involved in the heterotrophic 

reaction sequence are different from those involved in the autotrophic 

pathway [see e.g. Richardson and Watmough, 1999]. Under oxic conditions, 

N20 yields from heterotrophic nitrification are higher than those from 

autotrophic nitrification. However, the relevance of heterotrophic nitrification 

for the marine environment is not known yet [Stein and Yung, 2003; Wrage et 

al., 2001]. Additionally, methane oxidising bacteria can also produce N20 via 

NH/ oxidation [Stein and Yung, 2003; Sutka et al., 2003], however, the 

relevance of this formation pathway for the marine environment remains to 

be proven. 
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Figure 5: Dependence of N20 production/consumption on dissolved 0 2 concentrations 
(expressed as % saturation = 1 OO[Oi!measured I [Oi!esumbriuml [Codispoti et al., 1992]. 
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Denitrification is defined as the respiratory reduction of N03- to dinitrogen 

(N2) via N02-. NO and N20 during organic matter remineralisation. It results 

in a loss of bioavailable (fixed) nitrogen in the form of gaseous products such 

as N20 and N2: 

As can be seen from the denitrification reaction sequence N20 is an 

intermediate with its concentration at any time determined by the balance 

between production and consumption (Figure 6). Denitrification is a well­

known feature of many different bacteria species in terrestrial and oceanic 

environments [Bothe et al., 2000; Tiedje, 1988; Zumft, 1997]. Denitrifiers are 

usually facultative aerobic bacteria, which can reduce N03- when oxygen 

becomes limiting. Thus the occurrence of denitrification is favoured under 

suboxic conditions (0 < 0 2 < 2 - 10 µmol L-1
, Codispoti et al., [2005]; see 

Figure 5). Denitrification does not occur under anoxic conditions (02 = 0 µmol 

L -1
, hydrogen sulphide present). 

2 

NO - NO - 20 
3 • 2 ~ 

~ \ I ~ 

~1 I I 
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I 10 z N z ,\ I 
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0 48 96 144 1 240 
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Figure 6: Accumulation and consumption of N20 during denitrification. The incubation 
experiment was performed with water from 40 m depth on the southwest continental shelf off 
India [Naqvi et al., 2000]. Initial 0 2 concentration was 15 µmol L-'. 

Both, nitrification and denitrification as sources and sinks of oceanic N20 

have been described in the water column, in the sediments and in 

association with suspended particles (e.g. [Codispoti et al., 2005; Nevison et 
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al., 2003; Schropp and Schwarz, 1983; Seitzinger, 1990]. N20 yields from 

water column nitrification range from 0.01 % to 0.42% and from 0.004% to 

0.027% in estuarine systems and in the western North Pacific Ocean, 

respectively [De Wilde and De Bie, 2000; Punshon and Moore, 2004; 

Yoshida et al., 1989]. N20 yields from sedimentary denitrification range from 

0.1 % to 0.5% with values up to 6% in nutrient-rich regions (see overview in 

Seitzinger [1998]). The integrated net N20 formation during denitrification 

and nitrification in the suboxic portion of the central Arabian Sea was 

estimated to be about 2% of the nitrogen loss [Bange et al., 2001 b]. 

2. 2 Depth profiles 

N20 depth profiles from regions with oxic water masses (02 > 10 µmol L-1) 

such as found in the major parts of the Atlantic, Pacific, and Indian Oceans 

are characterised by a subsurface N20 maximum which coincides with the 

minimum of dissolved 0 2 and the maximum of N03- [Butler et al., 1989; 

Cohen and Gordon, 1979; Oudot et al., 1990; Oudot et al., 2002] (Figure 7). 

However, the N20 subsurface maximum is less pronounced or even absent 

in the northern (subpolar) North Atlantic Ocean (Figure 7). N20 

concentrations in deep waters below 2000 m show an increasing trend from 

the deep North Atlantic Ocean to the deep North Pacific Ocean. This trend 

correlates well with the water age distribution in the ocean and was attributed 

to nitrification [Bange and Andreae, 1999]. N20 input to deep waters by 

hydrothermal vent systems seems to be of minor importance [Bange and 

Andreae, 1999; Lilley et al., 1982]. 
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Figure 7: N20 (in nmol L-1
) distribution in the Atlantic Ocean. Data from the North Atlantic 

Ocean are taken from Walter [2006] . Data from the South Atlantic Ocean are published in 
Walter et al. [2005]. 

N20 profiles from oceanic regions with suboxic zones (0 < 0 2 < 2 - 10 

µmol L -1) such as the Arabian Sea and the eastern tropical North Pacific 

Ocean, which are sites of intense denitrification, generally show a two-peak 

structure (Figure 8): N20 maxima are found at the upper and lower 

boundaries of the oxygen minimum zone (OMZ), whereas in the core of the 

suboxic zone, N20 concentrations are considerably depleted [Bange et al., 

2001b; Cohen and Gordon, 1978; Naqvi and Noronha, 1991]. In anoxic water 

masses such as found in the central Baltic Sea, the Cariaco Basin, and 

Saanich Inlet, N20 concentrations are close to the detection limit [Brettar and 

Rheinheimer, 1991 ; Cohen, 1978; Hashimoto et al., 1983; Ronner, 1983]. 
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Figure 8: N20 profiles (in nmol l -1

) from oceanic regions with denitrifying intermediate 
waters: (A) Central Arabian Sea [Bange et al., 2001b] and (B) Eastern tropical North Pacific 
Ocean (Bange et al. , unpublished data, 2004). Dashed lines stand for dissolved 0 2 

(concentration in µmol l -1 divided by 10). The map shows the mean annual 0 2 

concentrations in 500 m given in ml l -1 (ml 0 2 l -1 * 44.643 = µmol 0 2 l -1
). The suboxic 

zones(< 0.2 ml l -1 = < 9 µmol l -1
) in the eastern tropical North and South Pacific and in the 

Arabian Sea are marked. 0 2 data were taken from the World Ocean Atlas 2001 
(http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NODC/.WOA01/). 

Depth profiles of N20 (apart from exceptions found in suboxic and anoxic 

waters, see above) show positive concentration anomalies, expressed as 

6N20. Because nitrification is directly linked to organic matter 

remineralisation, plots of 6N20 vs. the apparent oxygen utilization (AOU) or 

N20 vs. 0 2 have been used to identify prevailing formation and consumption 

processes of oceanic N20 . AOU is usually used as a measure of the amount 

of 0 2 consumed during organic matter oxidation in the ocean. Plots of 6N20 

vs. AOU from the majority of the oceanic regions show clear positive linear 

relationships, suggesting that nitrification is the main N20 formation process. 

This is supported by the fact that in most oxic water columns N20 is 

positively correlated with N03- , the final product of nitrification. The slope of 

the linear 6N20-AOU relationship varies between 3*10-5 and 3*10--4 [see 

overview tables in Bange and Andreae, 1999; Bange et al., 2001b; Nevison 

et al., 1995; Oudot et al., 2002; Sunthara/ingam and Sarmiento, 2000] and 

can be interpreted as the N20 yield per 0 2 molecule consumed indicating 

that every 33,000 to 3000 molecules of 0 2 utilized, about one molecule of 

N20 is produced (see also discussion of the discrepancy below). Beside the 

well-documented linear relationships, non-linear 6N20-AOU 2"d order 
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polynomial fits have been reported from the Arabian Sea [Upsti/1-Goddard et 

al., 1999] and the shallow coastal Bedford Basin [Punshon and Moore, 2004]. 

These positive non-linear relationships have also been attributed to N20 

formation by nitrification. Moreover, Elkins et al. [1978] and Butler et al. 

[1989] suggested that temperature and pressure should be included in the 

6N20-AOU relationship to better predict N20 yields from nitrification. 

The obvious considerable discrepancies of the 6N20-AOU slopes reported in 

the literature result from a variety of reasons: 

(i) Water mass age and history of atmospheric N20 : 6N20 is also a 

function of the atmospheric N20 mole fraction. This in turn implies 

that 6N20 should be computed with the atmospheric N20 mole 

fraction at the time when a water mass had its last contact with the 

atmosphere. Using "historical" N20 dry mole fractions would shift 

6N20 to higher values. However, it requires the knowledge of the 

water mass ages and the associated atmospheric N20 mole 

fractions, which are not available in most cases. 

(ii) Variability of the NgO yield: the N20 yield from nitrification is not 

necessarily uniform in the ocean since it depends on the 

abundance and composition of the bacterial community (i.e. the 

biological diversity). The 0 2-dependence of N20 formation might 

be varying for different bacteria species. Moreover, Nevison et al. 

[2003] speculated that the remineralisation of nitrogen-enriched 

organic material (which can be found in regions with high N2 

fixation activities) might lead to an enhancement of the N20 yield. 

However, detailed studies on the N20 yields from marine nitrifiers 

are lacking. 

(iii) N20 from denitrification: signals of N20 produced in suboxic zones 

during denitrification can be advected to adjacent oxic, nitrifying 

zones [Bange et al., 2001 b]. Moreover, N20 formation in 0 2-

depleted microniches such as found in sinking particles, can 

release additional N20 [Schropp and Schwarz, 1983]. 
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(iv) Applicability of AOU: AOU in deep waters does not represent the 

true oxygen utilization because surface 02 concentrations at sites 

of deep-water mass formation might not be in equilibrium with the 

atmosphere. This leads to overestimation or underestimation of 

deep water AOU and raises questions concerning the use of AOU 

as a measure of respiration [see e.g. Ito et al., 2004]. Moreover, 

uncertainties in the 0 2 solubility equations are most pronounced at 

low temperatures (<1 °C) and high salinities (i.e. in the typical 

features of deep ocean water masses of the thermohaline 

circulation) as pointed out by Garcia and Gordon [1992]. 

There are caveats against a straightforward interpretation of the linear LiN20-

AOU relationship as an indicator for N20 formation via nitrification. In other 

words, a linear LiN20-AOU relationship may not necessarily result from 

nitrification. Most recently, based on N20 isotopomer data (see below), 

Yamagishi et al. [2005] argued that net N20 formation in the oxygen 

minimum zone (OMZ) of the western North Pacific Ocean mainly results from 

denitrification with only a small contribution by nitrification. They showed that 

this N20, when diffusing into deep waters, produces a reasonable linear 

LiN20-AOU relationship. Moreover, by applying a two end-member mixing 

model, Nevison et al. [2003] showed that isopycnal mixing of water masses 

with different preformed N20 and 0 2 concentrations can result in a linear 

LiN20-AOU relationship, which can mask the "true" biological N20 production 

(Figure 9). They state:"[ ... ], we find that the biological N20 yield per mole 0 2 

consumed cannot be calculated with great confidence from cross-plot 

correlation slopes. The essential problem is that the N20 yield is spatially 

variable. As a result, strong mixing gradients exist in the data that can 

overwhelm more subtle N20 production terms." [Nevison et al., 2003]. 
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Figure 9: lsopycnal (cr = 26.9) analysis of N20 and 0 2 data from the South Atlantic Ocean 
(Nevison et al., 2003]. (A): N20 vs. salinity; (8): 0 2 vs. salinity; (C): AOU or -t.02' (Nevison's 
original axis labelling -t.02 is erroneous) vs. t.N20 or t.N20'; (D) t.N20/AOU ratios for the 
individual stations. -t.N20' = biological source/sink term defined as [N,O]measu<ed -
[N20]0retonned and -02' = biological source/sink term defined as [0,]0,.ro,med - [O,lmeasu,ed· 
Please note the slope in (C) drops from 0.12'10_, to 0.06'10.., when plotting -t.N20' vs. -
0 2'. This indicates that in the case for the South Atlantic Ocean the traditionally used cross 
plot of t.N20 vs. AOU is primarily due to mixing gradients [Nevison et al., 2003]. 

In view of the above-mentioned uncertainties, the use of a simple 6.N20-AOU 

relationship in model studies of the global oceanic N20 distribution [Goldstein 

et al., 2003; Jin and Gruber, 2003; Suntharalingam and Sarmiento, 2000] 

might fail to simulate small-scale features of N20 water column distributions. 

A linear relationship between 6.N20 (N20) and AOU (02 or N03-) does not 

exist in suboxic water masses (eastern tropical Pacific Ocean and Arabian 

Sea, see also Figure 8) and in anoxic water masses (e.g. Baltic Sea, Cariaco 

Basin) indicating a complex interplay between N20 formation and 

consumption during denitrification. The characteristic N20 double peak 

structures found in the central Arabian Sea were explained with a coupling of 

denitrification and nitrification at about 150 m around the upper boundary of 

the OMZ, followed by N20 consumption due to denitrification in the core of 

the OMZ at about 200 - 400 m. The second, broad N20 peak in about 800 -

1 OOO m was attributed to nitrification (with a signal of denitrification still 

visible) [Bange et al., 2001b]. Results from incubation experiments with water 
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samples from the denitrifying oxygen minimum zone off northern Chile are in 

line with the observations from the Arabian Sea. Denitrification was found to 

be the main N20 formation process but also the main consumption process 

resulting in a net depletion of N20 in the core of the suboxic zone [Castro­

Gonzalez and Fraias, 2004]. 

2.3 N20 in the ocean surface layer 

Global maps of N20 in the upper 10 m of the world's oceans have been 

computed based on the extensive N20 data set collected by Weiss et al. 

(1992] since 1977 (see also Nevison et al. (2004]) with additional data from 

two campaigns by Butler et al. (1988] and Lobert et al. (1996] (Figure 10). 

Based on the combined data sets by Weiss et al. (1992] and Butler et al. 

(1988], Nevison et al. (1995] calculated a global mean N20 surface saturation 

of 103.5% (for a definition of the saturation see section 3.1 ). The global 

distribution of N20 surface anomalies (here defined as LipNzO = pN20measurect 

- pN20equilibrtum, positive anomalies indicating a release of N20 to the 

atmosphere) is shown in Figure 10. Common features of both maps in 

Figure 10 are: 

(i) Enhanced N20 anomalies in the equatorial upwelling regions of the 

eastern Pacific and Atlantic Oceans, 

(ii) Enhanced N20 anomalies along coastal upwelling regions such as 

along the west coasts of North and Central America, off Peru, off 

Northwest Africa and the northwestern Indian Ocean (Arabian Sea) 

and 

(iii) N20 anomalies close to zero (i.e. near equilibrium) in the North and 

South Atlantic Ocean, the South Indian Ocean and the central 

gyres of the North and South Pacific Ocean. 

Differences in the two maps result mainly from different interpolation 

methods. Additionally, both maps are biased by insufficient data coverage in 

some parts of the ocean (e.g. in the Indian and western Pacific Oceans, see 

Figure 1 OA). The interpolation methods for filling and smoothing used by 
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Nevison et al. [1995] seem to be more appropriate for extrapolating data 

east-west than north-south. This can be clearly seen in the resulting !1pN20 

distributions in the northern Indian and the eastern tropical North Pacific 

Oceans (Figure 108). In contrast to the statistical filling and smoothing 

method used by Nevison et al. [1995], Suntharalingam and Sarmiento [2000] 

used a spatially adaptive multi-variate regression analysis with different 

predictor variables (multi-variate adaptive regression splines, MARS, for 

details of the model see Suntharalingam [19971). The map shown in 

Figure BC is based on a MARS model run with a combination of four 

predictor variables, namely mixed layer depth, subsurface 0 2 minimum 

concentration, sea surface temperature and wind-driven upwelling rate (listed 

in the order of significance). The enhanced t1pN20 values predicted for the 

Hudson Bay and off the coast of China are model artefacts [Suntharalingam, 

1997]. When comparing both maps (Figures 108 and 10C) a significant 

discrepancy for the Southern Ocean south off Africa is obvious. Nevison et 

al.'s [1995] map shows enhanced values up to 51 µatm !1pN20, whereas in 

the map by Suntharalingam and Sarmiento [2000] maximum values up to 

20 µatm are shown. It seems that Nevison et al.'s [1995] interpolation 

method amplifies local distributions, whereas Suntharlingam and Sarmiento's 

(2000] method tends to smooth the distribution according to the large-scale 

distributions of the predictor variables. 
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Figure 10: Maps of 6pN20 (in natm) in the surface layers of the world's oceans. 
(A) Distribution of surface 6pN20 measurements used to create maps (B) and (C). Colour 
coding is the same as in (B). (B), map by Nevison et al. (1995] and (C), map by 
Suntharalingam and Sarmiento (2000]. Please note that the colour coding is non-linear and 
different for maps (B) and (C). 
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2. 4 N20 in coastal areas 

During the last few years coastal areas such as estuaries, intertidal areas, 

upwelling regions, and mangrove ecosystems have received increasing 

attention as sites of intense N20 formation and release to the atmosphere 

(see also the sections on eutrophication and N20 budget). Studies on the 

biogeochemical cycling of N20 in coastal regions have been undertaken to a 

large extent in European and North American coastal regions. A compilation 

of coastal N20 measurements worldwide is given in Bange et al. [1996b]. 

More recently, I [Bange, 2005] compiled and reviewed N20 studies in 

European coastal regions (Baltic Sea, North Sea, NE Atlantic, Mediterranean 

Sea, Black Sea). My major conclusions are: 

(i) Maximum N20 saturations are usually observed in estuaries, 

whereas in open coastal waters N20 saturations are close to the 

expected equilibrium saturation indicating a vigorous production of 

N20 in estuarine systems. Additionally, N20 distributions in 

estuaries show a pronounced seasonal variability. 

(ii) It is obvious that sedimentary denitrification and water column 

nitrification are the major N20 formation processes. However, the 

yield of N20 from both processes strongly depends on the local 0 2 

concentrations; thus dissolved 0 2 is the key factor regulating N20 

production (and its subsequent emissions to the atmosphere). 

(iii) In anoxic waters, such as the deep basin of the central Baltic Sea 

or parts of the shallow Po River delta, N20 is consumed by water 

column denitrification. 

The conclusions are in line with a recent seasonal study of N20 in the 

water column of the Bedford Basin (Northwest Atlantic Ocean), which 

showed that water column nitrification was the dominant N20 formation 

pathway. N20 consumption was only temporarily observed when 

dissolved 0 2 was considerably depleted (2.5 µmol L-1) shifting the system 

from oxic to suboxic conditions [Punshon and Moore, 2004]. 
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Coastal upwelling. The narrow band of coastal upwelling such as found 

along the Arabian Peninsula and the coast of Somalia have been identified 

as "hot spots" for N20 emissions showing N20 surface saturations of up to 

330% [Bange et al., 2001 a; De Wilde and Helder, 1997]. The high N20 

saturations result from the upwelling of subsurface water masses where N20 

formation is favoured due to suboxic conditions [Bange et al., 2001 b]. N20 

concentrations in coastal upwelling areas are closely correlated with the low 

seasurface temperatures characteristic for upwelled subsurface water 

masses (Figure 11 ). Because the coastal upwelling in the western Arabian 

Sea is triggered by the seasonal occurring Southwest Monsoon winds, N20 

emissions also show a pronounced seasonality [Bange et al., 2001 a]. 
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Figure 11 : N20 concentrations in coastal upwelling areas; (A) off the Arabian Peninsula 
[Bange et al., 1996c; Bange et al., 2000); the black line represents the corresponding 
equilibrium concentrations; and (B) off Mauritania (NW Africa) [Gebhardt and Bange, 2005, 
unpublished data); red circles represent the corresponding equilibrium concentrations. 

High precision time series of atmospheric N20 have been used successfully 

to quantify N20 emissions from temporal upwelling events along the coast off 

California [Lueker et al., 2003] and from the Southern Ocean [Nevison et al., 
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2005]. This seems to be a promising approach, however, it depends on the 

existence of high-precision N20 time series, which are at the moment only 

available at a few coastal sites [Prinn et al., 2000]. 

Mangrove forests. The ecosystems of the mangrove forests have a high 

potential of N20 formation and release to the atmosphere. N20 in mangrove 

sediments from Puerto Rico is mainly produced by nitrification [Bauza et al., 

2002] whereas the results of incubation experiments with mangrove soils 

from the east coast of Australia revealed that denitrification is the main N20 

formation pathway [Kreuzwieser et al., 2003]. The N20 release from Puerto 

Rico mangrove sediments was found to be higher than comparable N20 

emissions from intertidal estuarine sediments [Corredor et al., 1999; 

Middelburg et al., 1995]. Actual results from N20 measurements at three 

sites in a mangrove forest on the east coast of central China support this 

view [Alongi et al., 2005]. However, at these sites a pronounced seasonality 

was observed showing maximal N20 emissions in summer, whereas in 

autumn they were close to zero. A realistic estimate of the contribution of 

N20 emissions from mangroves to the global oceanic budget of atmospheric 

N20 is not possible at the moment because of the very small number of 

available measurements. 

2. 5 Coastal eutrophication and Fe fertilization 

Coastal eutrophication (i.e. enhanced nutrient input to the coastal areas) can 

result in a shift from oxic conditions to anoxic conditions. This is especially 

important in view of the fact that oceanic N20 formation strongly depends on 

dissolved 02 (Figure 5). Indeed, Naqvi et al. [2000] observed, during an 

anoxic event along the West coast of India, N20 concentrations up to 533 

nmol L-1
. The accumulation of N20 was mainly attributed to the onset of 

denitrification at low 0 2 concentrations with the assumption that the activity of 

the N20 reductase (which catalyses the reduction of N20 to N2) was not 

established [Firestone and Tiedje, 1979] because of frequent aeration of the 

shallow shelf waters (so-called stop-and-go denitrification). A similar scenario 

was observed in the shallow Bedford Basin [Punshon and Moore, 2004]. 
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Based on their results, Naqvi et al. [2000] cautioned that N20 formation and 

thus its subsequent release to the atmosphere from shallow hypoxic systems 

might increase due to the fact that the numbers of oxygen-starved coastal 

zones is increasing as well [UNEP, 2004]. Eutrophication can also 

significantly stimulate the sedimentary N20 formation by denitrification, which 

was demonstrated by Seitzinger and Nixon [1985] in microcosm experiments. 

N20 releases from mangrove ecosystems appear to be very sensitive to 

eutrophication: N20 release across the sediment/atmosphere interface was 

enhanced significantly (up to 2800 times) when NH/ was added to 

mangrove sediments in Puerto Rico [Bauza et al., 2002; Munoz-Hincapie et 

al., 2002]. When N03- was added, the enhancement was less pronounced 

indicating that N20 production by nitrification was dominating. Comparable 

results were obtained at an Australian mangrove site where N20 emissions 

increased by a factor of 50 to 100 times when nitrogen (N03- and NH/) was 

added [Kreuzwieser et al., 2003]. Therefore, it seems realistic to expect that 

the contribution of mangrove ecosystems to global coastal emissions of N20 

will increase due to increasing nutrient inputs caused by the ongoing 

industrialization and intensification of agricultural activities in tropical 

countries. 

Fuhrman and Capone [1991] pointed out that stimulating open ocean 

productivity by iron (Fe) addition [Martin et al., 1991] might result in an 

enhanced formation of N20. Thus, enhanced N20 formation by Fe addition 

might counteract the climatic benefits of a drawdown of atmospheric C02. 

Fuhrman and Capone [1991] argued that enhanced productivity would lead 

to enhanced nitrogen export from the euphotic zone, which in turn would 

result in additional N20 formation via enhanced nitrification. The idea of a link 

between Fe fertilization and enhanced N20 formation was supported by the 

study of Law and Ling [2001] who found a small but significant N20 

accumulation in the pycnocline during the Southern Ocean Iron Enrichment 

Experiment (SOIREE) in the Australasian sector of the Southern Ocean 

(61°8, 140°E) in February 1999. Recently, Jin and Gruber [2003] predicted 

the long-term effect of Fe fertilization on oceanic N20 emissions on a global 
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scale with a coupled physical-biogeochemical model. Based on their model 

results they concluded that Fe fertilization-induced N20 emissions could 

offset the radiative benefits of the C02 drawdown [Jin and Gruber, 2003]. 

However, during EIFEX, the European Iron Fertilization experiment in the 

subpolar South Atlantic Ocean in February/March 2004, no N20 

accumulation was detected within 33 days [Walter et al., 2005]. It seems that 

Fe fertilization does not necessarily trigger additional N20 formation, which 

might depend on the prevailing environmental conditions (e.g., the fate of the 

Fe-induced phytoplankton bloom). The link between Fe addition and 

enhancement of N20 formation and the subsequent release of N20 to the 

atmosphere remains to be proven. 

2.6 N20 isotope studies 

Nitrogen (N) has two stable isotopes, 14N and 15N, which contribute 99.63% 

and 0.37%, respectively, to its composition [Greenwood and Earnshaw, 

1984]. Oxygen (0) has three stable isotopes, 160, 170 and 180, which 

contribute 99.76%, 0.04% and 0.2%, respectively, to its composition 

[Greenwood and Earnshaw, 1984]. 170 has not been determined in oceanic 

N20 yet, thus the following discussion focuses on the isotopic signatures of 
15

N and 
18

0. The stable isotopic ratio 15N/14N of N20 is expressed relative to 

atmospheric N2 as 815Na1m: 

In the same way, the isotope ratio of 160/180 of N20 is usually expressed as 

8
18

0vsMow relative to Vienna standard mean ocean water (VSMOW). 

However, in some cases 8180atm relative to 0 2 in the atmosphere is reported. 

8
18

0vsMow can be converted to 8180atm with the equation 8180atm = -23.0 + 

8
18

0vsMow I 1.0235 [Kim and Craig, 1990]. Mean atmospheric 815Natm and 

8
18

0vsMow of N20 in tropospheric air are 6.72 ± 0.12 %0 and 44.62 ± 0.21 %0, 

respectively [Kaiser et al., 2003]. 
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Following the early studies of o15N and 0180 of atmospheric N20 by Moore 

[1974]. Yoshida and Matsuo [1983] and Wahlen and Yoshinari [1985], 

measurements of the isotopic composition of oceanic N20 have become a 

tool to decipher the various biogeochemical pathways of N20 in the oceanic 

environment and to quantify the oceanic contribution to the atmospheric N20 

[Kim and Craig, 1993; Stein and Yung, 2003]. The isotopic composition of 

oceanic N20 is determined by the isotopic signals of biological sources and 

sinks, its atmospheric imprint, and mixing processes within the ocean. This, 

in turn, implies that there are characteristic signals of enrichment or depletion 

(so called fractionation), which can be attributed to different biological 

processes as well as physical processes such as the gas exchange across 

the ocean/atmosphere interface. 

Laboratory studies. The isotope composition of biologically derived N20 

depends on the isotope composition of the substrates such as N03-

(denitrification) and NH/ (nitrification) and the isotopic depletion/enrichment 

during these processes. An overview of the isotopic depletion/enrichment of 

N20 in culture experiments with different strains of denitrifying 

(Pseudomonas flourescens, Pseudomonas aureofaciens, Paracoccus 

denitrificans), nitrifier-denitrifying (Nitrosomonas europaea) and methane 

oxidizing bacteria (Methylococcus capsulatus) is shown in Figure 12. It is 

obvious that the range of the resulting nitrogen depletion in N20 during 

denitrification and nitrification is similar. The isotope signal of oxygen in N20 

produced during nitrification is introduced by the 0150 value of dissolved 0 2 

(0150 = 22 - 37 %0) and H20 (0150 = -0 %0) as oxidizing agents (Ostrom et al. 

[2000], see also Figure 4). The isotopic signal resulting from air-sea 

exchange is small compared to the biological processes. Therefore, 

biological N20 formation should yield a clear isotopic signature in oceanic 

N20. However, the identification of nitrification or denitrification as N20 

producing processes strongly depends on the knowledge of the isotope 

signatures of the substrates, which can vary temporarily and spatially. 



i.lE lrnr n ;; t rTtt · · r ~z·r r wr 1un nttt r ·: : rnrntt ··w s t:r ·1rr Tit iflr rrr 

Hermann W. Bange: Nitrous oxide in the ocean 

-0.7 ±0 
-1.9 +0.8 

,. 

Air-sea gas 
exchange 

-60-+5 NO -40--10 
NH/ -----+ 2 +-------­

-3- +40 

Nitrification 

De nitrification 
incl. nitrifier-denitrification 

35 

Figure 12: Isotopic depletion/enrichment for nitrogen and oxygen in N20 relative to the 
substrates N03 and NH;, and the product N2• Negative values depict isotopic depletion in 
N20 and positive values depict isotopic enrichment in N20. Data for oxygen 
depletion/enrichment in N20 are given in italics. Biological data were taken from Barford et 
al. [1999], Casciotti et al. [2002], Sutka et al. [2003], [2004], Toyoda et al. [2005] and 
Yoshida [1988]. Air-sea gas exchange data are from Inoue and Mook (1994]. 

An overview of studies of the isotopic signature of oceanic N20 is given in 

Table 3. The main results are discussed in detail in the following sections. 

Early field studies. The first measurements of o15N of dissolved N20 in the 

eastern tropical North Pacific Ocean revealed that N20 in the suboxic zone 

was enriched in 15N relative to N20 in the troposphere whereas N20 in the 

surface layer was slightly depleted in 15N relative to tropospheric N20 

[Yoshida et al., 1984]. This is in line with the argumentation that N20 in 

suboxic waters is consumed during denitrification and that N20 is formed 

during nitrification in oxic waters. Surprisingly, Yoshida et al. [1989], found 
15N-enriched N20 in the oxic waters of the upper 2000m of the western North 

Pacific and concluded that N20 is mainly produced by denitrification. 



36 Hermann W. Bange: Nitrous oxide in the ocean 

Table 3: Overview of the suggested N20 formation pathways based on isotope 
measurements of N20. 

Oceanic region Measured isotopic Suggested main formation References 

parameters of N,o• pathways .. 

Eastern tropical li15N - Nit. in oxic waters Yoshida et al. [1984] 

N Pacific - Denit. in suboxic waters 

Western N Pacific li15N - Denit. in oxic waters Yoshida et al. [1989] 

N and S Pacific 015N, o"o - Nit. or coupled nit.Iden it. Kim and Craig [1990] 

in deep waters 

Subtrop. N Pacific, 0
15

N, 0
180. sPN20 - Nit. via two different Dore et al. [1998]; 

stat. ALOHA pathways Ostrom et al. [2000]; 

Popp et al. [2002] 

Arabian Sea li15N, li18
' - Coupled nit./denit. in oxic Naqvi et al. [1998a]; 

waters [1998b] 

- Denit. in suboxic waters 

Eastern tropical o15N, 0180 - Coupled nit./denit. in oxic Yoshinari et al. [1997] 

N Pacific waters 

- Denit. in suboxic waters 

Western N Pacific, ,sN 18 S Ii , Ii 0, PN20 - Nit. Toyoda et al. [2002] 

stat. KNOT 

Western N Pacific, ,sN 18 S Ii , Ii 0, PN20 - Denit. in oxic waters Yamagishi et. al. [2005] 

stat. KNOT 

• SPN2o stands for the site preference, for a definition see the section about isotopomers 
•• nit. stands for nitrification and denit. stands for denitrification. 

Dual isotope signatures. The first N20 dual isotope (o15N and 5180) 

measurements from seawater were presented by Kim and Craig [1990]. At 

three stations in the North and South Pacific Ocean, N20 was found to be 

slightly depleted relative to tropospheric N20 in 15N and 180 down to about 

600m, whereas in deep and bottom waters N20 was found to be enriched in 
15N and 180 relative to tropospheric N20. The reason for the unexpected 

enrichment of deep water N20 is unclear. Kim and Craig [1990] speculated 

about nitrification with subsequent reduction by denitrification (which might 

take place in the interior of sinking particles) or, alternatively, N20 formation 

during nitrification from a 15N enriched intermediate such as NH20H. 
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With the application of the newly developed continuous-flow isotope-ratio 

monitoring mass spectrometers, the required seawater sample volume for 

N20 dual isotope measurements has been drastically reduced and therefore 

facilitated the determination of high resolution depth profiles of the N20 dual 

isotope signature [Brand, 1996; Yoshinari et al., 1997]. Repeated 

measurements of N20 depth profiles at the Hawaii ocean time series station 

ALOHA in the subtropical North Pacific Ocean revealed that 815N and o18Q of 

N20 were in equilibrium with tropospheric N20 at the ocean surface and 

steadily decreased from the ocean surface to minimum values in about 100-

300m at the base of the euphotic zone, followed by an increase to maximum 

values in 800m. The depletion of both 15N and 180 was attributed to result 

from nitrification (Dore et al., 1998; Ostrom et al., 2000; Popp et al., 2002]. A 

more detailed study at ALOHA which included measurements of 0180 in 

dissolved 0 2 and H20, revealed that N20 might be formed by two different 

pathways: First, by nitrification via NH20H or NO in most depths and, 

second, by nitrifier-denitrification via reduction of No2- {between 350-500m) 

[Ostrom et al., 2000]. The situations in the central Arabian Sea and the 

eastern tropical North Pacific Ocean are complex. N20 was found to be 

strongly enriched in both 15N and 180 in the denitrifying oxygen minimum 

zone, whereas N20 in the surface layer was depleted in 15N but slightly 

enriched in 180 compared to tropospheric N20 [Naqvi et al., 1998a; 1998b; 

Yoshinari et al., 1997]. N20 in the core of the oxygen minimum zone was 

obviously formed by denitrification since the final reduction step to N2 should 

result in enriched N20. However, the 'light' N20 found above the OMZ might 

be explained with a coupled nitrification-denitrification pathway where NO is 

formed during nitrification which is then reduced to N20 during denitrification 

[Naqvi et al., 1998a; Naqvi et al., 1998b; Yoshinari et al., 1997]. 

lsotopomers. As mentioned in the introduction, N20 is an asymmetrical 

molecule and therefore it is possible to distinguish so-called isotopomers 

according to the position of 15N within the N20 molecule {the corresponding Ii 

notation is given in parenthesis): 14N15NO (815Na) and 15N14NO (o15NP) 

(Toyoda and Yoshida, 1999]. The 15N site preference (SPN2o) in N20 is given 
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as 015Na- o15N~. The mean tropospheric SPN20 is 18.7 ± 2.2 %0 [Yoshida and 

Toyoda, 2000]. However, Kaiser et al. (2004] recently reported a mean 

tropospheric SPN2o of 46.3 ± 1.4 %0. The reason for the large discrepancy is 

unknown, but it was speculated that it might result from the use different 

primary standards [Kaiser et al., 2003, 2004]. Measurements of SPN20 should 

allow to identify the mechanisms of N20 formation according to the different 

microbial pathways [Sutka et al., 2003; Sutka et al. 2006; Toyoda et al., 

2005]. The SPN2o strongly depends on both the bacterial strains used and 

the actual formation pathway. For example, Nitrosomonas europaea and 

Nitrosospira multiformis, both nitrifier-denitrifiers, can produce N20 via both 

NH20H oxidation and No2- reduction. Indeed, the SPN20 were different for 

the NH20H oxidation pathway (-33 %0) and the N02- reduction pathway (- -

0.4 %0) [Sutka et al., 2003, 2004]. Most recently, based on a study with 

cultures of AOB, nitrifier-denitrifiers and denitrifiers, Sutka et al. (2006] 

concluded that the characteristic SPN2o of nitrification and denitrification (incl. 

nitrifier-denitrification) are generally -33 %0 and -0 %0, respectively. Thus, 

isotopomers might be used to distinguish between N20 produced during 

oxidation (nitrification) and reduction (denitrification and nitrifier-

denitrification) processes, however, it seems that isotopomers cannot be 

used to reveal subtle differences such as nitrifier-denitrification and 

de nitrification [Sutka et al., 2006]. The range of SPN2o (-0.6 to -0.5 %0) from 

the denitrifiers Pseudomonas chlororaphis and Pseudomonas aureofaciens 

measured by Sutka et al. [2006] are in contrast to the results by Toyoda et al. 

[2005] who found a much larger variability for the SPN2o produced by two 

other denitrifiers which showed SPN2o of 23.3 ± 4.2 %0 (Pseudomonas 

fluorescens) and -5.1 ± 1.8 %0 (Paracoccus denitrificans) [Toyoda et al., 

2005]. However, this discrepancy is in line with the theoretical considerations 

by Schmidt et al. [2004], who argued that the observed SPN2o and the 

associated 0180 signatures during NO reduction to N20 are reflecting ttie 

different types of NO reductases used by the different bacteria. 

Up to now, the oceanic distributions of N20 isotopomers have been 

determined at station ALOHA in the subtropical North Pacific [Popp et al., 
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2002], at station KNOT (Kyodo North Pacific Ocean Time series) in the 

western North Pacific [Toyoda et al., 2002; Yamagishi et al., 2005], and in the 

eastern tropical North Pacific (ETNP) [Yamagishi et al., 2005]. The SPN2o 

profile at KNOT showed a steady increase from low values at the ocean 

surface (12 %0) to a maximum (up to 36 %0) in about 250-750m [Toyoda et 

al., 2002]. A similar SPN20 profile was observed at ALOHA, however, the low 

SPN2o values were rather uniform in the depth range 0-500m and then 

increased to about 25 %0 in 600-900m [Popp et al., 2002]. The shape of the 

SPN2o profiles at KNOT and ALOHA was explained with N20 formation 

during nitrification, but the exact reaction pathway remained unclear [Popp et 

al., 2002; Toyoda et al., 2002]. In contrast, on the basis of additional 

isotopomer data from KNOT, Yamagishi et al. [2005] suggested net N20 

formation in the oxygen minimum zone, which is mainly resulting from both 

formation and consumption during denitrification with only a minor 

contribution by nitrification. 

2. 7 The world's oceans - a major source of atmospheric N20 

The sources and sinks of atmospheric N20 as reported by the IPCC 

(Intergovernmental Panel on Climate Change) in 2001 are summarized in 

Table 2 [Prather et al., 2001]. It suggests a reasonably balanced present-day 

budget of atmospheric N20 2 and an oceanic contribution of about 17% to the 

overall sources of N20 and about 31% to the natural sources. Remarkably, 

the N20 ocean source in the IPCC report is low compared to other estimates 

(Figure 13). 

r ' 

' ·~.) ' - ' r:: 
::. / 

2 
At the beginning of the 1990s, a considerable imbalance in the N20 budget has been 

suggested, caused by a significant downward revision of N20 formation during biomass 
burning and fossil fuel combustion due to sampling artefacts [Muzio and Kramlich, 1988]. In 
current budget estimates the apparently "missing sources" are mainly compensated by 
higher estimates of natural and anthropogenic-induced N20 emissions from terrestrial 
ecosystems. 
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Figure 13: Historical development of global oceanic N20 emission estimates. Please note 
the logarithmic y-axis. The red circles mark estimates, which explicitly included coastal 
emissions. The black triangles mark the IPCC reports. References: 1 [Hahn and Junge, 
1977); 2 [Elkins et al., 1978); 3 [Singh et al., 1979); 4 [Cohen and Gordon, 1979); 5 [Cline et 
al., 1987); 6 [Butler et al., 1989); 7 [Watson et al., 1990); 8 [Capone, 1991); 9 [Najjar, 1992); 
10 [Nevison et al., 1995); 11 [Bange et al., 1996b]; 12 [Denman et al., 1996); 13 [Seitzinger 
et al., 2000); 14 [Suntharalingam and Sarmiento, 2000); 15 [Codispoti et al., 2001); 16 
[Prather et al., 2001); 17 [Nevison et al., 2004). 

This might result from the fact that the IPCC estimate does not take into 

account N20 emissions from coastal areas such as continental shelves, 

estuaries and coastal upwelling zones: On the basis of a compilation of N20 

measurements in coastal areas, Bange et al. [1996b] calculated an overall 

oceanic flux of 7 - 11 Tg N yr-1 and concluded that coastal areas such as 

estuaries, shelf and coastal upwelling areas contribute significantly 

(approximately 61 %, i.e. 4.2 - 6.6 Tg N yr- 1
) to the global oceanic emissions. 

This is in line with predictions from the model studies by Capone [1991], 

Seitzinger and Kroeze [1998), and Nevison et al. [2004] who estimated that 

coastal areas may contribute from 7 to 49 %, to the overall global oceanic 

N20 emissions (Table 4). Beside different methodological approaches 

(empirical models vs. extrapolation of measurements) the considerable range 

of uncertainty is introduced by the fact that the applied classification of 

coastal areas is not uniform. For example, the overall areal contributions 
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range from 3.3% [Nevison et al., 2004] up to 18.6% [Bange et al. , 1996b] 

{Table 4). 

Table 4: Comparison of coastal N20 flux estimates (modified from Nevison et al. [2004)). 

Study Area, % of total N20 flux, % of total ocean 
km2 ocean area8 Tg N yr- 1 N20 Fluxb 

Capone [1991] 
3.6 107 Coastal upwelling 10 4.7 42 

Nearshore I estuaries 5106 1.4 0.74 6.5 

Sum 4.1107 11.4 5.4 48.5 

Bange et al. [1996b] 
8.8 105 Coastal upwelling 0.2 0.3 3 

Coastal waters I marginal seas 6.5 107 18 2.7 25 
Estuaries 1.4 106 

0.4 3.6 33 

Sum 6.7107 18.6 6.6 61 

Seitzinger and Kroeze [1998Jc 
Continental shelves not given ? 0.63 15 
Estuaries 1.4 106 0.4 0.21 5 

Sum ? ? 0.84 20 

Nevison et al. [2004] 
1.75 106 Coastal upwelling 0.5 0.2 5 

Continental shelf (<200m) 1.0 107 2.8 0.08 2 

Sum 1.2107 3.3 0.28 7 

a compared to a total ocean area of 361 106 km2 [Menard and Smith, 1966]. 
b Seitzinger et al. [2000] and Nevison et al. [2004] assumed a total ocean source of 4 Tg N 
yr-1

• Bange et al. [1996b] assumed a 7.4 Tg N yr-1 source and Capone [1991] assumed an 
11 .25 Tg N yr-1 source. 
c see also Seitzinger et al. [2000] . 

The results of the global N20 coastal emissions estimates mentioned above 

are supported by two recently published regional studies: Naqvi et al. [2000] 

measured the N20 distribution in the coastal area along the West coast of 

India and concluded that N20 emissions were considerably enhanced (up to 

0.25 Tg N yr-1
) due to a temporarily occurring shift of the ecosystem from 

oxic to anoxic conditions. Thus, the N20 emissions from the Indian coast 

alone might account for about 8% of the IPCC's global estimate given in 

Table 2. A comparable result was published in a recent study about N20 

measurements in European coastal waters. On the basis of a comprehensive 

compilation of N20 measurements, I (Bange, [2005]) estimated that N20 
I 

emissions from the continental shelf seas and estuaries of Europe range 
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from 0.15 to 0.4 Tg N yr-1 (with a mean of 0.31 Tg N yr-1). Thus, European 

coastal waters may contribute up to 13% to the IPCC's global N20 emission 

estimate of 3 Tg N yr-1 (Table 2). 

Despite the inherent considerable uncertainties of the oceanic N20 flux 

estimates (i.e. spatial and temporal biases of the measurements, 

classification of coastal areas, different air-sea gas exchange approaches) it 

is reasonable to conclude that the oceanic source as given in the N20 budget 

of the IPCC (Table 2) most likely is an underestimation. Averaging the source 

estimates published since 1978 (Figure 13, excluding the obviously 

unrealistic estimate by Hahn and Junge (1977]), yields a mean oceanic N20 

source of 6.6 ± 3.6 Tg N yr-1 (mean ± sd, n = 13) or 5.6 Tg N yr-1 (median) 

with a range from 1.4 (min) to 14 (max) Tg N yr-1
• An upward revision will 

shift the (T/O)N2o ratio (T stands for natural soil emissions and O stands for 

the oceanic emissions) from 2 to 1 which is in reasonable agreement with the 

suggestion of a constant (T/O)N2o ratio of 1.3 ± 0.2 during the last 33,000 

years as depicted from the dual isotope signature of N20 in an Antarctic ice 

core paleo record [Sowers et al., 2003]. 

Thus, I recommend , that the oceanic N20 source estimate should be revised 

(at least doubled) in the forthcoming IPCC report which has significant 

implications for the overall atmospheric N20 budget: Recalculating3 the 

overall mean atmospheric N20 sources (natural and anthropogenic), based 

on the IPCC 2001 values, yields a median of 19 Tg N yr-1 (range from 13 to 

29 Tg N yr-1, at 90% confidence interval). Introducing a revised oceanic N20 

source of 7 ± 4 Tg N yr-1 yields a median of 24 Tg N-1 (range 16 - 34 

Tg N yr- 1
, 90% confidence interval) (Figure 14). 

3 Calculations where performed with the statistical method for "estimating uncertainties in 
total global budgets of atmopheric trace gases" developed by Khalil [1992]. The program 
code, version 1993, was provided by M.A.K. Khalil, Andarz Company, Portland, Oregon, 
USA. 



Hermann W. Bange: Nitrous oxide in the ocean 43 

0.1 
- IPCC2001 

0.09 

0.08 - IPCC 2001 with revised ocean s01Ece 

... 
.2 0 07 
?i 
.Cl 
-~ 0.06 

'tl 
.~ 0.05 

j 0.04 
.Cl 

~ 0.03 

0.02 

0.01 

0 
0 5 10 15 20 25 30 35 40 45 

NiO, Tg N yr·1 

Figure 14: The probability distribution functions [Khalil, 1992] for atmospheric N20 sources. 
The black line was calculated with the values listed in the IPCC 2001 report [Prather et al., 
2001] and the red line is based on the calculation with a revised oceanic N20 source. 

A comparison with the sum of the N20 sink and the atmospheric trend 

(16 Tg N yr-1, range 12-21 Tg N yr-1, taken from Table 2) reveals that the 

N20 budget might not be balanced, especially in view of the fact that an 

ocean source of 7 Tg N yr-1 has to be considered as a conservative estimate. 

This indicates that either the N20 sink is underestimated or that one of the 

N20 sources might be overestimated (mostly likely candidate is N20 

emissions from agricultural soils as indicated by the large range of 

uncertainty of its emission estimate). 

3 EQUATIONS TO DESCRIBE THE PHYSICAL PROPERTIES OF OCEANIC N~O 

3. 1 N20 solubility in seawater 

The Bunsen solubility of N20 (Cw in mol L -1
) in seawater in equilibrium with 

moist air at P = 1 atm is usually calculated with the polynomial given by 

Weiss and Price [1980]: 

Cw = Fx'P and 



44 Hermann W. Bange: Nitrous oxide in the ocean 

JnF =A,+ A,(100
) + A, 1n(_I_) +A.(_!_)'+ s[a, +a,(_!_)+ a,(_!_)'] with 

T 100 100 100 JOO 

A1 = -165.8806, A2 = 222.8743, A3 = 92.0792, ~ = -1.48425, 81 = -0.056235, 

82 = 0.031619, 83 = -0.0048472. 

F is in mol L-1 atm-1. T stands for temperature in K, S stands for salinity, x' 

stands for the dry mole fraction of atmospheric N20, and P stands for the 

ambient pressure. The polynomial is valid in a temperature range from O to 

40 °c and a salinity range from O to 40. An alternative equation for Cw in 

gravimetric units (mol kg-1) can be found as well in Weiss and Price [1980]. 

Cw at T = 25°C, S = 35, x' = 318 ppb and P = 1 atm is 6.38 nmol L-1. It 

doubles to about 12.42 nmol L-1 when the temperature is set to 5°C. 

N20 saturations (sat) in % (i.e., 100% = equilibrium) are calculated as 

sat= 100 Cw I Ca, 

where Cw is the (measured) N20 in-situ concentration (see below) and Ca is 

the (calculated) equilibrium concentration of dissolved N20 based on the N20 

atmospheric dry mole fraction. For calculating Ca in the ocean mixed layer, 

actual ambient air mole fractions were taken from the AGAGE (Advanced 

Global Atmospheric Gases Experiment, see Prinn et al. [2000]) data set, 

which is available from the anonymous ftp site cdiac.esd.ornl.edu 

(subdirectory /pub/ale_gage_agage/agage/gc-md/monthly) at the Carbon 

Dioxide Information Analysis Center in Oak Ridge, Tennessee. 

3.2 N20 diffusion in water 

The N20 diffusion coefficients (ON2o in m2 s-1) are calculated with equation 

(1) derived from the data given in 8roecker and Peng [1974] and, 

alternatively, with the equation (2) derived from a compilation of 

measurements [Rhee, 2000]: 
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/0910 DN20 = -1008.28 I RT - 5.245 

DN20 = 3.16 x 1CT6 exp (-18370 I RT), 

(1) 

(2) 

where T is the water temperature in Kand R is the universal gas constant. 

45 

Equation (1) is based on 5 measurements of N20 diffusion coefficients in 

water in a temperature range from 14° to 25°C (see compilation by 

Himmelblau (1964]). Unfortunately, these rather old values (two of them were 

already published in 1898, the rest was published in 1957) show a 

considerable scatter, indicating an uncertainty of up to 20% for values 

calculated with equation (1) [Broecker and Peng, 1974]. Equation (2) is 

based on a compilation of 49 measurements of N20 diffusion coefficients in 

water in the temperature range from 14° to 95°C (see Rhee (2000]), thus 

providing a more reasonable fit for the N20 diffusion with a considerable 

reduced uncertainty of less than 10% [Rhee, 2000]. A correction for N20 

diffusion in seawater is usually not applied since the effect of seawater on the 

diffusion of dissolved gases is variable [King et al., 1995] and, to my 

knowledge, no measurements of the N20 diffusion in seawater have been 

published. 

3.3 Air-sea exchange approaches 

The air-sea exchange flux density (F) of N20 is parameterised as 

F = kw(U) (Cw- Ca), 

where kw is the gas transfer coefficient as a function of wind speed (u in 1 Orn 

height), Cw is the N20 seawater concentration, and c. is the equilibrium N20 

concentration in seawater. Ca is calculated using the equation of Weiss and 

Price (1980] (see above). The measured wind speeds is normalized to 10 m 

height by using the relationship of Garratt (1977]. To calculate kw, I used the 

tri-linear k...,-u relationship of Liss and Merlivat (1986] (LM86), the quadratic 

k...,-u relationship of Wanninkhof (1992] (W92), and the combined linear and 
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quadratic kvru relationship from Nightingale et al. [2000] (NOO). Equations of 

the LM86, W92, and NOO approaches are given below. kw was adjusted by 

multiplying with (Sc/600f" (n = 2/3 for wind speeds <3.6 m s·1 and n = 1/2 for 

wind speeds >3.6 m s·1) for LM86, (Sc/660)--0.5 for W92, and (Sc/600)--0.5 for 

NOD, where Sc is the Schmidt number for N20: 

Sc was calculated using empirical equations for the kinematic viscosity of 

seawater ( v) [Siedler and Peters, 1986] and the diffusion coefficient of N20 in 

water (DN20. equation given above). 

The approach of Liss and Merlivat [1986] (LM86) consists of three equations 

for the calculation of kw (in m s-1): 

kw = 4. 72 10-7 
U10 (u10 S 3.6 m s-1

) 

kw = 7.92 10-6 u,o- 2.68 10-5 (3.6 m s-1 < u,0 S 13 m s-1
) 

kw = 1.64 10-5 
U10- 1.40 1o-4 (u10 > 13 m s-1

). 

The LM86 relationship is based on data obtained from a lake study and a 

laboratory study at high wind speeds. The approach of Liss and Merlivat 

[1986] is usually applied with both short-term and long-term wind speeds. 

Wanninkhof [1992] (W92) proposed the following relationship for the 

calculation of kw (in m s-1
) with climatological wind speed data: 

kw = 1.08 10-6 U10 

2
• 

This approach is only valid when using Jong-term averaged (climatological) 

wind speeds. When using in-situ wind speeds the following equation is 

recommended [Wanninkhof, 1992]: 

kw = 8.6110-7 u1o'. 
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The k,,.,--u relationship of Nightingale et al. [2000] (NOO) is given by (kw in 

m s-1): 

kw = 9.25 1(T7 
U10 + 6.171(T7 u1a2. 

The NOO relationship shows a dependence on wind speeds intermediate 

between those of Liss and Merlivat [1986] and Wanninkhof [1992]. Moreover, 

the NOO relationship is in reasonable agreement with estimates of kw based 

on globally averaged wind speeds. 

4 METHODS 

This section contains short descriptions of the two main sampling methods 

applied. In general, N20 was separated with a gas chromatographic method 

and detected with an electron capture detector. Further details of the 

analytical method are described in Bange et al. [1996a] and Bange et al. 

[2001 b]. For calibration we used standard gas mixtures of N20 in synthetic 

air, which have been calibrated against the NOAA (National Oceanic and 

Atmospheric Administration, Boulder, Co.) or 810 (Scripps Institution of 

Oceanography, La Jolla, Ca.) standard scale. Further details can be found in 

the attached publications. 

Depth profiles. Triplicate water samples from various depths were taken 

from a water bottle sampling rosette, equipped with a CTD-sensor. The 

analytical method applied is a modification of the method described by Bange 

et al. [2001 b]: Bubble free samples were taken immediately following oxygen 

sampling in 24 ml glass vials, sealed directly with butyl rubber stoppers and 

crimped with aluminium caps. To prevent microbial activity, samples were 

poisoned with 500 µL of saturated or moderately concentrated aqueous 

mercury chloride (HgCl2) solutions [Walter, 2006]. Samples were either 

analysed onboard or stored in the dark and, if possible, cooled until analysis 

in our home laboratory. In a time series experiment Walter [2006] found that 

N20 concentrations in samples treated as described above did not change 
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significantly over 10 months. N20 water concentrations (Cw) were calculated 

as follows: 

. x'PV FxPVwp +~ hs 

Cw [mo/L-1
] = RT 

vwp 

where F: stands for the Bunsen solubility in mol L-1 atm-1 (see above), x' is 

the dry gas mole fraction of N20 in the headspace in ppb, P is the 

atmospheric pressure in atm (set to 1 atm), Vwp and Vhs stand for the 

volumes of the water (14 ml) and headspace (10 ml), respectively. R is the 

gas constant (8.2054 10-2 L atm mo1-1 K-1
) and T in K is the temperature 

during equilibration. The standard deviation of the N20 concentration (Cw) 

was approximated with (Cwmax - Cwmin) / 1.91, where Cwmin and Cwmax stand 

for the minimal and maximal N20 concentrations of the triplicate samples, 

respectively. The factor 1.91 is derived from the statistical method by David 

[1951). 

Continuous sampling for ocean surface su1Veys. Seawater was pumped 

continuously from a depth of about 4-5 m by a submersible water pump 

installed in the moon pools of the ships into a shower-type equilibrator 

developed by R.F. Weiss (Scripps Institution of Oceanography, La Jolla, 

Ca.). N20 concentrations (C. in mol L-1
) were calculated by applying the 

solubility equation of Weiss and Price [1980) (see above). Time series of 

seawater temperature (SST), salinity, and atmospheric pressure were 

obtained from the ship's records. Differences between the seawater 

temperature at the seawater intake and the continuously recorded water 

temperature in the equilibrator were corrected as follows: 

Cw = C F(Teq) I F(SST) 

with F(SST) and F{Teq) representing the N20 solubility at seawater 

temperature and water temperature inside the equilibrator at the time of the 

measurement, respectively. 
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5 OUTLOOK 

Despite the fact that our knowledge about the oceanic distribution, the 

formation pathways and the oceanic emission of N20 has considerably 

increased during the last four decades we are far from being able to sketch a 

comprehensive picture. Various open questions and technical challenges 

remain to be solved in the future: 

~ Measurements of the N20 diffusivity in seawater are needed. This will 

help to reduce the uncertainty in emission estimates. 

~ Reliable, high-precision N20 sensors for the use at ocean time series 

stations or ships of opportunity should be developed in order to expand 

the spatial and temporal coverage of oceanic N20 measurements. For 

example, time series measurements with an array of moored N20 

sensors along the West coast of South America might help to monitor 

the upwelling variability during El Nirio/La Niria events. 

~ We still have only a rudimentary idea about N20 cycling in coastal 

areas. We need to know more about the seasonality, the major 

formation and consumption pathways and the driving forces of these 

processes. In this context, the ongoing dramatic increase in the 

frequency of oxygen-starved zones seems to be of central importance 

[UNEP, 2004). Ongoing eutrophication in various parts of the world (e.g. 

in SE Asia) might lead to enhanced N20 emissions from coastal areas. 

~ During the last years the oceanic anaerobic ammonium oxidation 

(anammox, N02- + NH/ ~ N2) has received increasing attention as an 

additional, previously overlooked, significant loss process of fixed 

nitrogen [Dalsgaard et al., 2005; Devol, 2003; Hulth et al., 2005; Ward, 

2003]. Recently, anammox has been found in suboxic zones of the 

Benguela upwelling [Kuypers et al., 2005] and at the oxic/anoxic 

interface of the Black Sea [Kuypers et al., 2003]. Based on the results 
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from the Benguela upwelling, Kuypers et al. (2005) concluded that the 

resulting N2 is exclusively formed by anammox and not, as commonly 

thought, by denitrification. They suggested that denitrifiers only supply 

the No2- for the ananimox bacteria, which then convert the N02- to N2. 

This suggestion is especially interesting in view of the observed N20 

double peak profiles in the suboxic zones of the Arabian Sea and the 

eastern tropical North Pacific (see Figure 8). Up to now there are no 

hints of N20 being an intermediate or a by-product of anammox (Hulth 

et al., 2005; Ward, 2003]. Assuming that anammox is the dominating 

nitrogen loss process in suboxic zones, and further assuming that N20 

is not involved in anammox then the question arises what causes the 

strong N20 depletion in the core of the suboxic zones? The N20 

depletion is usually attributed to N20 reduction to N2 via denitrification, 

which was confirmed by recent incubation experiments [Castro­

Gonza/ez and Fraias, 2004]. Thus, there is a need for studies about the 

role of anammox for the oceanic N20 distribution in suboxic zones. 

~ Isotope measurements of N20 have been introduced as a promising tool 

to decipher the formation pathways of oceanic N20. However, it turned 

out that isotopic measurements in some cases are difficult to explain 

(e.g. in the Arabian Sea, see Table 3) and that they even can lead to 

contradicting results. For example, from the interpretation of the N20 

isotope measurements at station KNOT in the western North Pacific 

Ocean it is not clear whether nitrification or denitrification is the main 

N20 formation pathway (see Table 3). We need to learn more about the 

N20 forming pathways and the resulting N20 isotope signatures of the 

different types of N20 producing organisms. The recently isolated NH4 + 

oxidizing archaeon [Konneke et al., 2005] raises the question whether 

we have overlooked N20 forming organisms other than bacteria. N20 

isotope studies might help to identify unknown N20 formation pathways. 

Moreover, there is an obvious discrepancy in the measured mean 

tropospheric SPN2o (19 %0 vs. 43 %0, Kaiser et al. (2004]), which is not 

resolved yet. Thus, there seems to be an urgent need for interlaboratory 

calibration of the N20 isotope methods 
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~ Tropospheric N20 has an oxygen isotope anomaly .:'. 17 0 of 0.9 ± 0.1 %o 

(Kaiser et al., 2003). This anomaly mainly results from N20 formation by 

non-mass-dependent isotope fractionations by various chemical 

reactions in atmosphere, during industrial processes and during 

biomass burning [Kaiser and Rockmann, 2005). Moreover, it was 

speculated that N20 from microbial processes may account for about 

37% of the observed .:'. 170 of atmospheric N20 [Kaiser and Rockmann, 

2005). This is line with the suggestion by Michalski et al. [2003) who 

proposed that the oxygen isotope anomaly of aerosol N03- (t.170 = 20-

30.8 %0) should lead to an oxygen isotope anomaly of oceanic N20 in 

those regions where N03 - aerosols are deposited to the ocean and 

denitrification takes place. However, t.170 measurements of N20 from 

the oceanic environments are needed to verify the hypothesis by Kaiser 

and Rockmann [2005) and Michalski et al. [2003]. 

~ Apart from the classical denitrification pathway, alternative pathways for 

N20 formation in suboxic zones have been suggested which should be 

tested with laboratory experiments and field measurements: 

(i) The possible decomposition of organic matter via oxidation by 103- to 

yield N20 might be written as follows: 

81.3 103- + (CH20)105(NH3)15H3P04 ~ 

81.31-+ 106 C02 + 8 N20 + 130 H20 + H3P04. 

I calculated for the reaction given above a t.G0 = -2712 kJ per mole 

glucose, which is comparable with t.G0 values given for the oxidation of 

organic matter by 103- yielding NH3 (-2605 kJ mo1-1>, HN03 (-2804 kJ 

mor1). or N2 (-3047 kJ moi-1). I proposed that the decomposition of 

organic carbon via the 103 -11- mechanism might contribute to the N20 

and N2 accumulation in suboxic zones of the western Arabian Sea (for 

details of the calculation and discussion see Bange et al., (2001 b]). 
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(ii) Beside microbial N20 formation chemical formation via the following 

reactions can be postulated: 

2 NH4 + + 4 Mn02 + 6 H+ ~ N20 + 4 Mn2• + 7 H20 (A) 

2 N03- + 4 Mn2• + 3 H20 ~ N20 + 4 Mn02 + 6 H+ (8) 

The latter reaction is part of the so-called chemodenitrification where 

N03- is reduced by Mn2• to N2, which is known to occur in sediments. In 

order to estimate the thermodynamical feasibility the half-reactions (C)­

(E) have to be taken into account: 

N20 + 8 e- + 10 H• ~ 2 NH/ + H20 

2 NQ3- + 8 e- + 10 H+ ~ N20 + 5 H20 

Mn02 + 2 e- + 4 H• ~ Mn2• + 2 H20 

(C) 

(D) 

(E) 

The resulting pe and Ape values as a function of the pH are given in 

Table 5. 

Table 5: pe for reactions (C), (D) and (E) and resulting tipe for reactions (A) and (8). 

PH Pe pe pe tipe tipe 
(C) (D) (E) (E)- (C) (D)- (E) 

(NH, • + Mn02 ---> N20) (NO,-+ Mn2•---> N20) 

0 10.94 18.85 20.84 9.90 -1.99 
7 2.19 10.10 6.84 4.65 3.26 
8 0.94 8.85 4.84 3.90 4.01 
14 -6.56 1.35 -7.16 -0.60 8.51 

pe (=-loge- = pe0 + log [{ox)/{red}]) gives the electron activity at equilibrium and 
measures the relative tendency of a solution to accept or transfer electrons [Stumm and 
Morgan, 1996]. pe were calculated for 25"C. Standard redox potentials (E0

) were taken 
from Greenwood and Earnshaw [1984] and converted to pe0 by pe0 = E"/(0.05916 V) 
[Stumm and Morgan, 1996]. 

Since Ape(= Alog K = -AG/2.3nRT) for reactions (A) and (8) are 

positive at the mean oceanic pH (= 8) we can conclude that reactions 

(A) and (8) are thermodynamically favourable. N20 and Mn 

measurements in the central Arabian Sea are shown Figure 15. It 
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seems reasonabie to speculate that the reduction of N03- by Mn2• 

(reaction B) might take place at the upper and lower boundaries of the 

suboxic zone. 
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Figure 15: N20 (solid line, concentration divided by 10), dissolved Mn2• (dash-dotted 
line) and particulate Mn02 (dashed line) in the central Arabian Sea. Possible redox 
cycling of Mn2./Mn02 in the suboxic zone is indicated. Data are from Bange et al. 
(2001) (N20) and Saager et al. (1989) (Mn02). Dissolved Mn2

• are unpublished data 
from U. Sch0111er and W. Balzer, University of Bremen. Please note that the data were 
taken by different working groups at different locations and time, thus the data 
presented reveal only a schematic picture. 

~ We need to know more about the role of the marine nitrogen cycle and 

N20 for possible feedback mechanisms within the Earth system. 

Oceanic 02 distribution is likely to be altered in the near future due to 

the impending globai change. Any variations of the oceanic 02 

concentrations, in turn, will iead to a change in the amount of N20 

produced via nitrification or denitrification (see Figure 5). At the moment 

we cannot assess the consequences for the future oceanic N20 release 

to the atmosphere, but we can have a clue to the future from the past: 

Suthhof et al. [2001] showed that the temporal variations of the 

denitrification signal of the suboxic zones of both the Arabian Sea and 

the eastern tropical North Pacific during the last 17,000 years is 

paralleled by the reconstructed atmospheric N20 from a Greenland ice 

core record (Figure 16). This implies that variations in the amount of the 
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water column denitrification might led to changes in the magnitude of 

N20 formation and its subsequent release to the atmosphere. However, 

any change of the atmospheric N20 concentrations will also influence 

the Earth's climate. A possible ocean/atmosphere feedback scenario 

mediated by N20 emissions from the Arabian Sea was presented by 

Bange et al. [2005] (Figure 17). I suggest that the processes outlined in 

Figure 17 are worthy of inclusion in models that seek to produce 

realistic scenarios of climate change. 
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Figure 16: li
15

N profiles from sediment cores in the eastern tropical North Pacific (ETNP) and 
Arabian Sea compared to reconstructed atmospheric N20 data from the GRIP (Greenland 
Ice Core Project) ice core. YD stands for Younger Dryas, IS1 stands for lnterstadial 1, H 
stands for Heinrich event 1, B/A stands for B0lling/Aller0d event. Figure was taken from 
Suthhof et al. (2001]. 
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Figure 17: Possible climate/Arabian Sea feedback scenario. The questions marks point to 
yet to be quantified interactions. Following the concept for the forcing mechanisms of the 
Indian Ocean Monsoon Regime presented by Clemens et al. [1991], the external insolation 
forcing via variations in the Earth's orbit results in an internal climate response with 
variations in the strength of the Arabian Sea Southwest Monsoon. In turn, variations of the 
Southwest Monsoon strength lead to variations in nutrient supply to the surface layer by 
coastal upwelling. Additionally, a change in the climate may also influence the intermediate 
circulation of the Indian Ocean leading to changes in the supply of NO,- and 0 2 to the 
Arabian Sea. These processes then feed back to the global climate system. They do this by 
modulating the N20 source term and by impacting the oceanic biological pump's ability to 
sequester atmospheric C02 via denitrification's impact on NO,- one of the limiting nutrients 
for phytoplankton. When NO,- becomes limiting N2-fixation might increase. 
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Nitrous oxide in the deep waters of the world's oceans 
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Biogcochcmistry Department, Max Planck lnstitutc for Chemistry, Mainz, Gennany 

Abstract. We present a compilation and analysis ofN20 data from the deep-water zone of the 
oceans below 2000 m. The N20 values show an increasing trend from low concentrations in the 
North Atlantic Ocean to high concentrations in the North Pacific Ocean, indicating an 
accumulation ofN20 in deep waters with time. We conclude that the observed N20 accumulation 
is mainly caused by nitrification in the global deep·water circulation S}'stem (i.e., the "conveyor 
belt"). Hydrothennal and sedimentary N20 fluxes are negligible. We estimate the annual N20 
deep-water production to be 0.3 ± 0.1 Tg. Despite the fact that the deep sea below 2000 m 
represents about 95% of the total ocean volume, it contributes only about 3-16o/o to the global 
open-ocean N20 production. A rough estimate of the oceanic N20 budget suggests that the loss to 
the atmosphere is not balanced by the deep-sea nitrification and pelagic denitrification. Therefore 
an additional source of 3.8 Tg N20 yr-• attributed to nitrification in the upper water column (0-
2000 m) might exist. With a simple model we estimated the effect of changes in the North Atlantic 
Deep Water (NADW) fonnation for deep-water N20. The upper water N20 budget is not 
significantly influenced by variations in the N20 deep·water fonnation. However, the predicted 
decrease in the NADW fonnation rate in the near future might lead to an additional source of 
atmospheric N20 in the range of about 0.02-0.4 Tg yr-•. This (anthropogenically induced) source 
is small, and it will be difficult to detect its signal against the natural variations in the annual 
growth rates of tropospheric N20. 

1. Introduction 

Nitrous oxide (N20) is an atmospheric trace gas which 
significantly influences, directly and indirectly, Earth's climate. 
In the troposphere it acts as a greenhouse gas. and in the 
stratosphere it is the major source for NO radicals, which are 
involved in one of the main ozone reaction cycles [Prather et al., 
1996). 

Recently published source estimates indicate that the world's 
oceans play a major, but not dominant, role in the global budget 
of atmospheric N20 [Bouwman et al., 1995; Khalil and 
R03mussen, 1992; Prather et al., 1996}. Most of the world's 
ocean surface layer is near gas-exchange equilibrium with the 
atmosphere [Nevison et al., 1995], whereas a subsurface N20 
accumulation is generally associated with the oxygen minimum, 
indicating that nitrification (Nll4 + -+ NOt _. N011 is 
responsible for N20 production [Butler et al., 1989; Cohen and 
Gordon, 1979; Yoshinari, 1976]. In intermediate layers with 
extreme oxygen depletion (i.e., suboxic conditions), as found in 
the Arabian Sea and the eastern tropical Pacific Ocean, N20 is 
also produced in considerable amounts by denitrification (N01-

_. N02- _. N20 _. N2) [Codispoti and Christensen, 199.S]. 
Recent dual-isotope measurements of 61

~ and 6110 brought 
some new insights. Dore et al. [1998] suggested that nitrification 
is the dominant N20 production pathway in surface waters of the 

subtropical Pacific Ocean. Additionally, Naqvi el al. [1998] 
speculated about a coupling of nitrification and dcnitrification in 
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the surface layer of the Arabian Sea. Measurements of N10 in 
deep waters arc sparse, and the mechanism of the N20 production 
in deep waters is still under debate [Kim and Craig, 1990; 
Yoshida et al., 1989). 

Here we present a compilation of N20 measurements from 
water depths below 2000 m in order to evaluate the global 
distribution ofN20 in deep waters of the world's oceans. On the 
basis of this data set, an estimate of the magnitude of N20 deep­
water production and a discussion about its role for the global 
N20 budget arc presented. With a simple model we evaluate the 
implications of possible changes in the North Atlantic Deep 
Water (NADW) formation for the global N10 budget 

2. Data Compilation 

In Table 1 we present an overview of N10 data from deep 
waters below 2000 m. The boundary of 2000 m was chosen to 
gain a most representative data set for N20 in the deep waters. 
Three points led to our choice: 

I. In order to investigate the N20 distribution in the deep 
waters. we have to exclude the effects of the thermocline 
circulation, which could reach down to about 1000-1.SOO m 
[Broeclcer and Peng, 1982). 

2. As mentioned in section 1, N20 is mainly produced in the 
oxygen minimum zone (OMZ), whose lower bOundary is found 
down to about 1200 m in the world's oceans [Broecker and Peng, 
1982). Since N20 is produced in considerable amounts in the 
OMZ. there is usually a decreasing N20 gradienl toward deep-­
water layers. A check of the available data sets for N20 gradients 
revealed that the choice of 2000 m minimizes a possible bias due 
to N20 gradients at the top of the deep·water layer (see also 
discussion of diapycnal mixing in section 4). 
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Table 1. Compilation ofN20 ~ata in Deep Waters Below 2000 m. 

Latitude, Longitude, Date Depth interval, Mean N20, so• Minimum, Maximum, Samples Calculatedc (C) or Reference 
°Nor os• 0 W1 or 0 E m nmolL-1 nmol L- 1 nmol L-1 nmol L-1 Estimatedc (E) 

North AtlanJic "' 65 -1.S Aug. 1976 2100-2500 11.0 2.6 7.4 14.7 8 c Hahne [ 1977) ~ 
64 0 Aug. 1976 2000-2800 12.2 1.4 10.0 15.6 13 c Hahne [ 1977) " 39.1 -62.4 May, July 1972 2000-5000 16 0.5 IS 16 7 E Yoshinari [1976} "' 35.9 -63.7 JW1e 1972 2000-5000 IS 0.7 14 16 14 E Yo.1hinari 119761 ~ 

South Atlantic 0 
-36 -45.l Oct. 1994 2000-5000 16 I 14 17 8 E Butler et al. [1995] ~ North Indian 

0 24.3 58.2 Sept 1986 2000-2700 25.3 24.0 26.6 2 c Law and Owen.r [1990Jd ~ 23.7 59.1 Sept 1986 2000-2750 17.4 4.7 12.5 21.9 3 c Law and Owen, [ 1990)' 

~ 22.7 60.7 Sept 1986 2000-3000 23.S 4.4 20.1 28.5 3 c Law and Owens, [ 1990).t 
21.8 64 April-May 1994 2000-2750 27 5.S 22 33 3 E la/et al. (1996} 0 
21.3 63.3 Sept 1986 2000-3000 20.7 4.1 16.6 24.7 3 c Law and Owen, (1990)' "' "' 20 65.8 May 1997 2000-JISO 18.8 14.4 23.2 2 c Bange et al., submitted manuscript [ 1999) 7' 19 67 Sept 1986 2000-3200 15.3 2.2 13.0 17.5 3 c Law and Owens (1990)4 

~ 19 64 April-May 1994 2000-3000 26 6.1 20 33 3 E Lal et al. ( 1996] 
18 69 Dec. 1988 2000-3000 25 I.I 24 26 3 E Naqvi and Noronl,a [1991) ;;J 
18 58 Aug. 199S 2600-3200 16.5 1.8 14.8 18.3 3 c Bange et al., submitted manuscript [ 1999) ;o 

17.5 59.l luly 1997 2000-3600 20.8 4.0 16.4 24.2 3 c Bange et al., submitted manuscript [ 1999) 
~ 17.2 59.8 July 1995 2900-3900 16.5 1.0 16.0 17.5 3 c Bangc et al., submitted manuscript I 1999] 

16.3 61.4 Aug. 1995 2000-3900 17.2 3.7 12.2 24.8 10 c Bangc et al., submitted manuscript [19991 0 
16.2 60.3 May 1997 2500-4100 16.7 3.5 12.9 21.7 4 c Bange et al., submitted manuscript (1999] 

.,, 
16 62 July 1997 2000-3950 18.5 3.4 14.4 22.4 4 c Law and Owem [1990]4 51 
16 62 July 1995 2>00-3900 17.9 1.0 16.3 18.8 ' c law and Owens [1990]4 "' 15.6 68.6 May 1997 3000-3900 18.3 3.1 16.I 21.8 3 c Bange et al., submitted manuscript ( 1999] ~ 14.5 65 July 1995 2000-4000 12.3 5.1 I.I 21.0 l c Bange et al., submitted manuscript ( 1999) 

~ 14.S 64.6 May 1997 2000-4000 18.3 1.9 15.7 20.4 5 c Bangc et al., submitted manuscript [ 1999) 
14 4 66.9 Sept 1986 2500-3900 22.4 2.3 19.3 23.5 4 c Dange et al., submitted manuscript {1999] 0 

'" 12 67 Sept 1986 2250-4200 13.5 l.S 11.2 14.4 4 c Bangc et al., submitted manuscript I 1999) g II 64 May-July 1994 2000-3000 24 5.4 20 30 3 E la/ et al. [1996) 
10.1 64.7 May 1997 2000-4050 16.2 1.3 15.5 18.0 l c Bangc et a!., submitted manuscript [1999) 

~ 10 65 July 199S 2250-4400 15.7 2.2 12.7 19.6 7 c Bangc cc al., submitted manwcript (1999] 
8 67 Sept 1986 2000-4500 II 1.3 9.1 11.8 4 c Law and Owen, [1990J' V> 

6 65 July 1995 2050-4400 20.4 1.7 18.2 22.4 6 c Bangc et al., submitted manuscript ( 1999) 
4 67 Sept 1986 2000-3050 10.3 7.5 13.0 2 c Law and Owem ( 1990)" 
3 65 July 1995 2000-2800 19.1 2.3 16.5 21.l 5 c Bangc et al., submincd manuscript J 1999] 

South Indian 
-27.63 90 June 1987 2000-3000 22.0 20.5 23.4 2 c Butlere10/. [1988] 



Table 1. 

Latitude, Longitude, Date: Depth interval, Mc:an N20, so• Minimum, Maximum, Samples Calculated (Ct or Rc:fc:rcnce 
0 N or 0 s• 0 w•or 0 E m nmo!L"1 nmol i.:1 nmol L"1 nmol L"1 Estimated (El 

North Pacific 
48.4 155.6 May 1987 250~3100 28.6 25.9 31.3 2 c Butler et al. [ 1988) 
48 IS6.0 May 1987 390~5900 22.2 0.8 21.7 23.1 3 c Buller el al. (1988) 

47.7 156.3 May 1987 200H600 21.6 4.0 16.1 25.6 4 c Bui/er et al. [1988) 
47.5 156.5 May 1987 200~3900 22.6 21.6 23.6 2 c Butler et al. (1988) 
47.1 157.0 May 1987 250H600 24.6 1.4 23.6 26.2 3 c Butler et al. [1988) 
46.8 157.1 May 1987 250H900 22.0 1.5 20.4 24.1 4 c Butler et al. [1988] 
46.8 -126.8 July 1977 200~2500 25 24 26 2 E Coheft and Gordon f 1979] 
46.6 157.3 May 1987 295H500 23.2 1.2 21.8 24.1 3 c Buller et al. [1988] 
46.4 157.5 May 1987 295H900 22.4 1.0 21.6 23.5 3 c Butler et al. [1988) 
46.2 157.7 May 1987 250H900 23.1 1.8 21.6 25.0 3 c Butler et al. [1988] 
46.0 157.9 May 1987 250~5100 21.1 2.7 18.9 24.8 4 c Butler et al. [1988] 
45.8 158.1 May 1987 250~5000 20.8 3.0 18.7 25.2 4 c Butler et al. (1988) 
45.5 158.4 May 1987 295~3900 22.5 20.9 24.0 2 c Butler et al. [1988] 
4S.2 160.3 Aug.-Scpt.1983 2000-4800 24 3.8 19 30 II E Yoshida et al. (1989] 
28.1 152.9 Aug.-Sept.1983 250HOOO 26 3.4 22 29 3 E Yoshida et a/. (1989] 
22.4 170.1 Oct.-Dcc. 1993 2~5000 22.5 4.0 19 28 4 E Umi et al. [ 1998) 
22.8 -158.1 Oct-Dec. 1993 200~5000 22 3.0 20 26.5 4 E Usui et al. (1998) 
22.8 -148.0 Sept.-Oct 1996 200~3000 25.5 23 28 2 E Dore et al. (1998] 
22.6 -107.7 Dec. 1993 225~2500 25 I.I 24 2~ 3 E Yoshinarietal. (1997] 
15.1 -105.9 Jan. 1977 200~2750 18 17 19 2 E Cohen and Gordon (1979] 
10.8 -111.9 Jan. 1977 200~2500 18 16 19 2 E Cohen and Gordon (1979] 
0.1 -159 Oct-Dec. 1993 250~5000 20 1.4 18 20 3 E Usui et al. [1998} 

• West longitudes and south latitudes are given as negative values. 
" SO stands for standard deviation. 
e Calculated (C) indicates that the values are based on data listed in rcpons. Estimated (E) indicateS that the values arc estimated from figures in the given reference. 
II OriginaJ data set provided by C. S. Law. 
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Table 2. Overview of the data used in Figures I and 2. 

North Atlantic Ocean 
South Atlantic Ocean 
North Indian Ocean 
South Indian Ocean 
North Pacific Ocean 

13.6± 2.3 (4) 
16 (I) 

18.7 ±4 4 (28) 
22.0(1) 

22.7± 2.5 (22) 

Age of Deep Waler at 3000 m. b 
ycan 

153±66(6) 
46S (I) 

1227± 43 (5) 
12SO (I) 

J7S9 ± 176 (19) 

Data arc given as mean ± standard deviation. The number of profiles 
used for a"Vcraging is given in parentheses. 

• Based on the dala compilation in Table I. 
"Ba.red on the da1a set by BrMcker et al. [1988]. 

3. The choice of a 3000-m boundary would reduce the 
available data considerably, making an interpretation more 
difficult. 

Unfortunately, only a few data arc available as data reports, 
and thus we had to include data extracted from figures which are 
associated with an enhanced error for the extracted data. In order 
to keep the data uncertainties as small as possible, we generaJly 
did not consider N20 data presented as contour plots, and we 
considered only depth profiles with more than one point below 
2000 m. N20 concentrations arc usually given in nmol L-1 or 
ng L-1

• References reporting saturation values (in %) or excess 
N20 (i.e., &N10 in nmol L-1

), which require a correction 
introducing further uncertainties, were therefore not considered. 
Unfortunately, there are no data from the South Pacific and the 
Southern Oceans which match our criteria, and only a single 
profile was found for both the South Atlantic and the south 
Indian Oceans (Table I). The very early N20 measurements from 
the South Pacific Ocean reported by Craig and Gordon (1963] 
and from the North Atlantic Ocean reported by Junge et al. 
[ 1971] appear to be biased by analytical problems and thus arc 
not included in Table 1. Despite our rigorous selection criteria, 
we were able to tabulate mean N20 values from 56 depth profiles, 
providing for the first time an overview of the N20 distribution in 
deep waters of the world's ocean. 

3. Results 

The N20 data listed in Table I vary between 7 and 33 nmol 
L-1

• Surprisingly, the range for the data from the north Indian 
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Figure 2. Basin-averaged N20 concentrations in deep waters 
below 2000 m versus basin-averaged ages of the deep waters in 
JOOOm. 

Ocean, which exclusively consists of data from the Arabian Sea. 
is exceptionally high. The reason for this variability is unknown 
(but sec also section 4). From the mean values of each profile we 
calculated overall mean N10 concentrations for the major ocean 
basins (fable 2). The highest mean N,O value (22.7 ± 2.l nmol 
L-1

) was found for the north Pacific Ocean, whereas the lowest 
mean N20 value ( 13.6 ± 2.3 nmol L-1

) was found for the North 
Atlantic Ocean (Figure t). Decausc the deep waters of the North 
Atlantic, north Indian, and North Pacific Oceans represent the 
major starting and turning points of the global deep-water 
circulation system (i.e., the so-called conveyor belt system), we 
might argue that the observed N20 differences are caused by an 
accumulation on the two flow pnths from the deep North Atlantic 
to the deep North Pacific Oceans and from the Weddell Sea to the 
north Indian Ocean [Broecker, 1991; Schmitz, 199S; You, 1999]. 
To test this hypothesis, we considered the mean age of the deep 
waters al 3000-m depth in each ocean basin (Table 2) (Broecker 
el al., 1988]. We found a good correlation between the mean ages 
of the deep waters and the mean N20 concentrations, indicating 
that Nz() in the deep waters is accumulating with time (Figure 2). 
The slope of the linear regression (.S.7 t 1.0 nmol m-1 yr-1

) in 
Figure 2 can be set equal to an annual N10 accumulation rate. 
With the volume of about t. I !Ii x I 011 m1 for the depth range from 
2000 to 6000 m (,\fenard and Smith, 1966] we estimate an annual 
N20 accumulation of0.29 ± 0.05 Tgyr-•. 

4. Discussion 

What causes the observed N10 accumulation? There arc 
several possibilities: 

First, mixing of waters with different N20 concentrations may 
play a role. Transport of N20 into the deep waters is mai~ly 
driven by diapycnal diffusivity along N10 concentration 
gradients at the upper boundary of the dcep,-water layer (i.e .• 
2000 m). The diapycnal flux F,1 ofN20 can be paramcterized as 

Fd:-K dN,OI dz ~-K [(N,O),-(N,O),] /(h-z), 

where K is the diapycnal eddy diffusivity, dN20/dz is the 
concentration gradient, (N10)"' stands for the N20 concentration 
in depth h (above 2000 m), and (N,O), stands for the 
concentration in depth z (below 2000 m). Mean N20 
concentration gradients are listed in Table 3. N20 gradients in the 
North Atlantic Ocean arc close to zero, whereas the steepest N20 
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Table 3. Overview of the Calculated N20 Concentration Gradients Across 2000 m. 

Ocean Basin r-.fean dN20/dz, so.a Profiles Data Set Used" 
µmol m-4 µmol m-' 

North AUantic 
0.001 I Hahne ( 1977] 

> --0.00IC 4 Yoshmari [1976] 
South Atlantic 

-0.010' BMtleretal. [199.S] 
North Indian 

-0.011 0.009 19 Bangc et al., submitted manuscript [1999] 
-0.013 0.010 9 Law arrd Owen., (1990) 

South Indian 
-0.007 0.003 4 BMtleretal. (1988] 

North Pacific 
-0.009 0.002 12 Bulfer et al. [1988) 

Mean -0.007 

Negative gradients indicate that (NzO)A (i.e., above 2000 m) is greater than (NzO)z (i.e., below 2000 m). 
• SO stands for standard dC\'iation. 
II Sec also Table I. 
c Estimated from figure in the given reference. 

gradients were observed for the north Indian Ocean (i.e .• the 
Arabian Sea). The Arabian Sea appears to be the site of 
pronounced cross·isopycnal and dianeutral mixing processes 
[Brandes et al., 1998; You, 1999]. Mixing effects in connection 
with very high N20 values (up to 110 nmol L-1

) as round in the 
oxygen minimum zone (150-1200 m) of Ihe Arabian Sea [Law 
and Owens, 1990] might be the reason for the observed wide 
range of N20 concentrations of the Arabian Sea data listed in 
Table I. With a mean N20 gradient (dN20/dz) of aboul --0.01 
µmol m ... , a mean diapycnal diffusivity K for deep water of 0.1 x 
10 ..... m2 s-1 (Polzin et al., 1997], and an ocean area of290 x 1012 

m2 (i.e., the ocean area with water depths deeper than 2000 m 
[Menard and Smith, 1966]), we estimate a diapycnal flux of 
about 0.04 Tg N20 yr-•. This is about 13o/o of the N20 
accumulation in the deep waters, indicating a small contribution 
by vertical transport ofN20. 

Second, N20 may be emitted into deep waters through 
hydrothennal vents. The few measurements of N20 
concentrations in the hydrothennal vent waters of the Galapagos 
spreading centcr (0.8"N, 86.0°W) range from about 10 nmol L-1 

to about JJOnmol L"1 [Lilley et al., 1982]. The observed good 
linear correlations of the N20 vent concentrations with silica 
showed either positive or negative slopes. Thus Lilley et al. 
[ 1982] speculated that N20 might be consumed or produced in 
hydrothermal vents depending on the local rcdox potential. With 
the recent estimate of the global hydrothermal input of 0.15 ± 
0.11 Tmol Si yr·• [Treguer et al., 1995] and the observed N20 lo 
Si molar ratios of--0.034 x 10-1 and 0.178 x 10-3 [Lilley et al., 
1982], we estimate the global N20 input by hydrothennal vents to 
range from--0.0002 to 0.001 Tg N20 yr-1

• Thus we conclude that 
the contribution of hydrothermal systems to the deep-water 
accumulation of0.3 Tg N20 yr-1 is negligible. 

Third, N20 is produced in sediments by dcnitrification and/or 
nitrification and can be subsequently released into the water 
column above [Seitzinger, 1990, Usui et al., 1998). 
Unfortunately, only a few N20 fluxes from deep-sea sediments of 
the equatorial Pacific and the subtropical North Pacific have been 
reported [ Usui et al., 1998]. On the basis of the flux data by Usui 

et al. [1998] (which range from 0.17 to 0.23 nmol N m-2 h-1) and 
by applying a deep ocean area of290 x 1011 m2 (i.e .• the ocean 
area with water depths deeper than 2000 m [Menard and Smith, 
1966)), we extrapolate an annual N20 release of0.010 to 0.013 
Tg. The sedimentary flux represents about 3-4o/o of the N20 
deep-water accumulation of 0.3 Tg N20 yr-1 indicating that the 
N20 flux across the sediment-water column interface in the deep 
sea is of minor importance. 

Fourth, N20 could be produced in situ in the deep water. In 
most studies of oceanic N10 a positive linear correlation between 
excess N20 (11N20 = N20(observed) - N20(saturated)) and the 
apparent oxygen utilization (AOU Oi(saturated) -
0 2( observed)) was observed. This led to the prevailing view that 
during decomposition of organic material in the ocean, 
nitrification is the main source for oceanic N20 [Butler et al., 
1989; Cohen and Gordon, 1979; Yoshinari, 1976). Since most 
studies on oceanic N20 focus on the upper water column, only a 
few ~N20-AOU relationships including deep-water data are 
available [ Butler et al., 1989; Cohen and Gordon, I 979; Law and 
Owens, 1990; Naqvi and Noronha, 1991; H. W. Bange et al., 
Nitrous oxide cycling in the Arabian Sea, submitted to Journal of 
Geophysical Research, 1999 (hereinafter referred to as Bange et 
al., submitted manuscript)]. The good correlations of the ~N10-
AOU relationships found for the Pacific Ocean (Table 4) indicate 
that N20 in deep waters of the Pacific Ocean is produced by 
nitrification. Nitrification in the Arabian Sea deep waters seems 
to be biased by another process as indicated by the low 
correlation coefficient [Bange et al., submitted manuscript, 
1999). We speculate that down·mixing of water affected by 
denitrification might be the reason for the o-bserved low 
correlation [Bange et al., submitted manuscript, 1999) (see also 
above discussion about diapycnal mixing). 

The unexpected finding of the considerable 15N enrichment in 
deep-water N20 caused a controversy about the prevailing 
production mechanism in deep waters. Yoshida et al. [1989] 
proposed that denitrification in particulate organic matter is the 
major process, whereas Kim and Craig (1990] argued that N20 is 
produced by nitrification, which might be associated with a 
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Table 4 • .6.N20-AOU Relationships Which Include Deep-Water Data. 

Ocean Arca Slope (.;N,0/AOU) Intcrccpl R1 I Samples Depth Range, Reference 
m 

Eastern tropical North Pacific O.ll2± 0.013 -31.33 0.916/ 14 700-3ooo' Cohen and Gordon [1979} 

Northeastcm Pacific 0.218± 0.026 -46.2l 0.976/ l 1000-250011 Cohe11andGordon (1979] 
Western Pacific, eastern Indian 0.12l+0.00993 f -13.l not given O-l900 Bullerttal. [1989] 

Arabian Sea 0.1066+0.004ll f 3.20 notgi'r'CR 0-3loo' No'{llland Noronha (1991) 
Arabian Sea AOU<l97: 0.033 l.l significant at the 0-3l00 law and Owen, [ 1990] 

A0U>l97: OJI -49.4 1%1cvcl 
Arabian Sea 0.0910 -ll.O 0.14/46 2000-4500 Bange et al., submitted manuscript [19991 

0.0672 -11.0 0.2l/ ll 
0.3363 -68.4 O.ll / S 

AOU, apparent oxygen utilization. AN°lO is given in nmol L-1, and AOU is given in p.mol L-1• 
a l stands for temperature in °C. 
II Without data affected by dcnitrification. 

subsequent consumption by denitrification in the interior of 
organic particulates. In a recent study on nitrate respiration in 
aggregates in the bottom waters of the northeast Pacific Ocean, 
Wolgast et al. (1998] found that denitrification could occur in 
microzones of the aggregates. The observations by JYolgast et al. 
[1998) suggest strongly that (strictly anaerobic) denitrification 
can occur in (well-oxygenated) deep-sea environments, implying 
that denitrification could be potentiaJly involved in N 20 
production or consumption in deep waters. However, no N20 
fonnation rates were measured by Wolgast et al. [1998]~ 
therefore the question of whether nitrification or denitrification is 
the main N20 formation process in deep waters requires further 
experimental efforts. · 

On the basis of the above discussion, we conclude that N20 
accumulation in the deep ocean is resulting mainly from 
nitrification processes; however, denitrification cannot be 
excluded definitely. There also might be a small contribution by 
down mixing of Ni<) from upper layers. Hydrothennal and 
sedimentary N20 sources are most probably negligible. 

In Table S we present an overview of the current open-ocean 
N10 budget. The deep-water nitrification is about 12-16o/o of the 
global oceanic N20 produced by pelagic denitrification and about 
3-16o/o of the NP loss from the open ocean to the atmosphere 
(Table S). Obviously, the sum of the N20 produced in the deep-

Table 5. Global Budget for Oceanic N10 in the Open Ocean. 

Average Range Reference 
Tg NiO yr- 1Tg N10 yr-1 

Sources 
Deep-water nitrification 0.3 ± 0.1 this paper 
Net production \lia 2.2 1.9-2., 
pelagic denitrification• 

Sink 
Loss to atmosphere 6.3 1.9-10. 7 Nevison et al. (1995) 

tSourccs • Sink -3.8 

• Estimated on the basis of the global pdagic denitrification of 60-80 
Tg N yr- 1 (Codispoti ond Christensen, 1985; Gruber and Sarmiento, 
1997J, usuming that 2% is transfonncd to N10 u observed in the 
Arabian Sea [Bangc et al., submitted manuscript, 1999; Manloura et al., 
1993]. 

water and pelagic denitrification zones does not balance the N20 
loss to the atmosphere, implying an unrealistically high loss of 

oceanic N20. Assuming steady state for the oceanic N20 cycle, 
we can speculate that the missing N20 source of about 3.8 Tg yr-1 

is attributable to production by pelagic nitrification in the upper 
water column (above 2000 m). This sums up to an overall 
oceanic nitrification of 4.1 Tg N20 yr-1 (i.e., deep-water plus 
upper water nitrification). Considering the considerable 
uncertainties of the fluxes listed, we conclude that our estimate is 
only slightly higher than lhe recent estimate of 2.4 Tg N20 yr-' 
produced by nitrification in the open ocean [Capone, 1996}. In 
Capone's (1996] estimate, pelagic dcnitrification (6.7 Tg N20 
yr-1

) is the dominating open-ocean N20 source. In contra.5t, we 
conclude that nitrification could be the dominating source for 
N10 in the open ocean. This is in line with the results of Dore et 
al. (1998], who suggested that nitrification as the dominant N10 
production pathway could explain the observed isotopic signature 
ofN20 in the troposphere. 

5. Model 

Besides the observed N20 deep-sea accumulation, another 
question arises: what are the consequences of possible 
climatically induced changes in the pattern of the deep-sea 
circulation (i.e., the "conveyor belt" system)? 

With a simple box model we estimated the time variation of 
the N20 concentration in deep water (below 2000 m) in the 
period 1903-2063 A.D.: 

dC.,ddt=(Px' VNADW )+s-c..., v..,.. 
where x' is the atmospheric N20 dry mole fraction in ppb, VNAOW 

is the volume flow of the NADW fonnation in 106 m1 s-•. P is the 
solubility function for N20 in seawater, S stands for the observed 
N20 accumulation in deep waters, Y upw is the deep-water 
upwelling flow (which is equal to YNADw), ·and c..., is the mean 
N20 deep-water concentration. 

5.1. Input Parameters 

The deep-water N20 accumulation S was set to 0.3 Tg N20 
yr-1• The 1903 start value for x' was set to 278.8 ppb N20 [Baille 
et al., 1996] and 18 x 106 m1 s-1 for the North Atlantic 
Overturning [Sarmiento et al .• 1998]. Annual decrease rates of 
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Figure J. Model results of the temporal development of the N20 
fluxes in the deep sea: the dashed-dotted line represents F «n.ro1, 

the thin solid line represents FNADW, the thick solid line 
represents M, the thin dashed line represents N 20 accumulation 
in the deep sea, and the thick dashed line stands for Fu,-· 

0.01 x 106 m' ,-• (1903-1990) and 0.1 x 106 m' ,-• (1990-2065) 
for the North Atlantic Overturning were adapted from Sarmiento 
et al. ( 1998]. In a control run the overturning was set to a 
constant value of 18 x 106 m1 s-•. Annual tropospheric N20 
growth rates were set to 0.6% yr-1 (1903-1958) and 0.22% yr-1 

(1959-1990) [Batlle et al., 1996]. The annual N20 growth rate 
for the period 1990-2065 was modified to include an N20 
feedback effect due to changes in the uptake N20 by NADW 
formation. We did not account for interhemispheric differences 
resulting from the fact that the annual growth rates were derived 
from South Pole snowpack and NADW fonnation takes place in 
the Northern Hemisphere. However, since the annual growth 
rates for both the Southern and Northern Hemispheres seem to be 
in phase for the period considered. the small interhemispheric 
difference of about 1-l.S ppb N20 [Wei.r1, 1994} is negligible. 
Dissolved N20 concentrations were calculated with the solubility 
equation given by Weiss and Price (1980}, assuming that the N10 
concentration in the North Atlantic is always equal to the 
equilibrium concentration (neglecting seasonal variations ofN20 
in the North Atlantic surface water). This assumption appears to 
be reasonable since N10 surface concentrations from the North 
Atlantic Ocean arc mainly driven by the seasonality of the sea 
surface temperature (SSn. implying a mean annual N20 
concentration equal to the equilibrium value [Nevison el al., 
1995]. Moreover, we did not account for long-tenn trends of the 
SST and sea surface salinity (SSS) of the North Atlantic surface 
waters (in the model they arc fixed at 2°C and 359(,.,. 
respectively), because sensitivity studies of our model indicated 
that temporal changes in SST and SSS result in negligible 
changes of the annual N 20 fluxes. 

5.2. Results 

The resulting fluxes arc presented in Figure 3. The model 
results are given as N20 fluxes such as Fl:OffIOl (i.e., constant 
North Atlantic Deep Water fonnation), FNADw (i.e., temporal 
modulated fonnation ofNADW), Fuvw (i.e., the N20 flux out of 
the deep·sea into the intennediate layers), and M' (i.e., F-.u,1 -
FNADw). AF is a measure for the amount of N20 which is not 
"buried" in the deep sea, representing an indirect source for 
atmospheric N20. F,.,,,,. shows a maximum of 0.31 Tg N20 yr-• 

at the beginning of the century and, consequently, decreases 
when the NADW formation is reduced. Assuming that the N20 
production in the upper water layer at the beginning of the 

century was about the same as today (3.8 Tg N20 yr-1 for 
nitrification and 2.2 Tg N20 yr-1 for denitrification; see Table 5), 
we estimate that N20 upwelled into the upper water layers 
contributes less than 5o/o to the N20 sources in the upper ,, .. ater 
column. Thus the N20 surface distribution and, consequently, the 
N20 air-sea exchange are not significantly influenced by 
variations in the deep-water formation ofN20. 

The results for M' show a slight increase from 1903 until 1990 
correlating with the variations in the deep·water formation. The 
change in the annual atmospheric N20 growth rate in 1959 results 
in an increase of FNAOw, which does not yield a decrease of the 
rate of M'. From 1990 on, the accelerated slowing of the North 
Atlantic Overturning results in an accelerated increase of AF 
(Figure 3). The mean M' was calculated to be 0.017 Tg N 20 yr-1 

for 1990. This shows that the indirect N10 source by reduced 
NADW fonnation represents only about 0.4% of the annual N20 
growth rate of about 5.6 Tg in 1990. An arbitrarily introduced, 
complete shutdown of the North Atlantic Overturning (which is 
theoretically predicted to take place at a flow rate of 
approximately 10 x 106 m3 s-1 [Rahms/orf. 1998], a threshold 
value which will be reached in the year 2065, according to the 
model by Sarmiento el al. l 1998]) will result in a maximal 
atmospheric N20 source of 0.40 Tg yr-1• This is about 5.8% of 
the modelcd annual N 20 growth rate of 6.9 Tg for the year 2065. 

Our simple estimate does not include changes of the deep­
water fonnation in the Southern Ocean (e.g., in the Weddell Sea). 
A recent estimate yielded a flow rate of about 15 x 106 m1 s·•. 
indicating that deep-water formation in the Southern Ocean is of 
the same magnitude as the North Atlantic Overturning [Broecker 
e/ al., 1998]. Thus we conclude that the N20 fluxes presented in 
Figure 3 are conservative and could increase when including 
temporal changes in the deep-water formation in the Southern 
Ocean. 

6. Conclusions 

Despite the fact that the deep.water zone of the world's oceans 
represents about 95o/o of the total ocean volume, it contributes 
only about 3-16% (i.e., 0.3 Tg N20 yr-1

) to the global open­
ocean N20 production. This emphasizes the role of the upper 
ocean for the cycling of oceanic N10. 

A rough estimate of the oceanic budget N20 suggested that the 
loss to the atmosphere could be balanced only by an additional 
source of 3.8 Tg N20 yr-1 attributed to nitrification in upper 
waters (0-2000 m). 

The predicted decrease in the NADW formation rate in the 
near future will lead to an additional source of atmospheric N20 
in the range of about 0.02--0.4 Tg yr-1, amplifying the annual 
N20 growth rate, which in tum increases possible climatic 
changes via an enhanced greenhouse wanning effect and thus 
might lead again to changes in the NADW formation. llowever, 
the signal of this (anthropogenicatly induced) feedback 
mechanism is small and will be very difficult to detect against the 
natural variations in the annual growth rates of tropospheric N20. 
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Nitrous oxide cycling in the Arabian Sea 
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Abstract. Depth profiles of dissolved nitrous oxide (N20) were measured in the central and 
western Arabian Sea during four cruises in May and July-August 1995 and May-July 1997 as part 
of the Gennan contribution to the Arabian Sea Process Study of the Joint Global Ocean Flux 
Study. The vertical distribution ofN20 in the water column on a transect along 65°E showed a 
characteristic double-peak structure, indicating production of N20 associated with steep oxygen 
gradients at the top and bottom of the oxygen minimum zone. We propose a general scheme 
consisting of four ocean compartments to explain the N 20 cycling as a result of nitrification and 
denitrification processes in the water column of the Arabian Sea. We observed a seasonal N 20 
accumulation at 600-800 m near the shelf break in the western Arabian Sea. We propose that, in 
the western Arabian Sea. N 20 might also be fonned during bacterial oxidation of organic matter by 
the reduction of!O,-to 1-, indicating that the biogeochemical cycling ofN20 in the Arabian Sea 
during the SW monsoon might be more complex than previously thought. A compilation of sources 
and sinks ofN20 in the Arabian Sea suggested that the N20 budget is reasonably balanced. 

I. Introduction 

Nitrous oxide (N20) is an atmospheric trace gas that 
significantly influences. directly and indirectly, Earth's climate. 
In the troposphere it acts as a greenhouse gas and in the 
stratosphere it is the major source for NO radicals, which are 
involved in one of the main ozone reaction cycles [Prather et al., 
1996]. 

Recently published source estimates indicate that the world's 
oceans play a major, but not dominant, role in the global budget 
of atmospheric N20 (Bouwman et al., 1995; Khalil and 
Rcumussen, 1992]. Most of the world's ocean surface layer is 
near gas-exchange equilibrium with the atmosphere [,Vevison et 
al., 1995], whereas a subsurface N20 accumulation is generally 
associated with the oxygen (02) minimum {e.g., Butler et al., 
1989; Cohen and Gordon, 1979; Naqvi et al., 1994; Oudot et al., 
1990]. Significant N20 depletion was observed in water masses 
showing intense denitrification, that is, anoxic basins [Cohen, 
1978; Elkins et al., 1978; Hashimoto et al., 1983; Ronner, 1983] 
and oxygen depleted (suboxic) water bodies (for an overview see, 
Codispoti et al. [1992]). In most studies of oceanic N20, a 
positive linear correlation between excess N20 (.6.N20 = 

N20(observed) - N20(saturated)) and the apparent oxygen 
utilization (AOU - 0 2(saturated) - 0 2(observed)) was observed. 
This led to the prevailing view that during decomposition of 
organic material in the ocean, nitrification (NH4 • ------)> N02 - ------)> 

N03-) is the main source for oceanic N20 [Butler et al., 1989; 
Cohen and Gordon, 1979; Elkins et al., 1978; Oudot et al., 1990; 

· Yoshinari, 1976]. Based on recent dual-isotope measurements, 
Dore et al. [1998] suggested that N20 production via nitrification 
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at the interface of the euphotic-aphotic zone plays an important 
role in the global tropospheric N20 budget. However, from 
isotope measurements of the 015N and 0180 values of N20 in 
deep water, it is still under debate whether nitrification or 
denitrification (N03--> No2--> N20 4 N 2) is the dominant 
production pathway in deep water [Kim and Craig, 1990; 
Yoshida et al., 1989]. At the boundaries of oxygen-depleted 
water bodies, both nitrification and denitrification or a coupling 
of both processes may produce N20 [Codispoti and Christensen, 
1985; Law and Owens, 1990; Naqvi and Noronha, 1991; Naqvi 
et al., 1998; Upstill-Goddard et al., 1999]. Here we present our 
measurements of nitrous oxide in the water column of the central 
and western Arabian Sea during the intermonsoon and southwest 
(SW) monsoon periods in 1995 and 1997. 

2. Study Area and Sampling Locations 

The northwestcrn part of the Indian Ocean is defined as the 
Arabian Sea (Figure I). It is surrounded by the African and Asian 
continents to the west, north, and east. The southern boundary is 
usually set at the equator. The Arabian Sea experiences extremes 
in atmospheric forcing that lead to the greatest seasonal 
variability observed in any ocean basin. During the SW monsoon 
(late May to September), the strongest sustained wind stress is in 
the highly sheared Findlater Jet. The axis of the Findlater Jet 
extends generally from northern Somalia to northwestem India. 
During the SW monsoon, coastal upwelling is driven by Ekman 
divergence of surface water off shore owing to the influence of 
winds parallel to the coast. The region of coastal upwelling exists 
up to 400 km off the Arabian Peninsula. Down welling occurs on 
the southeastcrn side of the Findlater Jet, driving subduction of 
surface waters into the therrnocline and promoting deepening of 
the mixed layer. 

The Arabian Sea contains diverse biogeochemical features 
such as eutrophic, oligotrophic, and low-oxygen environments. 
The latter lies between 150 and 1000 m depth and represents the 
thickest oxygen minimum zone (OMZ) found in the world's 
oceans today. The OMZ of the Arabian Sea is the site of intense 
denitrification processes and thus plays a major role in the global 
nitrogen cycle. For further details about the oceanographic and 
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Figure 1. Map of the Arabian Sea with locations of selected stations where N20 measurements were perfonned 
during the German JGOFS - Arabian Sea Process Study in 1995 and 1997 (for further details see Table 1). The two 
straight lines indicate the NS and NWSE transects as described in the text. The dashed arrow indicates the axis of 
the Findlater Jet. The dashed circle indicates the approximate distribution of the core of the denitrification zone as 
indicated by the secondary nitrite maximum (N02- > 1 µmol L-1) [Naqvi, 1994]. 

biogeochemical aspects of the Arabian Sea, the reader is referred 
to literature compilations presenting results from ongoing 
international research programs such as the Joint Global Ocean 
Flux Study (JGOFS)- Arabian Sea Process Study (Burkil/, 1999; 
Burki/I et al., 1993; Desai, 1992; Gage et al .. 2000; /ttekkot and 
Nair, J 993; Krishnaswami and Nair, 1996; Lal, 1994; Smith, 
1999. 1998; Van Weering et al., 1997]. A comprehensive 
overview of the historical, geological, hydrographic, chemical, 
and biological aspects of the Arabian Sea in the context of the 
Indian Ocean is given in a recently published book by Rao and 
Griffiths (1998]. 

. The four cruise legs discussed here were part of the German 
JGOFS - Arabian Sea Process Study and took place on the 
German research vessels Meteor (M) and Sonne (SO) in May 
1995 (leg M32/3), July-August 1995 (leg M3215), May-June 
1997 (leg SOl19), and June-July 1997 (leg 50120). Legs 
M32/3, M32/5, and SOl 19 covered mainly the central Arabian 
Sea, whereas leg SOl 20 focused on the coastal upwelling area off 
the Arabian Peninsula (Figure t ). 

3. Method 

Duplicate water samples from various depths were drawn into 
100-mL glass flasks from bottles mounted on a rosette water 

sampler. Flasks with two outlets closed by Teflon valves and one 
outlet sealed with a silicone rubber septum for headspace 
sampling (Thermolite®, Restek GmbH, Germany) were used. The 
flasks were rinsed twice with at least two flask volumes of 
seawater prior to bubble-free filling with the seawater sample. 
Then .50 mL of the sample was replaced with helium and the 
remaining water phase was poisoned with saturated HgCJi 
solution (0.2 mL) (Elkins, 1980; Yoshinari, 1976]. Samples were 
stored at constant room temperature and allowed to equilibrate 
for at least 2 hours prior to chromatographic analysis. All samples 
were analyzed within 12 hours after collection. Prior to analysis, 
the samples were stirred with a magnetic stirrer for .5 min. A I 0-
mL subsample of the headspace was drawn with a gas-tight glass 
syringe from the tlask and used to purge a thermostated { 40°C), 
2~mL sample loop connected to a I 0-port gas stream selecting 
valve. Then the valve was switched and the sample was injected 
with the carrier gas onto the column. N20 was determined using a 
gas chromatograph (Model 5890 Series II, Hewlett-Packard, 
California) equipped with an electron capture detector (ECD). 
The ECD (Model 19233, Hewlett-Packard, California) was held 
at a temperature of 350°C. The analysis was carried out at l 90°C 
using a stainless steel column ( 1.83 m length, 3.2 mm OD, 
2.2 mm ID) packed with washed molecular sieve .SA (mesh 
801100, Alltech GmbH, Germany). A mixture of Ar/CH, 
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Figure 2. Characteristic response curve of the electron capture detector used in this study. We measured eight 
calibration gas mixtures: 299.0 ± 0.2, 300.5 ± 0.1, 349.6 ± 0.2, 380.5 ± 0.3 (all calibrated against the SI0-1993 
standard scale (R. F. Weiss, personal communication, 1996), and 281, 460, 618, and 1125 ppb N20 in synthetic air 
(± 2o/o; Deuste Steininger GmbH, MOhlhausen, Germany). The dashed line represents a linear fit through the points 
at 300.5 and 349.6 ppb N20 (correlation coefficient r2 = 0.9977, number of samples n = 19). The solid line 
indicates a quadratic fit (y = --0.0458.x2 + 364.72:t, ,J- = 0.9996, number of samples n = 47). Read 4E+05 as 4xl0'. 

(95o/o/5o/o) was used as the carrier gas at a flow rate of 
45 mL min-1

• On a molecular sieve 5A column, C02 elutes after 
N20; the peaks are well separated under the conditions applied 
[AfcAllister and Southerland, 1971]. The use of the Ar/CH4 

mixture as carrier gas enhances the ECD sensitivity for N20 and, 
additionally, avoids possible interferences from residual effects in 
the ECD owing to high C02 concentrations [Butler and Elkins, 
1991]. 

Mixtures ofN20 in synthetic air were used to obtain two-point 
calibration curves. These mixtures contained 300.5 ± 0.1 and 
349.6 ± 0.2 ppb N20, separately. These are gravimetrically 
prepared gas mixtures and were calibrated in the laboratory of 
R. F. Weiss (Scripps Institution of Oceanography (SIO), 
California), against the SI0-1993 standard scale (R. F.Weiss, 
personal communication, 1996). To account for the nonlinear 
ECD response [Butler and Elkins, 1991], we applied a quadratic 
regression (y = ax1 + bx) for all values <300 ppb and a linear 

,regression for values >300 ppb. Thus N20 values in the range 
from 350 to 1050 ppb, which is above the range covered by the 
calibration gases, may be overestimated by as much as 2% owing 
to the linear regression applied (Figure 2). Concentrations of 
dissolved N20 were calcul~ted as follows: 

[N20Jdiuolved = £N20]w.iusample + £N201head1pace 

= x'f](T, S)P + x'Pl(R1) 

and x' = xl(P-PH,o), where x' is the N20 dry mole fraction, p 
is the solubility function [1Veiss and Price, 1980], T is the 
temperature of the sample at the time of the analysis, S is the 
salinity, P is the atmospheric pressure at the time of the analysis, 

R is the gas constant. x is the measured N20 wet mole fraction in 
the headspace, and PHio is the water vapor pressure according to 
Weiss and Price [1980]. 

To check our method for systematic errors (e.g., efficiency of 
equilibration), we cross checked the values obtained by the 
method described above with the data from a well-established 
automated equilibration system for underway N20 measurements 
in the surface layer. This system was run on board during the 
same cruises in 1995 and 1997 [Bange et al., 1996, 2000]. The 
comparison shows a good agreement between both data sets 
(Figure 3), indicating that systematic errors are mainly introduced 
by the manual handling of the discrete samples. In order to 
calculate the theoretical overall analytical precision of our 
measurements, we assumed typical values and error ranges of 
1±0.05 atm, 25±1°C, 35±0.1%o, and IOO±IOppb for the pressure, 
equilibration temperature, salinity, and wet mole fraction, 
respectively. Computation of the error propagation gave an 
overall measurement error (i.e., 6[N20]diuolved) of±0.78 nmol L" 1

• 

This results in a relative error (6£N20]diuotveoffN20]dino1ved) of 
±12.4%. The computation of 6[N20]dissoi~ec1 is most sensitive to 
errors in pressure, whereas errors of the equilibration temperature 
and salinity are less important. For example, an error of ±0.05 
atm for the pressure results in an error of±7.2%, whereas an error 
of ±1°C results in an error of ±lo/o for 6[N20]dinolved· The 
precision of the measurements estimated from four replicate 
samples with an average concentration of 35.2 nmol L-1 was 
7.7 %. This is in reasonable agreement with the theoretical 
overall error estimate given above. 

Each N20 depth profile is a composite of two casts covering 
different depth ranges collected at the same station within 24 
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Figure J. Comparison ofN20 surface concentrations measured by the discrete sampling method as described in the 
text (water depths S-20 m) and a continuous equilibration system (pumping from 7 m water depth) [Bange at al., 
1996]. Solid squares represent data from M32/3 and M32/3. The dashed line is the linear regression for the data set 
from MJ2/J and MJ2/S (y = 0.924x + 1.08,? = 0.98, n = 12). Solid triangles represent data from SOI 19 and 
50120. The solid line is the linear regression for the data set from SOI 19 and 50120 (y = 0.997x + 0.26,? = 0.97, 
n = 16). 

hours. Equilibrium concentrations of dissolved N20 and Oz were 
calculated with the equations of Weiss and Price (1980] and 
Weis.1 [1970], respectively. We used an atmospheric N20 dry 
mole fraction of 309 ppb [Bange et al., 1996] and J 11 ppb 
(H. W. Bange et al., unpublished data, 2000) for the calculation 
of the N20 equilibrium concentrations in 199S and 1997. 
respectively. Potential seawater temperatures were calculated 
with the equations listed in Siedler and Peters [ 1986). Salinity. in 
situ water temperature, and nutrient data were taken from data 
compilations of measurements perfonned simultaneously to the 
water sampling (F. Pollehne et al., unpublished data, 1996; 
B. Zeitzschel et al., unpublished data, 1996, 1998; V. lttekkot et 
.al., unpublished data, 1998). All data presented are available 
from the Gennan JGOFS Data Management Office 
(http://www.ifm.uni-kiel.de/pl/dataman/dmpag I .html). 

4. Results and Discussion 

Some selected stations (Table 1) were grouped into a north­
south (NS) transect from 24.7'N to lO'N along 6S'E during the 
intennonsoon period and into a northwest-southeast (NWSE) 
transect from 18.S'N, 56.S'E to I 4.5'N, 65°E during the SW 
monsoon. (These transects are partly identical with the U.S. 
lGOFS standard cruise track in the Arabian Sea [Smith, 1998].) 

Depth profiles of the dissolved N20 and 0 2 along the NS and 
NWSE transects are shown in Figures 4 and S. respectively. 

4.J. NS Transect 

The shapes of the N20 profiles from the NS transect from the 
shelf break off Pakistan (24. 7'N) to the central Arabian Sea 
( I 4.S0 N) are clearly associated with the extremely low 0 2 
concentrations (0 < 0 2 < 20 µmol L-1 or expressed in volumetric 
units O < 0 2 < 0.25 mL L"1

) in the OMZ in the Arabian Sea 
(figures 4b--4d). These profiles have a characteristic double-peak 
structure. In the upper water column a marked increase in the 
N20 concentrations from S--6 nmol L-1 in the surface layer to 
about 25-55 nmol LO at I SO m depth fonns the first sharp N20 
peak. This peak is followed by a pronouriced depletion of 
dissolved N20 at about 200--SOO m water depth; even 
undersaturations with concentrations lower than S nmol L-1 were 
observed. This depletion of dissolved N20 is most pronounced 
between 20° and I S°N (Figures 4c-4d). N20 concentrations 
incri:ase again up to 60 nmol L-1 at about 800 m to form the 
second N20 peak (Figures 4c-4e). followed by a decrease with 
depth to values of IS nmol L-1 in the deep and bottom waters. 
The profiles south of 1 O~. which are outside the zone of 
extreme 0 2 depletion in the OMZ as indicated by comparably 
higher 0 2 concentrations (Figure 4f), generally showed a 
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Tablet. List of the Selected Stations \\i'here N20 ~feasurements 
\Vere Performed During the German JGOFS -Arabian Sea 
Process Study in 1995 and 1997' 

Station Position Date Cruise 

NS Transect 
EPT 27.7°N, 6S.8°N May 1997 SOll9 
NAST 20.0°N, 65.8°E May 1997 SOll9 
DJ' 18 0°N, 65 0°E May 1995 Ml2/J 
CAST 14.S"N, 65.0°E May 1997 SOll9 
SAST/D2 i0.0°N, 65.0°E May 1997 SOll9 

NIYSE Transect 
CAST 14.5°N, 65.0°E July 1995 M32/5 
T2 16.0°N, 62.0°E July 1997 SOl20 
Tl 17.5°N, 59 l"E July 1997 50120 
T4 18.1°N, 58.0°E August 1995 Ml2/5 
T5 17.l°N, 57.9°E July 1997 50120 
T6 I 7.8°N, 57.6°E July 1997 50120 
Shelf 18.l°N, 56.l°E June 1997 50120 

I See also Figure I. 
b Measurements restricted for the depth range 0-2000 m. The profile 

is a composite of four casts from various depth ranges. 

completely different shape of the profile. An accumulation of 
N20 from the surface (up to 37 nmol L-1 between 500 and 1000 
m) is followed by a decrease with depth (15 nmol L-1 in the deep 
and bottom waters) (figure 4f). 

Previous measurements of the depth distribution ofN20 in the 
Arabian Sea were performed in the central and western regions 
by Law and Owens [ 1990] (September-October 1986) and 
Upsti/1-Goddard et al. (1999], and in the central and eastern 
regions by Naqvi and Noronha (1991] (December 1988), Lal et 
al. (1996], and Patra et al. (1999] (April-May 1994, February­
March 1995, July-August 1995). There is good agreement 
between the shapes of previously reported N20 profiles and those 
presented in Figure 4. Doth Lal et al. [ 1996] and Naqvi and 
Noronha [ 1991} also describe almost identical double-peak 
structures for stations in the northern central Arabian Sea 
(compare Figures 4b and 4c). However, there might be slight 
trends for the reported concentrations. Our maximum 
concentration along the NS transect was 58 nmol L-1 for the 
second N20 peak at 18°N, 65°E (Figure 4d), whereas Naqvi and 
Noronha [1991] and Patra et al. [1999] observed concentrations 
up to 80 nmol L · 1 for the second N,O peak at 2 l.8'N, 64.6'E and 
I 8°N, 67'E. Law and Owens' (1990] maximum N,O 
concentration along their NS transect along 67°£ was 59 nmol L­
I at 14.5°N, 66.9°E. Undersaturations in the core of the OMZ 
(compare Figures 3c and 3d) were also observed by law and 
Owens (1990] and Naqvi and Noronha [1991] but not by Patra 
etal. (1999]. 

Comparison of the results from the various studies suggests 
that the distribution of N20 in the central Arabian Sea is only 
partly known. Differences in the observed N20 concentrations 
might result from the different spatial data coverage and/or 
temporal (i.e., seasonal and interannual) variability in !he Arabian 
Sea (see also the discussion of the 6N20-AOU relationships 
below). Profiles of N20 typically show an accumulation in the 
OMZ of oceanic subsurface layers, most probably owing to 
nitrification [Dore et al., 1998]. Ho""·ever, when ex:treme 0 2 
gradients at the boundaries of the OMZ exist, conditions become 
ideal for enhanced NzO production by nitrification at low 0 2 
concentrations as well as for N20 production by denitrification. 

Thus the first N20 peak observed at approximately I SO m in the 
central Arabian Sea might result from a coupling of both (.V-aqvi 
et al .. 1998; ,\'aqvi and J..'oronha, 1991]. Recent dual·isotope 
measurements indicate that denitrification might be the major 
production pathY•ay for the second N10 peak at the lower 
boundary of the 0!112 in approximately 800-IOOO m depth 
[lVaqvi et al., 1998]. The pronounced N20 depletion in the core 
of the OMZ results from N10 reduction to N1 during intense 
denitrification at extremely low 02 concentrations [Naqvi and 
Noronha, 1991]. Thus we conclude that the N,O profiles at the 
NS transect rencct typical vertical distributions within (> I 0°N, 
Figures 4b-4e) and outside (<10°N, Figure 4t) the denitrification 
zone. Our results are in agreement with previously published 
ideas about the dominating N20 production and consumption 
proceSscs in the central Arabian Sea. 

4.2. NWSE Transect 

The distribution of dissolved N20 on the NWSE transect 
appears to be more complex. The shape of the profile from station 
CAST (Figure 5b) indicates the characteristic double-peak shape 
for profiles from the northern part of the NS transect. Going 
further northwest to station T2 at l6°N, 62°E (Figure 5c). the 
typical upper N,O peak at about 150-200 m was only weakly 
developed. However, following the transect further to the coast. 
the double-peak structure was again visible at stations T3, T4, 
and T5 (Figures 5d-50. The N,O profile at the shelf break off 
Oman (Figure .5g) is similar to the one observed at the shelf break 
off Pakistan (Figure 5t); however, the concentrations are higher 
at the coast off Oman. The highest concentrations (up to 64 nmol 
L-1

) during the German JGOFS cruises were observed at 700 m 
depth at station T4 ( l 8°N, 58'E) (Figure le). Over the shelf with 
water depths of about 80 m, dissolved N20 accumulates from 20 
nmol L-1 in the surface layer to 40 nmol L - 1 in the bottom layer 
(figure 5h). The results of Law and Owens [1990] and Upsti/1-
Goddard et al. [ 1999] also showed high N,O concentrations (up 
to t.N,O of I04 nmol L-1 [Law and Owens, 19901) in the western 
Arabian Sea. which are as high as those from the central Arabian 
Sea. Recently published N20 profiles by Upstill-Goddard el al. 
(1999] from a similar NWSE transect, which was located north of 
the German JGOFS transect, are in general agreement with ours. 

The temporal development of the distributions of N20 and 0 2 
on the NWSE transect during three cruises in July-August 1995, 
May 1997 and June-July 1997 is shown in Plate L Using data 
from two different years may introduce a bias owing to a possible 
interannual variability; however, since we will focus on a 
qualitative rather than a quantitative interpretation our approach 
might be reasonable. The 0 2 depleted layer (<20 µmol L-1

) 

extends to the :;helf of the Arabian Peninsula. showing only a 
modest temporal variation (Plates Id-It). In contrast, the N20 
concentrations show a considerable seasonal signal (Plates I a­
I c). While during May 1997 (Plate la), an N,O plume 
originating from the central Arabian Sea is visible, the situation 
during the early stage of the SW Monsoon (June-July 1997, 
Plate lb) and during the fully developed SW Monsoon (July­
August 1995, Plate le) is completely different. During the SW 
Monsoon the development of a strong local source of N20 near 
the shelf break at 700 m depth (corresponding to a potential 
density (Ge) of 27.3) is obvious. Either an in situ source (e.g., 
denitrification) or a seasonally occurring boundary current 
transporting N20-enriched ""·ater might be the reason for the 
observed enhanced N20 concentrations: 

I. Water mass analysis indicated that Red Sea \\o'ater with a 
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core a, of 27.2 at 600-700 m was not detectable, probably 
because its inflow to the Arabian Sea is usually blocked during 
the S\\' ~1onsoon [.\lorrison et al.. 1998; Shenoi el al., 1993]. 
Instead, Y.C can speculate that an inflow of N20-enriched water 
from the Somali Basin (De Wilde and Helder, 1997] through the 
Socotra Passage might occur (Schott e1 al., 1997; You, 1997]. 

2. The 0 2 concentrations in the OMZ on the NWSE transect 
were depleted in 0 2, comparable to those in the central Arabian 
Sea and faYoring conditions for denitrification. However, the 
0~12 of the western Arabian Sea is not characterized by the 
permanent secondary nitrite (N02-) maximum [Jforrison et al., 
1998), which is often used as an indicator for the occurrence of 
denitrification [1\'aqvi, 1991). 

Interestingly, Farrenkopf et al. (1997] found extremely high 
subsurface maxima of iodide (I} near the Arabian Peninsula 
(around I 7°N. 57°E) at 600-800 m depth (a, - 27.3-27.5). They 
concluded that. within the OMZ, organic matter decomposition 
via bacterial reduction of iodate (103} to r could be as important 
as denitrification. A possible decomposition of organic matter via 
oxidation by 101- to yield N20 might be written as follows: 

81.3 IO,- + (CH,O),,.(Nll,) 16H,PO, 

-> 81.3 r + 106 co,+ 8 N,O + 130 H,o + H,PO,. 

Following the concept of Froelich et al. [ 1979] (tiG0 data 
were taken from Stumm and }./organ { 1996)), we calculated for 
the reaction given above a 6G° = -2712 kJ per mole glucose, 
which is comparable with 6G' values given for the oxidation of 
organic matter by 10,- yielding NH, (-2605 kl mor'). HN0

3 
(-

2804 kl mor'), or N, (-3047 kl mor') [Farrenkopf et al., 1997]. 
Despite the fact that the r data from Farrenkopf et al. ( 1997] are 
from the transition from the SW monsoon to the intermonsoon 
(October 1992) and might be therefore not representative for the 
peak of SW monsoon (July-August), we speculate that the 
observed enhanced N20 concentrations might be coupled to a 
bacterially mediated 101 _/I_ cycle. The mean decomposition of 
particulate organic matter between 505 and 809 m water depth at 
U.S. lGOFS station S2 (18.1°N, 58°E) measured during the 
spring intermonsoon and SW monsoon 1995 was about 1.5 µmol 
C m

1 
d-

1 
[Lee el al., 1998]. Converting this with the molar ratio 

ofN20 to organic carbon of 8/106 (see equation above) yields a 
theoretical N20 production of 0.113 µmol m1 d-1• From our 
measurements we estimated an accumulation ofN20 between 500 
and 800 m of about 20 nmol L-1 from May to August (Plates la-­
le). Assuming that this accumulation is representative for the 
time interval of the organic flux measurements (204 days), we 
estimated the N20 production to be about 0.098 µmol m3 d-1• 

Thus the observed N20 accumulation is slightly lower than the 
theoretically predicted N20 production, indicating that the 
decomposition of organic carbon via the 103 _/I_ mechanism might 
contribute to the N20 production. 1-lowever, it is very unlikely 
that almost all organic carbon is converted to N20. More likely a 

. mixture of N20 and more energetically favored produclS (e.g., 
N2) will occur. We conclude that there is not yet a satisfactory 
explanation for the local source of N20 at the shelf break in the 
v.:estem Arabian Sea; neither an inflow event nor enhanced N

2
0 

production via denitrification or other mechanisms have been 
substantiated. 

4.3. tiN,0-AOU Relationship 

As mentioned in the introduction, a positive correlation 
between 6N20 and AOU, indicating N20 formation via 
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Table J, Rates ofN20 Production in the OMZ (02 < 0.25 
mL L-1

) of the Central Arabian Sea 

May 1995 
July-Aug. 1995 
May 1997 
June-July 1997 
Average 

Integrated j,N~0.1 Range ofN20 Production Usinf 
1- / I 0-Year Ventilation Time. 

Tg N20 Tg N20 yr- 1 

2.5 
1.9 ± 0.5 
1.6 ± 0.3 
2.4 ± 0.5 

2.1 

2.510.25 
1.910.19 
1.610.16 
2.410.24 
2.1/ 0.21 

• Calculated as mean vertical integrated ti.N20 times area of the 
OMZ affected by denitrification (1.95 x 1012 m2, [Naqvi, 19911). 

" One-year ventilation time according to Naqvi and Shailaja 
[1993]; 10-year ventilation time according to Olson eJ al. ( 1993). 

nitrification, is found in a variety of oceanic environments. An 
overview of previously published .&N20-AOU relationships for 
the Arabian Sea together with those calculated on the basis of our 
N20 data is presented in Table 2. Jn a recent study, Upstill· 
Goddard el al. [ 19991 showed that a second-order polynomial 
gave the best statistical fit to their data from the western and 
central Arabian Sea. \Ve found considerable differences between 
the various .1.N20--AOU relationships. Even for data from the 
same year and season (e.g., July-August 1995, Table 2), the 
values differ considerably and could be explained only by a 
different spatial data coverage. Seasonal or interannual trends 
might be obscured in the data for various reasons, such as the 
difference in the yield of N 20 production owing to the 
composition and the amount of organic matter to be oxidized or 
to an additional N20 source, e.g., assimilatory nitrate reduction 
(Elkins et al., 1978). Assimilatory nitrate reduction (N01- --+ 
N02- --+ NH4) was proposed by some authors as a possible 
source of N 20 in nitrate-enriched waters, e.g., in upwelling 
regions; however, this hypothesis has never been proved [Oudot 
et al., 1990; Pierotti and Rasmussen, 1980). tvlost dN20--AOU 
relationships for the Arabian Sea are based on data sets excluding 
data affected by denitrification in the OMZ (i.e., 0 2 < 0.25 mL L-
1). This indicates a shift in the pathways of N20 production from 
nitrification to denitrification in the OMZ of the central Arabian 
Sea, which can not be represented by the common .1.N20-AOU 

relationship. The situation is even more complicated because N,O 
can also be consumed during denitrification, leading to low N;o 
values in the core of the OMZ in the central Arabian Sea. Despite 
the fact that the dN20--AOU relationships for deep water (>2000 
m) are statistically not significant, they all show similar positive 
trends comparable to those observed for the upper ocean (Table 
2). Thus y..·e can speculate that nitrification is still the main 
pathway for N20 production, but it might be balanced by 
subsequent N20 reduction via denitrification as proposed by Kim 
and Craig [ I 990]. 

4.4. N10 Budget for the Arabian Sea 

To obtain knowledge of the N20 production in the Arabian 
Sea, we estimated N20 production for the OMZ affected by 
denitrification (02 < 0.25 mL L-1

) (Table 3). For this purpose we 
calculated the N20 column abundances, defined as the vertically 
integrated profile of dN20. With the mean dN20 calculated for 
each leg, it is possible to estimate the net N20 production within 
the OMZ, assuming an area for the denitrification of 1.95 x 1012 

m2 [,Vaqvi, 1991] and a ventilation time of 1-10 years [Naqvi and 
Shailaja, 1993; Olson et al., 1993]. The applied OMZ area 
affected by denitrification is 30o/o higher than the revised value of 
1.37 x 1012 m2 recently proposed by Naqvi (1991]. However, 
using a larger area appears more appropriate to account for the 
area distribution of the N20 production processes (see discussion 
of the N\VSE transect above). rvtoreover, the considerable range 
in the OMZ ventilation times (1-11 years) reported in the 
literature (for a discussion see Naqvi (1994]) introduces a more 
significant uncertainty. 

Annual N20 production in the OMZ was previously calculated 
to be 0.4 Tg by Mantoura et al. (1993] on the basis of the 1986 
data set of Law and Owens [1990). However, Alantoura et al. 
[1993] used a lO·year ventilation time: thus their value can be 
considered as a lower limit. Applying a ventilation time of 1 year 
scales their value up to 4 Tg N20 yr-1

• A comparison with our 
results (0.2-2 Tg N20 yr·1

• Table 3) reveals that the results are in 
reasonable agreement, despite possible biases due to seasonal and 
interannual variabilities. We calculated a mean N20 production 
in the OMZ of LI Tg yr1 (i.e., 0.7 Tg N yr1

) which represents 
about 2o/o of the mean pelagic denitrification of about 33 Tg N yr-
1 [Bange et al., 2000]. 

Table 4. N20 Budget for the Arabian Sea North of 6°N 

Net N20 production in the OMZ 

N20 input by Red Sea and Persian Gulf 
N20 input across 6°N 

Loss to the atmosphere 
Loss in eastern margin sediments 

Sources - sinks 

Sources 
1.7 

O.oJ' 
0.1 

Sink.r 
0.4 
LJ 

0.13 

Range, 
Tg N20 yr·• References 

0.2-2 
0.4--4• 
0-0.06c 
0-0.2' 

0.2-0.6 
not given 

this study, Table 3 
Mantoura eJ al. (1993) 

this study, Figure 6 

Bange et al. (2000] 
Naqvi and Noronha (1991) 

I Original value of0.25 Tg N yr-1 (0.4 Tg N20 yr· 1
) scaled to an OMZ ventilation time of] years. 

b Rhein et al. (1997) estimated inflows of0.3 x: 106 m1 s-1 for Red Sea (a8 ::: 27.2/ and 0.18 x: J06 m1 s·1 for 
the Persian Gulf(ae = 26.6) waters. Associated N20 concentrations were 60 nmol L-, estimated from De Wilde 
and Helder's [1997] station 276-04 (400-700 m) in the Gulf of Aden in August 1992, and 21 nmol L-1 calculated 
from law and Owen.S"' [1990] northernmost station (station 11, 24.8°N, 57.2°E, September 1986) in the Gulf of 
Oman. 

c We assumed an error of ±100% owing to the implicit considerable uncertainties of our estimate. 
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the "'·ater transpon. across 6°N w·cre extracted from a general 
circulation model (GCM) consisting of 13 depth layers with a 1° 
x JO horizontal resolution (for details see Range et al. 12000]). 
N,O \-alues "'·ere taken from a profile at 6°N, 65°E (July 1995, 
~iJ2J5). The N20 concentrations were scaled to the grid points of 
the GCM (Figure 6a). Then we calculated for each grid point the 
mean annual N20 flux. Summing the fluxes yields the net N20 
fluxes for each layer (Figure 6b). The resulting overall net flux 
sums up to an annual input into the Arabian Sea of about 0.1 Tg 
N

2
0. The major sink for ~ 20 in the Arabian Sea is its 

consumption in ea,;;tern margin sediments and the major source is 
the N20 production in the Ot\.12. Inputs by Red Sea and Persian 
Gulf waters as well as advective input from the south appear to 
play only a minor role. The budget from the data in Table 4 
seems to be reasonably balanced. I lowever, the magnitude of the 
sedimentary N 20 Joss is under debate. As discussed by Naqvi el 

al. [1992J. the observed N20 gradients at the eastern margin 
sediments could also result from advective processes, indicating 
an overestimation of the N20 sink in the sediments. Moreover, 
our estimate of the N20 emissions to the atmosphere might be too 
low since recent N20 measurements in the upwelling region off 
southwestern lndia during the SW monsoon showed extremely 
high N20 concentrations [Naqvi et al., 1998], which may lead to 
an upward revision of the current N20 emission estimates. 

5. Conclusions 

A compilation of sources and sinks ofN20 in the Arabian Sea 
suggested that the N20 budget is reasonably balanced. In view of 
our results, we propose a rough scheme of N20 production and 
consumption pathways in the Arabian Sea. Our scheme consists 
of four compartments that could explain the characteristic 
double-peak structure ofN20 in the Arabian Sea: 

Compartment I. Cl-150 m: N20 is mainly produced by 
nitrification as indicated by the 6N20-AOU relationships 
(Table 2). ilowever, isotope data measured by Naqvi el al. [ 1998] 
revealed that nitrification may not be the only source. N20 may 
also be produced via coupling of nitrification and denitrification 
associated with the steep 0 2 gradient at the top of the OMZ, 
forming the sharp N20 peak at about I 50 m [Naqvi et al., I 998]. 

Compartment 2, I 50-1 OOO m: N20 consumption occurs at 
300-500 m (i.e., the dcnitrifying core of the OMZ) of the central 
Arabian Sea. At the lower boundary of the OMZ at about 800-
1000 m, N20 seems to be mainly produced by dcnitrification 
when the 0 2 concentrations are increasing again [Naqvi et al., 
1998]. 

Compartment 3, 1000-2000 m: Jn the central Arabian Sea the 
denitrification signal (i.e .• li1sN ofN03-) is assumed to be mixed 
down to a depth of at least I 500 mowing to ventilation processes 
such as cross-isopycnal mixing [Brandes el al .. 1998]. This 
implies that N20 produced at the bottom of the OMZ is also 
mixed down by cross-isopycnal mixing. forming the broad 
second N20 peak. AN20-AOU relationships (excluding data 
affected by denitrification) are reasonably valid from 0-2000 m 
(Table 2) Thus we can conclude that nitrification contributes 
significantly to the N20 production throughout the water column; 
however, the N20 produced by denitrification results in Jess clear 
6N20--AOU relationships. 

Compartment 4, below 2000 m: No statistically significant 
~N,0-AOU relationship was found. N20 produced by 
nitrification may be reduced subsequently by denitrification [Kim 
am/Craig, 1990]. 

This scheme may also be valid for the western Arabian Sea; 
however, owing to the seasonal variability of the complex 

hydrographic situation (e.g., coastal upwelling, inflow of 
marginal sea water), the N20 double-peak structure is not well­
established. Furthermore, we have some indication that N20 at 
600--800 m near the shelf break in the western Arabian Sea is 
formed via a different process such as oxidation of organic matter 
by reduction of 103- to 1-, indicating that the biogeochemical 
cycling ofN20 in the central and western Arabian Sea during the 
SW Monsoon is more complex than previously thought. 
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[ 1] \Ve measured the vertical water column distribution of 
nitrous oxide (N20) during the European Iron Fertilization 
Experiment (EIFEX) in the subpolar South Atlantic 
Ocean during February/March 2004 (R/V Polarstern 
cruise ANT XXI/3). Despite a huge build-up and 
sedimentation of a phytoplankton bloom, a comparison 
of the N20 concentrations within the fertilized patch with 
concentrations measured outside the fertilized patch 
revealed no N20 accumulation ,,dthin 33 days. This is 
in contrast to a previous study in the Southern Ocean, 
where enhanced N20 accumulation occurred in the 
pycnoclinc. Thus, we conclude that Fe fertilization docs 
not necessarily trigger additional N20 formation and we 
caution that a predicted radiative offset due to a Fe-induced 
additional release of oceanic N20 might be overestimated. 
Rapid sedimentation events during EIFEX might have 
hindered the build-up ofN20 and suggest, that not only the 
production of phytoplankton biomass but also its pathway in 
the water column needs to be considered if N20 radiative 
offset is modcled. Citation: \Valtcr, S .• I. Pcckcn. K. Lochte, 
A. Webb, and II. \V. Bange (2005), Nitrous oxide 
measurements during EIFEX, the European Iron Fertilization 
Experiment in the subpolar South Atlantic Ocean, Geophys. 
Res. Lett., 32, L236t3, doi:t0.t029/2005GL024619. 

1. Introduction 

[2] Inspired by the iron (Fe) limitation hypothesis [Martin 
et al., 1991], several Fe fertilization experiments have been 
performed in high nutrient-low chlorophyll (HNLC) regions 
such as the Southern Ocean, and the subarctic and equatorial 
Pacific Ocean [see, e.g., Boyd, 2004, 2002]. Fuhrman and 
Capone [I 991 J pointed out that stimulating ocean productiv­
ity by Fe addition might result in an enhanced formation of 
nitrous oxide (N20). This point is especially important in 
view of the fact that N20 is an atmospheric trace gas with a 
high global warming potential [Jain et al., 2000]. Thus, 
enhanced N20 formation by Fe addition might counteract 
the climatic benefits of a drawdown of atmospheric carbon 
dioxide (C02). 

[i] Fuhrman and Capone [1991] argued that enhanced 
productivity will lead to an enhanced nitrogen export from 
the euphotic zone, which in tum would result in additional 
N20 formation via enhanced nitrification (NH! ....... 

1Forschungsbercich Marine Biogeochemic, Leibniz-Institut fiir Meer­
cswissenschaften at University of Kiel (IFM-GEOMAR), Kiel, Germany. 

2Department of Oceanography, University of Cape Town, Rondebosch, 
South Africa. 
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NII20H - N02 - NO.i'). N20 formed via nitrification 
is thought to be dominating in the oxic part of the world's 
oceans [see, e.g., Nevison et al., 2003]. The idea of a link 
between Fe fertilization and enhanced N20 fonnation v.·as 
supported by the study of Law and Ling [200 I], who found a 
small but significant N20 accumulation in the pycnoclinc 
during the Southern Ocean Iron Enrichment Experiment 
(SOIREE) in the Australasian sector of the Southern Ocean 
(61 °S, l 40°E) in February 1999. Recently, Jin and Gruber 
[2003 J predicted the long-term effect of Fe fertilization on 
oceanic N20 emissions on a global scale with a coupled 
physical-biogeochemical model. Based on theirmodcl results 
they concluded that Fe fertilization-induced N20 emissions 
could offset the radiative benefits of the C02 drawdown [Jin 
and Gruber, 2003]. 

[4] Here we present our measurements ofN20 during the 
European Iron Fertilization Experiment (EIFEX; R/V 
Polarstern cruise ANT XXI/3) in the subpolar South 
Atlantic Ocean from 9 February to 21 March 2004 [Smetacek 
and crnise participants, 2005]. 

2. The EIFEX Setting 

[,] A mesoscale cyclonic eddy, embedded in a meander 
of the Antarctic Polar Front, was identified as suitable for 
the EIFEX study [Strass et al., 2005]. The eddy was 
ecntered at 49.4°S 2.25°E and extended over an area of 
60 x 100 km. First fertilization was performed on 12-13 
February by releasing 6000 kg iron sulfate (FeS04 ) into 
the mixed layer over an area of 150 km2

• Since iron 
concentrations had been decreasing (P. Croot, personal 
communication, 2004), fertilization was repeated on 26-
27 February by releasing 7000 kg FeS04 over an area of 
400 km2

• All sampled stations were located inside the 
eddy; the stations within fertilized waters will be called in­
stations and those from unfertilized waters out-stations 
(Table 1). Inside and outside the fertilized patch was 
determined by photosynthetic activity (Fv/Fm) performed 
by Fast-Repetition-Rate-Fluorescence (Fas!Tracka, Chel­
sea, UK) [Riittgers et al., 2005]. Fv/Fm is known to be 
a very sensitive parameter, which increases immediately 
afler iron fertilization. 

[6] The hydrographic settings of the sampling stations 
were not uniform: The in-stations' hydrographic properties 
did not show any variability. However, the out-station 514 
showed, in comparison with the in-stations, enhanced 
potential water temperatures in the density (crt) range from 
27.25 to 27.7 kg m-3 (corresponding to a approximate 
depth range from 200 to 400 m). The hydrographic 
properties of the out-stations 546 and 587 were almost 
identical to the in-stations. This implies that station 514 is 
not a representative out-station and was therefore excluded 
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Table t. N~O ~leasurements During EIFEx• 

Station Days After First/ N~O r,..fL 
Cone.!' nmol L - I 

N20ML 
Numbt-r Latitude. "S Longitude,"E Date Second Fertilization Patch Class. Sat.,., o/o 

513 49.59 2.05 28 Feb 04 1612 In Il.3 ± 0.1 (5) 102±1(5) 
514 49.31 2.34 29 Feb 04 1713 Out 13.5 ± 0.3 (3) 104±2(3) 
544 49.)6 1.87 07 ~far 04 24/10 In Il.8 ± 0.5 (3) 106 ±4 (3) 
546 49.47 2.09 10 r-.tar 04 27/13 Out 13.I (2) 102 (2) 
570 49.43 2.05 14 r,..lar 04 31/17 In Il. I ± 0.3 (5) 102 ± 3 (5) 
580 49.12 2.38 16 r,..far 04 33/19 In 12.5 ± 0.2 (3) 97± I (l) 
586 49.50 2.10 18 Mar 04 35121 Out 13.1 ± 0.5 (4) 102±4(4) 

-Class. stands for classification and indicates whether a profile was inside or outside of the fertilized patch, ~fL stands for mixed layer; here defined as 
the depth where the temperature differs from the surface tcmperan..u'C by more than 0.5°C. Cone. and Sat stand for concentration and saturation, 
rcsEti ... ery. 

Given as average± standard deviation. Number of depths used for averaging is given in parentheses. 

from the comparison (see also discussion of N20 data 
below). 

3. Methods 

[1] Triplicate water samples from various depths were 
taken from a 24 x 12 L-bottle rosette, equipped with a CTD­
sensor. The analytical method applied is a modification of 
the method described by Bange et al. [2001]: Bubble free 
samples were taken immediately following oxygen (02) 

sampling in 24 mL glass vials, sealed directly with butyl 
rubber stoppers and crimped with aluminium caps. To 
prevent microbial activity, samples were poisoned with 
500 µL of a saturated aqueous mercury chloride (HgCI2) 

solution. The samples were stored in the dark at 4 °C until 
analysis in our home laboratory from June to August 2004. 
In a time series experiment we found that NzO concen- · 
trations in samples treated as described above did not 
change significantly over I O months (S. Walter, Nitrous 
oxide in the Atlantic Ocean, Ph.D. thesis, in preparation, 
University of Kiel, 2005). N20 water concentrations (Cw) 
were calculated as follows: 

where~ stands for the Bunsen solubility in nmol L -t atm-• 
[ Weiss and Price, 1980], x' is the dry gas mole fraction of 
N10 in the headspace in ppb, P is the atmospheric pressure 
in atm (set to I atm), V wp and V h, stand for the volumes of 
the water (14 mL) and headspace phases (10 mL), 
respective!(," R is the gas constant (8.2054 10-2 L atm 
mo1-• K- ) and T is the temperature during equilibration. 

[s] For calibration we used standard gas mixtures with 
311.8 ± 0.2 ppb and 346.5 ± 0.2 ppb N20 in synthetic air 
(DEUSTE Steininger GmbH, Milhlhausen, Germany). The 
standard mixtures have been calibrated against the NOAA 
(National Oceanic and Atmospheric Administration, Boul­
der, Colorado) standard scale in the laboratories of the Air 
Chemistry Division of the Max Planck Institute for Chem­
istry, Mainz, Germany). The standard deviation of the N20 
concentration (Cw) was approximated with (Cwmax -
Cwmin)/1 .9 l, where Cwmin and Cwmait stand for the minimal 
and maximal N20 concentrations of the triplicate samples, 
respectively. The factor 1.91 is derived from the statistical 
method by David [1951]. The overall mean analytical error 
was ±2.7% (±0.5 nmol L -t). 

[o] N20 saturations (sat) in% (i.e., 100% = equilibrium) 
were calculated as sat = JOO C..JC., where c. is the 
equilibrium concentration of dissolved N20 based on the 
N20 atmospheric dry mole fraction, water temperature, and 
salinity [Weiss and Price, 1980]. For calculating c. in the 
mixed layer an ambient air mole fraction of 317.8 ppb was 
applied, which is the average of the monthly mean N20 dry 
mole fractions measured at the AGAGE (Advanced Global 
Atmospheric Gases Experiment [see Prinn et al., 2000]) 
baseline monitoring station Cape Grim (Tasmania) during 
February and March 2004. AGAGE data are available from 
the anonymous ftp site cdiac.esd.oml.edu (subdirectory/ 
pub/ale __gage _agage/agage/ge-md/monthly) at the Carbon 
Dioxide Information Analysis Center in Oak Ridge, 
Tennessee. 

[w] Dissolved 0 2, nitrate, and CTD data were provided 
by the participating working groups. Further details can be 
found in the cruise report by Smetacek and cruise participants 
[2005]. 

4. Results and Discussion 

[11] An overview of the N20 measurements during 
EIFEX is given in Table I and in Figure I. Mixed layer 
N20 saturations were comparable to surface saturations 
(-103%) from the same region measured during the Ajax 
cruise leg 2 in Jan-Feb 1984 [Weiss et al., 1992]. Moreover, 
the overall mean N20 deep water (>2000 m) concentration 
of 17.5 ± 0.2 nmol L _, is in good agreement with the N20 
deep water-water age relationship by Bange and Andreae 
[1999]. Both, the observed surface saturation and deep­
water concentration support the view that the N20 samples 
were not affected by the time lag between sampling and 
measurements. 

[12] In agreement with the results from SOIREE [law 
and ling, 200 I], we did not observe a difference in N20 
mixed layer saturations between in-stations and out-stations 
(Table I), which implies that N20 emissions were not 
significantly different either. 

[13] The N20 profiles showed a pronounced maximum 
between 500 and 750 m which was associated with the 0 2 
minimum and the nitrate maximum (Figure 1) indicating 
that nitrification was the main N20 fonnation process. Our 
N20 concentrations are comparable to N20 measurements 
from the South Atlantic and Southern Oceans [Butler et al., 
1995; law and ling, 2001; Rees et al., 1997]. 

[••] Following the approach by law and ling [2001], we 
fitted a polynomial to the N20-crt data of stations 546 and 
587 (Figure 2). Out-station 514 was excluded because it 
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Figure I. N20 (open circles), water temperature (solid 
lines), N03 (dashed lines), and 0 2 (dashed dotted line) at 
the E!FEX stations listed in Table L 0 2 data are only 
available for station 570 in the depth range from 0-1500 m. 
Please note that 0 2 is given in ~ol L - l divided by I 0. 

obviously was not representative as indicated by the data in 
Figure 2 (see also section E!FEX setting). A comparison of 
the N20 concentrations of the in-stations ,vith the polyno­
mial fit based on the out stations revealed no significant 
differences (Figure 2). A third-order polynomial fit to the 
in-stations (-52.766x3 + 4320.7x2 - 117,915x + 
1,072,529, r' = 0.95, n = 67, standard error of predicted 
N20 = ± 0.63 nmol L -l) was almost identical to the out­
stations' fit(-48.474x3 + 3967.8x2 

- 108,24lx + 984,148, 
r' = 0.96, n = 30, standard error of predicted N20 = 
±0.56 nmol L - 1

). Thus, we conclude that no significant 
changes in the N20 concentrations occurred during E!FEX. 

[1s] Our conclusion is in contrast to the observation by 
Law and ling (2001]. They found an accumulation of 
N20 up to 0.9-1 nmol L -l in the pycnocline (60-80 m 
water depth) within 13 days during SOIREE. Adapting a 
N 20 accumulation rate of 0.08 nmol L- 1 d- 1(=1 nmol 
L - 1;13 days), an increase of 2.6 nmol L- 1 (=0.08 nmol 
L - 1 x 33 days) would have been expected for a N20 
accumulation in the pycnocline in 100-200 m during 
EIFEX. This was not the case (Figure 2). It is possible 
that N20 accumulation in the pycnocline was not detected 
because of insufficient analytical precision and/or coarse 
sampling of the depths profiles: A possible N20 accu­
mulation must have been low ( <0.5 nmol L - I over the 
duration of the experiment as implied by our mean 
analytical error) or must have taken place in a narrow 
depth range of less than 40 m (i.e., the mean depth 
spacing of sampling from the surface to the pycnocline in 
about 200 m). Moreover, in contrast to EIFEX, Fe 
addition during SOIREE was performed four times ,vithin 
a week over a much smaller area (50 km2 [law and 
ling, 2001]). Therefore, the observed N20 accumulation 
in the pycnocline during SOIREE may have been a fast 
short-tenn response to the intensive short-term Fe fertil­
ization. Because we started N20 sampling 16 days after 
the first Fe addition (i.e., 2 days after the second Fe 
addition) we might have missed this short-term signal 
during E!FEX. 

[10] During EIFEX chlorophyll a (chi a) standing 
stocks increased 3 fold until day 26, but remarkably 
decreased thereafter [Peeken et al., 2005]. The main 
beneficiaries of the iron fertilization were diatoms in all 
size classes (L. Hoffmann et al., Different reactions of 

Southern Ocean phytoplankton size classes to iron fertil­
isation, submitted to Limno/ogy and Oceanography, 
2005). Toward the end of the experiment, the diatom 
marker fucoxanthin and chi a could be follo,ved do,vn 
the water column to 4000 m and a low ratio of phacopig­
ments to chi a indicated the export of fresh material most 
likely originating from the iron fertilized patch [Peeken et 
al., 2005]. An explanation for the absence of an increase 
of N20 in the deep (e.g., in the 0 2 minimum zone) might 
be the very rapid export of the fresh phytoplankton 
material to the deep ocean during EIFEX [Peeken et 
al., 2005], which started about 23 days after the second 
Fe addition. Thus, we can argue that the rapid export of 
organic material during EIFEX might have been too rapid 
for the nitrifying bacteria in the deep ocean to adapt to 
and, thus, an additional build-up of N20 in the deep 
could not take place. Nitrifying bacteria, especially am­
monium-oxidizing bacteria (AOD), are known for lag 
phases up to several weeks after periods of low metabolic 
activities [Schmidt et al., 1999]. 

[11] The responsible process for the N20 accumulation 
during SOIREE [Law and ling, 2001] and the proposed 
further increase of N20 in prolonged iron fertilization 
experiments could not be identified. Thus, a possible link 
between N20 accumulation and Fe fertilization remains to 
be not a simple cause-and-effect mechanisms and the 
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Figure 2. N20 concentrations vs. density (crJ during 
EIFEX. (a) Out-stations: Triangles stand for stations 546 
and 587 and crosses stand for station 514. The bold solid 
line represents a third-order polynomial fit based on stations 
546 and 587 (see text for statistical details). The thin solid 
line represents a third-order polynomial fit based on station 
514. (b) In-stations: 513, 544, 570, and 580 (symbols) 
compared with the polynomial fit based on out-stations 546 
and 587 (bold line, sec Figure 2a). The dashed lines indicate 
the standard error of the predicted N20. Depths intervals arc 
indicated. 
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magnitude of a possible radiative offset still needs to be 
proven. 

5. Conclusions 

[18] We did not observe a N20 accumulation during the 
in situ iron fertilization experiment EIFEX in the subpolar 
South Atlantic Ocean in Fcbruary0.1arch 2004. This is in 
contrast to previous measurement by Law and Ling [200 I] 
in the Australasian sector of the Southern Ocean. \Ve 
conclude that Fe fertilization docs not necessarily trigger 
additional N20 formation, which might depend on differ­
ences of the environmental conditions ( e.g., the fate of the 
Fe-induced phytoplankton bloom). We caution, therefore, 
that predictions of a radiative offset caused by a Fe-induced 
additional release of oceanic N20 [Jin and Gruber, 2003; 
Law and Ling, 200 I J might be overestimated. In order to 
solve this problem further long-tenn experiments with 
particular emphasis on sedimentation processes are neces­
sary to prove a link between Fe addition and enhancement 
ofN20 formation and the subsequent release ofN20 to the 
atmosphere. 
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1 

In order to investigate the role of the North Atlantic Ocean as a source of atmospheric 

nitrous oxide and to decipher the major formation pathways of nitrous oxide, 

measurements of dissolved nitrous oxide were made during three cruises in the tropical, 

subtropical and subpolar North Atlantic in Oct. /Nov. 2002, Mar. I Apr. 2004, and 

May 2002, respectively. Nitrous oxide was close to equilibrium or slightly supersaturated 

in the surface layers suggesting that the North Atlantic acts as a weak source of nitrous 

oxide to the atmosphere. Depth profiles showed supersaturation throughout the water 

column with a distinct increasing trend from the subpolar to the tropical region. Lowest 

nitrous oxide concentrations, near equilibrium and with an average of 11.0 ± I. 7 nmol L-

1, were found in the subpolar North Atlantic where the profiles showed no clear maxima. 

Highest values up to 37.3 nmol L"1 occurred in the tropical North Atlantic with clear 

maxima at approximately 400 m. A positive correlation of nitrous oxide with nitrate, as 

well as excess nitrous oxide with AOU, was only observed in the subtropical and tropical 

regions. Therefore, we conclude that the formation of nitrous oxide occurs in the tropical 

region rather than in the subpolar region of the North Atlantic and suggest nitrification is 

the dominant formation pathway in the subtropical and tropical regions. 
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1. Introduction 

Nitrous oxide (N20) is an important atmospheric trace gas due to its influence on the 

Earth's climate. In the troposphere N20 acts as a greenhouse gas whereas in the 

stratosphere it is involved in the depletion of ozone by providing NO-radicals [Prather et 

al., 2001]. Since the beginning of the industrial revolution the global mean tropospheric 

N20 mole fraction has risen rapidly from 270 ppb up to 314 ppb in 1998 [Prather et al., 

2001]. About 24 % of the natural sources of atmospheric N20 are contributed by the 

oceans [Prather et al., 2001; Seitzinger et al., 2000]. Nitrous oxide is an important 

component of the oceanic nitrogen cycle, mainly formed by the microbial processes of 

nitrification and denitrification [Codispoti et al., 2001; Goreau et al. , 1980]: Nitrification 

is an aerobic two-step process in which ammonium is oxidized to nitrate 

{NH,i +-+ NH20H-+ No2· - N03") by two different groups of bacteria. In this process 

nitrous oxide is assumed to be a by-product, however until now the exact pathway for 

N20 production remains unclear. In suboxic habitats nitrate can be reduced by 

denitrification to molecular nitrogen (N03. - N02· -+ NO-+ N20-+ N2), here nitrous 

oxide is an intermediate product. Especially at oxic/suboxic boundaries N20 is produced 

by coupled nitrification and denitrification, due to the transfer of common intermediates 

[Yoshinari et al., 1997]. Another possibility is aerobic denitrification, whereby under 

fully aerobic conditions organisms convert ammonia into nitrogen gas without the 

intermediary accumulation of nitrite [Robertson et al., 1988]. All processes depend on 

oxygen concentrations, as well as the availability of substrates such as ammonium and 

nitrate. Many organisms are able to switch between different pathways depending on 

environmental conditions, and also the yield of N20 during a process depends on 

environmental conditions [Goreau et al., 1980; Poth and Focht, 1985; Richardson, 

2000]. Positive correlations of N20 with apparent oxygen utilization (AOU) or nitrate are 

interpreted as production of nitrous oxide by nitrification [Yoshinari, 1976; Cohen and 

Gordon, 1978; Yoshida et al., 1989]. However, up to now the dominant production 

pathway for N20 on the global scale and the contribution of different pathways still 

remains unclear [Codispoti et al., 2001; Popp et al., 2002]. 

Information on the vertical N20 distribution in the North Atlantic is sparse, only a few 

profiles are available. The first vertical profiles for the North Atlantic were published by 

Junge and Hahn [1971] and Yoslzinari [1976], additional data were collected by Butler et 
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al. [1995] , and recently data from a transect at 7°30' N were reported by Oudot et al. 

[2002]. In this paper we present a comprehensive set of 73 vertical profiles of nitrous 

oxide from three trans-Atlantic cruises, covering the subpolar North Atlantic, the 

subtropical and the tropical North Atlantic. Based on these new data, we examine the 

regional differences of the N20 distribution and its formation pathways. 

2. Study area 

2.1 Research cruises 

Samples from the three cruises were collected over the period from May 2002 to April 

2004 (see Fig. 1). 

Fig. 1: Cruise tracks for 'Gauss 384-1' (subpolar North Atlantic, May 16th to June 14th 2002), ' Meteor 
60-5' (subtropical North Atlantic, March 9lh to April 14th 2004) and 'Meteor 55' (tropical North 
Atlantic, October 13th to November 16th 2002). Numbers are given for stations where N20 profiles were 
measured. 
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The first cruise (May I June 2002), started in Hamburg, Germany with the German 

research vessel 'Gauss'. The cruise track followed the WOCE-A2 transect to Halifax, 

Canada. Depth profiles ofN20 were measured at 16 stations. The WOCE-A2 transect is 

located between 42 °N and 49 °N. 

The subtropical North Atlantic was investigated during March I April 2004 onboard the 

research vessel 'Meteor'. The cruise started in Fort de France, Martinique (French 

Antilles) in the western part of the Atlantic and ended in Lisbon (Portugal). Samples 

were taken at 37 stations. Most stations were co-located with stations where samples 

were taken during the Transient Tracers in the Ocean Program (TIO) in 1982. 

The tropical North Atlantic samples were taken during the M55-SOLAS cruise [ Wallace 

and Bange, 2004] in October/November 2002, again with the German research vessel 

'Meteor'. This cruise started in the western tropical North Atlantic in Willemstad, 

Cura~ao (Netherlands Antilles) and followed a cruise track along 10- 11 °N to Douala 

(Cameroon). The track included a transect to the equator between 26 °W and 23.5 °W. 

N20 profiles were taken at 20 stations. 

2.2 Hydrography 

Several water masses in the North Atlantic can be identified in the T-S-diagram based on 

data from the three cruises (see Fig. 2). The main Atlantic water masses were identified 

according to commonly used classification schemes [Tomczak, 1999; Alvarez et al., 

2004; Aiken et al., 2000; Joyce et al., 2001; Poole and Tomczak, 1999]. 
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The WOCE A2 transect (Gauss 384-1 cruise), is located at the boundary region between 

the subpolar gyre [Gordon, 1986] and the subtropical gyre [Krauss, 1996]. This region is 

highly variable, characterized by the exchange of upper-ocean water between the gyres 

mainly via the North Atlantic Current, and the Labrador Current. One of the most 

important water masses here is the Labrador Sea Water (LSW). These water masses 

provide the major part of the North Atlantic Intermediate Water in combination with the 

outflow of Mediterranean Sea Water (MW), which is detected in the eastern basin of the 

subtropical Atlantic Ocean near the Strait of Gibraltar [Richardson et al., 2000] and the 

Antarctic Intermediate Water (AAIW) from the south [Lorbacher, 2000]. Additional 

water masses of the southern hemisphere that penetrate into the North Atlantic are the 

South Atlantic Central Water (SACW) and the Antarctic Bottom Water (AABW). 

SACW flows northwards, and mixes with the North Atlantic Central Water (NACW) at 

approximately 15 °N in the western and 20 °Nin the eastern basin [Poole and Tomczak, 

1999; Aiken et al., 2000]. 

A typical freshwater influence was found during the Meteor 55 cruise in the western 

tropical North Atlantic. Water of the Amazon was detected in the surface water, 

identified by high temperatures and low salinity. These plumes of freshwater are 

transported northwards by the North Brazil Current and eastwards by the equatorial 

current system [Fratantoni and Glickson, 2002]. 

3. Material and methods 

Water samples for N20 analysis were collected in triplicate from various depths, taken 

with a 24-Niskin-bottle rosette, equipped with a CTD-sensor. The analytical method 

applied is a modification of the method described by [Bange et al., 2001]. Bubble free 

samples were taken immediately following oxygen sampling in 24 mL glass vials, sealed 

directly with butyl rubber stoppers and crimped with aluminium caps. To prevent 

microbial activity, samples were poisoned with 500 µL of 2 mM mercury chloride 

solution. Then 10 mL of sample was replaced with a helium headspace for each vial, and 

the samples were allowed to equilibrate for at least two hours at room temperature 

(temperature was recorded continuously). A 9 mL subsample from the headspace was 

used to flush a 2 mL sample loop after passing through a moisture trap (filled with 
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Sicapcnti, Merck Germany). Gaschromatographic separation was performed at 190 °C 

on a packed molecular sieve column (6ft x l/8"SS, SA, mesh 80/100, Alltech GmbH, 

Germany). The N20 was detected with an electron capture detector. A mixture of argon 

with 5 % by volume methane was used as carrier gas with a flow of21 m1 min·1
• For the 

two-point calibration procedure we used standard gas mixtures with 311.8 ± 0.2 ppb and 

346.5 ± 0.2 ppb N20 in synthetic air (Deuste Steininger GmbH, Milhlhausen Germany). 

The standard mixtures have been calibrated against the NOAA (National Oceanic and 

Atmospheric Administration, Boulder, Co.) standard scale in the laboratories of the Air 

Chemistry Division of the Max Planck Institute for Chemistry, Mainz, Germany. 

Calculations 

N20 water concentrations (CNm) were calculated as follows: 

(1) 

where p stands for the Bunsen solubility in runol 1·1 atm·1 
[ Weiss and Price, 1980], x is 

the dry gas mole fraction of N20 in the headspace in ppb, P is the atmospheric pressure 

in atm, V wp and V hs stand for the volumes of the water and headspace phases, 

respectively. R is the gas constant (8.2054 10·2 1 atm mol"1 K"1
) and T is the temperature 

during equilibration. The salinity was measured by the CTD-Sensor during water sample 

collection. The overall relative mean analytical error was estimated to be± 1.8 %. 

The excess N20 (ti.N20) was calculated as the difference between the calculated N20 

equilibrium concentration and the measured concentration ofN20 as follows 

!i.N20 [nmol 1·11 = N20 (observed) - N20 (equilibrium). (2) 

To calculate the N20 equilibrium concentration we used three different atmospheric 

mole fractions. Between the mixed layer and the atmosphere, N20 exchanges in about 

three weeks [Najjar, 1992], thus we calculated ti.N20 in the mixed layer using the actual 

atmospheric N20 value of 318 ppb measured during the 'Meteor 55' cruise [Walter et al., 

2004]. Below the thermocline, exchange with the atmosphere is unlikely, thus, calculated 

N20 equilibrium concentrations depend on the atmospheric N20 mole fraction at the 

time of deep-water formation. However, the exact atmospheric mole fraction of N20 
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during deep-water formation is unknown because of uncertainty in age determination of 

water masses. Generally, tropical Atlantic deep waters below 2000 m seem to be older 

than 200 years [Broecker and Peng, 2000]. Therefore for depths > 2000 m ~N20 was 

calculated with the tropospheric preindustrial value of 270 ppb [Fliickiger et al., 1999]. 

An average of the actual and the preindustrial atmospheric value (i.e., 294 ppb) was used 

for the depth range between the upper thermocline and 2000 m. The thermocline was 

defined as the depth where the temperature differs from the surface temperature by more 

than 0.5 °C [Tomczak and Godfrey, 2001]. For the subtropical and subpolar region we 

calculated ~N20 with these same mole fractions, although the age of water masses is 

different to the tropical Atlantic and therefore some values may be underestimated, 

whereas others may be overestimated. The resulting uncertainties of ~N20 are about I 0-

15 %; however, our conclusions are not significantly affected by this uncertainty. The 

equilibrium values of dissolved oxygen (02) were calculated with the equation given by 

[ Weiss, 1970]. 

The apparent oxygen utilization (AOU) was calculated as followed: 

AOU [µmol L"1
] = 02 (equilibrium)- 02 (observed). (3) 
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4. Results 

4.1 Distribution of nitrous oxide in the orth Atlantic 

4.1.1 20 distribution along isopycnal levels 
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Fig. 3: Distribution of N20 in the North Atlantic along isopycnal levels. Dots indicate stations with 
available data for the isopycnal levels. 3a) surface - thermocline; 3b) thermocline - 26.0; 3c) 26.1 -
26.5; 3d) 26.6 - 27.0; 3e) 27. 1 - 27.5; 3f) 27.6 - 27.93 

In the surface layer of the North Atlantic (Fig. 3a) N20 concentrations were relatively 

uniform with 8.5 ± 1.2 nmol L"1
• In the region of the Labrador Current N20 
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concentrations were enhanced with an average of 11.6 ± 0.9 nmol L-1• During the 

'Meteor 55' cruise, a plume of Amazon Water had been identified in the western basin of 

the tropical North Atlantic [Kortzinger, 2003]. In contrast to [Oudot et al., 2002], who 

reported enhanced values in the plume of the Amazon River, we found no influence on 

N20 concentrations [Walter et al., 2004]. 

Below the thermocline, N20 concentrations were variable with respect to depths and 

regions. We found highest concentrations in the eastern basin of the tropical North 

Atlantic throughout the water column, with maximum concentrations on <Je surfaces 

between 26.3 and 27.1 (Fig. 3b-e). At the Midat1antic Ridge, located at approximately 

40 °W, a distinct boundary between the western and eastern Atlantic basins was observed 

(Fig. 3d-e). In the eastern subtropical North Atlantic, at approximately 1000 m (<le 27.6-

27. 7), a tongue of outflow water from the Mediterranean Sea was detected by higher 

values of salinity and temperature [Richardson et al., 2000]. However, we found no 

apparent influence of the Mediterranean water on N20 concentrations. 

Like the surface layer, deep waters (Fig. 3f) showed nearly uniform N20 concentrations, 

though with higher values of 13.3 ± 1.6 nmol L-1
• However, a weak but distinct trend of 

decreasing concentrations from the tropics (13.1 ± 1.3 nrnol L-1
) to the subpolar North 

Atlantic (11.1 ± 1.4 nrnol L-1) could be observed. 

I 
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4.1.2 Vertical N20 distribution 

The vertical distribution of N20 showed characteristically different profiles in different 

regions of the North Atlantic (Fig. 4a-c), and between the western and eastern basins of 

these regions (Fig. 5a-c). 
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Fig. 4: N20 concentration in the North Atlantic plotted against depth. 4a) subpolar, 4b) subtropical, 4c) 
tropical North Atlantic 
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Fig. 5: Selected vertical N20 profiles in the western basin (filled symbols) and the eastern basin (open 
symbols) in the North Atlantic. Stations were indicated by numbers. 5a) subpolar, 5b) subtropical, 5c) 
tropical North Atlantic 

In the subpolar North Atlantic (Fig. 4a) vertical gradients of nitrous oxide were weak 

over the complete cruise track, with no clear or only a very weakly pronounced sub­

surface maximum. N20 concentrations were near equilibrium (11.0 ± 1.3 nmol 1·1) 

throughout the water column, with average concentrations of 8.6 ± 1.4 nmol 1·1 in the 

surface layer (ae 25.3-27.0) and 11.3 ± 1.5 nmol 1·1 below the thermocline down to the 

bottom (ae 26.2-27.7). No differences between the western and the eastern basin were 

found (Fig. 5a). 
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In contrast, N20 distributions and profiles in both the subtropical and tropical North 

Atlantic showed strong variations with water depth (Fig. 4b-c, Fig. 5b-c). Jn both 

regions, the profiles generally had one distinct maximum. In the surface layer (ae 19.3-

26.8) concentrations were uniform, increasing below the thermocline up to a maximum 

and decreasing down to approximately 2000 m (ae 22.1-27.8). Below 2000 m (ae 27.8-

27.9) N20 concentrations were nearly constant with depth in both basins. 

In the subtropical North Atlantic (Fig. 4b) N20 surface concentrations were 

8.7 ± 0.7 nmol L-1
, comparable to those in the subpolar North Atlantic. Maximum values 

were found at depths between 600 to 1000 m (ae 26.7 - 27.7); values ranged from 14.0 

in the eastern basin (#195) to 21.3 nmol L" 1 in the western basin (#156). Below 2000 m 

(ae > 27.8), concentrations were nearly constant at 13.1 ± 0.9 nmol L-1
• Profiles in the 

western subtropical North Atlantic showed distinct maxima, while in the eastern basin no 

clear maximum was expressed (Fig. 5b ). From the western to the eastern basin maximum 

concentrations decreased slightly from 17.7 ± 1.4 nmol L"1 to 15.1 ± 0.7 nmol L-1
• East of 

the Midatlantic Ridge maxima were not clearly expressed and were broader. 

Additionally, maximum ti.N20 values were lower in the eastern (5.5 ± 0.6 nmol L"1
) than 

in the western basin (7.9 ± 1.3 nmol L-1). 

In the tropical North Atlantic (Fig. 4c) surface concentrations, with an average of 

7.4 ± 1.1 nmol L"1
, were slightly lower than in the subtropical and subpolar North 

Atlantic. In contrast to the subtropical North Atlantic, maxima of N20 concentrations 

were found at shallower depths of approximately 400m (ae 26.8-27.1). The maximum 

values were higher in general, and ranged from 23.8 nmol L"1 in the western basin (#4) to 

32.1 nmol L"1 in the eastern basin (#47). At station #36, located in the Guinea Dome area 

[Sied/er et al., 1992; Snowden and Molinari, 2003], we observed the highest N20 values 

of about 37.3 nmol L"1 at 400 m (ae 27.0) (Fig. 4c). At the equatorial stations the N20 

maxima were found at shallower water depths (240 m to 280 m, ae 26.6 - 27.0). 

Maximum values ranged from 22.3 nmol L"1 (#26) to 24.9 nmol L"1 (#24). Below 2000 m 

(ae > 27.8) concentrations in the tropical North Atlantic were similar to those in the 

subtropics with an average of 13.2 ± 1.3 nmol L-1
• In both basins of the tropical North 

Atlantic profiles looked similar with sharp and clear maxima, however, concentrations 

throughout the water column increased from west to east (Fig. 5c). Below 2000 m 

(ae > 27.8) N20 concentrations were about 2 nmol L"1 higher in the eastern than in the 
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western basin, whereas the difference of the maximum values was even higher 

(approximately 8 nmol L"1
) . 

20 profiles of the subtropical and tropical orth Atlantic are in good agreement, both 

in absolute concentrations and shape of profiles, with those measured during the 

Bromine Latitudinal Air/Sea Transect JI (BLAST II) cruise in Oct./Nov. 1994 [Butler et 

al., 1995] http://www.cmdl.noaa.gov/hats/ocean/blast2/blastii.html. Below 1500 m in the 

North Atlantic as far as 20 °S, the mean N20 concentration observed by Butler et al. was 

about 13.5 ± 1.0 nmol L"1 (n = 18) which is in good agreement with our measurements 

(12.6 ± 1.5 nmol L"1
, n = 449). 

4.2 Comparison of nitrous oxide with other parameters 

Parameters most relevant for comparison with nitrous oxide are those assumed to be 

directly in connection with production pathways of N20, like oxygen or the apparent 

oxygen utilization (AOU), and nitrate. In general, we found f1N20 positively correlated 

with AOU and nitrate (Fig. 6). However, in view of differences between the basins, these 

correlations might not be sufficient and need higher resolution. Therefore data were 

divided as shown in Figure 7. 
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In Fig. 7a-f correlations between the excess of N20 (L\N20) with AOU (Fig. 7a-c) and 

with N03- (Fig. 7d-f) are divided for all data of the respective regions. 
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Since a multiple regression analysis turned out to be not applicable due to the co-linearity 

between the independent variables nitrate and AOU, we applied simple regression 

analysis for the isopycnal levels below the thermocline (see Tab. 2). Above the 

thennocline in the surface layer no correlations were found. 

In the subpolar North Atlantic (Fig. 7a, d) L\N20 is low, with values near zero. There 

were no significant correlations found with AOU (Fig. 7a) or nitrate (Fig. 7d; see Tab. 

2). 
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ln the subtropical orth Atlantic (Fig. To, e) ~20 was also low with values ranging 

from O to l O nmol L-1• ln contrast to the subpolar North Atlantic we found significant 

correlations between 6N20, AOU (Fig. 7b) and nitrate (Fig. 7e; see Tab. 2), especially at 

depths down to the N20 maxima (ea. 1000 m; ao < 27.7; see regression lines in Fig. 7b 

and 7e). Below 1000 m (ao 27.7) ~20 did not correlate with AOU or N03• (circled data 

in Fig. 7b and 7e). 

In the tropical North Atlantic (Fig. 7c, f) correlations between 6N20, AOU (Fig. 7c) and 

nitrate (Fig. 7f) were more pronounced. We observed different ~ 20 /AOU ratios at 

depths down to m20 maxima and below the 6N20 maxima down to the bottom. From 

the surface layer down to 500 m (ao < 27. l; see regression line a) the slope of the 

regression line (6N20/AOU) was approximately 20 % lower than at depths below 500 m 

(ao > 27.1; see regression line b), what implies that the yield of N20 at equal AOU is 

lower at shallower depths. 

Table 2: Regression analyses between ~ 20 and AOU, and ~ 20 and No1• at different isopycnal levels. 
Bold numbers mean relationships with significance levels of p < 0.001 and R2 > 0.5. The coefficients a and 
b mean slo~ and interceet. 

AN10/ AOU AN20 I No3• 

region sigma n a b R2 a b R2 

subpolar thermocline - 26.0 
26.1 - 26.5 
26.6- 27.0 13 0.045 -0.209 0.21 0.205 -0.882 0.09 
27.1 - 27.5 49 0.028 -0.452 0.23 0.159 -1.087 0.14 
27.6 - 27.9 179 0.022 -1.714 0.07 0 .164 -3.240 0.03 

subtropical thermocline - 26.0 
26.1 - 26.5 45 0.038 1.307 0.58 0.297 1.337 0.51 
26.6 - 27.0 106 0.065 0.397 0.75 0.390 0.186 0.68 
27.1 - 27.5 121 0.055 0.426 0.67 0.312 -0.052 0.60 
27.6 - 27.9 355 0.069 -3.083 0.38 -0.126 4.579 0.02 

tropical thermocline - 26.0 34 0.080 3.783 0.72 0.599 4.681 0.61 
26. l - 26.5 39 0.099 -1.421 0.83 0.777 -3.212 0.81 
26.6 - 27.0 98 0.107 -3. 112 0.49 0.376 6.068 0.20 
27.l - 27.5 63 0.114 -10.638 0.43 1.289 -35.05 0.42 
27.6 - 27.9 69 0.075 -4.853 0.67 0.619 -11.83 0.66 
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5. Discussion 

Based on our results, we were able to assign measured N20 concentrations to the water 

masses as shown in Figure 2a (Fig. 8). ln the following we discuss distributions and possible 

origins of nitrous oxide at different depths with regard to these water masses. 
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Fig. 8: N20 concentration (a) and 11N20 (b) distributed in a T-S-diagram, the N20 and L\N
2
0 

concentrations are colour coded in nmol L-1
• AW: Amazon Water; STMW: Subtropical Mode Water; MW: 

Mediterranean Water; SACW: South Atlantic Central Water; NACW: North Atlantic Central Water; 
AAlW: Antarctic lntermediate Water; LSW: Labrador Sea Water 

5.1 N20 in the surface layer of the North Atlantic 

In the surface layer of the North Atlantic the distribution ofN20 was relatively uniform, with 

concentrations near equilibrium. This is in line with the assumption that denitrification and 

nitrification as sources of nitrous oxide in the surface layer seem to be negligible due to the 

high oxygen concentrations and light inhibition of nitrification [Horrigan et al., 1981]. Thus, 

correlations between .1.N20, AOU and nitrate were nonexistent. Accordingly, we suggest that 

the N20 distribution in the surface layer is most likely driven by solubility and mixing effects. 

This is also applicable for the enhanced N20 concentrations found in the Labrador Current. 

The .1.N20 concentrations, which are corrected for temperature, showed no enhanced values in 

this region. Thus, higher N20 concentrations in the Labrador Current are likely caused by the 

solubility effect as well. In the warmer surface layer of the tropical North Atlantic .1.N20 

values were up to 4 nmol L·1
, indicating the tropical North Atlantic acts as a weak source for 

atmospheric N20 [Walter et al., 2004]. 
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5.2 N20 below the surface layer down to 2000 m 

Variations ofN20 vertical profiles reflected effects of water mass ventilation and sub-surface 

N20 production history. In the subpolar North Atlantic we assume that the hydrographic 

setting (such as convection processes during deep water formation and vertical mixing) is 

responsible for the observed concentrations and distributions of N20 and t.N20. The most 

important feature in the subpolar North Atlantic is the formation of deep water in winter in the 

Labrador and Irminger Seas as part of the North Atlantic circulation in 500 to 2000 m [ Rhein, 

2000], which carries the atmospheric N20 imprint to depth. Labrador Sea Water spreads 

rapidly east- and southwards [Rhein, 2000] and thus causes the uniform distribution of N20 

within the subpolar North Atlantic. Although the productivity of phytoplankton is relatively 

high in the subpolar North Atlantic, we assume low biological production of N20 because of 

two factors: I) high oxygen concentrations and 2) low temperatures. The yield of N20 

depends on oxygen concentration [Gareau et al., 1980; Poth and Focht, 1985; Richardson, 

2000; Codispoti et al., 1992], whereas high oxygen concentrations weaken the production of 

N20. Furthermore the low temperatures of the North Atlantic might have been crucial as well. 

The temperature dependence of both nitrification rates and enzyme activities is controversially 

discussed [Berozmsky and Nixon, 1990; Vouve et al., 2000; Barnard et al., 2005; Herbert, 

1999; Rheinheimer, 1964; Hansen et al., 1981; Rysgaard et al., 1996], however growth rates 

and biological production of bacteria clearly depend on the prevailing temperatures [Bock and 

Wagner, 2001; Hoppe et al., 2002]. Thus, N20 production might not be limited directly by 

temperature but indirectly by the limited abundance ofN20 producing bacteria. 

In the subtropical North Atlantic concentrations of N20 and t.N20 were distinctly higher 

compared to the subpolar North Atlantic. Profiles differed clearly between the western and 

eastern basin. N20 profiles in the western basin showed clearly expressed N20 maxima 

between 600 to I OOO m. This pattern was not observable east of the Midatlantie Ridge where 

N20 and t.N20 concentrations were lower than in the western basin, and no peak maxima 

were observed. Hydrographic processes likely explain the shape of profiles, especially the 

advection of Labrador Sea Water (LSW) into the eastern basin. LSW with low N20 

concentrations is transported either along the eastern continental slope of America or across 

the Charlie-Gibbs-Fracture-Zone [Bower et al., 2002]. It flows into the eastern subtropical 

basin at 500-2000 m [Rhein, 2000; Alvarez et al., 2004], and spreads north- and southwards 

[Bower et al., 2002; Rhein, 2000]. In the western basin N20 concentrations and profiles are in 

agreement with profiles published by [Yoshinari, 1976], who also found maximum values in 
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water masses with lower oxygen concentrations. These were identified as Antarctic 

Intermediate Water (AAIW), which flows northwards. We assume the AAIW transports N20 

from the south to the subpolar North Atlantic. At depths shallower than 1000 m (ae < 27.7) 

t.N20 was significantly correlated with oxygen utilization and nitrate concentrations (Fig. 7b, 

7e; Tab. 2), indicating nitrification has contributed to measured N20 concentrations. 

In the tropical North Atlantic the N20 profiles and the observed trend along the West-East 

transect are in overall agreement with recently published data from a transect along 7.5 °N 

[Oudot et al., 2002] and a previous study in the Guinea Dome area [Oudot et al., 1990]. 

Although the overall pattern is the same, we observed generally lower N20 concentrations 

than Oudot et al. (2002]. This might be a result of a calibration disagreement, supported by 

measured atmospheric N20 values of 316 ppb in 1993. For example, we found a peak N20 

concentration of up to 37.3 nmol 1·1 in South Atlantic Central Water (SACW) of the eastern 

basin, whereas Oudot et al. (2002] reported values of up to 60 nmol kg·1
• Oudot et al. (2002] 

assumed enhanced biological activity and remineralization of organic matter in upwelling 

ecosystems to be responsible for these higher values in the east. However, upwelling in this 

area is a temporary event [Voituriez et al., 1982; Siedler et al., 1992], and during our cruise no 

upwelling was observed. 

Despite the fact that upwelling might have a long-term large-scale effect, we suppose 

additional reasons for the higher N20 concentrations in the eastern basin. The productivity in 

the eastern basin is fueled not only by coastal upwelling [Signorini et al., 1999] but also by 

dust deposition off the West African coast [Mills et al., 2004]. Moreover, nutrient input by 

major tropical rivers such as the Senegal, Gambia and Niger [Perry et al., 1996] contribute to 

enhanced production off the West African coast, indicated by enhanced chlorophyll a 

concentrations (for the 2002 seasonal cycle of chlorophyll a see monthly data set of Sea­

viewing Wide Field-of-view Sensor (Sea WiFS): 

http://earthobservatory.nasa.gov/Observatory/Datasets/chlor.seawifs.html. 

Enhanced productivity leads to a high export production [Antia et al., 2001]. Subsequently 

lowered 0 2 concentrations in the eastern intermediate layers due to the demineralization of 

organic matter support the production of N20. Therefore, enhanced N20 concentrations in the 

eastern basin at this time of year (Oct./Nov. 2002) might be a residual signal of past high 

production episode [Signorini et al., 1999]. 

Upwelling events, indicated by lower sea surface temperatures, were only found at the 

equator. Surface N20 concentration and sea surface temperature were positively correlated 
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[ Walter et al., 2004 J, and the comparably shallow N20 maxima along the equator were caused 

by upwelling. 

Due to the occurrence of linear relationships between L\N20 and AOU and between N20 and 

nitrate we conclude that nitrification might be the major pathway of N20 formation in the 

tropical Atlantic Ocean [Yoshida et al., 1989]. Like N20, L\N20 showed an increasing trend 

from West to East indicating that nitrification is more pronounced in the eastern than the 

western basin of the tropical Atlantic. 

5.3 N20 in deep waters> 2000 m (u8 > 27.8) 

Because the deep ocean contains high nitrate concentrations, nitrification was assumed to be 

responsible for N20 production [Zehr and Ward, 2002; Bange and Andreae, 1999]. Due to the 

low l'.N20 in deep waters and insufficient correlations with nitrate and AOU, we assume N20 

at these depths probably originates from deep water formation and mixing processes of 

southern and northern hemisphere water masses. N20 profiles from a cruise into the Antarctic 

circumpolar current (2 °EI 49.5 °) [Walter et al., in press] and BLAST II data east of 

Patagonia reveal distinctly higher N20 concentrations in the deep waters of the southern 

hemisphere, with values of approximately 17 nmol L-1
• Northwards transport within Antarctic 

Bottom Water could lead to enhanced N20 concentrations in the deep water of the North 

Atlantic by mixing and diffusion process. 

6. Conclusions 

N20 concentrations in the North Atlantic showed characteristic variations in the vertical and 

horizontal distributions. In general, distribution of N20 can be explained by a combination of 

biological and hydrographic reasons. The main conclusions of the present study are 

• Production ofN20 by nitrification occurs mainly in the tropical North Atlantic, especially 

in the eastern basin. Maximum values were found in the Antarctic Intermediate Water 

(AAIW) in the western basin, and in the South Atlantic Central Water (SACW) in the 

eastern basin. 

• Vertical N20 distribution and shape of profiles in the subtropical North Atlantic originate 

from production by nitrification and advection of AAIW from the south into the western 

subtropical North Atlantic, respectively advection of LSW from the north in the eastern 

subtropical North Atlantic. 
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• In the subpolar North Atlantic mainly mixing processes may control the distribution of 

N20, particularly the deep water formation in the Labrador Sea. Production seems to be 

negligible. 

• Tropical and subtropical regions showed supersaturation throughout the water column, 

thus the tropical and subtropical North Atlantic act as a source of atmospheric N20. 

• Outflow water of the Amazon or the Mediterranean Sea does not affect the N20 

concentration. 
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Abstract 

In January 2003, a major inflow of cold and oxygen-rich North Sea Water in the Baltic Sea 

terminated an ongoing stagnation period in parts of the central Baltic Sea. In order to 

investigate the role of North Sea Water inflow to the Baltic Sea with regard to the production 

of nitrous oxide (N20), we measured dissolved and atmospheric N20 at 26 stations in the 

southern and central Baltic Sea in October 2003. 

At the time of our cruise, water renewal had proceeded to the eastern Gotland Basin, whereas 

the western Gotland Basin was still unaffected by the inflow. The deep water renewal was 

detectable in the distributions of temperature, salinity, and oxygen concentrations as well as in 

the distribution of the N20 concentrations: Shallow stations in the Kiel Bight and Pomeranian 

Bight were well-ventilated with uniform N20 concentrations near equilibrium throughout the 

water column. In contrast, stations in the deep basins, such as the Bomholm and the Gotland 

Deep, showed a clear stratification with deep water affected by North Sea Water. Inflowing 

North Sea Water led to changed environmental conditions, especially enhanced oxygen (02) 

or declining hydrogen sulfide (H2S) concentrations, thus, affecting the conditions for the 

production of N20. Pattern of N20 profiles and correlations with parameters like oxygen and 

nitrate differed between the basins. The dominant production pathway seems to be 

nitrification rather than denitrification. 

No indications for advection of N20 by North Sea Water were found. A rough budget 

revealed a significant surplus of in situ produced N20 after the inflow. However, due to the 

permanent halocline, it can be assumed that the formed N20 does not reach the atmosphere. 

Hydro graphic aspects therefore are decisive factors determining the final release of produced 

N20 to the atmosphere. 
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1. Introduction 

1.1 Nitrous oxide 

Nitrous oxide (N20) is an important atmospheric trace gas which influences, directly and 

indirectly, the Earth's climate: In the troposphere, it acts as a greenhouse gas with a relatively 

long atmospheric lifetime of 114 years (Prather et al., 2001). In the stratosphere it is the major 

source for nitric oxide radicals, which are involved in one of the main ozone reaction cycles 

(WMO, 2003). 

N20 is mainly formed during microbial processes such as nitrification and denitrification. 

Nitrification is an aerobic two-step process in which ammonium is oxidized to nitrate. In this 

process, in which typically two groups of bacteria are involved, N20 is assumed to be a by­

product, the exact metabolism however is still under discussion (Ostrom et al., 2000). In 

suboxic habitats, nitrate can be reduced by denitrification to molecular nitrogen, with N20 as 

an intermediate (Cohen and Gordon, 1978). N20 may also be produced by coupled 

nitrification and denitrification at oxic/suboxic boundaries, due to the transfer of intermediates 

such as nitrate and nitrite (Yoshinari et al., 1997). Other possibilities are the production of 

N20 during nitrifier-denitrification or aerobic denitrification (Wrage et al., 200 I). Both 

processes enable nitrifiers to oxidize NH/ to No2·, followed by the reduction ofN02- to N20 

or N2 (Robertson and Kuenen, 1984; Robertson et al., 1988; Richardson, 2000). In anoxic 

habitats N20 is used, instead of oxygen, as an electron acceptor (Elkins et al., 1978; Cohen 

and Gordon, 1978). 

The yield of N20 during these processes strongly depends on the concentration of dissolved 

oxygen and nitrate (Brettar and Rheinheimer, 1991; Goreau et al., 1980; Vollack and Zumft, 

2001; Wetzel, 1983), with maximal N20 accumulation at the interface between oxic and 

suboxic layers and depletion in anoxic layers (Codispoti et al., 2005). Positive correlations 

between N20 and oxygen or nitrate are commonly interpreted as an indication of N20 

production by nitrification (Yoshinari, 1976; Yoshida et al., 1989; Cohen and Gordon, 1978). 

In contrast, production by denitrification is inferred by missing correlations (Elkins et al., 

1978; Cohen and Gordon, 1978). However, up to now the dominant production pathway for 

N20 on the global scale remains unclear and is discussed controversially (Codispoti et al., 

2001; Popp et al., 2002; Yamagishi et al., 2005). 

Oceans emit more than 25 % of natural produced N20 and contribute significantly to the 

global N20 budget (Prather et al., 2001; Seitzinger et al. 2000). Particularly coastal regions, 

including estuarine and upwelling regions, play a major role for the formation and release of 

N20 to the atmosphere (Bange et al., 1996; Naqvi et al., 2000; Seitzinger et al., 2000). In the 
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Baltic Sea, first investigations were made by Ronner (1983) who found the Baltic Sea to be a 

source of atmospheric N20. In contrast to open ocean areas coastal regions are expected to be 

more influenced by conversion processes in sediments or by riverine inputs. In the Bodden 

waters and Danish fjords of the Baltic Sea enhanced N20 concentrations were correlated with 

seasonal riverine input (Jorgensen and Sorensen, 1985; Dahlke et al., 2000). Additionally, 

denitrification processes in sediments were shown to contribute to the release of N20 m 

Danish fjords (Jorgensen and Sorensen, 1985). 

1.2 Study area 

Samples of dissolved N20 were measured at 26 stations in the western, southern and central 

Baltic Sea. The cruise took place on board the German research vessel Gauss ( expedition no. 

11/03/04) from 13'h October to 251h October 2003 as part of the Cooperative Monitoring in the 

Baltic Sea Environment (COMBINE) program of the Baltic Marine Environment Protection 

Commission (Helsinki Commission, HELCOM, see http://www.helcom.fi). The locations of 

sampled stations are shown in Fig. I. 

The Baltic Sea is an adjacent sea of the Atlantic Ocean and part of the European continental 

shelf. It consists ofa series of basins (Arkona, Bornholm, and Gotland Basin; see Fig. 1), with 

restricted horizontal and vertical water exchange due to shallow sills and a clear salinity 

stratification of water masses. 

In January 2003 a major inflow of cold, highly saline and oxygen-rich North Sea Water was 

observed. It was the most important inflow event since 1993 and terminated the ongoing 

stagnation period in the central Baltic Sea (Feistel et al., 2003; Nausch et al., 2003). This 

inflow event was preceded by a minor inflow of warmer and less oxygenated water in August 

2002. Due to the inflow of North Sea Water oxygen conditions changed from anoxic to oxic 

in most parts of the Baltic Sea. From the inflow in January 2003 until our cruise in October 

2003 water renewal was already detectable at the Faro Deep (# 286), however the western 

Gotland Basin was still unventilated (Feistel et al., 2003; Nausch et al., 2003). 

Due to the fact that N20 production highly depends on environmental conditions such as e.g. 

oxygen concentration ( e.g., Naqvi et al., 2000) any natural or anthropogenic-induced shifts of 

coastal ecosystems will modulate the formation and subsequent release of N20 to the 

atmosphere. In this context the inflow of North Sea Water into the Baltic Sea offered a good 

opportunity to investigate naturally changing environmental conditions with regard to the 

production ofN20. 



Walter et al. Nitrous oxide in the Baltic Sea 5 

1.3 Definition of water masses 

We refer to four different water masses, characterized by temperature, salinity and oxygen 

concentrations (Fig. 3). The definition of water masses follows the description of the 'Institut 

fur Ostseeforschung' (!OW) cruise reports (Nausch, 2003a; Nagel, 2003; Feistcl, 2003; 

Nausch, 2003b; Nausch, 2003c; Wasmund, 2003) and the hydrographic-chemical report of the 

Baltic Sea in 2003 (Nausch et al., 2004). These water masses were characteristic for the time 

period after the inflow event in summer and autumn 2003. 

The Surface Water layer (sw) was characterized by uniform temperature and salinity, m 

combination with high oxygen concentrations. Below this layer, rapidly decreasing 

temperatures indicated Winter Water (ww), which is formed annually during convection in 

winter. Salinity and oxygen concentrations were still uniform. The 'old' Bottom Water (bw) 

was visible by increasing temperature and simultaneously increasing salinity. In this water 

mass, located below the Winter Water, oxygen concentrations decreased rapidly, to anoxic 

conditions at some stations. A permanent halocline between Winter Water and Bottom Water 

strongly restricts the vertical exchange and is the reason for the development of stagnant deep 

waters with oxygen depletion up to anoxia accompanied by accumulation of hydrogen 

sulphide (H2S). Bottom Water, affected by the North Sea Water inflow in January 2003 (abw) 

was characterized by decreasing temperature and enhanced oxygen concentrations compared 

to previous Bottom Water (bw) values. Due to its higher density the affected Bottom Water 

lifts up the 'old' Bottom Water. 

2. Methods 

Water samples were taken using a combined Seabird SBE911 CTD and Hydrobios rosette 

sampler equipped with 13 free-flow bottles. Samples for N20 analysis were collected in 

triplicate from various depths. The analytical method applied was a modification of the 

method described by (Bange et al., 2001 ). Bubble free samples were taken immediately 

following oxygen sampling from the rosette in 24 mL glass vials, sealed directly with butyl 

rubber stoppers and crimped with aluminium caps. To prevent microbial activity, samples 

were poisoned with 500 µL of a 2 mM mercury chloride solution.JO mL of the sample were 

then replaced with a helium headspace for each vial, and the samples were equilibrated for at 

least two hours at room temperature (temperature was recorded continuously). A 9 mL 

subsample from the headspace was used to flush a 2 mL sample loop after passing through a 

moisture trap (filled with Sicapent®, Merck Germany). Gaschromatographic separation was 

performed at 190 °Con a packed molecular sieve column (6 ft x 1/8" SS, 5 A, mesh 80/100, 



Alltech GmbH, Gennany). The N,0 was detected with an electron capture detector. A 

mixture of argon with 5 percent by volume methane was used as carrier gas with a flow of · 

21 mL min·1• For the two-point calibration procedure we used standard gas mixtures with 

311.8 ± 0.2 ppb and 346.5 ± 0.2 ppb N20 in synthetic air (Deuste Steininger GmbH, 

Miihlhausen Germany). The standard mixtures have been calibrated against the NOAA 

(National Oceanic and Atmospheric Administration, Boulder, Co.) standard scale in the 

laboratories of the Air Chemistry Division of the Max Planck Institute for Chemistry, Mainz, 

Gennany. 

2.1 Calculations 

N20 water concentrations (CN2o) were calculated as follows: 

(I) 

where jJstands for the Bunsen solubility in nmol L" 1 atm·1 (Weiss and Price, 1980), x is the 

dry gas mole fraction of N20 in the headspace in ppb, P is the atmospheric pressure in aim, 

V wp and Vh, stand for the volumes of the water and headspacc phases, respectively. R is the 

gas constant (8.2054 10-2 L atm mor1 K"1
) and T is the temperature during equilibration. The 

salinity was measured by the CTD-Sensor during water sample collection; the temperature 

was measured while subsampling the headspace of the sample vial (i.e. the equilibration 

temperature). The overall relative mean analytical error was estimated to be± 1.8 %. 

The excess N20 (t1N20) was calculated as the difference between the calculated N20 

equilibrium concentration and the measured concentration ofN20 as follows 

t1N20 (nmol L"1
) = N20 (observed) - N20 (equilibrium). (2) 

Since the water masses in the Baltic Sea are comparably young ( e.g. 11 years for the oldest 

bottom water at the Landsort Deep) (Meier, 2005) it is reasonable to calculate the equilibrium 

value with the actual atmospheric N20 mole fraction. During the cruise we measured a mean 

of318 ppb (± 3 ppb, n = 84) in the atmosphere, which is in good agreement with the monthly 

mean of 318.5 ±0.2 ppb in October 2003 measured at Mace Head, Ireland. This value was 

taken from the Advanced Global Atmospheric Gases Experiment (AGAGE) data set (updated 

verston from May 2005, available at ftp://cdiac.esd.oml.edu (subdirectory 

pub/ale_gage_Agage/Agage/gc-md/monthly) at the Carbon Dioxide Information Analysis 

Center in Oak Ridge, Tennessee). 
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The apparent oxygen utilization (AOU) was calculated as follows: 

AOU (µmol L"1
) = 02 (equilibrium)- 02 (observed). (3) 

The equilibrium values of dissolved oxygen (02) were calculated with the equation given by 

( Weiss, 1970). The concentration of H2S is expressed as the negative oxygen equivalent 

(1 µmol L"
1 

H2S = -2.00 µmol L"1 02). Dissolved nutrients and CTD data were provided by 

the participating working groups. 

The N20 inventory of single basins mN2o was calculated as follows: 

mN20 [tons]=<\20 • nNlO • V • 10-J (4) 

where CNlo is the mean measured N20 concentration in the single basins from the upper part 

of the halocline to the bottom (nmol L"1
), nN20 is the mole weight ofN20 (44 g mol"1) and V 

is the water volume of the single basins (km3). 

The water volumes are based on data published in chapter 4.4.1 (HELCOM, 1996), available 

at: www.vtt.fi/inf/baltic/balticinfo/index.html. 

The N20 content of basins was calculated with data of the following stations: Bornholm 

Basin: station 140, 200, 213, 222, eastern Gotland Basin: station 250, 259, 260, 272, western 

Gotland Basin: station 240, 245, 284. Station 286 is located in the northern part of the Gotland 

Basin and thus has not been taken into account. 

Nitrification rates (N) were estimated for the Bornholm Basin and the eastern Gotland Basin. 

N f mol L-1 d-1]= t.mNlO • r 
111 d *V * •10-9 NlO 

basin basin Il 

(5) 

where t.mN2o is the difference of calculated N20 content of the basins before and after the 

inflow event in tons, dbas;n is the number of days from the first observation of the intrusion of 

North Sea Water untill our measurements (assumed by data of the cruise reports of Nausch, 

2003a; Nagel, 2003; Feistel, 2003; Nausch, 2003b; Wasmund, 2003; Nausch, 2003c). 

Vbas;n is the calculated volume of the basins (km3
) (based on data published in chapter 4.4.1 

(HELCOM, 1996), available at: www.vtt.fi/inf/baltic/balticinfo/index.html), n is the mole 

weight of N20 (44 g mor1), and rN20 is the assumed N20 release of 0.3 % in continental 

shelves during nitrification (Seitzinger and Kroeze, 1998). 
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3. Results 

In order to account for the hydrographic characteristics of the Baltic Sea and the direction of 

the inflow of North Sea Water, we present the results according to the following 

classifications: I) well-mixed basins such as the Kiel, Uibeck and Pomeranian Bights and II) 

clearly stratified basins such as the Arkona, the Bomholm, the western and the eastern 

Gotland Basin (see Fig. 2). For each basin selected profiles are shown. 

3.1 \Veil-mixed basins 

At shallow stations, with depths< 30 m (station 10, 12, 22, 30, 41, 46, 121, 130, 133, 360, OB 

Boje, OB 4, Fig. I), water masses were well mixed, and profiles showed nearly uniform 

vertical distributions of all parameters (Fig. 3a). Concentrations of N20 were near 

equilibrium; however the Pomeranian Bight (station 130, 133, OB Boje, OB 4) showed 

enhanced saturation values (104.6 ± 7.9 %) in comparison with the Kiel Bight (station 360) 

and the Lubeck (station 22) and Mecklenburg Bight (station 10, 12, 41, 46; 79.3 ± 10.7 %). 

No correlations were found between liN20 and other parameters like 02 and NOi· (Fig. 3b-c). 

3.2 Stratified basins 

Basins with water depths > 30 m (Fig. 4-7) were clearly stratified into layers of well mixed 

Surface Water (sw), Winter (ww) and Bottom Water (bw) as described above. At several 

stations Bottom Water was affected by North Sea Water (abw), up to the Faro Deep in the 

northern part of the central Baltic Sea (Fig. l, station 286) (Feistel et al., 2003). However, 

below 110 m the deep water of the Faro Deep was still anoxic, though with decreasing H2S 

concentrations from 125 m to the bottom (Fig. 6a, lower profiles). Stations in the western 

Gotland Basin such as the Landsort Deep (station 284, Fig. 7a) or the Karlso Deep (station 

245, not shown) were still unaffected by the inflow event, thus below 80 rn H2S 

concentrations were uni form. 

3.2.1 Arkona Basin 

In the Arkona Basin (stations 109 and 113 (Fig. 4a)), N20 concentrations were constant and 

near equilibrium (10.9 ± 0.7 nmol L-1
) throughout the water column. In the Winter Water 

below the thermocline at 15 rn 02 concentrations decreased, associated with increasing N02-, 

NOi" and NH/. liN20 was slightly negatively correlated with 0 2 (Fig. 4b), and positively 

correlated with Noi· (Fig. 4c). At the bottom below 40 m inflowing North Sea (arrow in Fig. 
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4a) water formed a 5 to I O m thick oxygen enriched layer, however with no clear influence on 

the N 20 concentration. 

3.2.2 Bornholm Basin 

In the Bomholm Basin (Fig. 5, stations 140, 200, 213 and 222), N20 profiles in the central 

basin (stations 200 (not shown) and 213 (Fig. 5a)) can be clearly distinguished from stations 

where water flows into and out of the basin. At station 140 (inflow, not shown) concentrations 

and distribution of N20 and .:'.N20 were comparable to the Arkona Basin. At station 222 

(outflow, not shown) N20 concentrations in the surface layer were uniform near equilibrium 

at approximately I O nmol L-1
, below the surface layer concentrations were uniform around 

15.4 nmol L-1
• In the central Bomholm Basin, at station 200 (not shown) and 213 (Fig. 5a) 

N20 concentrations increased rapidly within the layer affected by North Sea Water (abw, 

below 60 m), with N20 values up to 31.3 nmol L-1 (station 200). These were the highest 

values measured during the entire cruise. In water masses above, N20 was near equilibrium, 

with slightly enhanced .:'.N20 values in the 'old' Bottom Water (bw, 40- 60 m). In the 

Bomholm Basin .:'.N20 was clearly negatively correlated with oxygen and positively with 

N03- (Fig. 5b-c), however, both correlations were nonlinear and were fitted best by 

polynomials. 

3.2.3 Eastern Gotland Basin 

The situation became more complex in the eastern Gotland basin (stations 259, 250, 260, 271 

and 286). Profiles were not as homogeneous as in the Arkona or Bomholm Basin. Again, N20 

concentrations were near equilibrium in the surface layer (sw, 0 - 20/30 m) and the Winter 

Water (ww, 20/30 - 60 m). At station 271 (Fig. 6a, upper profiles) the Bottom Water (bw) 

was completely oxygenated, with N20 values at approximately 20 nmol L"1 and positive 

.:'.NzO. At station 286 (Fig. 6a, lower profiles) the Bottom Water (bw) was affected by the 

North Sea Water too, but was still anoxic. Inflow of North Sea Water was detectable by 

decreasing H2S concentrations down to the bottom. Throughout the Bottom Water N20 

concentrations remained near zero. At station 250 (not shown), 271 (Fig. 6a, upper profiles) 

and 286 (Fig. 6a, lower profiles) a sharp local minimum ofN20 concentrations was observed 

at depths between 90 and 110 m (see arrows in Fig. 6a), combined with a local minimum in 

N03- values. Except for the anoxic water masses, .:'.N20 was linearly correlated with 0 2 and 

N03- (Fig. 6b-c). 
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3.2.4 \Vcstcrn Gotland Basin 

The western Gotland Basin with stations 284 (Fig. 7a), 245 and 240 revealed the "old" 

conditions, showing characteristics as yet unaffected by the latest intrusion of oxic North Sea 

Water. N20 in the surface layer (sw, 0 - 20/40 m) and Winter Water (ww, 20/40-60 m) was 

near equilibrium. Below 50 m, oxygen concentrations decreased rapidly and N20 

concentrations dropped sharply within the oxic/anoxic interface and remained near zero in the 

anoxic deep waters. t,N20 values were negative and were not correlated with N03- (Fig. 7c). 

t..N20 was logarithmically correlated with oxygen (Fig. 7b). 

3.3 Estimated contribution of the North Sea Water inflow to the 

production of N20 

The North Sea Water inflow consisted of a water volume of 200 km3 (Feistel and Nausch, 

2003). With an assumed N20 concentration of 10 ± 2 nmol L"1 (Law and Owens, 1990), the 

North Sea Water transported approximately 88 ± 18 tons N20 into the Baltic Sea. 

Before the North Sea Water inflow, the deep waters below the halocline were anoxic, not only 

in the western but also in the eastern Gotland Basin and the Bornholm Basin (Schmidt, 2002). 

Thus, N20 concentrations near zero similar to measured profiles in the western Gotland Basin 

in October 2003 (Fig. 7a) can be assumed. This is supported by the drop in concentration at 

station 286 (Fig. 7a, lower profile), which is assumed to be related to the previously anoxic 

bottom water. The mean N20 concentration in the western Gotland Basin was 0.97 ± 0.34 

nmol L"1
, on the basis of these values the calculated N20 content of the Bornholm Basin and 

the eastern Gotland Basin was approximately 64 ± 23 tons before the inflow (Table I). 

After the inflow event the Bomholm Basin and the eastern Gotland Basin are clearly 

influenced by the North Sea Water, whereas the western Gotland Basin was still unaffected 

(Nausch, 2003a; Nagel, 2003; Feistel, 2003; Nausch, 2003b; Wasmund, 2003; Nausch, 

2003c). The N20 content of the Bomholm Basin and the eastern Gotland Basin, calculated 

with the mean of measured N20 concentrations below the halocline in these basins, was about 

1194 ± 256 tons (Table I). 

4. Discussion 

Over the past two decades the previously frequent inflows of North Sea Water became rather 

rare (Feistel and Nausch, 2003), and oxygen levels in deep waters decreased. Thus, oxygen 

conditions in the Baltic Sea deep water cover a continuum from almost permanently oxic (i.e. 
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Arkona Basin) to almost permanently anoxic conditions (i.e. western Gotland Basin), with 

changes at non-regular intervals between anoxic and oxic (i.e. Bomholm Basin, eastern 

Gotland Basin) (Feistel, 2003; Nausch, 2003a; Nausch, 2003b; Nausch, 2003c; Nagel, 2003; 

Wasmund, 2003). 

The inflow event in January 2003 rapidly changed the environmental conditions of the deep 

basins. With respect to the oxygen dependent production of N20, our measured N20 

concentrations reflect the continuum of unaffected and changing oxygen conditions quite 

well. In oxic and well mixed waters, vertical N20 profiles were homogenous, with 

concentrations near equilibrium (Fig. 3a). Anoxic deep water layers, unaffected by North Sea 

Water (i.e. in the western Gotland Basin), had N20 concentrations near zero (Fig. 7a). 

Therefore, in both cases no correlations between N20 and either oxygen or nitrate were found 

(Fig. 3b-c, Fig. 7b-c). In contrast, stratified and recently ventilated water bodies in the 

Bomholm and eastern Gotland Basin revealed N20 distributions that were clearly correlated 

with oxygen and nitrate (Fig.5b-c, Fig. 6b-c). 

These vertical N20 distributions are in general agreement with the few previously published 

N20 profiles from the central Baltic Sea (Ronner, 1983; Ronner and Sorensson, 1985; Brettar 

and Rheinheimer, 1992). However, the past environmental settings of the deep central Baltic 

Sea basins were different: N20 profiles from the central Baltic Sea reported by (Ronner, 1983) 

were measured when oxic conditions prevailed during August-September 1977 after a strong 

inflow event in 1976/1977 (Schinke and Matthaus, 1998). Their N20 profiles are comparable 

to our profiles, measured in the completely oxygenated Bomholm Basin during October 2003 

(Fig. Sa). Anoxic conditions were re-established in July 1979 and May-June 1980. The shape 

of the N20 profiles from the then anoxic Gotland Deep, measured by Ronner and Sorensson 

(1985) is comparable to the N20 profiles measured in the western Gotland Basin (e.g., the 

Landsort Deep, Fig. 7a). This is the same for profiles measured by Brettar and Rheinheimer 

(1991) in August 1986 and July 1987 during the 1983-1993 stagnation periods (Schinke and 

Matthaus, 1998). 

In the following sections we discuss the processes that may cause the observed distributions 

ofN20 in the different basins. 

4.1 Non-biological aspects 

In surface layers and well-mixed water bodies of shallow stations, observed N20 

concentrations were near the equilibrium due to exchange with the atmosphere. In the Winter 

Water N20 concentrations were also near equilibrium, however with higher absolute values 

than in the surface layer (see Fig. 5a-7a). Mainly hydrographic aspects were here responsible 
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for the observed N20 distribution. This water mass is formed during winter convection, when 

N20 concentrations were in equilibrium with the atmosphere and this signal is conserved 

during stratification of the upper layer in summer. The lower temperature and hence higher 

N20 solubility during formation of the Winter Water are the reason for the enhanced N20 

concentrations in this layer. 

A non-biological factor affecting N20 in the deep water of the Baltic Sea might be advection 

with inflowing North Sea Water. Intrusion ofN20 by North Sea Water should be detectable at 

stratified stations, where the inflow of North Sea Water was clearly identified. In the Arkona 

Basin (station 109 and 113) this inflow was detectable at the bottom by lower temperature and 

higher oxygen concentrations; however, N20 concentrations did not increase and remained 

close to equilibrium (Fig. 4a-b ). These results point to only low advection of N20 by North 

Sea Water, and are supported by measurements of (Law and Owens, 1990). They found N20 

concentrations close to equilibrium up to approximately l O nmol L"1 in the North Sea. Thus, 

the enhanced N20 values detected in layers affected by North Sea Water, for example in the 

Bornholm Basin (station 200 and 213), must originate from biological in situ production since 

the inflow, rather than advection. 

4.2 Biological aspects 

Previous studies demonstrated the existence of N20 producing bacteria and investigated the 

biological pathways, namely nitrification and denitrification in the Baltic Sea (Bauer, 2003; 

Brettar and Hcif1e, 1993; Brettar et al., 2001). Both processes are commonly inferred by 

correlations between N20 and oxygen or nitrate (Yoshinari, 1976; Yoshida et al., 1989; Cohen 

and Gordon, 1978; Butler et al., 1989). 

4.2.1 Anoxic waters 

In general, in anoxic and H2S containing bottom waters N20 concentrations were constantly 

near zero, and therefore no correlation with either 0 2 or N03" was found. The N20 production 

by nitrification and denitrification might probably be inhibited by the presence of H2S (Joye 

and Hollibaugh, 1995; Knowles, 1982, S0rensen et al., 1980), and while changing to anoxic 

conditions, N20 can be consumed during denitrification as an electron acceptor instead of 

oxygen (Elkins et al., 1978; Cohen and Gordon, 1978). However, in contrast to other authors 

(Ronner et al., 1983; Brettar and Rheinheimer, 1992) we found low and uniformly distributed 

concentrations ofN20 (up to 1.7 nmol L"1
) in the anoxic water masses, which may have been 

residuals of a previous production process during oxic conditions. 
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4.2.2 Suboxic waters 

In suboxic waters and at the boundary to anoxic water masses N20 is expected to be mainly 

produced by denitrification processes (Codispoti et al., 2001), usually indicated by decreasing 

N03" concentrations and a secondary N02· peak (Wrage et al., 2001; Kristiansen and 

Schaanning, 2002). These indicators for denitrification were found only at the Faro Deep 

(station 286, 90m). However, no accumulation of N20 was observed, rather a local minimum 

of N20 was found (Fig. 6a, indicated by arrows). Hannig et al. (2005) investigated 

denitrification associated microorganisms in the Gotland Basin (station 271 and 286) in 

October 2003. They did not find denitrification activities in suboxic water masses, but a high 

denitrifying potential restricted to a narrow depth range at the oxic-anoxic interface and the 

sulfidic zone. However, in these depths an accumulation ofN20 was not found either. 

The local minimum of N20 was observed not only at the Faro Deep, but also at the Gotland 

Deep (Fig. 6a, indicated by arrows) and station 250 (profile not shown). A residual signal of 

the small inflow event in August 2002 could be observed at these depths between 90 and 

110 m (Feistel et al., 2003). We assume that this minimum of N20 is a previous signal of 

former anoxic bottom water, pushed up by the small inflow event in August 2002. The 

restriction of denitrification activity to a narrow depth range at anoxic-oxic boundaries was 

not only reported by Hannig et al. (2005) but also by Brettar et al. (200 I). Therefore, the lack 

of denitrification signals leads to the question, which processes might cause the measured 

N20 concentrations. 

4.2.3 Correlation between N20 and 0 2 

In general, in oxic waters N20 is positively correlated with nitrate, negatively with oxygen, 

indicating a production by nitrification. However, below a distinct threshold of oxygen 

concentration a clear inversion of relationship was found. Figure 8 shows the correlation 

between 6N20 and 0 2 in the Baltic Sea. At 0 2 concentrations > 50 µmol L"1 6N20 is clearly 

negatively correlated with 0 2, indicating production by nitrification (see Fig. 8, green data 

points). At 0 2 concentrations < 20 µmol L"1 6N20 and 0 2 were significantly positively 

correlated (see Fig. 8, red data points), data between 20 µmol L"1 and 50 µmol L"1 were 

extremely scattered (see Fig. 8, black data points). 

These findings suggest a change in N20 converting processes. Particularly in environments 

with rapidly changing conditions it is advantageous for microorganisms to be able to switch 

between different metabolic pathways. The change between aerobic and anaerobic 
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metabolism and thus the yield of N20 during these processes is probably controlled 

particularly by the 02 concentration, although little is known about the detailed mechanisms 

(Baumann et al., 1996; John, 1977; Sorensen, 1987). Our results suggest a production ofN20 

during nitrification until an oxygen threshold of around 20 - 50 µmol L"1
, whereas the exact 

concentration is not to be determined due to the scattered data. Below this threshold N20 

seemed to be degraded; probably used as an electron acceptor instead of oxygen and thereby 

reduced to N2 (Elkins et al., 1978; Cohen and Gordon, 1978). In the literature, threshold 

values of2 µmol L" 1 for nitrification are reported (Carlucci and McNally, 1969; Gundersen et 

al., 1966). For several nitrifiers the ability to switch between 'classical' nitrification, nitrifier­

denitrification and aerobic denitrification was shown (Wrage et al., 2001, Whittaker et al., 

2000, Zart et al., 2000, Zehr and Ward, 2002). The oxygen sensitivity is species-specific and 

also enzyme-specific; therefore the scatter of data might reflect the variety of involved species 

and enzymes (Jiang and Bakken, 2000; Goreau et al., 1980; Wetzel, 1983; Robertson et al., 

1988; Richardson, 2000). Bauer (2003) investigated NH/ oxidizing bacteria in the eastern 

Gotland Basin, and found similar bacterial communities at different depths; their nitrification 

activities however depended on 0 2 concentrations. 

Therefore, the ability of nitrifiers to perform denitrifying processes and the lack of 'classical' 

denitrifying signals, a switch ofN20 producing processes by nitrifiers can be assumed. These 

findings are in agreement with the assumptions of R6nner (1983), who also assumed, that 

nitrification is the main N20 production pathway in the Baltic Sea. 

Alternatively, it is also possible to interpret the data from the hydrographical or temporal point 

of view. Figure 9 shows the same data set as shown in Fig. 8. This time the data set is grouped 

not according to the oxygen concentrations but to the affiliation to different basins. Station 

286 was excluded due to its transitional character. At this station anoxic conditions in the deep 

waters were found similar to other stations in the western Gotland Basin, but H2S 

concentrations were decreasing towards the bottom. This indicates beginning ventilation, 

however still too weak to lead to oxic conditions. 

In the stratified basins such as the Bomholm Basin, and the eastern and western Gotland 

Basin correlations of ~N20 and Oi were regionally different and not always linear (Fig. 5b-c, 

6b-c, 7a, 9). Particularly in the Bomholm Basin, N20 and oxygen as well as N20 and nitrate 

showed significant non-linear relationships (Fig. 5b-c, 9). The Bomholm Basin, which was 

anoxic before the inflow (Schmidt, 2002), was ventilated by North Sea Water in January 

2003, months before the northern part of the eastern Gotland Basin was affected by the inflow 

(Nausch, 2003a, Nausch et al., 2004). In October 2003 the oxygen conditions were already 
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switching back to suboxic conditions (Nausch, 2003c; Wasmund, 2003), visible by decreasing 

oxygen concentrations compared to the beginning of the year. Accordingly the duration of 

elevated oxygen concentration in the respective basins may contribute to the observed 

accumulation of N20. In the eastern Gotland Basin (Fig. 6b-c, 9) the anoxic conditions 

changed a few months after the Bornholm Basin: the Gotland Deep was ventilated by North 

Sea Water in May 2003 (Nausch, 2003b). Thus, there was less time for N20 accumulation. 

For various communities of Nl-14 + oxidizing bacteria different lag times after switching from 

anoxic to oxic incubations were shown and the production of N20 might not have started 

directly after the ventilation by North Sea Water (Bodelier et al., 1996). In the western 

Gotland Basin (Fig. 7b-c, 9) no ventilation by North Sea Water had occurred by October 

2003, therefore degradation of N20 at the oxic-anoxic interface was found. We suspect that 

the correlation between L'.N20 and 02 in the Bornholm Basin and the eastern Gotland Basin 

will become similar to those of the western Gotland Basin with time, when the conditions 

change to anoxic. 

Summarizing, we assume a conversion of N20 mainly by nitrifiers, depending on oxygen 

concentration and with significant spatial and temporal characteristics. 

4.3 Estimated contribution of the North Sea '\Vater inflow to the 

production of N20 

The estimated N20 content in the stratified basins showed distinctly higher values after the 

inflow of the North Sea Water than before. The N20 concentration in the North Sea Water 

was assumed to be near equilibrium, so there was no significant advection of N20 from the 

North Sea. Thus, the observed elevated N20 concentrations in the Baltic Sea basins result 

from a stimulation ofN20 production by the inflow, most likely by advection of oxygen (see 

Table 1). 

Although more than 1 OOO tons of N20 were produced, it is questionable whether the North 

Sea Water inflow makes the Baltic Sea a source of atmospheric N20. Due to the strong 

salinity stratification, it can be assumed that the formed N20 stays below the permanent 

halocline, and therefore it will not reach the atmosphere. Commonly N20 budgets were 

modelled as a function of nitrification and denitrification. Seitzinger and Kroeze (1998) 

modelled the distribution of N20 production, amongst others based on the input of nitrogen 

compounds into estuaries by rivers. However, estimations of global N20 emissions do not or 

only to a small extent take into account the hydrographic aspects. The stratification of the 
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water column probably lead to a reduced release of calculated amounts, and accordingly to an 

overestimation of N20 emissions. 

The assumption of remaining N20 below the halocline leads to the question, whether and to 

what extent the nitrogen cycle might be influenced. 

Based on the calculated N20 content of the basins and the assumption of nitrification as the 

main production pathway N20 production rates and nitrification rates were estimated 

(Table 2). These nitrification rates are in good agreement with previously published rates for 

the Baltic Sea (Enoksson, 1986; Bauer 2003). Bauer (2003) calculated for the eastern Gotland 

Basin mean nitrification rates of 21.6 ± 11. l nmol L"1 at 60 m depth, respectively 44.3 ±33. l 

nmol L"1 at I 00 m depth. 

These rates are comparably low ( e.g. Bianchi et al., 1999); therefore the influence on the 

nitrogen cycle in the Baltic Sea might be small, too. N20 might play a minor role as a reserve­

or buffer-molecule during the change to anoxic conditions, preserving nitrifying processes in 

exchange for oxygen for a short while. 

5. Conclusions 
In January 2003 a major inflow of cold, highly saline and oxygen-rich North Sea Water was 

observed, terminating the ongoing stagnation period in parts of the central Baltic Sea. 

;... In agreement with previous studies, we found N20 production mainly in oxic water 

masses below the Winter Water layer. 

;... We found no indication for advection of N20 by North Sea Water; however, the 

environmental conditions for N20 production were clearly changed due to the North Sea 

Water inflow. 

;... The inflow leads to a stimulation of N20 production below the permanent halocline, but 

due to the halocline, the Baltic Sea is not a significant source ofN20 to the atmosphere. 

;... There was no indication for an accumulation of N20 during denitrification. In oxic and 

suboxic water masses nitrification seems to be the main production pathway. The 

occurrence of nitrifier-denitrification and aerobic denitrification is possible, but needs 

further investigations. 
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Figure captions 

Fig. I: Map of the western, southern and central Baltic Sea with locations of the stations. The stations were 
grouped as follows: well-mixed stations are number 10, 12, 22, 30, 41, 46, 121, 130, 133, 360, OB Boje and OB 
4; the Arkona Basin is represented by station 109 and 113; the Bornholm Basin is represented by station 140, 
200, 213 and 222; in the eastern Gotland Basin station 250, 259, 260, 271 and 286 were grouped; and the western 
Gotland Basin is represented by station 240, 245 and 284. The arrow indicates the main flow direction of North 
Sea Water. 

Fig. 2: Characterization of different water masses in the Baltic Sea, for example at station 271 in the Eastern 
Gotland Basin (triangles: temperature (0 C), circles: salinity, squares: oxygen (µmol 101 L" 1). 

Fig. 3: well mixed basins; a) left plot with profiles ofN20, calculated N,O equilibrium concentration, No,·, No,· 
at station 41 in the Mecklenburg Bight and right plot with profiles of temperature, salinity and oxygen at station 
41 in the Mecklenburg Bight; b) AN20 plotted against oxygen at all stations< 30 m; c) AN20 plotted against 
NO; at all stations < 30 m 

Fig. 4: Arkona Basin; a) station 113 (Arkona Deep): left plot with profiles ofN20, N20 equilibrium 
concentration, No,·, No,·, right plot with profiles of temperature, salinity and oxygen, the arrow indicate the 
influence of North Sea Water; abbreviations see Fig. 2.; b) AN20 plotted against oxygen (at all stations in the 
Arkona Basin, y = -0.011 x + 3.132, R2 = 0.67); c) AN20 plotted against No,· (at all stations in the Arkona 
Basin, y = 0.546 x - 0.807, R2 = 0.66) 

Fig. 5: central Bomholm Basin; a) station 213 (Bomholm Deep): left plot with profiles ofN20, N20 equilibrium 
concentration, No,·, No,-, right plot with profiles of temperature, salinity and oxygen, abbreviations see Fig. 2; 
b) AN20 plotted against oxygen (at all stations in the Bornholm Basin, y = 0.0003 x2 -0.1531 x + 19.517, 
R2 = 0.88); c) AN20 plotted against No,· (at all stations in the Bomholm Basin, y = 0.0585 x2 + 0.1438 x -
0.6155, R2 

= 0.90) 

Fig. 6: Eastern Galland Basin; a) station 271 (Gotland Deep, upper plots) and 286 (Faro Deep, lower plots): left 
plots with profiles ofN20, N20 equilibrium concentration, No,·, No,·; right plots with profiles of temperature, 
salinity and oxygen, abbreviations see Fig. 2; b) AN20 plotted against oxygen (at all stations in the Eastern 
Gotland Basin, y = -0.019 x + 5.625, R2 = 0.67 (except for 0 2 < 3 µmol L"1

)); c) AN20 plotted against No,· (at 
all stations in the Eastern Gotland Basin, y = 0.639 x - 0.459, R2 = 0.62 (except for 0 2 < 3 µmol L" 1

)) 

Fig. 7: Western Gotland Basin; a) station 284 (Landsort Deep): left plot with profiles ofN20, N20 equilibrium 
concentration, No,·, No,·, right plot with profiles of temperature, salinity and oxygen, abbreviations see Fig. 2; 
b) AN20 plotted against oxygen (at all stations in the Western Gotland Basin; y = 2.2467 Ln (x)- 13.322, 
R2 = 0.86, (with exception of02 < 0 µmol L-1

)); c) AN20 plotted against No,· (at all stations in the Western 
Gotland Basin) 

Fig. 8. Correlation between AN20 and 0 2 in the Baltic Sea. Correlations were calculated for oxic waters with 0 2 

concentrations> 50 µmol L.1 (green coloured, y = -0.019 x + 5.41, R2 = -0.70) and< 20 µmol L.1 (red coloured, 
y = 1.038 x - 11.36, R2 = 0.81 ). These concentrations were empirically tested and gave the best fittings for both 
correlations. 

Fig. 9. Correlation between AN20 and 0 2 in the Baltic Sea; Correlations were calculated for the Bomholm Basin 
(station 140, 200, 213, 222, green coloured, y = -6.83 Ln(x) + 37.88, R2 = 0.86), the eastern Gotland Basin 
(station 259, 250, 260, 271, blue coloured, y = -0.02 x + 5.88, R2 = 0.70) and the western Gotland Basin (station 
284, 240, 245, red coloured, y = 2.25 Ln(x) - 13.32, R2 = 0.86). Anoxic data and station 286 were excluded. 
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Tables 

Table 1: Estimated N20 content of single basins in the Baltic Sea below the halocline, before and after the 
inflow of North Sea Water in Janua112003 

mean N20 cone. 
N20 content N20 content 

Water volume before after 
below the halocline (km') the inflow event the inflo\v e,·ent 

(nmol L'1) !tons) !tons) 

Bornholm Basin >50m 306 
16.59 ± 5.61 

13 ± 5 223 ± 76 

eastern >70m 
1195 51 ± 18 971 ± 180 

Galland Basin 18.46 ± 3.43 

~ 1501 64±23 1194±256 

western >70m 657 28 ± 10 28± 10 
Galland Basin 0.97 ± 0.34 

Table 2: Estimated nitrification rates in the Bornholm Basin and the eastern Galland Basin, based on the 
assumption of0.3 % N20 release during nitrification (Seitzinger and Kroeze, 1998) 

.6.m,20 dbasln Water volume N20 production rate nitrification rate 

(tons) (day) (km') (nmol L"1 d"1
) (nmol L'1 d"1

) 

Bornholm Basin 
220± 81 265 306 0.059 ± 0.023 19.62 ± 7.57 

eastern 920± 198 167 
Gotland Basin 

1195 0.105 ± 0.021 34.92 ± 6.87 

22 
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Abstract. We computed high-resolution ( 1 ° latitude x 1 ° 
longitude) seasonal and annual nitrous oxide (N20) con­
centration fields for the Arabian Sea surface layer using a 
database containing more than 2400 values measured be~ 
tween December 1977 and July 1997. N20 concentrations 
arc highest during the southwest (SW) monsoon along the 
southern Indian continental shelf. Annual emissions range 
from 0.33 to 0.70TgN20 and are dominated by fluxes from 
coastal regions during the SW and northeast monsoons. Our 
revised estimate for the annual N20 flux from the Arabian 
Sea is much more tightly constrained than the previous con­
sensus derived using averaged in-situ data from a smaller 
number of studies. However, the tendency to focus on mea­
surements in locally restricted features in combination with 
insufficient seasonal data coverage leads to considerable un­
certainties of the concentration fields and thus in the fluxes­
timates, especially in the coastal zones of the northern and 
eastern Arabian Sea. The overall mean relative error of the 
annual N20 emissions from the Arabian Sea was estimated 
to be at least 65%. 

1 Introduction 

Nitrous oxide (N20) is an atmospheric trace gas that influ­
ences, directly and indirectly, the Earth's climate (Prather et 
al., 2001). Source estimates indicate that the world's oceans 

Correspondence to: H. W. Bangc (hbange@ifm.uni-kiel.de) 

© European Geophysical Society 2001 

play a major role in the global budget of atmospheric N20 
(Seitzinger et al., 2000). Upwelling regions, such as the east­
ern tropical Pacific and the Arabian Sea, are sites of high 
N20 production via denitrification and/or nitrification pro­
cesses that occur at the boundaries of the oxygen depicted 
water masses (Codispoti et al., 1992). Following the studies 
of Law and Owens ( 1990) and Naqvi and Noronha ( 1991 ), 
it has been speculated that the Arabian Sea, especially its 
upwelling-dominated northwestcrn part, represents a hot spot 
for N20 emissions and makes a substantial contribution to 
the global budget of atmospheric N20. However, the situa­
tion is apparently somewhat more complicated, because re­
cent data show seasonal N20 emissions from the continen­
tal shelf area of India also to be important (Naqvi et al., 
2000). Previous N20 flux estimates are compromised by 
significant temporal and spatial biases. Moreover, we recog­
nize that in efforts to model global oceanic N20 emissions, 
the Arabian Sea appears to be under-represented mainly ow­
ing to the relatively low spatial resolution of the applied 
models and/or missing data from this region (Nevison et al., 
1995; Seitzinger et al., 2000; Suntharalingam and Sarmiento, 
2000). Here we present a comprehensive compilation ofN20 
measurements from the Arabian Sea surface layer from 1977 
to 1997. These data were used to calculate mean seasonal 
and annual climatological N20 fields with a 1 ° latitude x 1 ° 
longitude resolution. On the basis of the N20 surface con­
centration fields, N20 emissions from the Arabian Sea were 
reassessed. 
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Table I. Overview of the N20 Source Data 

Arabian Sea Region Cruise Dates Method N References 

\\'est, Central Dec 1977-Jan 1978 Con 668 Weiss et al. ( 1992)" 

Northwest. Central Sep 1986 Dis 19 Law and Owens (1990) 

East, Central Dee 1988 Dis 15 Naqvi and Noronha (1991) 

East, Central Apr-May 1994, Dis 125 Lal and Patra (1998)• 

Feb-Mar, Jui-Aug 1995, 

Aug 1996, Feb 1997 

Northwest, Central Sep, Nov-Dec 1994 Dis 47 Upstill-Goddard et al. (1999) 

Northwest, Central May, Jui-Aug 1995, Con 1569 Bange et al. ( I 996a)' 

Mar, May-Jui 1997 Bange et al. (2000)' 

East Jui 1995 Dis 20 Naqvi et al. ( 1998) 

Con stands for continuous measurements. 
Dis stands for measurements of discrete samples. N stands for number of data points. 
a Data are available from the anonymous ftp site cdiac.esd.ornl.edu (subdirectory /pub/ndp044) at the Carbon Dioxide Infonnation Analysis 
Center in Oak Ridge, Tennessee. 
b Data are included in the JGOFS-India data compilation on CD-ROM available from the Indian National Oceanographic Data Centre, Goa, 
India (occan@csnio.ren.nic.in). 
c Data are available from the German JGOFS data management 
(http://www.ifrn.uni-kiel.de/jgofs/drn). 
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Fig. l. Map of the Arabian Sea with locations of the N20 measure­
ments in the surface layer used in our study (see Table I). 

2 Data sources 

For our study we compiled N20 measurements from 0-IOm 
water depth within the study area (44°-80° E, 0°-27° N) 
excluding the Persian Gulf and the Red Sea (Fig. I). The 
majority of the data were collected during individual national 

Atmos. Chern. Phys., I, 61-71, 200 I 

contributions to the international Joint Global Ocean Flux 
Study (JGOFS) - Arabian Sea Process Study between 1994 
and 1997. Pre-JGOFS data were from cruises in 1977/1978, 
1986, and 1988. An overview of the data sources is given 
in Table I. (Unfortunately, data from the 1992 Netherlands 
Indian Ocean Program were unavailable for this reassess­
ment.) N20 concentrations are typically reported in nmol 
L -t, however, the data listed in Weiss et al. (1992) arc in dry 
mole fractions. We recalculated the Weiss et al. (1992) N20 
concentrations with the reported water temperature, a mean 
seasonal salinity of 35.75, as calculated from climatologi­
cal salinity data (see below), and an atmospheric pressure of 
I atrn (Weiss and Price, 1980). We are aware that this proce­
dure introduces an additional error; however, the dependence 
of the N20 solubility on salinity and pressure is small and 
the resulting uncertainty of about ± l % is acceptable for our 
purposes. 

Weekly averaged wind speeds for the period July 1987 
to December 1995 were derived from satellite-based Special 
Sensor Microwave I Imager measurements by using an al­
gorithm developed by Schlilssel (1995) (see Appendix A). 
Weekly composites of 18 km x 18 km gridded, day and night 
multichannel sea surface temperatures (SSTs) satellite data 
for the period 1986 to 1995 were provided by the Physi­
cal Oceanography Distributed Active Archive Center of the 
Jet Propulsion Laboratory, California Institute of Technol­
ogy, Pasadena, California (http://podaac.jpl.nasa.gov:203 I/ 
DATASET _DQCS/avhrr_wkly..mcsst.html). Monthly clima­
tological salinities with a resolution of I O x I O were obtained 

www.atmos-chem-phys.org/acp/l/61/ 
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Fig. 2. Seasonal maps ofN20 pixels. (a) DJF, (b) MAM,(<) JJA, and (d) SON. 

from the World Ocean Alias 1998 (http://www.nodc.noaa. 
gov/OC5/data_woa.html). 

3 N20 fields 

For the calculation of the N20 fields we applied a modified 
procedure originally described by Conkright et al. ( 1994) 
and further developed by Kettle et al. (1999). The original 
data sets were combined to form a database with 2463 values. 
The database was then divided into 12 monthly databases. A 
statistical checking procedure was implemented, wherein the 
monthly database values were pooled into 5° x 5° squares. 
For each 5° x 5° square a mean and standard deviation (sd) 
were calculated and individual data were compared with the 
mean. Values falling outside 3 times the sd of the mean 
were omitted and the procedure was repeated until no fur­
ther values were eliminated. In squares with 3 values or 
fewer, the checking procedure was omitted and the remain­
ing values accepted. This procedure removed 49 data points. 
The modified monthly databases were then subdivided into 
l O x I O squares. Mean N20 values (so-called N20 pix-

www.atmos-chem-phys.org/aep/ l /61 I 

els) were calculated from the data in each square. If there 
was only one value within the square, it was accepted as 
a pixel. Monthly N,O pixel data sets were then combined 
into four seasonal sets: northeast (NE) monsoon (Decem­
ber to February, DJF), intermonsoon (March to May, MAM), 
southwcst (SW) monsoon (June to August, JJA), and intcr­
monsoon (September to November, SON) (Figs. 2a-d). Fi­
nally, the four seasonal sets were combined to form an an­
nual N,O pixel set. For the annual and for each of the four 
seasonal and pixel sets, we calculated means for Arabian 
Sea biogcographic provinces, i.e. the Northwestern Ara­
bian Upwclling, Indian Monsoon Gyres, and Western India 
Coastal provinces (INDW) (Longhurst, 1998). The biogco­
graphic means were used to create a I O x I O first-guess field 
which was smoothed with a 9-point 2-dimensional opera­
tor (Shuman, 1957). A l O x l O correction field was com­
puted for each of the seasonal and annual N20 pixel data 
by applying the distance-weighted interpolation scheme of 
Conkright et al. (1994) (see Appendix A). In order to pre­
clude any smoothing of small-scale features, we reduced the 
influence radius from 555 km to 222 km. The correction field 
was then added to the first-guess field and smoothed (Shu· 

Atmos. Chem. Phys., l, 61-71, 2001 
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Fig. J. Seasonal maps of the final N20 I O x I O fields (in nmol L - I). (a) DJF, (b) MAM, (c) JJA, and (d) SON. Contour labelling starts 
with 5 nmol L - I ; minimum concentration range is shown in dark blue (5 8 nmol L - I), maximum concentration range is shown in red(> 
32 nmol L- 1). 

man, 1957), yielding the final I O x I O annual and seasonal 
N20 fields. The final seasonal and annual N20 concentra­
tion fields are available from the Gennan JGOFS data man­
agement (http://www.iftn.uni-kiel.de/jgofs/dm). 

4 Air-sea exchange 

The air-sea exchange flux density (F) was parametcrized as 

F = kw(u)(Cw - Ca), 

where kw is the gas transfer coefficient as a function of wind 
speed (11 in I O m height), Cw is the N20 seawater concentra­
tion, and Ca is the equilibrium N20 concentration in seawa­
ter. Ca was ealculated using 

Ca= /J(T, S)x' P, 

where x' is the atmospheric N20 dry mole fraction, P is 
the atmospheric pressure, and f3 is the Bunsen solubility, 
which is a function of the water temperature (T) and salin­
ity (S) (Weiss and Price, 1980). To calculate kw, we used 
the tri-linear kw - u relationship of Liss and Merlivat ( 1986) 
(LM86), the quadratic kw - u relationship for climatologi­
cal wind data of Wanninkhof (1992) (W92), and the com­
bined linear and quadratic kw - u relationship from Nightin­
gale et al. (2000) (NOO) (Equations of the LM86, W92, 
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and NOO approaches are given in Appendix 8). kw was ad­
justed by multiplying with (Sc/600)-n (11 = 2/3 for wind 
speeds <3.6ms- 1 and11 = 1/2 for wind speeds >3.6 ms- 1) 

for LM86, (Sc/660)- 0·5 for W92, and (Sc/600r 0·5 for NOO, 
where Sc is the Schmidt number for N20. Sc was calculated 
using empirical equations for the kinematic viscosity of sea­
water (Siedler and Peters, 1986) and the diffusion coefficient 
of N20 in water. The N20 diffusion coefficients (DN20 in 
m2s- 1) were calculated with Eq. (1) derived from the data 
given in Broecker and Peng (1974) and, alternatively, with 
the new Eq. (2) derived from a compilation of actual mea­
surements (Rhee, 2000): 

loglO D N20 = - 1008.28/ RT - 5.245 

D N20 = 3.16 x 10- 6 exp(-18370/RT) , 

(I) 

(2) 

where T is the water temperature in K and R is the univer­
sal gas constant. Equation (1) ist based on 5 measurements 
ofN20 diffusion coefficients in water in a temperature range 
from 14° to 25°C (see compilation by Himmelblau, 1964). 
Unfortunately, these rather old values (two of them were al­
ready published in 1898, the rest was published in 1957) 
show a considerable scattering, indicating an uncertainty of 
up to 20% for values calculated with Eq. (1) (Broecker and 
Peng, 1974). Equation (2) is based on 49 measurements of 

www.atmos-chem-phys.org/acp/ I /61/ 
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Table 2. N20 fluxes from the Arabian Sea calculated with the N20 
diffusion coefficient of Broecker and Peng ( 1974) 

N20 fields flux,a Percentage,a 
TgN20 % 

DJF 0.08 / 0.13 / 0.19 n 125 124 

MAM O.Ol / 0.01 / 0.02 3 / 2 / 3 

JJA 0.25 I 0.33 / 0.5 I 68 / 65 165 

SON 0.03 I 0.04 1 0.06 8 / 8 / 8 

Sum 0.37 I 0.5 I / 0.78 

a first value calculated according to LM86; second value calculated 
according to NOO, and third value calculated according to W92. 

N20 diffusion coefficients in water in the temperature range 
from 14° to 95°C (see compilation by Rhee, 2000), thus pro­
viding a more reasonable fit for the N20 diffusion with a con­
siderable reduced uncertainty of less then 10% (Rhee, 2000). 
We did not apply a correction for seawater since the effect of 
seawater on the diffusion of dissolved gases is variable (King 
et al., 1995) and, to our knowledge, no measurements of the 
N20 diffusion in seawater have been published. 

Cw was taken from the 1°x 1° seasonal N20 fields (DJF, 
MAM, JJA. SON). For the calculation of /3, Sc, and kw, 
seasonal 1 ° x 1 ° fields of wind speed, SST, and salinity 
were computed from the data sources given above. At­
mospheric pressure was set to I atrn. A mean x' of 
307 ppb for the period July 1978- July 1997 was calcu­
lated from the monthly mean values observed at the Cape 
Grim (fasmania) and Adrigole/Mace Head {Ireland) mon­
itoring stations of the ALE/GAGE/AGAGE program (up­
dated version July 2000). The data are available from 
the anonymous ftp site cdiac.esd.oml.edu (subdirectory 
/pub/ale_gage.Agage/Agage/monthly) at the Carbon Dioxide 
Infonnation Analysis Center in Oak Ridge, Tennessee. N20 
fluxes were calculated by multiplying the area of a I O x I O 

square with its flux density calculated as described above. 
The sum of the N20 fluxes of the 1°x 1° squares yields the 
total N20 emissions from the Arabian Sea (surface area: 6.8 
x 1012 m2). The length of one degree of the meridian and 
the parallel (based on the international ellipsoid) were taken 
from the tables in Smith ( 1974). 

5 Results and discussion 

Derived seasonal N20 concentration fields are shown in 
Fig. 3. Elevated N20 concentrations occur in coastal ar­
eas of the Arabian Sea during JJA (Fig. 3c). During DJF, 
N20 is higher in the eastern than in the western Arabian Sea, 
whereas during MAM and SON these N20 distributions are 
rather similar (Figs. 3b and 3c). However, the SON database 
is comparatively small, lending a note of caution to such a 

www.atrnos-chem-phys.org/acp/ 1/61/ 
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Table 3. N20 f luxes from the Arabian Sea calculated with the N20 
diffusion coefficient of Rhee (2000) 

N20 f ields flux,a Percentage,a 
TgN20 % 

DJF 0.07 / 0.12 / 0.17 21 / 26 / 24 

MAM O.Ol / 0.01 / 0.02 3 / 2 / 3 

JJA 0.23 / 0.30 I 0.45 70 / 64 / 64 

SON 0.02 / 0.04 I 0.06 6 / 9 / 9 

Sum 0.33 / 0.47 I 0. 70 

a first value calculated according to LM86; second value calculated 
according to NOO, and third value calculated according to W92. 

conclusion (Fig. 2d). The seasonal variability in N20 con­
centrations is clearly dominated by coastal upwelling in the 
Arabian Sea. During the SW monsoon, N20-rich subsur­
face waters are brought to the surface layer (see e.g., Bange 
et al., 2000; Patra et al., 1999). Interestingly, maximum 
N20 concentrations are found on the eastern Indian conti­
nental shelf, consistent with the observations by Patra et al. 
{1999). However, the calculated N20 values in the eastern 
Arabian Sea(> 70° E) during JJA and SON, 5.8 to 36.3 nrnol 
L -• (Figs. 3c and 3d), are considerably lower than the 5.3-
436 nmol L - 1 range recently reported by Naqvi et al. (2000). 
It is possible that the enormous N20 accumulation observed 
along the Indian coast during the late summer and autumn is 
in part due to an (anthropogenic?) intensification of the nat­
ural coastal hypoxic system as a shift to anoxic conditions in 
the subsurface layers appears to have occurred in recent years 
(Naqvi et al., 2000). But if the N20 concentrations were high 
even before this intensification, then our analysis would un­
derestimate the N20 concentrations and the associated fluxes 
from this region, especially during SON (see below). 

Annual N20 emissions computed as the sum of the sea­
sonal N20 emissions range from 0.37 to 0.78 Tg N20 yr- •, 
depending on which air-sea transfer parameterization is used 
(fable 2). The use of the N20 diffusion coefficient of Rhee 
(2000) yielded about 10% lower N20 emissions ranging 
from 0.33 to 0.70 Tg {Table 3). Thus, we conclude that previ­
ous estimates using the N20 diffusion coefficient ofBroecker 
and Peng (1974) may be overestimated. However, we em­
phasize that the annual flux estimates presented here are as­
sociated with a mean relative error ofat least 65% (for further 
details of the error discussion see Appendices C and 0). 

N20 emissions during the SW monsoon (JJA) dominate 
the annual emissions, accounting for about 64-70% of the 
total. The second largest contribution occurs during the NE 
monsoon (DJF) (21- 26%), whereas emissions from the inter­
monsoon period MAM seems to be of minor importance (2-
3%). Our revised estimate for the annual N20 flux from the 
Arabian Sea is much more tightly constrained than the previ­
ous consensus of 0.16-1.5 Tg N20 yr- 1 derived using aver-

Atmos. Chem. Phys., 1, 61- 71, 2001 
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Table 4. Summary of \.vious N20 fllL'( estimates for the Arabian Sea 

Source region Arca, Flux. References 

1<>6 km2 TgN20YT-I 

Central, west(> 15° N) 1.6 0.22--0.39 Law and Owens ( 1990) 

Cenlt'll, cast 6.2 0.44 Naqvi and Noronha (1991) 

Cenlt'll, west 6.2 0.8-1.5 Bangc et al. ( I 996a) 

Central, cast 6.2 0.56-1.00 Lal and Patra ( 1998) 

Cenlt'll, Y.-cst 8.0 (0.41--0.751' Ups1ill-Goddard et al. (1999) 

Central, Y.est (> 6° N) 4.9 0.16--0.31 Bange et al. (2000) 

>15° N 1.6 0.10--0.21 This study' 

> 6° N 4.4 0.28-0.60 

> Equator 6.8 0.37c--0.78c 

aFllL'(es arc calculated according to LM86 (first value) and W92 (second value) unless stated otherwise (sec footnotes band c). 
bftuxes arc calculated according to LM86 (first value) and the stngnant·tilm model ofBroecker nnd Peng (1974) (second value). 
Cflux calculated according to LM86. 
4 Scmi-annual flux. 
eoata calculated with the diffusion coefficient ofBroccker and Peng (1974). 
I Taken from Table 2. 

aged in-situ data from a smaller number of studies (Table 4) 
(Bange et al., 1996a; Bange et al., 2000; Lal and Patra, 1998; 
Law and Owens, 1990; Naqvi and Noronha, 199 I ; Upstill­
Goddard et al., 1999). The data listed in Table 4 depict the 
"historical" development of published N20 flux estimates for 
the Arabian Sea and show a considerable divergence. How­
ever, the fluxes listed are difficult to compare since they were 
extrapolated to different Arabian Sea surface areas and partly 
biased by the use of non-seasonal data sets and limited spatial 
data coverage. 

6 Conclusions 

Our calculated seasonal N20 concentration fields and asso­
ciated air-sea fluxes for the Arabian Sea yield an annual N20 
flux of0.33 {±0.21) - 0.70 {±0.46)Tg N20. This flux repre­
sents approximately 2- 35% of the currently estimated global 
oceanic N20 source of 2- 17Tg N20 yr-1 (Bunge et al., 
I 996b; Nevison et al., 1995; Suntharalingam and Sarmiento, 
2000). The Arabian Sea is the most intensely studied re­
gion for N20 emissions in the world ocean. Given its dis­
proportionately large contribution to this total and the lack 
of adequate coverage in other potentially important oceano­
graphic regimes, the potential marine contribution to atmo­
spheric N20 could be somewhat higher than these estimates 
suggest. Future N20 flux estimates could be improved by us­
ing N20 concentration data from time series measurements 
at selected stations in the key regions of the Arabian Sea such 
as the coastal upwelling areas and the central Arabian Sea. 

Atmos. Chem. Phys., I , 61-71, 2001 

Appendix A: Some useful equations 

Weekly averaged wind speeds in 10 meter height (uio 
in ms-1) for the period July 1987 to December 1995 
were derived from satellite-based Special Sensor Mi­
crowave/ lmager (SSM/1) measurements by using an algo­
rithm developed by Schlussel (1995): 

u10 =co+ c, T19u + c2(T19u - T191i) + CJT22u 

+c4T31u + cs(T31u - T311i) 

T is the brightness temperature in K; v and h depict vertical 
and horizontal polarisations; 19, 22, and 37 depict radiometer 
channels at 19.35, 22.24, and 37.0GHz, respectively. Values 
for c;(i = 0, ... , 5) are listed in Table 5. 

The used 9-point 2-dimensional smoothing procedure 
(Shuman, 1957) is given as: 

Z;J = zo + 0.5v(l - v)(z2 + Z4 + Z6 + zs + 4zo) 

+0.25 v2(z1 + ZJ + zs + z1 - 4zo). 

zo •... , zs stand for the elements in a 9-point grid with zo in 
the centre. Numbering starts with z1 in the upper left comer 
of the grid and continues counter clockwise. z11 is the result­
ing value at the grid point coordinates i and j; and vis called 
the smoothing element index of the two smoothing elements, 
one applied in each dimension. In this study v was set to 0.5. 

www.atmos-chem-phys.org/acp/l/6 l/ 
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Fig. 4. Annual mean N20 concentrations (in nmol L - I) along selected latitudes. The solid line is the predicted N20 from the final 1° x I 
O 

field, the dashed line stands for the smoothed first-guess field, and the solid squares represent the annual mean N20 with standard deviation 
of all measurements within the I O x I O squares along the given latitude. (When less than 3 values were available no standard deviation is 
given.) (a) 18.5° N, (b) 15.5° N, and (c) I 0.5° N. ln (d) the corresponding annual mean N20 field (in nmol L - I) is shown. 

The l0 x 1° N20 correction field was computed by ap­
plying the distance-weighted interpolation scheme used by 
Conkright et al. ( 1994) 

n 

L Ws Qs 

C s=I 
/j=--n--

1": Ws 
s= I 

where C;j is the correction factor at the grid point coordi­
nates (i, j); i and j are the coordinates of a grid point in the 
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east-west and north-south directions, respectively; n is the 
number of observations that fall within the area around the 
point i, j defined by the influence radius (R}; Q3 is the dif­
ference between the observed mean and the first-guess at the 
S'h point in the influence area; Ws is the weight function: 

Ws = exp(-;t) . 

r is the distance of the oberservation from the grid pont i, j. 
When r > R, then Ws = 0. In this study the influence radius 
R was set to 222 km. 
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Appendix B: Calculation of kw 

The approach of Liss and Merlivat ( 1986) (LM86) consists 
of three equations for the calculation of kw (in m s- 1 ): 

kw = 4.72 w-11110 (1110 '.': 3.6ms- 1) 
kw = 7.92 w-• ,,10 - 2.68 w-5 (3.6m s-1 < 1110 

s 13ms- 1) 

kw= l.64 I0-5 1110-l.40 w-4 (1110 > 13ms-1). 

The LM86 relationship is based on datca obtained from a 
lake study and a laboratory study at high wind speeds. The 
approach of Liss and Merlivat ( 1986) is usually applied with 
both short-tcnn and long-tcnn wind speeds. 

Wanninkhof (1992) (W92) proposed the following rela­
tionship for the calculation of kw (in m s- 1) with climato­
logical wind speed data: 

This approach is only valid when using long-term averaged 
(climatological) wind speeds. 
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Fig. 5. Continued.: (c) JJA. and (d) SON. 

the kw - 11 relationship of Nightingale et al. (2000)(NOO) 
is given by (kw in m s- 1 ): 

kw =9.25 w-1 1110+6.17 w-1ulo· 
The NOO relationship shows a dependence on wind speeds 
intermediate between those of Liss and Merlivat (1986) and 
Wanninkhof ( 1992). Moreover, the NOO relationship is in 
reasonable agreement with estimates of kw based on globally 
averaged wind speeds. 

Appendix C: Error estimate 

In order to evaluate the fit of the computed final N20 concen­
trations to the observations, we compared mean annual I O x 
I O data with the smoothed first-guess field and the final field 
along selected latitudes (Fig. 4). Figure 5 shows the relative 
errorofthe predicted seasonal final fields (the so-called inter­
polation error), estimated as the difference between the final 
value in each l 0 x 1° square and the l 0 x 1° pixel data (see 
Fig. 2). There is a good agreement between predicted values 
and the observations in the central Arabian Sea during MA.i\1 
(Fig. 5b). For the monsoon seasons DJF and JJA the relative 
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Table 5. Coefficients used in the algorithm for the SS~VI derived "'·ind speeds (SchlGssel, 1995) 

co c, Cz Cs 

T 19h :, 165 Kand (T37, - Tm) ::0 55 K 149.0 0.8800 -0.4887 -0.4642 -0. 7131 -0.4668 

165 K < T19h < 190 Kand 55 K < (T37, - Tm) <20 K 205.6 -0.083449 -0.07933 0.1066 -0.7346 -0.9132 

T is the brightness temperature in K; v and h depict vertical and horizontal polarisations; 19, 22, and 37 depict radiometer channels at 19.35, 
22.24, and 37.0GHz, respectively. 

Table 6. Errors used for the error propagation 

Observable quantity Mean error References, remarks 

Water temperature, T ±0.5K McClain et al. ( 1985) 
Salinity, S ±0.1 Estimate 

NzO dry mole fraction, x' ± 2o/o Estimate 
Atmospheric pressure, P ± 5o/o Estimate 
Kinematic viscosity, v ±1% Estimate 

Diffusion ofN20, D ± 10% Estimate 

Wind speed, u ± l.4ms- 1 Schlussel ( 1995) 

errors of the predicted values are more variable, indicating a 
considerable underestimation along the coasts of Oman and 
southwest India, and an overestimation (up to 74%) along 
the continental shelf of west India (Fig. Sc). The tendency 
to focus on measurements in locally restricted features such 
as coastal upwelling in connection with insufficient seasonal 
data coverage leads to a bias in the first-guess field. For ex­
ample, the mean for the !NOW province, which covers the 
eastern coastal Arabian Sea, is strongly influenced by high 
N20 concentrations observed in the southern Indian conti­
nental shelf. In contrast, data coverage for the northern con­
tinental shelf is poor, and consequently the first-guess field 
determines the final N20 concentration, leading to high un­
certainties in this area as indicated by Figs. 5a-5d. 

A further uncertainty is introduced by the fact that the N20 
surface concentrations are depending on SST, salinity, at­
mospheric pressure and the atmospheric N20 mixing ratio 
which are, at least partly, subject of long term trends due to 
global change (Barnett et al., 200 I; Levitus et al., 2000). For 
example, the mean tropospheric N20 dry mole fractions (see 

. data from the ALE/GAGE/AGAGE program available from 
the anonymous ftp site cdiac.esd.oml.edu, subdirectory is 
given above) increased from about 300ppb in the late 1970s 
to about 315 ppb in 1999 suggesting a trend of increasing 
N20 surface concentrations. llowever, a quantification of 
such trends in sea surface N20 concentrations is not possi­
ble due to the lack of time series measurements in the Ara­
bian Sea. The seasonal northward shift of the Intertropical 
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Convergence Zone introduces air masses of southern hemi­
spheric origin with lower N20 mole fractions to the Ara­
bian Sea region during the SW monsoon. However, since the 
mean interhemispherie gradient ofN20 is only about 0.8 ppb 
(Prather et al., 200 I) we did not account for this effect. 

Appendix D: Error propagation 

A rough estimate of the mean error of the flux density 
(F), introduced by the uncertainties of the observables (i.e. 
T, S, u, P, andx'), was calculated according to the following 
equations: 

where v stands for the kinematic viscosity of seawater and 
the operator 8/8 depicts the partial differential. For a strict 
treatment of the error propagation, the standard deviation of 
each parameter should be known. Since this was not the case, 
we replaced the standard deviation partly with best estimates 
of the mean error (depicted by the !!. symbol, data listed in 
Table 6). For /!,.Cw we used the mean relative error (i.e. the 
interpolation error) calculated from the seasonal data shown 
in Fig. 5 (see also the Appendix A: Error estimate). We cal­
culated the relative error /!,.F / F for each I O x I' square of 
the four seasonal NzO fields. Table 7 gives an overview of 
the resulting mean relative errors of the seasonal flux den­
sities. Not surprisingly, the lowest mean relative error of 
Cw is associated with highest relative error of resulting flux 
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Table 7. O•,crview of the mean relative errors of ?'-izO surface con· 
centrations and N20 fltt'( densities 

~lean dCw/Cw, ~lean dF/F, 
±% ± ,, 

" 
DJF II 15 
~L\.\I 4 330 

JJA 14 79 

SON 12 442 

densities. During ~tA!i.,1 the dissolved N20 concentrations 
are low and resulting in only small concentration differences 
(Cw - Ca) across the ocean-atmosphere interface which in 
tum lead to high mean relative errors of the flu.x densities. 
During the monsoon season JJ,\, N20 concentrations in the 
coastal upwelling zones are considerable higher causing a 
higher mean relative error of Cw and comparable low mean 
relative errors of the resulting flux density. The mean relative 
errors for the seasonal flux densities yield the overall mean 
relative error of the annual N20 emissions from the Arabian 
Sea of at least 65o/o. Systematic errors caused by uncertain­
ties in parameterizations such as N20 diffusion in seawa­
ter (determination of the N20 diffusion have not been made 
in seawater-like systems (sec literature compilation in Rhee, 
2000)) and air-sea exchange approaches arc not accounted 
for in this estimate (sec Results and discussion). Moreover, 
it is important to keep in mind that the calculation of any cli­
matological data fields are biased by the chosen smoothing 

and averaging routines (see e.g. Ster!, 2001). 

A detailed analysis of errors introduced by different fill­

ing routines, averaging procedures etc. is beyond the scope 
of this study. Generally, gas exchange estimates suffer from 
the fact that a direct (i.e. at sea) determination of the pro­

cesses responsible for the gas exchange across the occan­
atmosphere interface is still a technological challenge (Frost 
and Upstill-Goddard, 1999; Jiihne and llauBecker, 1998). 
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With a simple box model the season:11 variability of N20 and CH4 were simulated in surface layers in the central and 
wes1ern Arabian Sea. The model was able to reproduce the N20 measurements except for times when cold water filaments 
occur (i.e., during the S\V monsoon). Based on the comparison of model results and measurements, it is concluded that the 
saturation of N20 in the surface layer of the Arabian Se:1 is mainly controlled by (i) the wind-driven air-sea exchange during 
the SW monsoon, (ii) entrainment of N20 from the subsurface layer, and (iii) sea surface temperature variability. However, 
the contribution of the factors listed above to the seasonali1y of the N20 saturations is different in the selected areas. The 
overall good agreement of model results and the majority of N20 measurements suggest that N20 formation in the surface 
layer of the Arabian Sea is negligible. The comparison of model's results and CH4 measurements reveal~d a more complex 
situation, partly due 10 considerable inconsistencies in the available CH4 data. Thus, the situation for CH4 remains 
unresolved and inconclusive. 

[Key words: Nitrous oxide, methane, Arabian Sea, air-sea exchange, box model] 
[IPC Code: Int. Cl. 7 C09K 3/30] 

Both nitrous oxide (N20) and methane (CH4) are 
atmospheric trace gases, which directly and indirectly, 
influence the present-day climate of the Earth 1• N20 
and CH4 are naturally produced during microbial 
processes such as nitrification/denitrification (N20) 
and methanogenesis (CH,) in considerable amounts in 
terrestrial and oceanic environments2

.J. Measurements 
of atmospheric and dissolved N20 and CH, in oceanic 
areas are still sparse and the derived emission 
estimates are associated with large uncertainties 
mainly due to the fact that an adequate seasonal data 
coverage is mostly lacking•·•. However, due to the 
activities during the Arabian Sea Process Study [as 
part of the international Joint Global Ocean Flux 
Study (JGOFS) program] and other investigations, an 
increasing number of N20 and CH4 data sets for the 
Arabian Sea are now available 10

•
11

• In order to reveal 
the major mechanism for the observed seasonality of 
N20 and CH. in the Arabian Sea surface layer10

•
11

, a 
model approach was chosen in which the seasona! 
variability of the dissolved gases.is estimated from 
basic meteorological and hydrographical par~meters. 
A successful modelling would allow developing tools 
for future monitoring of N20 and CH, surface 
distributions and their emissions to the atmosphere in 
the Arabian Sea area. Using a simple box model 

which includes the temporal variability of air-sea 
exchange, the mixed surface layer depth and seawater 
temperature, I computed the theoretical seasonal 
pattern of the N20 and CH, saturation in the surface 
layer of three selected areas in the central and western 
Arabian Sea and compared the model results with 
measurements. 

Model Description 

A simple box model was developed to simulate the 
temporal variability (8C.J8t) of N20 and CH, 
concentrations in the mixed layer (Fig. I): 

8C.J8t = (8C.J8t),,, + (8C.!8t)m,, ... (I) 

where (8C..18t)"' stands for the air-sea gas exchange 
across the ocean-atmosphere interface, (8C.J8t)m,, 
stands for the vertical mixing of N20 or CH, into or 
out of the mixed layer. The present model consists of 
one box, the mixed surface layer, where temperature 
and gas concentration are homcgeneously distributed. 
Time series of monthly se~'.'.'atcr temperature 12, mixed 
layer dcpth 13. and wir.d spccd 14 wcr~ used to simulate 
the seasoral variability of N20 and CH. at three 
stations in the central and western Arabian Sea 
(Figs. 2 and 3, Table I). 
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Troposphere 

• 

MLD 

Mixed layer 

1 r 

Subsurface layer 

Fig. I-Outline of the box model; Cw stands for concentration of 
N20 or CH4 in the mixed layer, Cw stands for concentration of 
N20 or CH4 in the subsurface layer, x· stands for the mole 
fraction of N20 or CH. in the atmosphere, and ~1LD stands for 
mixed layer depth. 

Table I-Model parameters 

Target areas 

SAST 

CAST 

WAST 

Input parameters 

Water temperature 

Mixed layer depth 

Wind speed 

N20 atmospheric mole fraction 

CH. atmospheric mole fraction 

'World Ocean Atlas 11
• 

09.5°-I0.5° N. 64.5°--05.5° E 

13.5°-15.5° N, 64.5'--05.5° E 

15.5°-16.5° N, 59.5'--01.5° E 

Monthly means• (see Fig. 3) 

Monthly meansb (see Fig. 3) 

Monthly means' (see Fig. 3) 

311 ppb; 309 ppb 
. (SW monsoon)d 

1.8 ppm; 1.7 ppm 
(S\V monsoon)d 

'Data Set Atlas for Oceanographic Modelling Samuels & Cox 11 

~ ECMWF Re-Analysis Project 14 

d During the SW monsoon the atmospheric mole fraction is lower 
due to fact that air masses from the southern hemisphere enter the 
Arabian Sea region as a consequence of the northward shift of the 
lntertropical Convergence Zone (ITCZ). 
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40 50 60 70 80 

Longitude ('E) 

Fig. 2-Map of the Arabian Sea showing the areas WAST 
(Western Arabian Sea Station), CAST (Central Arabian Sea 
Station) and SAST (Southern Arabian Sea Station) selected for 
this study. 

In this model, the temporal variability of gas 
exchange depends on the air-sea exchange flux 
density (F) and the mixed layer depth (MLD) 15

; 

( 8CJ8t)os, = FI MW (2) 

F was parameterised as : 

F = k.ju) (Cw - C.). "' (3) 

where kw is the gas transfer coefficient as a function of 
wind speed (u), Cw is the N20 seawater concentration, 
and C, is the equilibrium gas concentration in 
seawater. c. was calculated as : 

C.= {3(.SST, S) x', ... (4) 

where x' is the atmospheric dry mole fraction and f3 is 
the Bunsen solubility, which is a function of the water 
temperature (SS7) and salinity (S) 16

•
11

• To calculate kw, 
the tri-linear kw-u relationship of Liss & Merlivat18 

(LM86), the quadratic kw-u relationship for 
climatological wind data of Wanninkhof19 (W92), and 
the combined linear and cubic kw-u relationship from 
Wanninkhof & McGillis20 (WM99) were used. kw was 
adjusted by multiplying with (Sc/600)-n (n = 2/3 for 
wind speeds <3.6 m s·• and n = 1/2 for wind sreeds 
>3.6 ms·') for LM86 18

, (Sc/660)~ 5 for W921 and 
WM9920

, where Sc is the Schmidt number for N20. 
Sc at a salinity of 35 °/00 was calculated using 
empirical equations for the kinematic viscosity of 
seawater21 and the diffusion coefficients of N20 and 
CH, in water22

'
23

• 
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Fig. 3-Model input parameters; (a) monthly wind speeds; 
(b) monthly mixed layer depth; and (c) monthly water 
temperature for the areas WAST (dashed line), CAST (bold line) 
and SAST (thin line). 

The gas concentration mixed into the surface layer 
by entrainment (.1Cm;,) at a given time step was 
computed with the approach of Peng et al. 24

: 

.1Cmu = (C,,,- C.(t)) .1MLD I (MLD(t) + .1MLD) 
(5) 

where C,,1 stands for the gas concentration in the 
subsurface layer (i.e., below the lower boundary of 
the mixed layer) and .1MLD represents the change of 
the MLD at the given time step. Tl)e general shapes of 
N20 and CH. depth profiles in the Arabian Sea 
suggest that surface production is not dominating their 
vertical distributions"·27

• Thus, it seems reasonable to 
assume downward mixing to be negligible (in this 
case .1Cw = 0). The reported values of 8 nmol L- 1 and 

3 nmol L-1 were adopted for the C,,1 of N20 and CH4, 

respectively25
'
26

, There are indications that significant 
spatial and seasonal variations of C,,1 for both N,O 
and CH4 exist27

'
28

• However, seasonal and spatial 
vanat,ons of C,,, were not introduced since 
appropriate time series measurements are not 
available. The concentration of the dissolved gases c. 
at time I was calculated as follows: 

C.(t + .11) = C.(t + .11) + .1Cw 

.1Cw = (F / MLD) .11 + .1Cmu 

(6) 

(7) 

where C.(t) is the equilibrium concentration computed 
with the atmospheric mixing ratio depending on the 
seawater temperature and salinity at the time t. The 
time step .11 was set to 12 hours, a value that is lower 
than the system's typical relaxation time, which is of 
the order of days or weeks depending on the wind 
speed and the mixed layer depth. At time I = 0, Cw 
was calculated using a prescribed saturation (Sat in %, 
i.e., 100% = equilibrium): 

c.(O) = C.(0) Sat I JOO ... (8) 

The results of the model computations are 
presented as saturation Sat(t) of at time I in the mixed 
surface layer: 

Sat{t) = JOOC.(t) I C.(t) [%] ... (9) 

The model results become stable within the first 
model year, thus results from the second model year 
are shown (days 366-745). 

Model input parameters are listed in Table I. 
Model results were compared to saturation data from 
the data sets for N20

29
'
32 as well as for CH,26

·
32

·
33

• 

Results and Discussion 

Nitrous oxide (N20) 

Figure 4 shows the results of the N20 model runs 
for the SAST (Southern Arabian Sea Station at 10°N 
65°E), CAST (Central Arabian Sea Station at l 4.5°N 
65°E) and WAST (Western Arabian Sea Station at 
J6.3°N 60.5°E) areas. Generally, the model results 
show enhanced N20 saturations during the first 
intermonsoon period from March to late May with 
maximum values at the end of April (around model 
day 486). This is caused by the seasonal increase of 
the SST, which causes higher N20 saturation because 
of lower solubility and the fact that the variation in 
SST is faster than the equilibration time of the air-sea 
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Fig. 4-Results of the N20 model; (a) WAST, (b) CAST and 
(c) SAST. Measurements are given as mean values with standard 
deviation (when available). Three different air-sea exchange 
models were applied (see text for details). The nir-sea exchange 
models of Liss & Merlivat 18 and Wanninkhof19 envelop the range 
of model results. 

exchange. During the southwest (SW) monsoon (late 
May-September, model days 510-638), N20 
saturations are driven by both the high monsoonal 
wind speeds and the seasonal deepening of the MLD. 
However the effects are counteracting. High wind 
speeds lead to high emissions and subsequent 
depletion of N20 in the mixed layer, whereas 
deepening of the mixed layer leads to an entrainment 
of N20 from the subsurface layer. Since the mixed 
layer deepening is most pronounced at SAST (Fig. 2), 
the effect of entrainment is most pronounced at 
SAST, but almost not visible at station WAST. The 
winter deepening of the MLD during the end of the 
second intermonsoon and the northeast (NE) monsoon 
from mid of October to January (model days 653-
745) leads to a third period of enhanced saturations 

140 

1ao 

~ 
~ 120 

• , 
: 110 

~ 
100 

,0 

(a) 

I ~ I I 
••••••••• 1 .. ..... 

140-,-----------------, 

- ,30 
f. 
0 

_g 120 

" , 
°: 110 

9. 
z 100 

,0-1---+--+--+--+--+-,,-.-+-+-+--~ 
366 42ti "86 546 606 666 726 786 

Day of )'t,ar • 366 

Fig. 5-N20 model results for station SAST; (a) without 
entrainment (C,.i1 = 0 nmol L-1

), (b) with entrainment (Css1 ;; 16 
nmol L-1

). Three different air-sea exchange models were applied 
(see text for details). The air-sea exchange models of Liss & 
Merlivat 18 and Wanninkhof19 envelop the range of model results. 

because of the entrainment of N20 from the 
subsurface layer. 

In order to check the model sensitivity for the 
choice of C,,1, we performed model runs for station 
SAST with extreme values for C,,1 (0 and 16 
nmol L-1

) (Fig. 5). The incorporation of moderate 
entrainment (C,,1 = 8 nmol V 1

, Fig. 4c) brings the 
model results at station SAST (and at station CAST, 
sensitivity runs not shown) into a good agreement 
with the measurements, indicating that the basic 
assumption of C_,,1 = 8 nmol L-' is reasonable. 

For comparison, N20 saturations based on 
measurements are shown in Fig. 4. There is a good 
agreement between the measurements and model 
results for SAST and partly for stations CAST and 
WAST as well. At station WAST, maximum N20 
saturations of up to 135% have been reported for the 
SW monsoon period, however, these values are not 
matched by the model results. This discrepancy is due 
to the fact that the WAST area is influenced by cold 
water filaments which originate from upwelling 
centres at the coast of the Arabian peninsula34

• 

Arabian Sea filaments typically show enhanced N20 
concentrations30

•
3
'. Filaments might cause the 

mismatch of model results and measurements at 
CAST during the late SW monsoon as well. However, 
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this result is not surprising, since advective processes 
are not pararneterised in the model. Lal & Patra36 

reported surface N,O saturations for the NE and SW 
monsoons and for the intermonsoon (April-May) at 
stations in the proximity of SAST and CAST. Their 
values lie in the range from 110% to 152% with 
highest values during the NE monsoon in 
February/March (!36% at stations close to SAST and 
152% at stations close to CAST). It appears that the 
present model when extended to their stations would 
not represent the monsoon data by Lal & Patra36

• The 
reason for the apparent discrepancy might be due to 
strong advective processes during the SW monsoon 
together with an unusual deepening of the mixed layer 
during the NE monsoon. 

Methane (CH4) 

Figure 6 shows the modelled CH. saturations for 
the stations SAST, CAST and WAST. The general 
shape of the model results is similar to the N20 model 
results (see previous section). In contrast to the N20 
model, a comparison of CH. model results and 
measurements reveal significant discrepancies. At 
SAST the model generally underestimates the 
observed CH4 saturations, whereas at CAST and 
WAST some of the measurements are in very good 
agreement with the model results. Therefore, a 
general conclusion is difficult to draw. On the one 
hand, one might argue that a missing CH. formation 
in the surface layer might be the reason for a general 
underestimation of the model. On the other hand, the 
very good agreement of some measurements and 
model results at CAST and WAST does not imply a 
missing · CH, source. Additionally, some of the 
discrepancies arise because there is considerable 
inconsistency in the CH4 measurements. For example, 
at CAST a difference in the CH4 observations of up to 
40% CH4 saturation was noted, based on two 
independent observations on the same day and the 
same year. Similar inconsistencies also occur in the 
data set of the WAST area. 

Conclusion 

With a simple box model the seasonal variability of 
the saturations of N20 and CH4 in surface layers of 
three areas in the central and western Arabian Sea 
have been simulated. The model was able to 
reproduce the N20 measurements except for times 
when cold water filaments occur (i.e., at WAST and 
CAST during the SW monsoon). Based on the 
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Fig. 6--Results of the CH, model; (a) WAST, (b) CAST and 
(c) SAST. Measurements are given as mean values with standard 
deviation (when available). Three different air-sea exchange 
models were applied (see text for details). The air-sea exchange 
models of Liss & Merlivat 18 and Wanninkhof19 envelop the range 
of model results. 

comparison of model results and measurements, it is 
concluded that the saturation of N20 in the surface 
layer of the Arabian Sea is mainly controlled by (i) 
the wind-driven air-sea exchange during the SW 
monsoon, (ii) entrainment of N20 from the subsurface 
layer, and (iii) SST variability. However, the 
contribution by the factors listed above to the 
seasonality of the N20 saturations is different. For 
example, N20 saturations at CAST during the non­
monsoon season are mainly determined by the 
seasonal variability of the SST, whereas at the 
southernmost area (SAST), the entrainment of N,O 
results in maximum N20 saturations during the SW 
monsoon season. It has been suggested that N,O 
might be produced in the ocean surface layer of the 
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subtropical Pacific Ocean37 and the Caribbean Sea3s. 
However, the overall good agreement of model results 
anct measurements suggests that N20 formation in the 
surface layer of the Arabian Sea is negligible. This is 
in agreement with the results by Naqvi & Noronha39

• 

The situation for CH, appears to be more complex. 
The comparison of model results and CH. 
measurements at SAST revealed a considerable 
underestimation by the model, possibly indicating an 
in-siru source of CH. in the surface layer as suggested 
by various authors40

"
42

• However, the results for 
stations CAST and WAST are not in line with this 
result, partly due to the considerable inconsistency of 
the available CH, measurements. Thus, the situation 
for CH4 remains unresolved and no final conclusion 
can be drawn for CH,. 
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[1] Nitrous oxide (N20) was measured during the first 
Gcnnan SOLAS (Surface Ocean - Lower Atmosphere 
Study) cruise in the tropical North Atlantic Ocean on board 
RN Meteor during October/November 2002. About 900 
atmospheric and dissolved N 20 measurements were 
performed with a semi-continuous GC-ECD system 
equipped with a seawater-gas equilibrator. Surface waters 
along the main transect at 10°N showed no distinct 
longitudinal gradient. Instead, N20 saturations were highly 
variable ranging from 97% to 118% (in the Guinea Dome 
Arca, l I 0 N, 24°W). When approaching the continental shelf 
of West Africa, N20 surface saturations went up to l 13%. 
N20 saturations in the region of the equatorial upwelling (at 
O- l.5°N, 23.5-26°W) were correlated with decreasing sea 
surface temperatures and showed saturations up to l 09%. 
The overall mean N20 saturation was 104 ± 4o/o indicating 
that the tropical North Atlantic Ocean is a net source of 
atmospheric N20, INDEX TERMS: 4820 Oceanography: 
Biological and Chemical: Gases; 0312 Atmospheric Composition 
and Structure: Air/sea constituent fluxes (3339, 4504); 0322 
Atmospheric Composition and Structure: Constituent sources and 
sinks. Citation: Walter, S .• H. W. Bange, and D. W.R. Wallace 
(2004), Nitrous oxide in the surface layer of the tropical North 
Atlantic Ocean along a west to east transect, Geophys. Res. Leu., 
31, L23S07, doi:I0.1029/2004GL019937. 

1. Introduction 

[2] Nitrous oxide (N20) is an important atmospheric 
trace gas because it influences, directly and indirectly, the 
Earth's climate to a significant degree: In the troposphere, it 
acts as a greenhouse gas with a relatively long atmospheric 
lifetime [Intergovernmental Panel on Climate Change 
(JPCC), 200 l] whereas in the stratosphere it is the major 
source for nitric oxide radicals, which are involved in one of 
the main ozone reaction cycles [World Afeteorological 
Organization, 2003]. Published source estimates indicate 
that the world's oceans play a major role in the global 
budget of atmospheric nitrous oxide [IPCC, 2001]. Gener­
ally, oligotrophic areas seem to be near equilibrium with the 
atmosphere, whereas coastal and equatorial upwelling areas 
show enhanced N20 concentrations [Nevison et al., 1995; 
Suntharalingam and Sarmiento, 2000]. Here we present 
about 900 measurements of dissolved and atmospheric N20 
during the first Gcnnan SOLAS (Surface Ocean - Lower 
Atmosphere Study) cruise. It is the first high-resolution data 
set of N20 in the tropical North Atlantic Ocean along a 
West to East transect and it is complementary to previous 

Copyright 2004 by the American Geophysical Union. 
0094.82 7 6/04/2004GLO 1993 7$05 .00 

N20 measurements of Oudot et al. [!990, 2002] and Weiss 
et al. [1992]. 

[3] . The cruise took place on board RN Meteor (expedi­
tion no. M55) from Willemstad (Cura,ao, Netherl. Antilles) 
to Douala (Cameroon) from 12 October to I 7 November 
2002. The cruise track consisted of two main transects: 
(i) The West to East transect along 10-J2°N covering the 
oligotrophic tropical North Atlantic Ocean and the conti­
nental shelf area of the West African coast off Guinea 
Bissau and (ii) a shorter West to East transect along the 
equatorial upwelling (Figure l ). 

2- Method 

[•] N20 was determined with a gas chromatograph 
equipped with an electron capture detector. Further details 
of the analysis system are described in Bange et al. [1996]. 
A series of measurements of atmospheric N20 and N20 in 
seawater-equilibrated air followed by two standards was 
repeated every 50 min. Mixtures of N20 in synthetic air 
were used to obtain two·point calibration curves. The 
mixtures used contained 3 I 1.7 ± 0.1 and 346.5 ± 0.2 ppb 
N20, respectively. These are gravimetrically prepared gas 
mixtures (Deuste Steininger GmbH, Milhlhausen Gennany) 
and have been calibrated against the NOAA (National 
Oceanic and Atmospheric Administration, Boulder, Co.) 
standard scale in the laboratories of the Air Chemistry 
Division of Max Planck Institute for Chemistry Mainz, 
Germany. The precision, calculated as the ratio of the 
standard deviation of the atmospheric measurements and 
the mean atmospheric mixing ratio, was 0.8%. 

[s] Seawater was pumped continuously from a depth of 
4 m into a shower-type equilibrator developed by R. F. 
Weiss (Scripps Institution of Oceano~phy, La Jolla, Ca.). 
N20 concentrations (C, in nmol L - ) were calculated by 
applying the solubility equation of Weiss and Price [1980]: 

C = ~(T, S)x' P, 

where x' is the measured N20 dry mole fraction, P is the 
atmospheric pressure, and ~ is the solubility coefficient, 
which is a function of the water temperature (1) and salinity 
(S). Time series of seawater temperature (SS7), salinity, 
wind speed, and atmospheric pressure were obtained from 
the ship's records. Differences between the seawater 
temperature at the seawater intake and the continuously 
recorded water temperature in the equilibrator were 
corrected: 

c.= cNr..,)/~(ssr) 

with ~(SS7) and ~(T,q) representing the N20 solubility at 
seawater temperature and water temperature inside the 
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Figure 1. Cruise track of M55 in October-November 
2002. N 20 measurements ,vere started 17 October and were 
finished 14 November. Areas of special interest discussed in 
the text are marked. 

equilibrator at the time of the measurement, respectively. 
N20 saturations (Sat) in% (i.e., 100% = equilibrium) were 
calculated as follows: 

Sat= !00 C./C, 

where Ca is the equilibrium concentration of dissolved N20 
based on the actual measurement of ambient air (see above). 
The mean relative errors of the N20 concentrations and 
saturations were calculated to be 1.2% and 1.6o/o, 
respectively (details of the error propagation computation 
are given by Range et al. [200 I]). 

3. Results and Discussion 

[,] The mean atmospheric N20 dry mole fraction was 
318 ± 3 ppb. Due to the seasonal northward shift of the 
Intcrtropical Convergence Zone to about 10°N, the origin of 
the air masses sampled during the cruise were from both the 
northern and the southern hemisphere. 4-days air mass back 
trajectories (provided by the German Weather Service, 
Offenbach, Germany) indicated that air masses sampled at 
latitudes south of 7'N originated from the southern hemi· 
sphere. Based on this classification we computed mean N20 
values for northern and southern hemisphere air masses of 
319 ± 3 ppb and 317 ± 2 ppb, respectively. The observed 
atmospheric values arc in agreement with N20 measure­
ments at the baseline monitoring stations Ragged Point, 
Barbados and Cape Grim, Tasmania. Monthly mean values 
were 317 ppb (Cape Grim) and 318 ppb (Ragged Point) for 
October/November 2002. These values were taken from the 
Advanced Global Atmospheric Gases Experiment 
(AGAGE) data set (updated version from November 
2003) [Prinn et al., 2000]. AGAGE data are available 
from the anonymous ftp site ftp://cdiac.esd.ornl.edu 
(subdirectory pub/ale_gage_Agage/Agage/gc-md/monthly) 
at the Carbon Dioxide Infonnation Analysis Center in 
Oak Ridge, Tennessee. 

[1] N20 saturations along the main cruise track ranged 
from 97% to 118% and the SST was generally between 27 
and 30'C (Figure 2). Since the main cruise track was 
located between the eastward flowing North Equatorial 
Countercurrent (NECC) and the westward flowing North 

Equatorial Current (NEC) [Stramma and Schott, 1999], we 
crossed several times meandering waters of difT~rent origins 
causing a high variability of the N20 saturation: Low N20 
saturations of about 100?~ observed around 24 Oct., 27-
28 Oct., and 2 Nov. y,.·cre generally associated y,.·jth decreases 
in salinity (Figure 2). This results from the retrotlcction of the 
North Brazil Current, y,.·hich advccts Amazon plume y,.·aters 
(with low N20, see below) eastward into the NECC 
[Fratantoni and Glick.son, 2002]. Freshwater influences were 
observed twice: First, at around 50'E (19 Oct., Figure 2) 
when we crossed the northern boundary of the Amazon 
river plume (minimum salinity 32.14) and second, on the 
continental shelf off \Vest Africa where \Ve measured a drop 
in salinity down to 31.30 (5-6 Nov., Figure 2). N20 
saturations \Vere not enhanced in the Amazon River plume, 
whereas an increase in N20 saturations up to 113o/o were 
observed on the West African shelf. The low N20 satura­
tions in the Amazon River plume were attributed to the fact 
that N20-rich waters from the Amazon River are N20 4 

depleted because of outgasing to the atmosphere and 
mixing with near-equilibrium oceanic waters while distrib­
uted to the North [Oudot et al., 2002]. The high N,O 
saturations on the continental African shelf might result 
from N20-rich riverine waters or groundwater seepage, but 
not from coastal upwelling as indicated by the unifonn 
SSTs. N20 saturations up to 118% were observed in the 
area of the Guinea Dome at 11 'N, 24'E (3-4 Nov., 
Figure 2) which is well-known for pronounced Ekman 
upwclling [Siedler et al., 1992; Signorini et al., 1999]. In 
the equatorial region (0-1.5'N, 28-30 Oct., Figure 2) 
SSTs dropped well below 27°C and were associated with 
enhanced N20 saturations (up to 109%). We found a good 
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Figure 2. Salinity, seasurface temperature (SST), N20 
saturation, wind speed in 10 m height (ulO), and N20 flux 
density during M55. Area of special interest discussed in 
the text are marked (see Figure I): A, equatorial upwelling; 
B, Guinea Dome; C, shelf off West Africa (water depths 
<200 m). 
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Figure 3. Correlation (r2 = 0.94, n = 46) of SST and N20 
concentration in the equatorial upwclling area (0-2°N, 
23.5-26°\V). Open circles stand for in-situ measurements 
and crosses stand for the corresponding equilibrium 
concentrations calculated as a function of the actual SST, 
Salinity, atmospheric dry mole fraction, and ambient 
pressure. 

correlation between N20 concentrations and SST in the 
equatorial upwelling region (Figure 3) indicating that the 
enhanced surface N20 saturations were resulting from 
upwelling of N20-enriched subsurface waters. 

[s] In order to account for the NECC/NEC system and 
the observed N20 features we defined two latitudinal 
aligned open ocean regions and a shelf region: I) the 
tropical North Atlantic ranging from I.5-l2°N with SST 
>27°C, 2) the equatorial upwelling from O-l.5°N with SST 
<27°C, and 3) the shelf area off the West African coast 
(water depth <200 m). An overview of the regional mean 
concentrations and saturations is given in Table 1. The 
mean N20 concentrations and saturations of the shelf and 
equatorial regions are significantly enhanced compared to 
the l.5-l2"N region. The high variability calculated for the 
tropical North Atlantic region is biased by the complex 
hydrography, which is influenced by the Amazon plume, 
the NECC/NEC system and the Guinea Dome upwelling 
with highly variable N20 concentrations. However, a more 
detailed regional analysis is hampered by the limited data 
set. 

[,] Our data from the tropical North Atlantic are in 
agreement with previously published data. Recently, 
Oudot et al. (2002] reported a mean N20 saturation of 
108 ± 3%, mainly measured along two transects at 
7.5"N and 4.5°S during January-March 1993. They also 
observed a trend towards enhanced values when approach­
ing the West African coast (up to ll8%). In a previous 
study in the Guinea Dome area during June-August I 986, 
Oudot et al. [l 990] observed mean N20 saturations in 

the range from 126 ± 5 to 132 ± 6% which are 
considerably higher than our results (Table I). In the 
period from 1979 to 1989, Weiss et al. [1992] took part 
in several measurement campaigns with cruise tracks 
across the tropical North Atlantic Ocean. Their N20 
measurements are in good agreement with the results 
presented here. For example, the mean N20 saturation 
during the first part of the TTOffAS leg 3 in February 
1983, which covered two transects along 9.5"N (from 
20.25 to 28°W) and 28°W (from 9.5 to the equator), was 
about I 05%. Enhanced values during TTOffAS leg 3 
were observed on the coast off Guinea-Bissau (up to 
179%) and in the equatorial upwclling ( up to l l l % ). In 
contrast to our measurements, the high N20 values 
observed off Guinea Bissau were caused by coastal 
upwclling (SST <27°) [Weiss et al., 1992]. Summarizing 
the results from various N20 measurements in the open 
tropical North Atlantic, we found only slight differences 
(with the exception of the data from the Guinea Dome 
area by Oudot et al. (1990]). Significant differences as 
found for the Guinea Dome might be caused by seasonal 
variability of the circulation patterns [Stramma and Schou, 
1999] in connection with different spatial data coverage. 
Since coastal upwclling was absent during our cruise, N20 
saturations on the shelf off West Africa were comparably 
low. 

4. N20 Air-Sea Exchange 

(t0] The air-sea exchange flux density (F) was parame­
terized as 

F = k.(u)(C. - C0 ), 

where kw (in m s- 1
) is the gas transfer coefficient as a 

function of wind speed (u in 10 m height), c. is 
the measured N20 seawater concentration, and Ca is the 
equilibrium N20 concentration in seawater based on the 
measured atmospheric value (for calculation of Cw and Ca 
sec Methods section). To calculate k~ we used the 
combined linear and quadratic kw - u relationship from 
Nightingale et al. (2000] (NOO): 

The NOO relationship shows a dependence on wind speeds 
intermediate between the commonly used relationships of 
Liss and Mer/ivat (1986] and Wanninkhof [!992]. The 
measured wind speeds were normalized to I O m height by 
using the relationship of Garratt [1977]. k. was adjusted by 
multiplying with (Sc/600)-0

·', where Sc is the Schmidt 
number for N20. Sc was calculated using empirical 

Table l. Mean N20 Concentrations, Saturations, and Flux Densities During M55 1 

Overall ~fean O-t.5°N t.5-12"N Shelf 
{n=4SI} (n ~ 27) {n = 416} {n = 8} 

Concentration, 6.00 ± 0.24 6.49 ± 0.07 5.27 ± 0.20 6.31 ± 0.11 
nmol L- 1 

Saturation, % 104 ± 4 107 ± I 103 ± 3 110 ± 2 
Flux density, 

nmol m-2 s- 1 
0.007 ± 0.011 0.018 ± 0.006 0.006 ± 0.011 0.002 ± 0.002 

•values are given as mean ± lsd, Number of measurements is given in parenthesis. 
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equations for the kinematic viscosity of scavw·atcr [Siedler 
and Peters, 1986] and the diffusion coefficient of N,O in 
\\.'atcr. N20 diffusion coefficients (D.vio in m2 s- 1

) were 
calculated \\'ith the equation derived from a compilation of 
actual measurements [Rhee, 2000]: 

D.v,o = J.16 x IO-'exp(-18370/RT), 

\\'here T is the water temperature in K and R is the universal 
gas constant. The commonly used equation for DN10 by 
Broecker and Peng (1974] was replaced since Rhee's (2000] 
equation provides a more reasonable fit with a considerably 
reduced uncertainty of less than 10% [Rhee, 2000]. Flu, 
densities calculated \\'ith the above equation are lower by 
about l Oo/o \\·hen compared to computations with Broecker 
and Peng's (1974] equation [Bange et al., 2001]. We did not 
apply a correction of D.v10 for seawater since the effect of 
seawater on the diffusion of dissolved gases is not unifonn 
[King et al., 1995] and, to our knowledge, no measurements 
of the N20 diffusion in seawater have been published. 

(11] The regional mean flu, densities clearly reflect the 
interplay of saturation and wind speeds (Figure 2 and 
Table 1). In the equatorial region enhanced N20 saturations 
and comparably high wind speeds result in high flux 
densities, whereas over the shelf enhanced N20 saturations 
were associated with very low wind speed resulting in low 
flu, densities (Figure 2). The mean flu, density of the 
tropical North Atlantic region is biased by the high vari· 
ability of both N20 saturations and wind speeds. The 
overall mean N20 flux density was 0.007 ± 0.01 l nmol 
m- 2 s- 1 ,vhich is at the lower end of previously published 
flux densities: Oudot et al. [1990, 2002] computed overall 
mean flu, densities of 0.013-0.021 nmol m-2 s- 1 and 
0.026 ± 0.032 nmol m-2 

.-• for the tropical North and 
South Atlantic and the Guinea Dome area, respectively. 
The obvious discrepancy might be caused by different 
spatial data coverage, seasonal variability of the N20 
concentrations and wind speeds, and the use of different 
approaches for the transfer coefficient k~ 

5. Summary 

(12] N20 saturations in the tropical North Atlantic Ocean 
during October-November 2002 were highly variable and 
range from 97 to l l 8o/o. The mean overall saturation was 
104 ± 4%. Enhanced saturations were observed in the 
Guinea Dome area (up to 118%), in the equatorial upwelling 
(up to 109%), and the shallow continental shelf area off the 
West African Coast (up to 113%). Our results are in 
agreement with previously published data sets. We found 
a good correlation of sca,vater temperature with N20 con­
centrations in the equatorial upwelling area. We conclude 
that the tropical North Atlantic Ocean is a net source ofN20 
to the atmosphere with a pronounced regional variability. 
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Abstract 

Coastal areas such as continental shelves, estuaries, deltas, fjords and 

lagoons can release high amounts of nitrous oxide (N20) and methane (CH4) to the 

atmosphere. However, estimates of trace gas emissions are often biased by 

2 

5 incomplete spatial and temporal coverages. Based on a compilation of literature data, 

the distributions of N20 and CH4 in European coastal areas (i.e. Arctic Ocean, Baltic 

Sea, North Sea, northeastern Atlantic Ocean, Mediterranean Sea, Black Sea) were 

reviewed and their emissions to the atmosphere reassessed. Maximum N20 

saturations were found in estuarine systems, whereas the shelf waters which are not 

10 influenced by freshwater plumes are close to equilibrium with the atmosphere. This 

implies that N20 is exclusively formed in estuarine systems. European coastal waters 

are a net source of N20 to the atmosphere (0.21 - 0.40 Tg N yr-1
) with the major 

contribution coming from estuarine/river systems and not from open shelf areas. 

European shelf areas contribute significantly (up to 16 %) to the global oceanic N20 

15 emissions. CH4 saturations show a high temporal and spatial variability with 

maximum values in estuarine/fjord systems. European coastal areas are a source of 

atmospheric CH4 (0.25 - 0.48 Tg C yr-1
) and contribute significantly to the overall 

global CH4 oceanic emissions. However, this estimate still seems to be a severe 

underestimation since CH4 fluxes from estuaries and shallow seeps are not 

20 adequately represented. Future N20 and CH4 emissions from coastal areas strongly 

depend on the degree of eutrophication of coastal waters and might increase in the 

future. 

Keywords: 

25 nitrous oxide, methane, continental shelves, estuaries, air-water exchange 
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1. Introduction 

Nitrous oxide (N20) and methane (CH4) are atmospheric trace gases, which, 

directly and indirectly, influence the present-day climate of the Earth (IPCC, 2001; 

WMO, 2003). Thus, an assessment of the natural and anthropogenic sources and 

3 

5 sinks as well as the formation pathways of N20 and CH4 is essential both to 

understand past Earth's climate variability and to estimate the future development of 

Earth's climate. The world's oceans including its coastal zones, as natural sources of 

N20 and CH4, play a major role in the global budget of atmospheric N20, but only a 

minor role in the global budget of atmospheric CH4 (IPCC, 2001 ). However, 

10 measurements of oceanic N20 and CH4 are still sparse and the derived emission 

estimates are associated with large uncertainties (Bange et al., 1994; Bange et al., 

1996b; Bates et al., 1996; Nevison et al., 1995; Seitzinger et al., 2000; 

Suntharalingam and Sarmiento, 2000). 

N20 in oceanic environments is mainly formed as a byproduct during 

15 nitrification (NH/ ..... NH20H ..... No2- ..... N03-) and as an intermediate during 

denitrification (N03- ..... N02- ..... N20--> N2). In both processes, the yield of N20 

strongly depends on the concentration of dissolved oxygen (02) (e.g. Codispoti et al. 

2005; Goreau et al., 1980). Both, nitrification and denitrification are microbial 

processes and can occur in the water column, in the sediments and in the interior of 

20 suspended particles (e.g. Codispoti et al., 2005; Nevison et al. 2003; Schropp et al. 

1983). CH4 is formed during the decomposition of organic material by microbial 

methanogenesis (e.g. Cicerone and Oremland 1988). Since CH4 formation requires 

strictly anaerobic conditions, CH4 is produced in anoxic environments such as 

sediments, in the interior of suspended particles or in zooplankton guts during 

25 grazing (e.g. De Angelis and Lee, 1994; Holmes et al., 2000; Karl and Tilbrook, 

1994 ). Additionally, CH4 is oxidized under aerobic as well as anaerobic conditions in 
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the water column and in the sediments (e.g. Boetius et al., 2002; King, 1992). On the 

continental shelf so-called geological CH4 can be released directly to the water 

column through mud volcanoes, via groundwater input or seeping at pockmark 

structures (e.g. Etiope and Klusman, 2002; Judd et al. 2002a). 

5 The objective of the present study is to give an overview of the distributions of 

N20 and CH4 in European coastal areas and to reassess their emissions to the 

atmosphere. Moreover, the major formation pathways of N20 and CH4 in coastal 

areas are described. Future research activities to improve our understanding of N20 

and CH4 cycling in coastal areas are outlined at the end. 

10 

1.1 Methodological remarks 

For the purpose of this study, European coastal areas are defined as the 

European continental shelf with water depths <200m. For details of the area 

classification see Uher (2005). European coastal areas consist of the complete Baltic 

15 and the North Seas as well as parts of the Mediterranean Sea (i.e. the Adriatic and 

Aegean Seas) and the Black Sea, parts of the Northeast (NE) Atlantic Ocean (i.e. the 

English Channel, the Celtic (Irish) Sea and the Bay of Biscay) and parts of the Arctic 

Ocean (i.e. the Norwegian and Barents Seas) (Figure 1). Also included in the studies 

are estuaries, fjords and other systems at the interface between the continental shelf 

20 and the terrestrial environment (Figure 2). An overview of the locations of the studies 

discussed in the text is given in Figures 3 and 4. For details of the environmental 

settings (i.e. hydrography, biogeochemical conditions etc.) of the marginal seas, 

estuaries etc. mentioned in the text the reader is referred to appropriate publications 

and textbooks. 

25 In the literature dissolved N20 and CH4 are generally either expressed as a 

concentration (in nmol L-1
, nmol kg-1 or ml L-1 as for CH4 in some cases) or 
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saturation (in%), which is the ratio of the measured gas concentration to the 

expected equilibrium concentration. The equilibrium concentration in turn depends on 

the water temperature, salinity, ambient air pressure and the atmospheric N20 or 

CH4 mixing ratio (Weiss and Price, 1980; Wiesenburg and Guinasso Jr., 1979). Thus, 

5 a saturation of 100% indicates that the water phase is in equilibrium with the 

overlying atmosphere. Saturation values <100% indicate undersaturation (i.e. uptake 

of N20 or CH4 into the water phase) whereas saturation values >100% stand for 

supersaturation (i.e. N20 or CH4 release from the water phase to the atmosphere). 

In order to have a high degree of transparency, I predominately used 

1 O publications in international journals or books. "Grey" literature such as PhD thesis 

etc. is only cited when unavoidable. 

2. Overview: Nitrous oxide (N20) 

15 2.1 Arctic Ocean 

There seem to be no N20 data available from the coastal areas of the Arctic 

Ocean. 

2.2 Baltic Sea 

20 First measurements (during August-September 1977, July 1979 and May-

June 1980) of N20 in the surface layer (0-0.5m) of the central and northern Baltic 

Sea were in the range from 79% to 148% (with an average of 123% for the Baltic 

Proper) indicating that the Baltic Sea was source of N20 to the atmosphere (Ronner, 

1983). In the well-oxygenated water column below the mixed layer, increasing N20 

25 concentrations were generally associated with an increase of nitrate (N03-) and a 

decrease of oxygen (02) (Ronner, 1983). However, N20 concentrations sharply drop 
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down within the oxic/anoxic interface in the deep basins of the central Baltic Sea and 

remain constant at levels close to zero in anoxic deep waters (Brettar and 

Rheinheimer, 1991; Ronner, 1983). Based on the observed negative correlation 

between N20 and 0 2 and the positive correlation between N20 and N03-, Ronner 

5 (1983) concluded that in oxygen-rich waters N20 is produced during nitrification. In 

contrast, the depletion of N20 in the anoxic waters of the deep basins of the Baltic 

Sea is caused by N20 consumption during denitrification (Brettar and Rheinheimer, 

1991; Ronner, 1983). 

A seasonal study (five campaigns between 1994 and 1997) in the shallow 

1 O lagoons of the southern Baltic Sea I western Oder River estuary area (the so-called 

Bodden waters with water depths ranging from 0.5 to 8.5 m) revealed saturations in 

the range from 91 % to 312%, with a pronounced maximum at the sampling station 

near the mouth of the Peene River in March (Bange et al., 1998a). Thus, Bange et al. 

(1998a) concluded that enhanced N20 concentrations in the Bodden waters were 

15 linked to the seasonal peak of the Peene River run off. However, the prevailing cause 

for the N20 concentrations in the Bodden waters remained unclear since the 

enhanced N20 concentrations could either have been caused directly through input 

of high riverine N20 concentrations or indirectly through a high input of N03- which in 

turn might have fuelled sedimentary denitrification (Dahlke et al., 2000). Incubation of 

20 sediment cores from the Bodden waters showed both consumption and release of 

N20; however, no correlation was found between nitrification and denitrification 

activities in the cores and N20 formation (Dahlke et al., 2000). 

Two seasonal studies in the shallow estuarine waters of the Limfjorden and 

Norsminde Fjords at the east coast of Jutland, Denmark, revealed that considerably 

25 enhanced dissolved N20 concentrations (up to 490 nmol L-1
) occurred during spring 

which were partly associated with high riverine N03- input (Jensen et al., 1984; 
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Jorgensen and Sorensen, 1985). In the two Danish fjords N20 flux to the atmosphere 

was mainly balanced by N20 released from sedimentary denitrification (Jensen et al., 

1984; Jorgensen and Sorensen, 1985). 

5 2.3 North Sea 

The first survey of dissolved N20 in the North Sea was performed by Law and 

Owens (1990) in June 1986 and July 1987. They found a mean N20 surface (0-1 m) 

saturation of 102% in the northern and central North Sea and a mean surface 

saturation of 130% in the southeastern part of the North Sea (i.e. the German Bight) 

1 O indicating that the North Sea acted a source of N20 to the atmosphere. Nitrification 

was suggested as source for N20 in the water column, whereas the contribution of 

N20 produced by sedimentary denitrification was shown to be negligible (Law and 

Owens, 1990). Bange et al. (1996b) measured mean surface saturations of 104% 

and 100% for the central North Sea (September 1991) and the German Bight 

15 (September 1991 and 1992), respectively. 

Estuaries located along the western North Sea are generally a source of N20 

to the atmosphere. However, considerable seasonal and spatial variability along the 

estuarine salinity gradient of the N20 saturations have been observed. In the Caine 

River estuary, for example, N20 saturations ranged from about 80% up to 5190% 

20 (Dong et al., 2002; Robinson et al., 1998). In the Humber estuary N20 saturations 

during a study from March to December 1996 ranged from 100% to 4250% (avg. 

425%) (Barnes and Owens, 1998). N20 saturations in the Tweed estuary from 

September 1997 to March 1997 were in the range from 96%-110% (avg. 100%) 

(Barnes and Owens, 1998). Comparable to the estuaries located along the English 

25 coast, N20 saturations in the Scheidt estuary at the Dutch North Sea coast were in 

the range from 100% to 3100% (seasonal study from October 1993 to July 1996 by 
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de Wilde and de Bie (2000)). Additionally, de Bie et al. (2002) calculated a median 

N20 saturation of 710% for the Scheidt estuary during 13 monthly surveys along the 

salinity gradient from April 1997 to April 1998. 

Two different dominating pathways for N20 formation in estuaries along the 

5 North Sea coast have been identified: (i) water column nitrification in the maximum 

turbidity zone (MTZ) in the low salinity regions of the Scheidt and Humber Estuaries 

(Barnes and Owens, 1998; De Bie et al., 2002; De Wilde and De Bie, 2000) and (ii) 

sedimentary denitrification in the Caine Estuary (Dong et al., 2002; Robinson et al., 

1998). It seems that the evolved estuarine N20 formation pathway strongly depends 

8 

I O on local settings such as the water column distributions of 0 2 and nutrients (NH4 + and 

N02-) as well as the microbial community (De Bie et al., 2002; Dong et al., 2002). 

Investigation of the N20 emission rates from intertidal sediments along the 

Scheidt Estuary from September 1990 to December 1991 and in the western 

Wadden Sea from April 1989 to March 1990) revealed a high degree of spatial and 

15 seasonal variability (Kieskamp et al., 1991; Middelburg et al., 1995). Interestingly, 

intertidal sediments can even act as a temporary sink for atmospheric N20 

(Kieskamp et al., 1991: Middelburg et al., 1995). No clear relationship of N20 

emission rates either with nitrification nor denitrification rates were detected 

(Middelburg et al., 1995). However, Middelburg et al. (1995) were able to establish a 

20 linear relation between the annual integrated N20 emission rates from the intertidal 

sediments and the nitrogen loading. 

2.4 English Channel, Bay of Biscay 

A comprehensive study on N20 cycling has been performed in the Tamar 

25 Estuary (southwest England) during August 1988 and June 1990 by Law et al. 

(1992). N20 saturations were in the range from about 100% to 330% and were 
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attributed to sedimentary denitrification and to a minor degree to water column 

nitrification in the MTZ, terrestrial runoff and sewage input (Law et al., 1991; Law et 

al., 1992). Additionally, denitrifying bacteria in epiphytic communities on the surface 

of the macroalgae Enteromorpha sp. from the Tamar estuary showed a high potential 

5 of N20 production during spring-summer (Law et al., 1993). 

N20 saturations in the Gironde Estuary (southwest France) measured during a 

campaign in November 1991 ranged from 106% to 165% (average 132%) (Bange et 

al., 1996b ). A further study of the N20 distribution in the Gironde estuary in June 

1997 indicated that the highest N20 surface concentrations are found in the 

lo maximum turbidity zone (MTZ) in the low salinity region of the estuary {Abril et al., 

2000). Abril et al. (2000) found a good correlation between suspended particulate 

matter and dissolved N20 and concluded that N20 is produced in the MTZ; however, 

the processes responsible for N20 formation (water column nitrification or 

sedimentary denitrification) have not been deciphered (Abril et al., 2000). 

15 

2.5 Mediterranean Sea, Adriatic Sea, Aegean Sea 

N20 saturations along five transects in the Gulf of Lions (northwestern 

Mediterranean Sea) and the adjacent Rhone River Plume in June 1998 and March­

November 1997 ranged from 0% to appr. 200% (i.e. 15 nmol L-1
) and up to 41 nmol 

20 L-1, respectively (Marty et al., 2001 ). N20 saturations in the inner Gulf of Thermaikos 

(northwestern Aegean Sea) during April 1998 were found to be in the range from 

84 % to 309% (Marty et al., 2001 ). Associated measurements of the bacterial 

production showed nitrifying and denitrifying activities in suspended particulate 

matter, however, a direct relationship between the measured N20 concentrations and 

25 N20 formation rates was not found (Marty et al., 2001 ). 
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Measurements during a study from May 1996 to January 1998 in the shallow 

Sacca di Garo, a coastal lagoon in the Po River delta in the northern Adriatic Sea, 

revealed N20 saturations in the range from 0% - 6635% with highest N20 fluxes to 

the atmosphere in autumn and winter (Leip, 1999). N20 saturations at one station in 

5 the open Adriatic Sea in August 1996 were found to be slightly undersaturated (85% 

-100%) in the surface (0-20m) and supersaturated (up to 140%) down to the bottom 

at 70m (Leip, 1999). Leip (1999) attributed the high N20 saturation in the lagoon to 

input of N20 by the Po River. Additionally, the spatial N20 distribution in the lagoon 

seemed to be influenced by the incoming Adriatic Sea water and sedimentary N20 

10 production (Leip, 1999). 

!I A survey of N20 surface concentrations during a cruise in the coastal waters of 

I the eastern Ionian Sea and the northern Aegean Sea in July 1993 showed a mean 

N20 saturation of about 107% (Bange et al.. 1996a). During the same cruise a mean 
l 

N20 saturation of 103% was found in the Amvrakikos Bay (at the west coast of 

15 Greece). Interestingly, N20 concentrations along the salinity gradient in the 

Amvrakikos Bay showed a positive correlation with the salinity indicating that N20 

was not produced in the Amvrakikos Bay (Bange et al., 1996a). 

2.6 Black Sea 

20 In July 1995 the mean N20 saturations on the Black Sea's northwestern shelf I 

Danube River plume and in the open Black Sea were 112% (Amouroux et al., 2002). 

No correlation between N20 concentrations and salinity was found and the formation 

pathways remained unidentified (Amouroux et al., 2002). 

25 
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3. Overview: Methane (CH4) 

3.1 Arctic Ocean: Norwegian Sea, Barents Sea 

In the Barents Sea considerably enhanced CH4 concentrations (up to 56.7 

nmol L-1
) were found over a pockmark field east of Bear Island (Lammers et al., 

11 

5 1995). However, surface CH4 concentrations were near equilibrium or slightly 

supersaturated (up to 3.8 nmol L-1, i.e. 125 %) because the high CH4 plume 

concentrations are rapidly oxidized or diluted by mixing with ambient waters with 

lower CH4 concentrations (Lammers et al., 1995). This is in line with the study of the 

fate of CH4 in the plume of the Hakon Mosby mud volcano in the deep Norwegian 

10 Sea by Damm and Budeus (2003). In a recently published study, Damm et al. (2005) 

presented their CH4 measurements in the shelf waters and two fjords on the 

continental shelf of Southwest Spitsbergen. CH4 concentrations were in the range 

from 1.8 to 240.8 nmol L-1 (maximum saturation was about 7200%). Obviously, CH4 

was released to the water column from several inter-granual seepages or micro-

15 seepages along the shelf in about 100-200 m depth. The Spitsbergen shelf is known 

to be sites of gas hydrates deposits, natural seabed gas seeps and buried active 

petroleum source rocks (Damm et al., 2005). Once released to the water column, 

CH4 concentrations were lowered due to oxidation and mixing processes. 

20 3.2 Baltic Sea 

Surface CH4 saturations in the Baltic Sea generally show a great spatial and 

seasonal variability in the open Baltic Sea (Bange et al., 1994) as well as in the 

shallow coastal regions (Abril and Iversen, 2002; Bange et al., 1998a; Bussmann and 

Suess, 1998; Heyer and Berger, 2000; Schmaljohann, 1996). Mean area-weighted 

25 CH4 surface saturations in the southern and central basins of the Baltic Sea were 

113% and 395% in February and July/August 1992, respectively (Bange et al., 1994). 
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CH4 saturations in the shallow, well ventilated coastal fjords of the southwestern 

Baltic Sea such as the Randers Fjord, Eckernforde Bay and the shallow lagoons of 

Bodden waters in the southern Baltic Sea I western Oder River estuary area range 

from slightly below equilibrium (62%) to values up to appr. 25,700,000% (642,000 

nmol L-1
) (Abril and Iversen, 2002; Bange et al., 1998a; Bussmann and Suess, 1998; 

Heyer and Berger, 2000). 

Measurements of CH4 concentrations in the anoxic deep waters of the central 

basin of the Baltic Sea (Gotland Basin) during January/February 1990 revealed 

values of up to 400 nmol L-1
, whereas in the oxygenated water column CH4 

concentrations were considerably lower (4.5-120 nmol L-1
) (Dzyuban et al., 1999). 

Fenchel et al. (1995) reported CH4 concentrations exceeding 30,000 nmol L-1 in the 

bottom water of the anoxic basin of the Marianger Fjord (east coast of Denmark) in 

August 1994. Accumulation of CH4 (up 2700 nmol L-1
) in the Kiel Harbour has been 

observed during stagnation periods when the water column became anoxic during 

15 the end of the summers of 1992 and 1993 (Schmaljohann, 1996). 

In the Baltic Sea, the interplay of the various CH4 formation and consumption 

processes seems to be complex. There are several factors which have been 

identified to cause the observed high seasonal and spatial variability of dissolved 

CH4. Rivers entering the estuarine systems of the Baltic Sea seems to be enriched in 

20 CH4 thus riverine CH4 can be responsible for enhanced CH4 concentrations in the 

upper estuaries I fjords or near coastal areas (Abril and Iversen, 2002; Bange et al., 

1994; Bange et al., 1998a). The main CH4 formation process is methanogenesis in 

the sediments. However, sedimentary aerobic CH4 oxidation provides an effective 

barrier for sedimentary CH4 to reach the water column (Abril and Iversen, 2002; 

25 Dahlke et al., 2000; Schmaljohann, 1996). Nevertheless, CH4 release (e.g., via 

diffusion) from the sediments still provides the significant source for dissolved CH4 in 



H.W. Bange: N20 and CH4 in European coastal waters 13 

the water column (Fenchel et al., 1995; Schmaljohann, 1996). In the water column 

itself, considerable rates of aerobic as well as anaerobic CH4 oxidation have been 

observed in a few studies (Abril and Iversen, 2002; Fenchel et al., 1995). Shifts from 

oxic to anoxic conditions significantly enhance CH4 formation in the sediments 

5 (Schmaljohann, 1996) and water column (Dzyuban et al., 1999). Moreover, seasonal 

variations of water temperature, wind speeds and availability of organic matter have 

been identified to regulate, directly or indirectly, estuarine CH4 emissions to the 

atmosphere (Abril and Iversen, 2002; Bange et al., 1998a; Heyer and Berger, 2000). 

Apart from methanogenesis, natural seepage of CH4, as observed in the CH4-

IO rich pockmark structures of the Eckernforde Bay (Bussmann et al., 1999), in the 

Kattegat (Dando et al., 1994; Laier et al., 1992) and in the Stockholm Archipelago 

(Soderberg and Floden, 1992) are significant sources of dissolved CH4 in the water 

column, but poorly quantified in terms of their significance for CH4 emissions to the 

atmosphere. 

15 

3.3 North Sea, English Channel, Bay of Biscay, coastal NE Atlantic 

CH4 surface measurements during a transect from the southern North Sea to 

the NE Atlantic in November 1980 by Conrad and Seiler (1988) showed a clear trend 

of mean saturations from about 140% in the southern North Sea to 100% in the Bay 

20 of Biscay. Comparable CH4 saturations (95% - 130%) were observed in the open 

southern North Sea by Bange et al. (1994) and Scranton and McShane (1991). A 

strong CH4 concentration gradient towards the Dutch coast (up to 12,000%) 

associated with the Rhine River plume were observed by Scranton and McShane 

(1991) and De Wilde and Duyzer (1995) during two measurement campaigns in 

25 March 1989 and October 1993, respectively. During a cruise from east to west along 

58°N in the central North Sea which was followed by a transect to the German Bight 
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in May 1994, Rehder et al. (1998) observed a remarkably high spatial variability of 

CH4 surface saturations in the range from 103% to 50,000% (i.e., 1453 nmol L-1
) 

(Rehder et al., 1998). The extraordinary high values were resulting from CH4 

released from an abandoned borehole (Rehder et al., 1998). During the same cruise, 

5 enhanced CH4 saturations (from 130% up to >1000%) were observed in the 

Skagerrak (eastern North Sea), the Dagger Bank (central North Sea) and the 

German Bight I Elbe River estuary (Rehder et al., 1998). Werneke et al. (1994) 

observed significantly enhanced CH4 concentrations (up to 625,000 nmol kg-1
) in 1 m 

height above the seafloor when passing a seepage area in the northeastern North 

10 Sea. However, the CH4 concentrations in the plume decreased to about 6 nmol kg-1 

in 25 m height above the seafloor (Werneke et al., 1994 ). At two stations at the 

Norwegian coast (Haugesund and B0mla Fjord), CH4 concentrations ranged from 

about 6 nmol kg-1 (surface) to about 250 nmol kg-1 (bottom water in 130 m water 

depth at Haugesund) (Werneke et al., 1994). During a series of measurements along 

15 the English east coast and southern North Sea (Dutch coast), Upstill-Goddard et al. 

(2000) found CH4 saturations from 74% to 2245%. 

A series of CH4 measurements have been performed in several estuaries 

along the North Sea (Elbe, Ems, Rhine, Scheidt, Thames, Humber, Tyne), the Bay of 

Biscay (Loire and Gironde) and the NE Atlantic (Douro and Sada) yielding CH4 

20 saturations from significantly undersaturated (70% in the Gironde) up to highly 

supersaturated (49,700% in the Rhine River) (De Wilde and Duyzer, 1995; 

Middelburg et al., 2002; Upstill-Goddard et al., 2000). The distribution of CH4 

saturations along the estuarine salinity gradients showed great seasonal and spatial 

variabilities. Generally, CH4 saturations at the interface to the coastal waters were 

25 comparable to those measured in the open North Sea and the open Bay of Biscay. 

Maximum estuarine CH4 saturations were observed in the upper parts of the 
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estuaries at low salinities. In the Framvaren Fjord (south coast of Norway) CH4 

concentrations from about 1000 nmol L-1 (surface) up 26,000 nmol L-1 (anoxic 

bottom water) were measured (Lidstrom, 1983). 

In contrast to the various studies in the Baltic Sea (see above), it seems that 

5 less attention has been paid to identify the responsible CH4 formation/consumption 

processes in the North Sea area. Scranton and Mcshane (1991) measured CH4 

oxidation rates in the water column and concluded that loss by oxidation is a minor 

sink in view of the high sea-to-air emissions. Anaerobic CH4 oxidation in the anoxic 

water column of Framvaren Fjord was observed by Lidstrom (1983). Riverine input, 

15 

10 sedimentary release and formation within the turbidity maximum zone have been 

suggested as possible sources for estuarine CH4, however, the processes itself have 

not been identified (Middelburg et al., 2002; Rehder et al., 1998; Scranton and 

McShane, 1991; Upstill-Goddard et al., 2000). 

There is increasing evidence that the release of so-called geological CH4 from 

15 natural seepages and abandoned boreholes contribute significantly to the 

atmospheric CH4 emissions especially from the North Sea (Judd et al., 1997; Rehder 

et al, 1998). In the Skagerrak, for example, large areas of CH4-charged sediments 

and associated plumes of CH4 gas bubbles in the water column have been identified 

(Hempel et al., 1994; Hovland, 1992; Zimmermann et al., 1997). Further areas where 

20 CH4-rich sediments have been verified are the UK shelf (Judd et al., 1997; Judd et 

al., 2002b ), the Belgian coast (Missiaen et al., 2002), the Spanish Atlantic coast 

(Garcia-Gil et al., 2002) and the western Irish Sea (Yuan et al., 1992). However, it is 

difficult to assess the atmospheric emissions solely based on seabed seepage rates 

and/or plumes of gas bubbles (Judd et al., 1997; Leifer and Kumar Patro, 2002). 

25 
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3.4 Mediterranean Sea, Adriatic Sea, Aegean Sea 

CH4 concentrations along five transects in the Gulf of Lions (northwestern 

Mediterranean Sea) and the adjacent Rhone River Plume in June 1998 and March-

16 

5 November 1997 ranged from O nmol L-1 to 1263 nmol L-1 and up to 1363 nmol L-1, 

respectively (Marty et al., 2001 ). There was a clear trend from maximum CH4 

concentrations at the Rhone River mouth to the open Mediterranean Sea. CH4 

concentrations in the inner Gulf of Thermaikos (northwestern Aegean Sea) during 

April 1998 were found to be in the range from Oto 1378 nmol L-1 (Marty et al., 2001 ). 

10 Associated measurements of the bacterial production showed CH4 production in 

suspended particulate matter, however, a direct relationship between the measured 

CH4 concentrations and CH4 formation rates was not found (Marty et al., 2001 ). CH4 

saturations at one station in the open Adriatic Sea in August 1996 were found to be 

supersaturated (appr. 400%-450%) in the surface layer (0-10m) and 

15 supersaturated as high as 2750% below the surface layer down to ?Orn (Leip, 1999). 

A survey of CH4 surface concentrations during a cruise in the coastal waters of 

the eastern Ionian Sea and the northern Aegean Sea in July 1993 showed a mean 

CH4 saturation from 148% (3.2 nmol L-1
) to 231 % (4.8 nmol L-1

) (Bange et al., 

1996a). During the same cruise a mean CH4 saturation of 522% (11.1 nmol L-1
) was 

20 found in the Amvrakikos Bay (at the west coast of Greece). 

CH4 gas release from geological sources has been reported from the northern 

Adriatic Sea (Conti et al., 2002). In the central Aegean Sea, hydrothermal systems 

also release a considerable amount of gas to the water column, however, in the 

sampled gas bubble plumes, the fraction of CH4 was generally less than 10% (Dando 

25 et al., 1995). 
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3.5 Black Sea 

In July 1995 the mean CH4 surface saturations on the Black Sea's 

5 northwestern shelf and in the Danube River plume were 567% (13 nmol L - 1
) and 

5340% (131 nmol L-1). respectively (Amouroux et al., 2002). A comparable range of 

CH4 concentrations (22 - 380 nmol L - 1
) were observed by Ivanov et al. (2002) at 11 

stations during a cruise on the northwestern shelf of the Black Sea in August 1995. 

CH4 was formed during methanogenesis in the shallow shelf sediments with higher 

10 formation rates in summer than in spring (Ivanov et al., 2002). Despite the fact that 

considerable CH4 oxidation rates occur in the sediments and in the water column, 

CH4 release from the sediments seemed to maintain the high CH4 concentrations in 

the water column (Ivanov et al., 2002). 

In a recent study of the influence of CH4 seeps on CH4 surface saturation in 

15 the northwestern Black Sea, Schmale et al. (2005) found CH4 surface saturations up 

to 143% for the open Black Sea, whereas CH4 saturations above a seep on the 

shallow shelf (90 m) were up to 294%. They concluded that only seeps in shallow 

shelf waters have the potential to contribute to the surface CH4 saturation in the 

Black Sea, whereas contributions from deep water (>1 OOm) CH4 seeps are 

20 negligible. This is in contrast to the study by Lein (2005) who showed that the CH4 

released from mud volcanoes in the deep Black Sea can reach the surface waters 

and, thus, contribute to the CH4 emissions to the atmosphere as well. 

Occurrence of shallow gas-charged sediments and CH4 bubble plumes has 

been reported from many areas along the Black Sea coast (see e.g. Dimitrov (2002), 

25 Tkeshelashvili et al. (1997), Ergun et al. (2002), Kutas et al. (2002)). However, the 

contribution of gas seepages to the overall high CH4 concentrations in water column 
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and the atmospheric emissions are largely unknown. CH4 seeps along the shelf 

slope, which are already located within the zone of the permanent anoxic deep 

waters, were found to be associated with thick microbial mats with potentially high 

anaerobic CH4 oxidation rates (Michaelis et al., 2002). 

4. Emission estimates 

4.1 N20 

18 

The majority of the N20 surface saturation data presented above indicate that 

10 European coastal waters are generally supersaturated with N20 (especially in 

estuarine systems), despite the fact that in some cases undersaturations (<100%) 

have been observed. Since saturations greater than 100% result in a N20 flux from 

the ocean surface to the atmosphere, European coastal waters are a net source of 

N20 to the atmosphere. N20 saturations for various European shelf areas and 

15 estuaries are listed in Tables 1a and 1b. Studies, which either do not report N20 

saturations explicitly or do not allow reconstructing N20 saturations, were not 

included. If there were multiple studies for the same location, only the study with the 

better seasonal coverage was listed. From the data listed in Tables 1 a and 1 b we 

calculated mean N20 saturations of 113% and 465% for the European shelf and 

20 estuaries, respectively. Based on the mean N20 saturations we calculated mean N20 

emissions of 0.12 Tg N yr-1 and 0.19 Tg N yr-1 for the European shelf and estuaries, 

respectively (for details see Table 2). The resulting overall N20 emissions range from 

0.15 to 0.4 Tg N yr-1 (with a mean of 0.31 Tg N yr-1). Our estimate is in good 

agreement with the result (0.29 Tg N yr-1
) from a recent model study of Seitzinger 

25 and Kroeze (1998) in which the N20 formation was quantified via denitrification and 

nitrification in European coastal waters (i.e. NE Atlantic between 45° and 66°N, Baltic 
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Sea, Mediterranean Sea and Black Sea). In their study, N20 formation was linked to 

riverine nitrate inputs, which in turn were estimated as a function of the atmospheric 

deposition of nitrogen oxides (NOy), fertilizer use and sewage inputs (Seitzinger and 

Kroeze, 1998). Their model calculations yielded annual N20 productions of 0.06 Tg 

5 (=1012g) N and 0.23 Tg N for the European estuaries/continental shelf and rivers, 

respectively. Global estimates of the N20 emissions from coastal areas are in the 

range from 1.9 Tg N yr-1 (Seitzinger and Kroeze, 1998) to 6.7 Tg N yr-1(Bange et al., 

1996b ). Thus, European coastal waters may contribute up to 16% of the today's 

global coastal N20 emissions. Using current trends of the increase of the human 

10 population, fertilizer use and NOy deposition, Kroeze and Seitzinger (1998) predicted 

the N20 production in European coastal waters for the year 2050. The resulting N20 

estimates were 0.10 Tg N yr-1 and 0.33 Tg N yr-1 for the European 

estuaries/continental shelf and rivers, respectively, suggesting that future coastal 

N20 production might increase by 67% and 43% respectively. However, the overall 

15 global coastal N20 production in 2050 might increase to 4.9 Tg N yr-1 indicating that 

the future contribution by European coastal waters (9%) to the global production will 

be lower than today (Kroeze and Seitzinger, 1998). 

20 4.2 CH4 

CH4 in the surface layer is generally supersaturated, except for a few cases 

(see text above). Therefore, European coastal waters are a net source for 

atmospheric CH4. CH4 surface concentrations range from slightly undersaturated (= 1 

-4 nmol L-1) to extremely supersaturated(= 642,000 nmol L-1
) indicating a high 

25 seasonal and spatial variability. CH4 saturations for various European shelf areas and 

estuaries are listed in Tables 3a and 3b. Studies, which either do not report CH4 
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saturations explicitly or do not allow reconstructing CH4 saturations, were not 

included. If there were multiple studies for the same location, only the study with the 

better seasonal coverage was listed. From the data listed in Tables 3a and 3b we 

calculated mean CH4 saturations of 224% and 3643% for the European shelf and 

5 estuaries, respectively. Based on the mean CH4 saturations we calculated mean CH4 

emissions of 0.13 Tg C yr-1 and 0.24 T g C yr-1 for the European shelf and estuaries, 

respectively (for details see Table 4). The resulting overall CH4 emissions range from 

0.25 to 0.48 Tg C yr-1 (with a mean of 0.37 Tg C yr-1). The emission estimate for the 

European shelf (excl. estuaries) is in good agreement with a previous estimate by 

10 Bange et al. (1994 ). They estimated a total flux of 0.11 Tg C yr-1 for the European 

coastal shelf waters (North Sea, Baltic Sea, Mediterranean Sea, Black Sea; excl. 

estuaries) which represents about 1.5% of the overall global CH4 emissions from the 

shelf (excl. estuaries) (Bange et al., 1994). I conclude that emissions from the 

European shelf and estuarine areas contribute significantly to the overall global CH4 

15 oceanic emissions (0.3 Tg C yr-1 for the open ocean, Bates et al. (1996)). However, 

the overall estimate presented here still seems to be an severe underestimation 

since estuarine CH4 fluxes and CH4 fluxes from geological sources are not 

adequately represented: For example, Upstill-Goddard et al. (2000) estimated an 

annual CH4 emission of 0.09 Tg C from estuaries in the southern North Sea alone. 

W Judd et al. (1997) estimated the CH4 flux to the atmosphere by natural seepages on 

the UK shelf to be in the range from 0.09 to 2.6 Tg C yr-1
• Moreover, Dimitrov (2002) 

computed that annually between 0.02 Tg C and 0.11 Tg Care emitted from the 

Bulgarian shelf (Black Sea) to the atmosphere by natural CH4 seepages. Adding the 

mean fluxes via natural CH4 seepages from the North Sea and the Bulgarian shelf 

25 (Judd et al., 1997; Dimitrov, 2002) and the estimate by Upstill-Goddard et al. (2000) 

yields an atmospheric CH4 flux of about 1.5 Tg C yr-1
. This value is certainly a severe 
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underestimation since natural seepages from gassy, CH4-bearing sediments, which 

occur all over at the European shelf (for an overview see Fleischer et al. (2001 )), as 

well as the major part of estuarine CH4 emissions is not adequately represented. In 

view of the fact that open ocean emissions for CH4 have been estimated to be as low 

5 as 0.3 Tg C yr-1 (Bates et al., 1996) it as obvious that the significance of coastal CH4 

emissions on a regional (European) and on a global scale is much higher then 

previously thought. 

10 4.3 Uncertainties 

15 

The emission estimates discussed above are associated with large uncertainties: 

(i) Data coverage. Despite an increasing number of studies dealing with the 

distribution of N20 and CH4 in coastal waters, their distributions in large 

parts of the coastal areas (in Europe as well as globally) are still unknown. 

(ii) Seasonality. Since the formation of N20 and CH4 is mainly driven by 

biological processes, the observed variability is influenced by the 

pronounced seasonality of various parameters such as temperature, 

riverine nutrient inputs etc. Unfortunately, most studies are biased towards 

the summer months. 

20 (iii) Air-sea exchange models. There are still considerably uncertainties 

25 

associated with the applied air-sea exchange models, thus the choice of 

the model introduces an additional bias. Furthermore, the choice of the 

used wind speeds (i.e. in-situ wind speeds vs. climatological data) is 

resulting in an additional variability. These and other uncertainties 

associated with the air-sea exchange are discussed by Upstill-Goddard 

(2005). 
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5. Conclusions and outlook 

5.1 N20 

5 Based on the data presented, three main conclusions can be drawn: 

22 

(i) Highest N20 saturations were observed in estuaries and fjords, whereas in open 

coastal waters (i.e. shelf waters not influenced by freshwater) N20 saturations 

are close to the expected equilibrium saturation. This indicates that N20 is 

exclusively formed in estuarine systems. 

I o (ii) European coastal waters are a net source of N20 to the atmosphere; however, 

the major contribution comes from the estuarine/river systems and not from the 

open shelf areas. European shelf areas contribute significantly (up to 16 %) to 

the global oceanic N20 emissions. 

(iii) It is obvious that sedimentary denitrification and water column nitrification seem 

15 to be the major N20 formation processes. However, the yield of N20 from both 

processes strongly depends on the local 0 2 concentrations, thus 0 2 is the key 

factor regulating N20 production (and its subsequent emissions to the 

atmosphere). Additionally, N20 distributions in estuaries show a pronounced 

seasonal variability. In anoxic waters, such as the deep basin of the central 

20 Baltic Sea or parts of the shallow Po River delta, N20 is consumed by water 

column denitrification. 

There might be two further, however, largely unknown N20 sources in European 

coastal areas: First, coastal upwelling brings N20 from subsurface layers to the 

25 surface, thus it can be an additional, physically driven, source of N20 to the 

atmosphere (Nevison et al., 2004 ). Despite small local upwelling areas along the 
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European coasts, a large coastal upwelling site is found at the Atlantic coast of 

Portugal. However, studies on N20 during the upwelling events along the coast of 

Portugal are not known yet. Second, organic matter release from fish farming 

activities could increase the dissimilatory nitrate reduction to ammonium (DNRA) in 

23 

5 the sediments underlying the fish cages, whereas denitrification was found to be 

unaffected (Christensen et al., 2000). DNRA, however, might be an additional source 

of N20 (Welsh et al., 2001 ). 

Future N20 emissions from coastal areas strongly depend on nitrogen inputs to 

10 coastal waters and will most probably increase in the future (Kroeze and Seitzinger, 

1998). Eutrophication and/or increasing deposition of nitrogen-containing aerosols 

already increased the number of coastal areas with severe 0 2 depletion on a global 

scale (UNEP, 2004). This, in turn, might result in conditions favourable for enhanced 

N20 production as observed along the West Indian shelf where N20 surface 

15 saturations up to 8250% (436 nmol L-1
) have been measured due to a dramatic 

depletion of 02 concentrations (Naqvi et al., 2000). 

5.2 CH4 

Based on the data presented, three main conclusions can be drawn: 

20 (iv) CH4 concentrations show a high temporal and spatial variability in European 

coastal waters. Maximum concentrations were observed in estuarine/fjord 

systems indicating that CH4 is mainly formed in shallow coastal regions. 

(v) European coastal areas are a net source of atmospheric CH4. Natural CH4 

seepages and associated CH4 bubble plumes as observed in the shallow North 

25 and Baltic Seas and in the Black Sea, are an additional source which has not 
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been quantified adequately for the European coastal waters. Thus, it seems that 

European coastal CH4 emissions are considerably underestimated. 

(vi) The main CH4 formation process is methanogenesis in the sediments and its 

subsequent release to the water column. Shifts from oxic to anoxic conditions 

5 significantly enhance CH4 formation in the sediments and water column. 

Sedimentary aerobic and anaerobic CH4 oxidation processes reduce CH4 

concentrations, however, it seems that these processes cannot prevent CH4 

from accumulation. 

10 CH4 emissions from coastal upwelling areas are of regional importance as observed 

in the well-studied coastal upwelling centres in the Arabian Sea and the coast off 

Oregon (Bange et al., 1998b; Rehder et al., 2002). Thus, an additional CH4 source 

might be CH4 emissions from the upwelling region along the coast of Portugal; 

however, studies on CH4 in this region are not known yet. CH4 releases from mud 

15 volcanoes are of minor importance because they are usually located in the deeper 

parts of the continental shelf slope (Miles, 1995; Milkov, 2000) and the CH4 plume 

concentrations are rapidly oxidized or diluted by mixing with ambient waters with 

lower CH4 concentrations before reaching the atmosphere. This was shown in the 

studies of the Hiikon Mosby mud volcano (Norwegian Sea) by Damm and Budeus 

20 (2003) and Lein (2005). This is in contrast to the study by Lein (2005) who suggested 

that the CH4 release from mud volcanoes in the deep Black Sea can contribute to the 

atmospheric CH4 emissions. Seeps located in shallow shelf waters (<100 m) seem to 

influenced surface CH4 concentrations (Damm et al., 2005; Schmale et al., 2005). 

Future CH4 emissions from coastal areas strongly depend on inputs of nutrients and 

25 organic matter to coastal waters and will most probably increase in the future. 

Eutrophication already increased the number of coastal areas with severe 02 
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depletion on a global scale (UNEP, 2004). This, in turn, might result in conditions 

favourable for enhanced CH4 production. 

5.3 Outlook 

5 Despite the fact that our knowledge on the distribution of N20 and CH4 in 

25 

coastal areas is still associated with a high degree of uncertainty, a rough impact 

assessment of various parameters which might influence today's and future N20 and 

CH4 emissions from European coastal waters is given in Table 5. It is obvious that in 

order to quantify today's and future emissions of N20 and CH4 we need more 

10 measurements, new tools and approaches such as: 

(i) Time series measurements of dissolved and atmospheric concentrations along 

the salinity gradients in selected coastal and estuarine systems (intertidal 

estuaries, fjords, lagoons, upwelling areas) in order to resolve the seasonality. 

(ii) Time series measurements of N20 and CH4 formation processes along the 

15 salinity gradients in selected estuarine systems (intertidal estuaries, fjords, 

lagoons etc.) in order to reveal the major formation pathways. 

(iii) Measurements of CH4 emissions from shallow geological sources (natural 

seepages) in order to quantify the contribution by geological CH4. 

(iv) Development of obligatory standard protocols to measure N20 and CH4 in the 

20 water and in the atmosphere. N20 and CH4 measurements should be performed 

with standards which have to be intercalibrated against internationally accepted 

standard scales. 

(v) Development of autonomously operating N20/CH4 measurement systems to be 

used on ferry lines or ships of opportunity to gain a high temporal and spatial 

25 resolution of the distribution of N20 and CH4 in surface waters. 
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Table 1a: Compilation of average N20 surface saturations in European shelf waters 
(excluding estuarine systems and river plumes, see Table 1b). 

Region 

Baltic Proper 

Bothnian Sea 

Bothnian Bay 

Galland Deep 

German Bight 

German Bight 

Central North Sea 

Central North Sea 

Date 

1977-1980· 

Jun 1980 

Jun 1980 

1986-1987* 

1991-1992· 

Jui 1987 

Sep 1991 

Jui 1987 

Northern Aegean Sea Jui 1993 

Eastern Ionian Sea Jui 1993 

Gulf of Lions Jun 1998 

Gulf of Thermaikos Apr 1998 

Adriatic Sea Aug 1996 

Northwestern shelf Jui 1995 

Average 

sd stands for standard deviation. 

Avg. N20 (range or sd), Reference 

nmol L-1 

Baltic Sea 

127 .. (111 - 138) 

119 .. (101 - 130) 

116 .. (109-120) 

112 .. 

North Sea 

100 (99-101) 

130 

104 ± 1 

102 

Mediterranean Sea 

106±2 

107 ± 3 

86 .. (0 - 197) 

171 .. (84-309) 

93 .. (85 - 100) 

Black Sea 

112 

113±21 

ROnner (1983) 

Ronner (1983) 

ROnner (1983) 

Brettar and Rheinheimer (1991) 

Bange et al. (1996b) 

Law and Owens (1990) 

Bange et al. (1996b) 

Law and Owens (1990) 

Bange et al. ( 1996a) 

Bange et al. (1996a) 

Marty et al. (2001) 

Marty et al. (2001) 

Leip (1999) 

Amouroux et al. (2002) 

• study with a seasonal/interannual coverage, for details see reference. 
•• values estimated based on the information given in the reference. 
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Table 1 b: Compilation of average N20 surface saturations in European estuarine 
systems and river plumes. 

Region Date Avg. N20 (range or sd), Reference 

nmol L-1 

Baltic Sea 

Bodden waters 1994-1997• 108 .. (100-120) Bange et al. (1998a) 

North Sea 

Colne 1993-1994. 2645 .. (100 -5190) Robinson etal. (1998) 

Scheidt 1997-1998. 710 De Bie et al. (2002) 

Humber 1995-1996. 452 (100 - 4250) Barnes and Owens (1998) 

Tweed 1996-1997" 100 (96 -110) Barnes and Owens (1998) 

Humber Wash plume May 1995 113• (100-125) Barnes and Owens (1998) 

NE Atlantic 

Giron de Nov 1992 132 (106 - 165) Bange et al. (1996b) 

Tamar 1988-1990. 215 .. (100 - 330) Law et al. (1992) 

Mediterranean Sea 

Amvrakikos Bay Jui 1993 103 ±2 Bange et al. (1996a) 

Sacca di Gore 1996-1997. 490 (0 - 6635) Leip (1999) 

Rhone plume 1997• 398 .. (226 - 555) Marty et al. (2001) 

Black Sea 

Danube plume Jui 1995 112 Amouroux et al. (2002) 

Average 465 ± 716 

sd stands for standard deviation. 
• study with a seasonal/interannual coverage, for details see reference. 
•• values estimated based on the information given in the reference. 
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Table 2: Estimate of the annual N20 emissions from European shelf and estuarine 
areas. 

Area', Avg. saturation2
, 

1012 m2 

Shelf 3.18 

Estuaries 0.17 

1 According to Uher (2005). 
2 see Tables 1 a and 1 b. 

% 

113 

465 

AC3
, Emissions• {LM86), Emissions' {W92), 

nmol L-' Tg N yr-1 Tg N yr-' 

1.1 0.08 0.15 

34 0.13 0.25 

3 AC stands for the concentration difference across the ocean/atmosphere interface and was 
calculated as AC = {saturation/1 OO*Ca;,) - Ca;,. Ca;, was calculated with the Bunsen coefficient of Weiss 
and Price (1980) for a water temperature of 15°C and salinities of 35 and 15 for shelf and estuaries, 
respectively. We applied a mean atmospheric N20 dry mole fraction of 308 ppb {i.e. the mean for the 
period 1980-1998 corresponding to the dates of the listed measurements) 
4 LM86 stands for the model approach of Liss and Merlivat (1986). W92 stands for the model 
approach of Wanninkhof (1992) for climatological wind speeds. We applied a mean wind speed of 7 m 
s-1

• N20 Schmidt numbers were calculated with the mean water temperature and salinities as given in 
footnote 3. 
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Table 3a: Compilation of average CH4 surface saturations in European shelf waters 
(excluding estuarine systems and river plumes, see Table 3b). 

Region Date Avg. CH, (range or sd), Reference 

satuation, % 

Arctic Sea 

Barents Sea Aug 1991 120 (115-125) Lammers et al. ( 1995) 

Baltic Sea 

Baltic Proper 1992* 254 (113-395) Bange et al. ( 1994) 

North Sea 

Southern North Sea Nov 1980 140 Conrad and Seiler (1988) 

Gennan Bight Sep 1991 126 ±8 Bange et al. ( 1994) 

Southern Bight Mar 1989 113 (95 - 130) Scranton and McShane ( 1991) 

Central North Sea May 1994 215 (120-332) Rehder et al. (1998) 

Southern North Sea Aug 1993 338 (118-701) Upstill-Goddard et al. (2000) 

Off UK east coast 1995-1999 129 (112-136) Upstill-Goddard et al. (2000) 

NE Atlantic 

Bay of Biscay Nov 1980 100 Conrad and Seiler (1988) 

Mediterranean Sea 

Adriatic Sea Aug 1996 425* (420 - 450) Leip (1999) 

Eastern Ionian Sea Jui 1993 148 ± 22 Bange et al. (1996a) 

Northern Aegean Sea Jui 1993 231 ± 32 Bange et al. (1996a) 

Black Sea 

Northwestern shelf Jui 1995 567 Amouroux et al. (2002) 

Average 224 ± 142 

sd stands for standard deviation. 
• study with a seasonal/interannual coverage, for details see reference. 
•• values estimated based on the infonnation given in the reference. 
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Table 3b: Compilation of average CH4 surface saturations in European estuarine 
systems and river plumes. 

Region Date Avg. CH, (range or sd), Reference 

saturation, % 

Baltic Sea 

Randers Fjord 2000· 6840 .. (1640 -13,380) Abril and Iversen (2002) 

Bodden waters 1994-1997* 7802 .. (105 -15,500) Bange et al. (1998a) 

Eckernforde Bay 1993-1994* 838 .. (793 - 7803) Bussmann and Suess (1998) 

North Sea 

Humber 1995-1996* 4436 (238 - 21,048) Upstill-Goddard et al. (2000) 

Tyne Jan 1996 5843 (450 - 20,000) Upstill-Goddard et al. (2000) 

Elbe Apr 1997 580 (130 - 29,800) Middelburg et al. (2002) 

Ems Jui 1997 3150 (9200-13,100) Middelburg et al. (2002) 

Thames Feb 1999 570 (150 - 6700) Middelburg et al. (2002) 

Rhine 1996-1998* 8400 (140-49,700) Middelburg et al. (2002) 

Scheidt 1996-1998* 3210 (380 - 3210) Middelburg et al. (2002) 

NE Atlantic 

Loire Sep 1998 660 (340 - 23, 100) Middelburg et al. (2002) 

Gironde 1996-1998* 580 (70 - 13,400) Middelburg et al. (2002) 

Douro Sep 1998 3610 620-5720) Middelburg et al. (2002) 

Sado Sep 1998 5900 (940 - 158,000) Middelburg et al. (2002) 

Mediterranean Sea 

Amvrakikos Bay Jui 1993 522 ± 177 Bange et al. (1996a) 

Black Sea 

Danube plume Jui 1995 5340 Amouroux et al. (2002) 

Average 3643 ± 2814 

sd stands for standard deviation. 
• study with a seasonal/interannual coverage, for details see reference. 
•• values estimated based on the infonmation given in the reference. 
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Table 4: Estimate of the annual CH4 emissions from European shelf and estuarine 
areas. 

Area', Avg. saturation2
, 

1012 m 2 

Shelf 3.18 

Estuaries 0.17 

1 According to Uher (2005). 
2 see Tables 3a and 3b. 

% 

224 

3643 

t.C', Emissions' (LM86), Emissions' (W92), 

nmol L-1 Tg Cyr-' Tg Cyr-• 

3.1 0.09 0.17 

99.5 0.16 0.31 

3 t.C stands for the concentration difference across the ocean/atmosphere interface and was 
calculated as t.C = (saturation/1 oo·c.,,) - c.,,. c.,, was calculated with the Bunsen coefficient of 
Wiesenburg and Guinasso (1979) for a water temperature of 15'C and salinities of 35 and 15 for shelf 
and estuaries, respectively. We applied a mean atmospheric CH, dry mole fraction of 1.83 ppm (i.e. 
the mean for the period 1980-2000 corresponding to the dates of the listed measurements) 
4 LM86 stands for the model approach of Liss and Merlivat (1986). W92 stands for the model 
approach of Wanninkhof (1992) for climatological wind speeds. We applied a mean wind speed of 7 m 
s-•. CH, Schmidt numbers were calculated with the mean water temperature and salinities as given in 
footnote 3. 
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Table 5: Impact assessment of various parameters which might influence today's and 
future N20 and CH4 emissions from European coastal waters. Classification scheme: 
- = minor; + = moderate; ++ = high; ? = unknown. 

Eutrophication 

Coastal upwelling 

Release from natural seepages 

Fish farming 

Ecosystem shifts due to climate change 

n.a. stands for not applicable. 

++ 

+ 

n.a. 

? 

++ 

++ 

? 

? 
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Figure captions 

Figure 1: Map with European marginal seas indicated: 1 - Barents Sea; 2 -

Norwegian Sea; 3 - Baltic Sea; 3a - Kattegat; 4 - North Sea; 4a - Skagerrak; 4b 

- German Bight; 5 - English Channel; 6 - Bay of Biscay; 7 - Celtic (Irish) Sea; 8 -

NE Atlantic; 9 - Mediterranean Sea; 9a - Adriatic Sea; 9b - Aegean Sea; 10 -

Black Sea. 

Figure 2: Locations of prominent coastal areas, estuaries, fjords and other features 

mentioned in the text. 1 - pockmark field; 2 - Bodden waters/Oder River estuary; 

3 - Fjords along the east coast of Jutland, Denmark (Norsminde Fjord, Limfjorden, 

Randers Fjord, Marianger Fjord) and northern Germany (Eckernforde Bay, Kiel 

Harbour); 4 - Framvaren Fjord; 5 - Elbe River; 6 - Ems River; 7 - western 

Wadden Sea; 8 - Scheidt River, Rhine River; 9 - Estuaries along the English east 

coast (Tyne River, Caine River, Humber Estuary, Thames River); 10- Tamar 

River; 11 - Loire River; 12 - Gironde estuary; 13 - Douro River; 14 - Sada River; 

15 - Rhone River, Golf of Lions; 16 - Po River delta, Sacca di Gora; 17 -

Amvrakikos Bay; 18 - Golf of Thermaikos; 19 - Danube River Delta. 

Figure 3: Locations of studies of N20 in European coastal waters. 

Figure 4: Locations of studies of CH4 (incl. observations of CH4 bubble plumes and 

CH4 enriched sediments) in European coastal waters. 
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Figure 3: 
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