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Abstract: Coupling metrics that count the number of inter-module connections in a software system
are an established way to measure internal software quality with respect to modularity. In addition to
static metrics, which are obtained from the source or compiled code of a program, dynamic metrics
use runtime data gathered, e.g., by monitoring a system in production. Dynamic metrics have been
used to improve the accuracy of static metrics for object-oriented software. We study weighted
dynamic coupling that takes into account how often a connection (e.g., a method call) is executed
during a system’s run. We investigate the correlation between dynamic weighted metrics and their
static counterparts. To compare the different metrics, we use data collected from four different
experiments, each monitoring production use of a commercial software system over a period of four
weeks. We observe an unexpected level of correlation between the static and the weighted dynamic
case as well as revealing differences between class- and package-level analyses.

Keywords: software metrics; monitoring; dynamic/static analysis

1. Introduction

Coupling [1,2]—the number of inter-module connections in software systems—has long been
identified as a software architecture quality metric for modularity [3]. Taking coupling metrics into
account during development of a software system can help to increase the system’s maintainability
and understandability [4]. As a consequence, aiming for high cohesion and low coupling is accepted
as a design guideline in software engineering [5].

In the literature, there exists a wide range of different approaches to defining and measuring
coupling. Usually, the coupling degree of a module (class or package) indicates the number of
connections it has to different system modules. A connection between modules A and B can be, among
others, a method call from A to B, a member variable from A of type B, or an exception of type B
thrown by A. Many notions of coupling can be measured statically, based on either source code or
compiled code.

Static analysis is attractive since it can be performed immediately on source code or on a compiled
program. However, it has been observed [6–8] that for object-oriented software, static analysis does
not suffice, as it often fails to account for effects of inheritance with polymorphism and dynamic
binding. This is addressed by dynamic analysis, which uses monitoring logs generated while running
the software. Dynamic analysis is often used to improve upon the accuracy of static analysis [9]. The
results obtained by dynamic analysis depend on the workload used for the run of the system yielding
the monitoring data. Hence, the availability of representative workload for the system under test
is crucial for dynamic analysis. As a consequence, dynamic analysis is more expensive than static
analysis.

Computers 2020, 9, 24; doi:10.3390/computers9020024 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0002-7148-9590
https://orcid.org/0000-0001-6625-4335
http://dx.doi.org/10.3390/computers9020024
http://www.mdpi.com/journal/computers


Computers 2020, 9, 24 2 of 21

Dynamic analysis uses the recorded data to find, e.g., all classes B whose methods are called
by the class A. In this case, the individual relationship between two classes A and B is qualitative:
The analysis only determines whether there is a connection between A and B, and does not take its
strength (e.g., number of calls during a system’s run) into account. In contrast to such a qualitative
metric, a quantitative coupling measurement quantifies the strength (measured, e.g., as the number
of corresponding method calls during runtime of the system) of the connection between A and B by
assigning it a concrete number. In this paper, we study such quantitative metrics.

The coupling metrics we consider in this paper are defined using a dependency graph. The nodes
of such a graph are program modules. Edges between modules express call relationships. They can be
labelled with weights, which are integers denoting the strength of the connection (i.e., the number of
occurrences of the call represented by the edge). Depending on whether coupling metrics take these
weights into account or not, we call the metrics weighted or unweighted. The main two metrics we
consider in this paper are the following:

1. Unweighted static coupling, where an edge from A to B is present in the dependency graph if some
method from B is called from A in the (source or compiled) program code—independently of
how many different methods in A call how many different methods in B, there is only a single
edge (or none) from A to B in this unweighted metric.

2. Weighted dynamic coupling, where an edge from A to B is present in the graph if such a call actually
occurs during the monitored run of the system, and is attributed with the number of such calls
observed.

We also consider, as an intermediate metric between these two, an unweighted dynamic coupling
metric.

Dynamic weighted coupling measures cannot replace their static counterparts in their role to,
e.g., indicate maintainability of software projects. However, we expect dynamic weighted coupling
measures to be highly relevant for software restructuring. In contrast to static coupling measures,
weighted dynamic measures can reflect the runtime communication “hot spots” within a system, and
therefore may be helpful in establishing performance predictions of restructuring steps. For example,
method calls that happen infrequently can possibly be replaced by a sequence of nested calls or with
a network query without relevant performance impacts. Since static coupling measures are often
used as basis for restructuring decisions [5,10], dynamic weighted coupling measures can potentially
complement their static counterparts in the restructuring process. This possible application leads to
the following question: Do dynamic coupling measures yield additional information beyond what we
can obtain from static analysis? More generally, what is the relationship between dynamic and static
coupling measures?

The main research question we investigate in this paper is: Are static coupling degrees and dynamic
weighted coupling degrees of a software system statistically independent? If we observe correlation, can we
quantify the correlation?

Initially, we expected the answer to be say, since we believed static and dynamic coupling degrees
to be almost unrelated: A module A has high static coupling degree if there are many method calls
from methods in A to methods outside of A or vice versa in the program code. On the other hand, A
has high dynamic weighted coupling degree if during the observed run of the system, there are many
runtime method calls between A and other parts of the system. Since a single occurrence of a method
call in the code can be executed millions of times—or not at all—during a run of the program, static
and weighted dynamic coupling degrees do not need to correlate, if we observe a large number of
method calls. Thus, our initial hypothesis was to not observe a high correlation between static and
weighted dynamic metrics.

To answer these questions, we compare the two coupling measures. We use dynamically collected
data to compute weighted metrics that take into account the number of function calls during the
system’s run. We obtained the data from a series of four experiments. Each experiment consists of
monitoring real production usage of a commercial software system (Atlassian Jira [11]) over a period
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of four weeks each. Our monitoring data, of which we have made an anonymized version publically
available [12–15], contains more than three billion method calls.

To address our main research question, we compare the results from our dynamic analysis to
computations of static coupling degrees. Directly comparing static and weighted dynamic coupling
degrees is of little value, as these are fundamentally different measurements. For instance, the absolute
value of dynamic weighted degrees depends on the duration of the monitored program run, which
clearly is not the case for the static measures (Table 10 shows the average coupling degrees we obtained
during our four experiments, these numbers illustrate the effect of longer runs of a system on dynamic
coupling degrees). We therefore instead compare coupling orders, i.e., the ranking obtained by ordering
all program modules by their coupling degree using the Kendall–Tau (See [16] for a discussion of the
relationship between this metric and Spearman’s correlation) metric [17]. This also allows to quantify
the difference between such orders.

Our answer to the above stated research questions is that static and (weighted) dynamic coupling
degrees are not statistically independent. This result is supported by 72 individual comparisons. A
possible interpretation of this result is that dynamic weighted coupling degrees give additional, but
related information compared to the static case. In addition to this result, we observe insightful
differences between class- and package-level analyses.

1.1. Contributions

The results and contributions of this paper are:

• Using a unified framework, we introduce precise definitions of static and dynamic coupling
measures.

• We investigate our new coupling definitions with regard to the axiomatic framework presented
in [18].

• To investigate our main research question, we performed four experiments involving real users
of a commercial software product (the Atlassian Jira project and issue tracking tool [11]) over
a period of four weeks each. The software was instrumented with the monitoring framework
Kieker [19], a dynamic monitoring framework based on AspectJ [20]. From the collected data, we
computed our dynamic coupling measures. Using the Kendall–Tau metric [17,21], we compared
the obtained results to coupling measures we obtained by static analysis.

• We puslished the data collected in our experiments on Zenodo [12–15], and provide a small tool
as a template for a custom analysis of the datasets [22].

• Our results show that all coupling metrics we investigate are correlated, but there are also
significant differences. In particular, when considering package-level coupling, the correlation is
significantly stronger than for class-level coupling. We assume that effects like polymorphism
and dynamic binding often do not cross package boundaries.

This paper is an extended version of our conference paper [23]. Compared to the conference
publication, the current paper contains extended discussion and interpretation, additional references,
and the following additional results:

• we analyzed our newly proposed metrics with regard to the framework proposed by
Briand et al. [18].

• as companion artifacts to this paper, we published anonymized versions of the data obtained
in our experiments on the open-access repository Zenodo. In Section 7, we provide a detailed
description of the data as well as a reference to a template program that allows to access our data
as a further companion artifact.

1.2. Paper Organization

The remainder of the paper is organized as follows: In Section 2, we discuss related work. Section 3
provides our definition of weighted dynamic coupling. In Section 4, we explain our approach to static
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and dynamic analysis. Section 5 then describes the setting of our experiment. The results are presented
and discussed in Section 6. Section 7 describes the data collected during our experiments, which is
accessible on Zenodo. In Section 8, we discuss threats to validity and conclude in Section 9 with a
discussion of possible future work.

2. Related Work

There is extensive literature on using coupling metrics to analyze software quality, see, e.g.,
Fregnan et al. [24] for an overview. Briand et al. [25] propose a repeatable analysis procedure to
investigate coupling relationships. Nagappan et al. [26] show correlation between metrics and external
code quality (failure prediction). They argue that no single metric provides enough information (see
also Voas and Kuhn [27]), but that for each project a specific set of metrics can be found that can then be
used in this project to predict failures for new or changed classes. Misra et al. [28] propose a framework
for the evaluation and validation of software complexity measures. Briand and Wüst [29] study the
relationship between software quality models (of which coupling metrics are an example) to external
qualities like reliability and maintainability. They conclude that, among others, import and export
coupling appear to be useful predictors of fault-proneness. Static weighted coupling measures have
been considered by Offutt et al. [30]. Allier et al. [31] compare static and unweighted dynamic metrics.

Many of the above-mentioned papers study the relationship between coupling and similar
software metrics and quality notions for software. Our approach is different: We do not study
correlation between software metrics and software quality, but correlation between different software
metrics, namely static and dynamic coupling metrics.

Dynamic (unweighted) metrics have been investigated in numerous papers (see, e.g.,
Arisholm et al. [8] as a starting point, also the surveys by Chhabra and Gupta [32] and Geetika and
Singh [33]). Dynamic analysis is often used to complement static analysis. None of these approaches
considers dynamic weighted metrics, as we do.

As an notable exception, Yacoub et al. [34] use weighted metrics. However, to obtain the data,
they do not use runtime instrumentation—as we do—but “early-stage executable models.” They also
assume a fixed number of objects during the software’s runtime.

Arisholm et al. [8] study dynamic metrics for object-oriented software. Our dynamic coupling
metrics are based on their dynamic messages metric. The difference is as follows: Their metric counts
only distinct messages, i.e., each method call is only counted once, even if it appears many times in a
concrete run of the system. The main feature of our weighted metrics is that the number of occurrences
of each call during the run of a system is counted. The dynamic messages metric from [8] corresponds to
our unweighted dynamic coupling metrics (see below).

3. Dynamic, Weighted Coupling

3.1. Goals and Techniques for Dynamic Metrics

As discussed in the introduction, the main question we study in this paper is whether weighted
dynamic and static coupling metrics are statistically independent. In order to be able to perform a
conclusive comparison, we study metrics that assign a coupling degree to each module (i.e., class or
package).

A straight way to measure the coupling degree of a module A is to count the number (or ratio)
of messages involving A. Our coupling measures are all based on this idea. In addition, we can
distinguish between messages sent or received by A (these constitute import or export coupling) or
count both (combined coupling). In all coupling measures, we always skip reflexive messages that
a module sends to itself, since we are interested in coupling as a way to express relationships and
dependencies between different program modules.

Note that while object-level coupling is an interesting topic by itself, objects only exist at runtime
and hence object-level coupling cannot be measured with static analysis. Therefore, object-level
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analysis cannot be used to compare the relationship between dynamic and static coupling, and hence
in the present paper we focus on coupling aggregated to the class respective package level.

3.2. Dependency Graph Definition

We performed our analyses with two different levels of granularity: on the (Java) class and
package levels. Since the approach is the same for both cases, in the following we use the term module
for either class or package, depending on the granularity of the analysis. The raw output of either types
of analyses (dynamic and static) is a labeled, directed graph G, where the nodes represent program
modules, and the labels are integers which we refer to as weights of the edges. If an edge from A to B
has label (weight) nA,B, this denotes that the number of directed interactions between A and B occurring
in the analysis is nA,B.

In the case of a static analysis, this means that there are nA,B places in the code of A where some
method from B is called. For dynamic analysis, this means that during the monitored run of the system,
there were nA,B run-time invocations of methods from B by methods from A.

When we disregard the numbers nA,B, the graph G is a plain dependency graph: Such a graph is a
directed graph, where each node is a module, and edges reflect function calls between the modules.
Dependency graphs are standard in the analysis of coupling metrics. Since we also take the weights
nA,B into account, our graph G is a weighted dependency graph, hence we call the coupling metrics
we define below weighted metrics. Analogously, we will refer to metrics defined on the unweighted
dependency graph—i.e., metrics that do not take the weights nA.B into account—as unweighted metrics.
See Section 3.3 below for examples of the dependency graphs used in our metrics definitions. In
the sequel, we study weighted metrics only for the dynamic case (although, as seen above, they can
be defined for the static case as well). We therefore have the following three conceptually different
approaches to measure coupling dependency between program modules:

1. The first approach is static analysis, which identifies method calls by analyzing the compiled
code (where the data is obtained by a static analysis tool—in our case, we used BCEL [35] to
analyze Java .class and .jar files). As usual in the case of static analysis, here we do not take
weights into account. We therefore compute our static coupling measures from an unweighted
dependency graph.

2. Our second approach is unweighted dynamic analysis. This analysis identifies method calls between
modules as they appear in an actual run of the system (the data is obtained by monitoring), but
does not take the weights nA,B into account. It therefore does not distinguish between cases where
a module A calls another module B a million times or just once. This metric is essentially the
dynamic messages metric from [8].

3. Our third approach is weighted dynamic analysis, which differs from its unweighted counterpart
only by taking the weights nA,B into account.

The distinctions between static/dynamic analyses and unweighted/weighted analyses are
orthogonal choices. In particular, we omit in the present paper a weighted, static analysis, since
our main motivation is the comparison of dynamic, weighted metrics to unweighted, static metrics.
We consider the dynamic, unweighted metric to be the more interesting intermediate step due to the
following reasons:

• Dynamic, unweighted metrics are interesting on their own, and were, e.g., discussed in [8] as
dynamic messages.

• Defining and measuring weighted, static coupling metrics is arguably less natural than the other
three metrics: To measure static, weighted coupling, we need to count, e.g., occurrences of method
calls from some class A to a method m of class B. However, the number of method calls is not
invariant under equivalence-maintaining transformations, e.g., rewriting case distinctions or
looping constructs. In particular, when analyzing byte code as opposed to source code, the result
can depend on the compiler optimization (see also Section 4.1).
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We therefore omit weighted static coupling from our analysis in this paper.
Our three basic approaches are applied in class and package granularities, and for three different

types of coupling (import-, export- and combined coupling), therefore each experiment results in
18 different analyses. We treat the three basic approaches uniformly by treating the unweighted
dependency graph as a special case of the weighted graph, where all weights are 1. This allows us to
define all our coupling metrics using the weighted dependency graph as input.

3.3. Dependency Graphs Examples

We now give an example to illustrate the different variations of dependency graphs we use in
this paper. For this, consider the example Java source code presented in Figure 1. The source code
contains the three classes Main, A, and A’, where A’ is a subclass of A. There are three additional classes
for which we do not present the source code: These are B, C, and C’, where C’ is a subclass of C. In
B, a method n1 is specified, in C, a method n2 is specified; n2 is inherited by C’. These methods only
call methods internal to their containing class, and therefore do not contribute to the dependency
graph—therefore we omit their source code. All classes we present here are in the same Java package,
as we consider coupling on the class level. We focus on import coupling in the following discussion, the
graphs for export coupling are obtained from the ones for import coupling by reversing the directions
of all arrows, the ones for combined coupling are obtained from the other two by adding the weights
on their edges.

class Main {
public static void main(String args[]) {

A a’ = new A’();
B b = new B();
C c = new C();
C’ c’ = new C’();
a’.m1(b);
a’.m2(c);
a’.m2(c);
a’.m2(c’);

}
}

class A {
void m1(B b) {

b.n1();
}

void m2(C c) {
c.n2();

}
}
class A’ extends A {

void m1(B b) {
}

}

Figure 1. Source Code of Classes A, A’, and Main.

We will now demonstrate the three dependency graphs induced by the above program. In the
following, we will only draw edges that have a non-zero label. We start with the static dependency
graph, presented in Figure 2. Recall that we measure only unweighted static coupling, therefore the
edges in this graph do not have labels (implicitly, the weights are treated as 1). Also, recall that we do
not consider self-calls, i.e., reflexive edges in the graph. In the static graph, there are calls from Main to
methods from A, but not to A’, since the variable a is of type A (even though it is instantiated with an
object of type A’). From A, there are edges to B and to C, since the code of A calls methods B.m1 and
C.m2.

Next, we consider the weighted, dynamic dependency graph, see Figure 3. This graph differs
from the static one, since calls present in the static analysis can be modified or left out in the running
program: Calls made to C in the method m2 can be replaced with calls to C’, if c is instantiated with an
object of type C’ or skipped altogether (since the implementation of m1 in A’ does not perform any
method calls). This is detected by dynamic analysis, since here we follow the program execution and
not merely its structure.

In the example code starting at the main method, we have 4 calls from Main to A’, as 4 methods
of the object a′ (of type A’) are called, and no call from Main to A, even though of course the method
m2 in A’ is in fact implemented in the class A. There are no outgoing edges from the class A, since no
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object of type A is created during the program run. The method a’.m1(b) does not result in a method
call from A or A’ to B or B’, since the method m1 of A’ (which is executed in this case) does not perform
any operations on the object b. The method calls a’.m2(c) (performed twice) and a’.m2(c’) result in two
calls from A’ to C and a single call from A’ to C’, since the method m2 calls a method from the object c.

Finally, the unweighted dynamic dependency graph (Figure 4) is obtained from its weighted
counterpart by simply removing the labels (the weights are implicitly understood to be 1 in an
unweighted graph).

Main
A

A’

B

C

C’

Figure 2. Unweighted static dependency graph.

Main
A

A’

B

C

C’
4

2

1

Figure 3. Weighted dynamic dependency graph.

Main
A

A’

B

C

C’

Figure 4. Unweighted dynamic dependency graph.

In this toy example, the edges between the static and the dynamic graphs are disjoint, i.e., there is
no edge that appears in both graphs. Clearly, in most real examples the differences between static and
dynamic dependency graphs will be smaller.

3.4. Definition of Coupling Metrics

We now define the coupling measures we study in this paper. Our measures assign a coupling
degree to a program module (i.e., a class or a package). As discussed in Section 3.2, we consider 18
different ways to measure coupling, resulting from the following three orthogonal choices:

1. The first choice is between class-level and package-level granularity. Depending on this choice, a
module is either a (Java) class or a (Java) package.

2. The second choice is between one of our three basic measurement approaches: static, dynamic
unweighted, or dynamic weighted analysis.

3. The third choice is to measure import-, export- or combined-coupling.

To distinguish these 18 types of measurement, we use triples (α, β, γ), where α is c or p and
indicates the granularity, β is s, u, or w and indicates the basic measurement approach, and γ is i, e, or
c, indicating the direction of couplings taken into account. Figure 5 illustrates these three orthogonal
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choices: The example triple (p, u, i) denotes an analysis with granularity package-level, using dynamic
unweighted analysis, and considers coupling in the import direction.

α: granularity

β: measurement approach
γ: coupling direction

class package

ex
po

rt

im
po

rt
co

mbin
ed

static

dynamic
unweighted

dynamic
weighted

(p, u, i)

Figure 5. Dimensions of Analyses.

As discussed in Section 3.2, all of our coupling measures can be computed from the two
dependency graphs resulting from our two analyses (static and dynamic). In the static and dynamic
unweighted analysis cases, we replace each weight nA,B with the number 1. For a module A, and a
choice of measure (α, β, γ), the (α, β, γ)-coupling degree of A, denoted with coupdegα,β,γ(A), is computed
as follows:

• We compute Gα,β. This is the weighted dependency graph between classes (if α = c) or packages
(if α = p) obtained by static analysis (if β = s) or dynamic analysis (if β = u or β = w), where each
weight nA,B is replaced with 1 if the analysis is static or dynamic unweighted (i.e., if β ∈ {s, u}).

• Then, coupdegα,β,γ(A) is obtained as the out-degree of A, in-degree of A, or sum of these two,
depending on whether γ = i, γ = e, or γ = c. Here, the in (out) degree of a node is the sum of
the weights of its incoming (outgoing) edges in the graph. Since we replace all weights with 1
for the unweighted analyses, we obtain the usual definition of degrees in unweighted graphs in
these cases.

3.5. Analysis of Dynamic Coupling Metrics with Respect to Framework by Briand et al.

Chhabra and Gupta [32] mention that most existing dynamic metrics do not fall into the axiomatic
framework of Briand et al. [18] (see also Arisholm et al. [8]). Below, we study our proposed metrics
definitions with respect to the conditions required by this framework. We show that our metrics
satisfy all of these conditions, except for monotonicity. However, a version of monotonicity adapted
to the dynamic setting is satisfied by our measures, as explained below. The fact that our metrics
essentially satisfy the conditions indicate that our definitions are in fact natural notions of coupling.
In the following, let coupdegα,β,γ(.) be one of the 18 coupling measures defined above (i.e., α ∈ {c, p},
β ∈ {s, u, w}, and γ ∈ {i, e, c}).

3.5.1. Nonnegativity and Null Values

Nonnegativity requires that coupdegα,β,γ(A) is never negative for any class or package A. The
null value requirement states that the value is zero if and only if the set of outgoing, resp., incoming or
both messages of A is empty. Both properties are obviously satisfied by the definition of our measures.
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3.5.2. Monotonicity

This requires that if a class A is modified such that one or more instances of A sends or receives
more messages, then coupdegα,β,γ(A) cannot decrease.

This requirement is usually satisfied in coupling definitions for static analysis, and this is obviously
the case for coupdegα,β,γ(.) if α = s, i.e., our metric for static analysis.

In the dynamic case, the situation is more complex: The condition requires to compare two
evaluations of the coupling degree. For a dynamic analysis, two different runs of the system have to
be considered: one with the original implementation of A, and one with the modification. However,
changing the implementation of A can change the behaviour of the system: A new function call (i.e., a
sent message) added to A can let the system follow a completely different behaviour, in which A’s
code is not called anymore after the first occurrence of the new message. This can reduce the value of
coupdegα,β,γ(A). This issue is unrelated to the used workload. In particular, it remains when we use
the same user behaviour for both implementations of the system.

However, a natural interpretation of the monotonicity requirement in the dynamic setting would
be the following: Instead of comparing two different implementations of A and the resulting (possibly
completely different) runs of the system, we can compare two weighted dependency graphs G1 and
G2, where G2 is obtained from G1 by increasing the weight (for simplicity, treat absent edges as edges
with weight 0) of the edge (A, X) or (X, A) (depending on the direction of coupling we consider),
and compute coupdegα,β,γ(A) based on G1 and G2. In this case, the measure computed on G2 is
obviously not smaller than the one computed on G1, hence this dynamic interpretation of monotonicity
is satisfied.

3.5.3. Impact of Merging Classes

This property requires that if classes A and B are merged into the new class AB, then the coupling
measure satisfies coupdegα,β,γ(A) + coupdegα,β,γ(B) ≥ coupdegα,β,γ(AB).

This property is obviously satisfied: The dependency graph Gα,β of the new system S′ is essentially
obtained from the one for the old system S by re-routing messages involving A or B to AB, and
removing all messages exchanged between A and B (in the new system S′, these messages are now
internal messages of AB and therefore are not counted).

3.5.4. Merging Uncoupled Classes

This requirement states that, in the above-studied merging scenario, if there are no messages
exchanged between A and B, then the above inequality is strengthened to the equality

coupdegα,β,γ(A) + coupdegα,β,γ(B) = coupdegα,β,γ(AB).

This obviously holds true following the above argumentation, as there exists no message between
A and B that is rerouted to become an internal message of AB. Note that clearly, there can be internal
messages of AB in the new system S′, since there may be internal messages of A or B in the original
system S.

3.5.5. Symmetry between Import/Export Coupling

This property requires the sum over all export couplings to equal the sum over all import
couplings, this is obvious for our definitions.

4. Static and Dynamic Analysis

The main goal of this paper is to compare static and dynamic analyses via experiments measuring
a software system in production use (see Section 5 for the experiment’s description). We start by
explaining the techniques used to obtain both the static and the dynamic measurements.
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4.1. Static Analysis

Since we monitor a commercial product where the source code is not available (see Section 5.1),
we perform static analysis on the compiled code. For this, we apply the Apache BCEL (Byte Code
Engineering Library) [35] that allows to inspect the Java class files from our installation of the software.
BCEL allows to parse Java class files on the statement level. We use it to identify every method call
between different classes to construct our (static) dependency graph.

Note that one consequence of using compiled code is that some optimizations have already
performed by the compiler, such as removal of dead code. Therefore, our static and dynamic analysis
are performed on the exact same code, without differences introduced in the compilation process.

4.2. Dynamic Analysis

For our dynamic analysis, we use the Kieker Monitoring Framework [19,36,37], which is designed
to perform dynamic analysis of programs running on the Java Virtual Machine (JVM). Its measurement
methods are highly configurable. Our Jira installation was instrumented with probes that can register
every method call.

Inevitably, dynamic monitoring adds overhead to the system under test, since the additional
monitoring code is performed within the process of the monitored software, even though the Kieker
framework we use has a low impact on performance [38], In order to maintain responsiveness of the
system in our real-life setting, we limited the monitoring to the core functionality of the software. For
example, the system’s own logging subsystem and some classes were excluded from our monitoring
due to technical reasons. We took these restrictions into account for the comparative evaluation of our
static and dynamic analysis.

4.3. Fine-Tuning

Our analyses are highly configurable (the static analysis is a custom Java program using the
BCEL library, Kieker’s dynamic monitoring can be configured using different pointcuts and probes to
monitor various combinations of events). This allowed us to fine-tune both analyses to ensure that
they indeed result in comparable measurements. In both the static and the dynamic analysis cases, we
counted Java method calls between different classes/packages, excluding constructor calls.

5. Experiment Design

5.1. System under Test and Test Conditions

We analyzed the software Atlassian Jira, versions 7.3.0, 7.4.3, and 7.7.1 [11]. Jira is an issue
management tool allowing (among other features) the management of Scrum and Kanban software
development processes [39]. The system was instrumented using Kieker (see Section 4.2). For each
method call, we recorded the time stamp, the class name of caller and of the callee, as well as object
identifiers allowing for object-level analysis (object-level analysis is not covered in this paper but left
for future research).

5.2. Workload

Static coupling analyses can be performed on either the source code or the compiled program (see
Section 4.1) in a usually straight forward and inexpensive way. In contrast, dynamic analysis requires
a running system and appropriate workload for it [40]. This is particularly important for a weighted
analysis, because multiple runs of the same code have an effect only for weighted measurements. In an
unweighted analysis, repeating parts of a run do not change the dependency graph, as no new edges
are introduced. In a weighted analysis, however, the weights on the relevant edges are increased by
running even the exact same sequence of method calls again. Therefore, having realistic workload
(either from real users or from a workload generator) is crucial for weighted, dynamic metrics.
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To perform our analysis with realistic workload, we conducted four experiments with real users
using a software system (Atlassian Jira [11]) in production. We deployed Jira on our own servers in
order to perform monitoring. The Jira installation was used by students participating in a mandatory
programming course of our computer science curriculum. In the course, the students develop a
software using the Kanban process management method [39]. The time span of the project is four
weeks, with full time participation by the students. The students mainly used Jira’s Kanban board and
issue tracking features. Hence, the analysis only covers a subset of Jira’s capabilities, and thus classes
of its implementation.

Table 1. Numbers of users and monitored calls.

# Date Users Method Calls

1 February 2017 19 196,442,044
2 September 2017 48 854,657,027
3 February 2018 16 475,357,185
4 September 2018 58 2,409,688,701

We report on four experiment runs, from February and September of 2017 and 2018. Each time,
the software ran for a four-week period. The collected monitoring data from each run includes the
startup sequence, basic configuration such as database access, initial tasks as user registration and
setup of the Kanban boards, and day-to-day usage. No person-related data is used for our analysis.
In Table 1, we list the number of method calls recorded as well as the number of users of our Jira
installation in each of the four experiment runs.

Obviously, there are differences between the four runs of the software that we analyze. For
example, different students took parts in the course each time, the focus of the project required using
different features of the Jira software in each iteration, and we also instructed the participants to use
more features of the tool in the later iterations (this is one reason why the number of method calls
per student is higher in the later runs of the experiment). Also, different versions of Jira were used
in order to let students use features of the newer versions. Therefore, our four experiments—even
though they are conducted using the same software system—give us slightly more variation in the
data than running the exact same software with the exact same group of users. However, our main
analysis results (see Section 6.1) do not vary significantly between the different runs of the experiment,
indicating that our findings are invariant under small changes of the experiment setup.

Anonymized versions of the four datasets used in this study have been published on Zenodo.
The later Section 7 describes the datasets and ways to access them in detail.

6. Experiment Results

The collected data from the experiment’s dynamic analysis, in addition with the static analysis,
allows computing all 18 variations of coupdegα,β,γ(.) as defined in Section 3.4. Therefore, the analyses
yield 18 different measurements for each run of the experiment.

6.1. Comparing Static and Dynamic Coupling

As discussed previously, the central goal of this paper is to study the relationship between static
and dynamic couplings, in particular between the static and dynamic weighted measures. We now
present the results on these comparisons.

Recall that we study three fundamentally different ways to measure coupling degree: We perform
static and dynamic measurements, where in the dynamic case, we look at both unweighted and
weighted measures. While the main topic of this paper is the study of weighted metrics, we consider
the unweighted dynamic case relevant for mainly two reasons:

• Dynamic unweighted coupling measures have been studied before [8,33]. Their main motivation
to consider dynamic metrics were difficulties in precisely capturing object-oriented features with
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static analysis. Therefore, dynamic unweighted coupling analysis is an established measurement,
and hence comparing our weighted dynamic metrics to the unweighted dynamic case is an
original research question in itself.

• Dynamic unweighted coupling can be seen as “middle ground” between static and dynamic
weighted coupling, as our static measurements are unweighted as well.

Intuitively, static and dynamic unweighted coupling measures are quite similar. A first intuition
could be to assume that—measuring arbitrarily long runs of the system—the dynamic unweighted
analysis will eventually converge to the static analysis: For a “complete” run of the system performing
every method call present in the source or compiled code at least once, one could expect the static and
unweighted dynamic analysis to coincide. However, this intuition is misleading due to (among others)
the following reasons:

• In many software projects, there is “dead code,” i.e., (possible) function calls which are found by
the static analysis, but are never executed in any real run of the system. Such function calls hence
do not appear in the monitoring logs created for the dynamic analysis, independently of the user
behaviour.

• It is well-known [6,7] that static analysis can be imprecise in an object-oriented context as it cannot
take into account information available only at runtime (e.g., the actual type of an object that
receives a message call, which may be a subtype of the type available to the static analysis).

Hence, even in a (hypothetical) “complete” run of a system, there would still be differences
between static and dynamic unweighted analyses. Additionally, in a real system run, not all possible
calls of a system will be made. Therefore, a significant difference between the results from static
analysis and dynamic unweighted analysis is to be expected.

However, it is reasonable to assume that the above-described differences lead to smaller distances
than the conceptual difference between unweighted and weighted analysis.

6.1.1. Compared Measures

To answer our main research question—whether static and dynamic weighted coupling are
statistically independent—we compare the coupling degrees computed by these different approaches.
Comparing the actual “raw” values of coupdegα,β,γ(A) for different combinations of α, β, γ and some
class or package A does not make much sense: The weighted values depend on the length of the
measurement run of the system, whereas the static analysis does not.

However, for a developer, the absolute coupling values are usually less interesting than the
identification of the modules with the highest coupling degree. Therefore, a useful approach is to
study the relationship between the orders among the modules in the different analyses. Each analysis
yields an ordering of the classes or packages from the ones with the highest coupling degree to the
ones with the lowest one; we call these orders coupling orders. These orders can be compared between
different analyses of varying measurement durations.

Given our coupling measure definitions, we have the following choices for a left-hand-side (LHS)
and a right-hand-side (RHS) analysis:

• The first choice is whether to consider class or package analyses (both the LHS and the RHS
should consider the same type of module).

• The second choice is which two of our three basic measurement approaches (see Section 3.2)
we intend to compare: static analysis, (dynamic) unweighted analysis, and (dynamic) weighted
analysis. There are three possible choices: s vs u, s vs w, and u vs w.

• For each combination, we consider import, export, and combined coupling.

Hence, there are 18 comparisons we can perform in each of our four data sets, leading to 72
different comparisons (we do not compare coupling orders resulting from different runs of the
experiments to each other). In the following, we explain our approach to comparing these coupling
orders and report our findings.
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6.1.2. Kendall–Tau Distance

To study the difference between our different basic measurement approaches, we compare the
coupling orders of the analyses. An established way to measure the distance between orders (on the
same base set of elements) is the Kendall–Tau distance [21], which is defined as follows: For a finite
base set S with size n, the metric compares two linear orders <1 and <2. The Kendall–Tau distance
τ(<1,<2) is the number of swaps needed to obtain the order <1 from <2, normalized by dividing by
number of possible swaps n(n−1)

2 . Hence, τ(<1,<2) is always between 0 (if <1 and <2 are identical)
and 1 (if <1 is the reverse of <2). Values smaller than 0.5 indicate that the orders are closer together
than expected from two random orders, while values larger than 0.5 indicate the opposite. Values
further away from 0.5 imply higher correlation between two orders.

There are also weighted refinements of the Kendall–Tau distance ([41], see also [42]), that are
sometimes used in the context of software metrics. These weighted versions allow to, e.g., give more
weight to elements appearing at the very “top” or “bottom” of the orders, i.e., in our case, to the most-
or least-coupled classes or packages occurring in the analysis. While this is certainly an interesting
approach, in the current paper we are more interested in the basic question to analyze the relationship
between the static and dynamic analysis cases. So, for this paper, we use the standard Kendall–Tau
distance and leave an analysis focused on the most (or least) coupled classes or packages for future
work.

6.1.3. Distance Values and Statistical Significance

To present our results, we use the following notation to specify the LHS and RHS analyses: We
use a triple α : β1 ↔ β2, where

• α is c or p expressing class or package coupling,
• β1 is s or u expressing whether the LHS analysis is static or (dynamic) unweighted,
• β2 is u or w expressing whether the RHS analysis is (dynamic) unweighted or (dynamic) weighted.

For each of these combinations, we consider export, import, and combined coupling analyses.
This results in 18 comparisons for each data set, the results of which are presented in Tables 2, 4, 6,
and 8 for our four experiments. In addition to the 18 Kendall–Tau distance values, we also present, for
each table column, the average of the distance values for the three coupling directions (import, export,
and combined coupling).

To discuss the statistical significance of our analyses, we include alongside with the Kendall–Tau
distance results the absolute z-scores of our four experiments in Tables 3, 5, 7, and 9. The smallest
observed absolute z-score among all our experiments is 9.41, and all but two absolute values are
above 10. As a point of reference, the corresponding likelihood for z-score 10 is 7.6× 10−24, this is the
probability to observe the amount of correlation seen in our dataset under the assumption that the
compared orders are in fact independent. Hence, our analyses point to a huge degree of statistical
significance. The high significance stems, among others, from the large number of program units
appearing in our analysis.

It is important to note that in our analysis, every single observed z-score indicates a very high
statistical significance. In particular, the multiple comparisons problem does not apply, since we only
compare a single attribute (coupling degrees), and there is not only a single test that yields high
statistical significance, but, without exception, all of the tests indicate extremely high significance.
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Table 2. Coupling Analyses (Data Set 1).

c
:s
↔

u

c
:s
↔

w

c
:u
↔

w

p
:s
↔

u

p
:s
↔

w

p
:u
↔

w

import 0.31 0.36 0.13 0.33 0.36 0.08
export 0.41 0.41 0.24 0.30 0.32 0.21
combined 0.35 0.41 0.29 0.29 0.33 0.23
average 0.35 0.39 0.22 0.31 0.33 0.17

Table 3. Absolute z-score (Data Set 1).
c

:s
↔

u

c
:s
↔

w

c
:u
↔

w

p
:s
↔

u

p
:s
↔

w

p
:u
↔

w

import 28.47 19.88 54.46 12.79 10.69 31.24
export 13.30 13.82 37.66 14.81 13.57 21.72
combined 22.58 13.69 31.11 15.56 12.92 20.32

Table 4. Coupling Analyses (Data Set 2).
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↔

w
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w
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↔

u
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↔

w

p
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↔

w

import 0.30 0.36 0.14 0.31 0.35 0.09
export 0.41 0.43 0.26 0.30 0.33 0.22
combined 0.34 0.41 0.31 0.28 0.33 0.23
average 0.35 0.40 0.24 0.30 0.33 0.18

Table 5. Absolute z-score (Data Set 2).
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import 31.24 21.66 56.25 14.47 11.82 32.21
export 13.85 11.56 38.24 15.70 13.31 21.97
combined 24.63 13.85 29.83 16.93 13.40 20.66

Table 6. Coupling Analyses (Data Set 3).
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import 0.38 0.42 0.12 0.37 0.39 0.06
export 0.38 0.40 0.22 0.28 0.31 0.20
combined 0.36 0.40 0.28 0.30 0.33 0.23
average 0.37 0.41 0.21 0.32 0.35 0.17
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Table 7. Absolute z-score (Data Set 3).
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import 21.89 13.36 67.47 11.61 9.41 38.27
export 21.75 18.11 48.75 18.80 16.20 26.05
combined 25.06 16.90 39.08 17.25 14.71 23.14

Table 8. Coupling Analyses (Data Set 4).
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import 0.37 0.42 0.12 0.36 0.39 0.06
export 0.38 0.40 0.23 0.28 0.32 0.20
combined 0.35 0.40 0.29 0.30 0.33 0.24
average 0.37 0.41 0.21 0.31 0.35 0.17

Table 9. Absolute z-score (Data Set 4).
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import 23.90 14.23 68.13 12.27 9.82 38.74
export 22.02 18.19 48.91 19.31 16.28 26.33
combined 27.18 17.43 38.43 17.79 14.84 23.40

6.1.4. Discussion

The first obvious take-away from the values presented in Tables 2–9 is that all 72 reported distances
(and of course also the average values) are below 0.5, many of them significantly so. This indicates
that there is a significant similarity between the coupling orders of the static and the two dynamic
analyses. This was not to be expected: While in small runs of a system, one could possibly conjecture
that there might not be a large difference between the static and dynamic notions of coupling, this
changes when we analyze longer system runs: In our longest experiment, we analyzed more than 2.4
billion method calls. The dynamic, weighted coupling degree of a class A is the number of calls from
or to methods from A among these 2.4 billion calls, while its static, unweighted coupling degree is the
number of classes B such that the compiled code of the software contains a call from A to B or vice
versa. A single method call in the code is only counted once in an unweighted analysis, but this call
can be executed millions of times during the experiment, and each of these executions is counted in the
weighted, dynamic coupling analysis. Therefore, it was not necessarily to be expected that we observe
correlation between unweighted static and weighted dynamic coupling degrees.

However, our results suggest that all of the three types of analyses that we performed are
correlated, with different degrees of significance. In particular, dynamic weighted coupling degrees
seem to give additional, but not unrelated information compared to the static case.

The static coupling order is closer to the dynamic unweighted than to the dynamic weighted
order in almost all cases (in one case, the numbers coincide). As argued at the beginning of Section 6.1,
this was expected. On the other hand, the dynamic weighted analysis is very different from the static
one by design.
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Comparing the distance between the dynamic unweighted analysis on the one hand and the
static or dynamic weighted analysis on the other hand shows that the unweighted dynamic analysis
is closer to the weighted dynamic analysis than it is to the static analysis. Hence, in the context of
our measurements, the difference between static and dynamic measurements seems to have a larger
impact than the difference between weighted and unweighted metrics.

A very interesting observation is that in all 36 cases except for 3 cases involving import coupling
in our first two data sets, comparing c : β1 ↔ β2 for some coupling direction to p : β1 ↔ β2 shows
that the distance from the analysis of the package case is smaller than the corresponding distance
in the class case, sometimes significantly so. A possible explanation is that in the package case, the
object-oriented effects that are often cited as the main reasons for performing dynamic analysis are
less present, as, e.g., inheritence relationships are often between classes residing in the same package.
It can further be observed that for the package analyses, the distinction between import, export, and
combined coupling seems to matter less than for the class case. Finally, the two dynamic measures are
further apart from each other than the distance from the static case alone suggests, however, clearly
they are statistically correlated.

7. Data obtained by our Experiments

We published the monitoring data that we obtained in our experiments and used for our analysis
on Zenodo. The four datasets (February 2017, September 2017, February 2018 and September 2018) are
published as [12–15]. Before publishing, we anonymized the data both to address privacy concerns
and to comply with Jira licensing terms. In addition to the data required for our coupling analysis,
Kieker also collected person-related data (e.g., payload data like issue descriptions added in Jira’s
fields). Also, in order not to reveal information about Jira’s internal structure, we pseudonymised the
names of Jira’s classes, packages, and operations by applying a hash function to each occurring string.
In order to keep information about the package structure intact, we did not apply the hash function to
the entire string, but only to its dot-separated components: A class name package.subpackage.class is
represented as hash(package).hash(subpackage).hash(class) in our published datasets. We used the same
hash function for each dataset, so the data from the different experiments can be correlated. Table 10
contains the average coupling degrees of the program units in our analyses (the table shows the export
coupling degree, which is of course identifal to the import coupling degree and half of the combined
coupling degree).

Table 10. Average Coupling Degrees in our four Experiments.

static dynamic
# classes packages classes packages

1 730 8742 40,058 143,483
2 586 6922 144,403 592,232
3 580 6554 80,698 375,121
4 580 6554 370,821 1,868,664

7.1. Recorded Data

As discussed above, we used Kieker to monitor our installation of Atlassian Jira. Kieker is highly
configurable and allows to record different types of monitoring record. For our coupling measurements,
we used the record type kieker.common.record.flow.trace.operation.object.CallOperationObjectEvent. In
particular, records of this type contain all information relevant for our coupling analysis: For each
recorded method call where an object of class A, in some of its methods m, calls a method n of an
object of type B, the following information is recorded:

• the operation signature of both the caller and the callee (i.e., signatures of the methods m and n),
available with getOperationSignature() and getCalleeOperationSignature(),
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• the class signature of caller and callee (i.e., A and B), available with getClassSignature() and
getCalleeClassSignature(),

• the object id of caller and callee, with getObjectId() and getCalleeObjectId(). This distinguishes
objects of the same type during runtime; the object id is 0 for calls from or to a static class method.

For our coupling analysis, we only used the class signature of the involved objects (in which the
package name is contained as a prefix). In addition to the above, the recorded records also contain the
operation timestamp (in nanoseconds since January 1, 1970, 12:00am UTC), a trace id, and a logging
timestamp. Since we transformed the records after monitoring (by removing the records not relevant
to our coupling analysis and hashing the records), the logging timestamp is not relevant for our
analysis, and was set to the default value -1 for all records in our dataset. Table 10 shows the average
coupling degree for both our static and our dynmic analyses for both class and package levels for all
our datasets.

7.2. Structure

In order to save storage space, we used the Kieker framework’s binary format to store our
monitoring records. The advantage of this format is that recurring strings are only stored once
explicitly, and can then be referenced. Since even our largest dataset contains only 24,841 distinct
strings, using this format is considerably more efficient than comma separated values or a similar
plaintext format (in which our data would take up about 6.5 TB of space). Additionally, the resulting
binary files are compressed using xz, which reduced the file size by a further 90%. The resulting
datasets have a combined size of about 15 GB. The file structure of each dataset is as follows:

• the actual monitoring data is contained in the above-discussed compressed binary files, with
names kieker-date-time-UTC-index.bin.xz, where date and time denote the creation date and
time of the file (which is the time of processing our anonymization, not the date of the original run
of the experiments), and index is a running index. Each of these files contains up to one million
monitoring records.

• the referenced strings are kept in a separate file kieker.map, which contains a simple list of
key/value pairs, where the key is an integer index, and the value is the referenced string.

7.3. Accessing our Data: An Analysis Software Template

To process the files in our datasets, tools from the Kieker framework are required. Since only
the latest version of Kieker supports reading xz-compressed files, it is necessary to use a current
development snapshot version of Kieker. Alternatively, we provide a very simple Java application that
can access the data in our datasets, see [22]. It uses the current Kieker development libraries which
are available via maven. The tool is intended as a template for building applications that access our
datasets to perform a custom analysis. It expects the name of the directory containing the dataset as its
only argument, and then displays the contained data. In order to keep the tool as simple as possible
and show how to access the attributes used in our analysis, it does not use Kieker’s serialization
infrastructure, but displays the attributes from monitoring records of type CallOperationObjectEvent
manually.

8. Threats to Validity

We now discuss limitations of our experiments that could potentially affect the validity of our
findings. We distinguish between threats to external and to internal validity [43].

• Threats to external validity impact the extent to which our findings can be generalized to other
settings.

• Threats to internal validity impact the extent to which our findings can be influenced by the
experiment design and execution.
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Concerning external validity, our analysis is limited by the fact that we covered only four runs,
each with four weeks, of only one software system (Atlassian Jira). To address this threat, we plan
to monitor additional software tools such as Jenkins and Tomcat (which are also used in the course).
Another possible threat is the low diversity in our user group, since all users in our experiments were
students or instructors in the same programming course of Bachelor’s study program. Concerning
internal validity, our dynamic analysis omits some of Jira’s classes in order to maintain sufficient
performance of the system. To ensure that our comparisons in Section 6.1 are conclusive, we only
considered the classes and packages covered by both the static and dynamic analysis in the computation
of the Kendall–Tau distances. Finally, as discussed in Section 4, we examine compiled code, not source
code. When performing a similar analysis on source code, the differences between the static and the
dynamic analyses would likely increase, as the dynamic analysis of course also uses compiled code.
However, this can also be seen as an advantage, since this allows us to focus on the differences between
static code and a running system, which is the goal of this study.

9. Conclusions and Future Work

We studied three different basic measurement approaches: Static coupling, unweighted dynamic
coupling, and weighted dynamic coupling. We performed four runs of an experiment that allows
to compare these metrics. Our results, as discussed in Section 6.1.4, suggest that dynamic coupling
metrics complement their static counterparts: Despite the large (and expected) difference, there is also
a statistically significant correlation. This suggests that further study of dynamic weighted coupling
and its relationship with other coupling metrics is an interesting line of research.

A key question is how the additional information given by weighted dynamic coupling
measurements can be used to evaluate the architectural quality of software systems, or more generally,
to assist a software engineer in her design decisions. Coupling metrics can be used as recommenders
for restructuring [5], and for static coupling measures, correlation between coupling and external
quality has been observed [44]. A study of the relationship between static coupling measures and
changeability and code comprehension has been performed in [34]. In [45], it is argued that unweighted
dynamic metrics can be used for maintenance prediction. Since dynamic weighted metrics contain
additional information compared to their unweighted counterparts, it will be interesting to study
whether and how this additional information can be used in these contexts.
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