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ABSTRACT

Climate, which sets broad limits for migrating species, is considered a key filter to species
migration between contrasting marine environments. The Southeast Mediterranean
Sea (SEMS) is one of the regions where ocean temperatures are rising the fastest
under recent climate change. Also, it is the most vulnerable marine region to species
introductions. Here, we explore the factors which enabled the colonization of the
endemic Red Sea octocoral Melithaea erythraea (Ehrenberg, 1834) along the SEMS
coast, using sclerite oxygen and carbon stable isotope composition (§'¥Osc and §'*Csc),
morphology, and crystallography. The unique conditions presented by the SEMS
include a greater temperature range (~15 °C) and ultra-oligotrophy, and these are
reflected by the lower §'°Cgc values. This is indicative of a larger metabolic carbon
intake during calcification, as well as an increase in crystal size, a decrease of octocoral
wart density and thickness of the migrating octocoral sclerites compared to the Red Sea
samples. This suggests increased stress conditions, affecting sclerite deposition of the
SEMS migrating octocoral. The §'8Osc range of the migrating M. erythraea indicates
a preference for warm water sclerite deposition, similar to the native depositional
temperature range of 21-28 °C. These findings are associated with the observed increase
of minimum temperatures in winter for this region, at a rate of 0.35 £ 0.27 °C decade™!
over the last 30 years, and thus the region is becoming more hospitable to the Indo-
Pacific M. erythraea. This study shows a clear case study of “tropicalization” of the
Mediterranean Sea due to recent warming.

Subjects Ecology, Marine Biology, Climate Change Biology, Biogeochemistry, Population Biology
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INTRODUCTION

Increasing global temperatures caused by recent climate change may impose a dramatic
effect on the structure and function of ecosystems worldwide (Lejeusne et al., 2009; Burrows
et al., 2011). Long-term records suggest that the greatest impact of climate change on biotic
communities might be due to shifts in the maximum and minimum temperatures as
well as short-term climatic events, rather than changes in mean annual temperatures
(Stachowicz et al., 2002). Temperature, as a function of climate, is considered a key filter
that could determine the success of introduced marine species (Theoharides ¢ Dukes,
2007). Introduced species are defined as living outside their native distributional range
through deliberate or accidental human activity. The thermal regime sets broad limits on
the distribution of the introduced species that may cause such taxa to fail at the early stages
of settlement (Hewitt ¢» Hayes, 2002; Mack et al., 2000). Under the right environmental
conditions and ecosystem fragility, an introduced species may become invasive, i.e., a pest
in its new location, which spreads by natural means (Ehrenfeld, 2010). Understanding how
these long-term fluctuations in environmental conditions facilitate the introduction and
successful colonization is of prime importance for developing better predictions regarding
the ecological effects of future climate change.

The southeastern Mediterranean Sea (SEMS), which is one of the most rapidly warming
regions under recent climate change (Sisma-Ventura, Yam & Shemesh, 20145 Ozer et al.,
2017), offers a natural laboratory to study the process of species introduction in the context
of global warming (Béthoux et al., 1999). Recent field studies have shown that increased
maximum temperatures in the Mediterranean have led, inter alia, to multi-species collapse
(Rilov, 2016), increased seagrass mortality (Jorda, Marba ¢ Duarte, 2012), and a general
shift to ‘warm-water’ species (Chevaldonné ¢ Lejeusne, 2003; Lejeusne et al., 2009; Raitsos
et al., 20105 Rilov & Galil, 2009). This process was previously defined as “tropicalization”
of the Mediterranean fauna (Bianchi ¢ Morri, 2003).

Increased stratification, due to the recent warming of the eastern Mediterranean
surface layer (Ozer et al., 2017; Sisma-Ventura et al., 2017), as well as damming of its main
freshwater sources (Ludwig et al., 2009; Bialik ¢ Sisma-Ventura, 2016), resulted in a severe
nutrient deficiency (Krom et al., 1991), leading to an ultra-oligotrophic state (Azov, 1991;
Sisma-Ventura, Yam & Shemesh, 20145 Hazan et al., 2018). The response of migrating
species to these two simultaneous and rapid processes (warming and elevated oligotrophy)
is not well understood.

The introduction of the Indo-Pacific octocoral Melithaea erythraea (Ehrenberg, 1834)
(Alcyonacea: Melithaeidae) to the SEMS coast was first documented in 1999 within the
Hadera power plant harbor (32.47 °N/34.88 °E), where it was found in extremely high
abundance, mostly on artificial structures (2080 colonies per 10 m line transect, (Fine et
al., 2005). However, in the natural habitat of the Red Sea, this coral is rare, both on natural
reefs and artificial structures, and found mostly in shaded habitats on vertical reef walls,
and in notches. This behavior is very similar to other azooxanthellate that inhabit these
niches uninhabited by zooxanthellate corals (Fabricius ¢ Alderslade, 2001). For example,
the congeneric octocoral Melithaea biserialis (Kitkenthal, 1913) is found mostly in shaded
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habitats, on vertical reef walls of the Red Sea, and in high density on artificial structures
such as the oil jetty of Eilat (Zeevi-Ben Yosef & Benayahu, 1999). In 2015, colonies of
M. erythraea were detected for the first time outside of the Hadera power plant harbor in
the rocky Nahsholim Bay at a depth of 3.5 m (32.61 °N/34.91 °E, Fig. 1). Those colonies
exhibited a 100% genetic similarity to the M. erythraea Red Sea specimen (Grossowicz et
al., 2020). Further observations revealed a stable population along this coast comprising
many colonies, all in shaded locations on either vertical walls or in crevices (Grossowicz et
al., 2020). Grossowicz et al. (2020) reported that M. erythraea is not yet invasive, however,
its population expansion may yet occur, due to a lag between initial introduction and
population explosion (see Rilov, Benayahu & Gasith, 2004). They hypothesized that the
gradual warming of surface water of the SEMS may have contributed towards the survival of
M. erythraea during the winter, and enabled this species to expand beyond its distributional
range. To date, M. biserialis has never been recorded in the Mediterranean.

While reef-building stony corals (Scleractinia) form hard and massive aragonite
skeletons, octocorals produce spiny internal polycrystalline high-magnesium calcite skeletal
elements that are called sclerites, as well as a central axis (Cohen & McConnaughey, 2003;
Taubner et al., 2012; Fabricius & Alderslade, 2001). Sclerites are highly variable in shape,
size, and articulation, and differ substantially from one species to another. Therefore,
these are an important trait in octocoral taxonomy (Fabricius ¢ Alderslade, 20015 Tentori ¢
van Ofwegen, 2011). Looking at the skeletal characteristics and isotopic composition may
provide insights in coral’s ecophysiology (Chaabane et al., 2016; Chaabane et al., 2019) and
therefore may help us to understand the colonization of M. erythraea along the SEMS,
from a calcification point of view.

The morphological variability of a species’ sclerites can be related to its geographical and
ecological environment, as was observed in several gorgonians (e.g., Pseudopterogorgia
elisabethae (Gutiérrez-Rodriguez et al., 2009), and Eunicea flexuosa (Prada, Schizas ¢
Yoshioka, 2008)). Variation in sclerite morphology may be altered in response to depth,
water motion, light levels, and environmental factors such as predation pressure (West,
1997). Morphological differences may be a response to environmental factors (Rowley,
2018), but can also be attributed to accumulated genetic differences, due to the disruption
of gene flow among populations (Prada, Schizas ¢ Yoshioka, 2008).

The sclerite calcification depends on the physiological traits of each octocoral and
the ambient environment (West, 1997). For example, a recent study has shown that
the red octocoral Corallium rubrum calcifcation is not pH upregulated with respect
to the ambient seawater, contrary to what is observed in scleractinians (Le Goff et al.,
2017), making octocoral a highly vulnerable species to enviromental changes, such as a
decrease in seawater pH. Growth rates of corals, and octocorals in particular, are positively
correlated with temperature (Chaabane et al., 2019 and references therein). Furthermore,
temperature affects the sclerite deposition, as was found in the cold-water octocoral Primnoa
pacifica, where the magnesium/calcite ratio in the sclerite was positively correlated to water
temperature (Matsumoto, 2007).

In this study, we test the hypothesis that M. erythraea could survive in the Mediterranean
Sea due to warming of winter minimum temperatures. This hypothesis will be tested by

Grossowicz et al. (2020), PeerdJ, DOI 10.7717/peerj.9355 3/21


https://peerj.com
http://dx.doi.org/10.7717/peerj.9355

PeerJ

31°E 32°E 33°E 34°E 35°E 36 °E
34 °N

33°N

32°N

31°N

30°N

29 °N

28 °N

Figure 1 Map of the study area and collection sites along the southeastern Mediterranean Sea (SEMS)
coast (Hadera and Nahsholim, M. erythraea) and the Red Sea, Gulf of Aqaba (Eilat, M. erythraea and
M. biserialis). Note the current annual sea surface temperature (SST) range in the SEMS and the north-
ern Red Sea (Tel Aviv and Agaba, respectively). Maps were created using QGIS (QGIS Team, 2016), and
ETOPO?2 (National Oceanic and Atmospheric Administration, 2001) was used as a base layer.

Full-size & DOI: 10.7717/peerj.9355/fig-1

analyzing the sclerites’ characteristics using scanned electron microscopy (SEM), carbon
and oxygen stable isotopes, and X-ray crystallography to understand, from a calcification
perspective, the factors which enabled M. erythraea to survive and establish a flourishing
population in the SEMS.
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METHODS

Study site, temperature, coral collection and sclerite isolation
Specimens for SEM examination, crystallography, and carbon and oxygen stable isotope
analysis were collected from both the Mediterranean Sea and the Red Sea (Fig. 1).
Melithaea erythraea branches were collected during scuba dives in June 2016 and May
2017 in Nahsholim Bay. Samples from Hadera port were collected in June 2016, and from
Eilat (Red Sea), branches were collected in May 2017. Branches from M. biserialis were
also collected from Eilat in May 2017. From all collected colonies, a branch from the
distal parts of the colony was removed using scissors and preserved in absolute ethanol
(96%) prior to examination. For comparison, a specimen of M. erythraea from Fine et al.
(2005), collected in Hadera port, was examined as well (collected by Y. Aluma in 2002 and
stored in formalin at the Steinhardt Museum of Natural History, Israel National Center
for Biodiversity Studies, Tel Aviv, Israel).

Branches from each test colony were sub-sampled (1 cm in length). Sclerites were
separated from the soft tissue by placing each sub-sample in Eppendorf tubes filled with
10% sodium hypochlorite until the soft tissue was dissolved. After 30 min, the organic
debris was removed, and the sclerites were rinsed with distilled water several times to
wash off the excess bleach and supernatant. Multiple sclerites were ground to homogenous
powders for later isotopic analysis.

Information of ambient conditions (temperature) was collected from Israel
Oceanographic and Limnological Research (IOLR) monitoring station in Hadera. For
the period of 1994-2004, temperature measurements were taken from a bottom-mounted
Paroscientific-8DP060 ADCP. For the period of 2004-2018, temperature measurements
were taken from a bottom-mounted 600 kHz WorkHorse Monitor ADCP. The ADCP was
located at 11.6 m until 2004, then relocated to 26 m depth, southwest of the easternmost
edge of the coal terminals in Hadera. The reported temperature sensor precision is &= 0.4 °C.
The data series was curated for outliers, smoothed and binned.

All samples were collected under the permit from the Israel Nature and Parks Authority
(permit number: 2016-18/42200). Conducting the surveys in their areas was approved by
Port of Hadera Authority and Eilat-Ashqgelon Pipe-Line Company.

Isotope ratio mass-spectrometry (IRMS)
The fractionation of the oxygen isotopes into biogenic carbonates is a function of
ambient temperature and isotopic composition of the seawater at the time of their
formation (Grossman & Ku, 1986; McConnaughey, 1989a; McConnaughey, 1989b; Kim
& O’Neil, 1997). If the isotopic ratio of 1°0O and 'O (expressed as §'30) of both calcium
carbonate and water is known, the temperature at deposition can be calculated. The
isotopic fractionation of carbon (§'°C) in skeletal material provides information about
the organism’s metabolism, as well as nutritional information (McConnaughey et al., 1997)
and, thus, can provide insights into the calcific response of migrating calcifying species to
severe oligotrophic conditions.

Stable isotope (830 and §'*C) measurements on bulk powders were performed at the
stable isotope laboratory of the Max-Planck Institute for Chemistry, Mainz, on a Thermo
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Delta V mass spectrometer interfaced with a Gasbench preparation unit. Sample digestion
took place on-line, in >99% orthophosphoric acid, at 70 °C. Coral samples were analyzed
together with several calcite standards, including the international standard IAEA603. The
reproducibility of these routinely analyzed in-house CaCOj3 standards is typically <0.1%o(1
SD) for both carbon and oxygen isotope ratios. Both §1¥0 and §'*C of the sclerites are
reported relative to the Vienna Pee Dee Belemnite (VPDB) standard scale.

Estimation of CaCO; depositional temperatures

The oxygen isotope composition of biogenic CaCOs3 is a function of ambient water
temperature and the §'80 of the seawater at the time of its formation and from this
depositional temperatures can be estimated (Grossman ¢ Ku, 1986; Kim ¢ O’Neil, 1997).
The calcite temperature-dependent fractionation during bio-mineralization is described
by the equation of Friedman ¢ O’Neil (1977):

10° In@calcite—warer = 2.78 (10°/T?) —2.89 (1)

where 0lcite—water 18 the oxygen isotope fractionation factor between calcite and water
(Eq. (2)) and T is the water temperature (K).

calcite—water = ( 103 + 8180calc1'te)/(1()3 + 8180water) (2)

The mean annual §'8Qy, value of 1.6%0 (Sisma-Ventura, Yam ¢ Shemesh, 2014; Sisma-
Ventura et al., 2016) and 1.9%0 (Mizrachi et al., 2010) of surface water in the Mediterranean
and the Gulf of Aqaba, respectively, and the 8180¢c of M. erythraea from both habitats
were used for the calculation of deposition temperatures. It is noted that the §'80y, in
both the Mediterranean Sea and the Gulf of Aqaba fluctuated by less than 0.5%o, annually.
A combination of the analytical uncertainties of >0.5%¢ for both measurements translates
into uncertainty of ~2 °C (i.e., 0.2%0 °C ~1).

Estimation of percentage of metabolic carbon intake during
calcification

We estimated the percentage of the metabolic carbon that contributed to §!>Csc using the
mass balance equation (McConnaughey et al., 1997):

8 Cealcite — & calcite—bicarbonate = M (8 B CFood) +(1-M)s B Cpic (3)

where M is the percentage of the metabolic carbon contribution and € yicite—bicarbonate 1S the
enrichment factor between calcite and bicarbonate (+1%q, Romanek, Grossman & Morse,
1992). The 8'3C of M. erythraea sclerites may indicate a food source (phytoplankton-small
zooplankton (Zeevi-Ben Yosef ¢ Benayahu, 1999); 8'3C &~ —20%0), and DIC (1%o; Mizrachi
et al., 2010; Sisma-Ventura, Yam ¢ Shemesh, 2014; Sisma-Ventura et al., 2016) of both
habitats were used to calculate the metabolic contribution to the skeletal buildup.

X-ray diffraction crystallography
Crystallinity is an important parameter of mineral aggregates such as skeletons. This
property can be effected by internal heterogeneity in the crystal, nucleation rate, protein
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Table 1 Summary table of morphometrics, stable isotopic data, and crystallography. Detailed results can be found in the Supplemental Informa-

tion.

Length-to-width ratio n Warts density n FWHM d1C 8180 n

(#pm™") (n=1) (%00) (%0)

M. erythraea
Nahsholim 2017 497 +1.52 43 0.051 £ 0.007 30 0.10 —1.159 £ 0.12 0.363 + 0.03 2
Hadera 2016 4.14 £ 1.30 46 0.049 +£ 0.006 29 0.17 —1.242 £0.18 —1.069 + 0.04 2
Nahsholim 2016 4.77 £ 1.18 36 0.049 £ 0.006 30 0.12 —1.380 £ 0.06 0.207 £ 0.03 2
Hadera 2002 4.55 £+ 1.30 32 0.047 £ 0.006 22 0.22 —0.381 £0.10 0.331 £ 0.05 2
Eilat 2017 3.18 £ 1.15 36 0.057 £ 0.013 23 0.27 —0.250 £ 0.02 0.033 £0.03 2
M. biserialis
Eilat 2017 3.58 +2.23 41 - - - 0.251 £ 0.03 0.01 £ 0.04 2

framework structure, Sr and Mg concentration and crystal growth rate and is, therefore, a
useful parameter to understand environmental effects expressed by in the calcification.

X-ray diffractometry (XRD) was used to evaluate the crystallinity of the sclerites. Full
width at high maximum (FWHM) of crystallinity level (Patterson, 1939) was calculated for
the calcite’s djg4 peak following the Scherrer equation (Scherrer, 1918):

KA
T =
BcosH

where 7 is the mean size of the ordered (crystalline) domains, A X-ray wavelength; K is the

(4)

shape factor; 3 is FWHM and 6 is the Bragg angle. As all parameters are constant other
than the FWHM, then 7 is proportional to 8~!. Given that the shape factor could not be
determined in most case, FWHM can be used as an index to the level of crystallinity.

The analysis was conducted with a Rigaku MiniFlex benchtop XRD, with the sclerites
deposited from suspension on a custom slide and allowed to dry in a desiccator. Diffraction
was carried out from 10 to 75° at 0.01° steps at a rate of 2.15° per minute.

Sclerite morphology and statistical analysis

The morphometric complexity of the sclerites was assessed by SEM analysis. Spindle-shaped
sclerites from all specimens were placed in non-coated high/low vacuum mode and were
examined and photographed with Jeol JCM-7000 NeoScope benchtop SEM with secondary
electron and backscatter modes set to magnify at x200 and x300. From each specimen,
n = 32-46 sclerites (see Table 1) were examined, and the measurements of the axes (length
and width) were taken using built-in software. In addition, along the longitudinal axis,
warts were counted to obtain their density. The number of warts was divided by axis length
(in pm).

Statistical analyses were performed under permutation concepts, non-parametric tests
that analyze quantified data that do not satisfy the assumptions underlying traditional
parametric tests (e.g., normality, etc., Collingridge, 2013). To compare the effect of “site”
(Nahsholim, Hadera, and Eilat), and “axis” (long, short) on sclerite morphometrics, we
performed a nested Permutation ANOVA, followed by a pairwise permutation posthoc
test. Before analysis, data were normalized. Axes’ ratio and wart density on sclerites among
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sites were examined with one-way Permutation ANOVA, followed by pairwise permutation
posthoc test. All values are presented at a confidence interval of 95%. All statistical and
multivariate analyses were performed with Ri386 3.3.3 (R Core Team, 2014) using ImPerm’
and ‘rcompanion’ packages.

RESULTS

Sclerite morphometrics

The sclerites (shown in Fig. 2) captured in the SEM were mostly spindle shaped, a shape
found in all samples. In the Red Sea, we also observed a spheroidal shape (for both

M. erythraea and M. biserialis). The sclerites exhibited some visual differences between the
sites. The Red Sea sclerites looked thicker than the Mediterranean ones, and their wart
density appear to be higher (see Table 1, raw measurement of the sclerites is provided in
the Supplemental Information).

The sclerite axis characteristics were significantly different by size (Fig. 3A, Nested
permutation ANOVA, p < 0.001), where posthoc pairwise comparisons suggested that the
corals in the Red Sea have thicker sclerites in comparison with all other test corals collected
in the Mediterranean (all pairings with the Eilat specimen, except Eilat-Hadera 2002, are
p-adjusted < 0.002).

These differences are also reflected in the long-to-short axes ratio comparison (Fig. 3B,
Permutation ANOVA, p < 0.001), where the Red Sea sclerites had the smallest ratio
(3.19 £ 1.15) compared to all other sites (4.78 = 1.18, and 4.98 & 1.52 in Nahsholim 2016
and 2017, respectively, and 4.55 &£ 1.30, 4.14 &£ 1.30 in Hadera 2002 and 2016, p-adjusted
< 0.005), not including the M. biserialis pair (p-adjusted = 0.39). M. biserialis’ ratio
(3.58 £ 2.23) was similar to both Hadera (2002 and 2016) specimens (p-adjusted > 0.2)
and was significantly different than all the other sites (p-adjusted < 0.02). In addition, the
Hadera 2016 sclerite axis ratio is significantly different than those collected from Nahsholim
(p-adjusted < 0.05).

Warts along the sclerites’ axis were counted to determine their density. The wart density
differed among the different sites (Fig. 3C, Permutation ANOVA, p < 0.001), where the M.
erythraea Red Sea specimen has a significantly higher density (0.057 + 0.013 # um™") than
those collected from the Mediterranean (0.049 =+ 0.006, 0.051 = 0.007, 0.0047 £+ 0.008 in
Nahsholim 2016-2017, and 0.047 & 0.006 and 0.049 =+ 0.006 # wm ™! in Hadera 2002 and
2016, respectively, p-adjusted < 0.05), except the pair collected from Eilat and Nahsholim
2017 (p-adjusted > 0.1).

Isotopes

The results in Fig. 4 summarize the §'80gc and §'°C values of M. erythraeaand M. biserialis
sclerites from the Gulf of Aqaba (Red Sea), and of M. erythraea from the Israeli coast
(SEMS). The §'80g¢ value of samples from the Gulf of Agaba, which were collected during
May 2017, ranged between 0.33 £ 0.045%0 in M. erythraea and 0.01 %+ 0.061%0 in

M. biserialis (the average temperature of deposition was 23 °C and 24.5 £ 0.5 °C,
respectively). Similarly, M. erythraea samples from the Port of Hadera (the first documented
colonization), was collected in the spring of 2002, and yielded §'®Oscvalues between 0.26
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Eilat, 2017 A Eilat, 2017
(M. erythraea) ' (M. biserialis)
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Hadera, 2016 Hadera, 2002
(M. erythraea) ; 2 (M. erythraea)

Nahsholim, 2016
(M. erythraea)

M. erythraea. and M. biserialis sclerites morphology. (A) Spindles and spheroid of M. ery-
thraea from Eilat (2017); (B) spindles and spheroid of M. biserialis from Eilat (2017); (C) spindles of M.
erythraea from Hadera (2016); (D) spindles of M. erythraea from Hadera (2002); and (E) spindles of M.
erythraea from Nahsholim (2016). Please note the thicker and denser warts of the Red Sea sclerites with
respect to the slender Mediterranean counterparts. Information on the coral sclerites can be found in
Kiikenthal (1913).
(aa)

and 0.4 & 0.063% (depositional temperatures of 21 £ 0.7 °C). The §'80gc values of
samples collected during 2016 and 2017 in early spring from Hadera and Nahsholim Bay
ranged between 0.22 £ 0.03 and 0.36 + 0.052%o(deposition temperatures of 21.2 + 0.5 °C).
The 2017 (early summer) samples from the Nahsholim Bay yielded §'3Ogc values of
1.07 £ 0.05%0 (deposition temperatures of 27.7 + 0.4 °C).

The samples from the Gulf of Aqaba (May 2017) yielded §'*Csc values ranging between
0.25 £+ 0.033%0 (M. biserialis) and —0.26 = 0.02%0 (M. erythraea), and those sampled
from the Hadera port in 2002 averaged —0.38 = 0.1%0. The §'3Csc values of samples
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Figure 4 Cross plot of 8'*C derived metabolic carbon (Eq. (3)) and 80 derived temperature
(Eq. (1)) of sclerite deposition of Melithaea erythraea. The mean offset of —1.26% in 8'°Cgc between
the Red Sea samples (8'°C values between —0.28 and 0.30%) and the samples collected from the
southeastern Mediterranean Sea (SEMS) coast in 2016 and 2017 (8'*C values between —1.07 and
—1.42%0), represent an increase of ~50% in metabolic carbon intake during calcification. The 2002
813 Cg¢ value of —0.38%o from Hadera (SEMS) shows an intermediate value between the recent SEMS and
Red Sea specimens.
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collected during 2016 and 2017 in early spring from Hadera and Nahsholim Bay ranged
between —1.38 & 0.062 and —1.16 % 0.12%c. The 2017 early summer samples from the
Nahsholim Bay yielded §'°Csc values, averaging —1.24 4= 0.18%o. Results are summarized
in Table 1 and the ‘Isotopes’ section within the Supplemental Information.

Crystallography

Full width at high maximum (FWMH) of the d;o4 peak of the calcites ranged from 0.10
to 0.27 with the d spacing ranging from 2.988 to 2.997; peak asymmetry ranged from 0.56
to 2.8. The Eilat samples and 2002 Hadera samples exhibit the lower values of asymmetry
and d spacing values with the higher FWHM values relative to the 2016 and 2017 values.
The length of §'*Cgc and the long axis are positively correlated to FWMH (inversed to
crystallinity, Table 1, Fig. 5).

Sea surface temperature (SST)

Mean SST in the coast of Hadera had not changed significantly since the early 1990’s
and remained at 23.2 £ 4.3 °C (n=199229). However, this figure is misleading as the
extreme temperatures have shifted in both summer and winter (Fig. 6). Notably, minima
temperature (10th percentile) has increased by ~2 °C while maxima temperature (90th
percentile) has diminished by ~1 °C. In addition, the fractional time during which
temperature was below 18 °C (1994’s 20th percentile) has diminished from ~18% in
1994 to less than 5% in 2019, while the fraction above 28 °C (1994’s 80th percentile) has
diminished from ~24% in 1994 to ~15% in 2019.
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DISCUSSION

Within the last few decades, the effects of anthropogenic global warming have become
more pronounced, to the point they can no longer be ignored or attributed to natural
processes (Weart, 2009). One of these effects is the opening of previously unavailable
geographical niches to invasive species (Bianchi ¢ Morri, 2003). This is expressed most
intensively in areas experiencing extreme warming, such as higher latitudes (Stachowicz
et al., 2002), although similar processes also occur in some lower latitude domains such
as the SEMS (Rilov ¢ Galil, 2009). Overall, the Levantine Sea has experienced warming
of between ~0.02 (Sisma-Ventura, Yam & Shemesh, 20145 Marba et al., 2015) to ~1.0 °C
yr=1(Ozer et al., 2017), with the highest rates of warming in the last few decades. This shift
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has also modified the coastal water’s minimum winter temperatures, which have risen
from ~16 to ~18 °C since the 1990s (Ozer et al., 2017).

As was observed in several gorgonian species, the variation in morphological features
is also related to the geographical environment (Gutiérrez-Rodriguez et al., 2009; Prada,
Schizas ¢ Yoshioka, 2008). Octocoral sclerite deposition is dependent on the octocoral’s
physiological traits, and environmental parameters such as temperature (West, 1997). The
growth rate and deposition of the skeletal elements of octocorals and other calcifiers,
such as coralline algae, is correlated with temperature (Crabbe, 2008; Matsumoto, 2007;
Chaabane et al., 2019; Vielzeuf et al., 2018), and therefore, we believe that upon migration,
M. erythraea was subject to environmentally-related physiological changes to their sclerite
deposition. Sclerite morphology shows that the M. erythraea Red Sea specimens are thicker
(lower long-to-short axes ratio) with increased wart density in comparison with the
Mediterranean conspecific. Furthermore, the specimen from Hadera collected in 2002 may
be in a transition state between the recent Mediterranean Sea collections and those from
the Red Sea. However, the port of Hadera is a confined body of water influenced by its
power plant water discharge and is by no means representative of the natural environment
of M. erythraea.

The §'80sc values of M. erythraea collected along the SEMS coast during late winter
and early spring and summer yielded depositional temperatures between 21 and 28 °C,
respectively. These temperatures match the depositional temperature range of its original
habitat in the Red Sea (Al-Rousan et al., 2007; Mizrachi et al., 2010) and those measured in
the native specimens. Thus, the hypothesis that the recent warming of the SEMS by ~1.0 °C
decade™! over the last 30 years (Ozer et al., 2017) has enabled the octocoral M. erythraea to
successfully colonize the area is supported. Despite not having any M. erythraea samples
during the maximum winter temperatures, our bulk §'¥Osc values, integrating multiple
sclerites, indicate a preferential warm water calcification of M. erythraea, and further
support that the warming of the SEMS surface water is a key factor for its successful
migration. This assumption is further supported by the preferential warm water calcification
of endemic SEMS species, such as the reef building gastropods Dendropoma petraeum
complex (Dendropoma spp.) and Vermetus triquetrus (Sisma-Ventura, Yam & Shemesh,
2014).

Stable isotope analysis of C. rubrum showed that both §'30 and §'°C are strongly
influenced by kinetic vital effects, which impede the direct extraction of temperature
time-series reconstructions for cold water octocoral (Chaabane et al., 2016). However,
the results of the study by Chaabane et al. (2016) also show that at higher temperatures,
octocoral’s calcification approaches temperature-dependent equilibrium fractionation,
and is less likely affected by vital effects, as is the case for other Mediterranean warm
water calcifiers (Sisma-Ventura, Yam & Shemesh, 2014). Moreover, while high intra- and
inter-annual variations of Mg/Ca were observed in the high-resolution profiles of sclerites
of the Mediterranean C. rubrum, the mean Mg/Ca composition enabled good estimates of
palacoseawater temperature (Chaabane et al., 2019). Similarly, our approach of using bulk
powders, integrating multiple sclerites may have reduced the isotopic shifts resulting from
the vital effects.
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Further, by analyzing time series SST data measured at the monitoring station in
Hadera port, we show that the lower 10th percentiles of temperatures (winter minimum
temperatures) have increased by almost 2 °C (Fig. 6) over the last three decades. Thus, the
warming of the winter minimum temperatures of the SEMS is gradually expanding the
time-frame of favorable conditions for the introduction of tropical species.

While recent warming has provided the threshold conditions for the long-term
colonization of M. erythraea, it is also accompanied by an increase in oligotrophic
conditions (Azov, 1991; Sisma-Ventura, Yam ¢ Shemesh, 2014; Ozer et al., 2017). However,
it is difficult to capture the effect of the changes in trophic level on the isotopic ratio of the
migrating M. erythraea. We assume that this factor may impose yet another limitation/stress
to the migrating octocoral, which is not likely to be distinguished by the §!°C s values, since
this limitation may be only secondary to the thermal effect that can trigger periods of rapid
growth, resulting in larger metabolic intake during calcification (McConnaughey, 1989a;
McConnaughey, 1989b; Klein, Lohmann ¢ Thayer, 1996; Lorrain et al., 2004). Nevertheless,
the most pronounced modification to the isotopic signal between the present SEMS
population and the Red Sea population was observed in the §'*Csc values. We recorded
a mean offset of —1.26%0 in 8§'°Csc, between the M. erythraea Red Sea samples (§1°C
values between —0.28 and 0.30%o, representing 8.5% of metabolic carbon) and the samples
collected from the SEMS coast in 2016 and 2017 (§'3C values between —1.07 and —1.42%,
representing 15.4 to 17.1% of metabolic carbon). Interestingly, the 2002 §'*Cs¢ value of
—0.38%0 (representing 11.9% of metabolic carbon) from Hadera (SEMS) does not show
this level of modification but rather showed an intermediate value between the recent
SEMS and M. erythraea Red Sea specimens.

This modification toward isotopic disequilibrium is common in biological carbonates
and is best described by two possible effects: the first is a kinetic effect and the second is
a metabolic effect. A kinetic isotope effect, which modulates both the carbon and oxygen
isotopic composition simultaneously (McConnaughey, 1989a; Maier, Pitzold ¢ Bak, 2003),
is a known factor that influences the §'8Og¢c and §'3Cgc values of cold water octocoral,
such as the Mediterranean C. rubrum (Chaabane et al., 2016). Here, kinetic isotopic effects
seem less likely to have been affecting the M. erythraea bulk skeletal isotopic composition.
This is based on the samples of 2016, that show a wide range of 8180gc values, between
0.21 (Hadera) and —1.07%o (Nahsholim), while the §1*Csc values were merely unchanged
(—1.31 & 0.14%0, Hadera and Nahsholim). A metabolic isotope effect, which modulates
only the carbon isotopic composition (McConnaughey, 1989a), could thus explain the
lower 8'°C values of the M. erythraea in the SEMS compared to the specimens in their
native environment. Moreover, the metabolic isotope effect of M. erythraea could be related
to respiration, which leads to the incorporation of isotopically-depleted metabolic carbon
during sclerite deposition (McConnaughey et al., 1997). This is because respiration enriches
the internal DIC pool from which the skeleton is precipitated with '2C.

Other factors influencing the §1°Cgc-like changes in diet or the ambient §*Cpjc range
between the two habitats can be ruled out. The soft tissues §'°C and §'°N values of both
native and introduced species (Grossowicz et al., 2020) are similar, indicating no significant
change in diet. Furthermore, the ambient §'*Cp;c range in both habitats is very similar
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(Mizrachi et al., 2010; Sisma-Ventura, Yam ¢ Shemesh, 2014; Sisma-Ventura et al., 2016).
Thus, the change in §'*C g¢ of the sclerites should be in the fraction of metabolic carbon
incorporate during calcification. The observed increase in metabolic carbon fraction
may result from rapid skeletal growth (McConnaughey, 1989a; McConnaughey, 1989b;
Klein, Lohmann & Thayer, 1996; Lorrain et al., 2004; Chaabane et al., 2016; Chaabane et al.,
2019), or through ontogenetic effects (McConnaughey ¢ Gillikin, 2008), which are both
known to occur in warm water. Exposure to more stressful conditions may also explain the
observed changes, as was suggested for the Mediterranean cold-water octocoral (Vielzeuf
etal., 2018).

Interestingly, the modification in the §'*Csc isassociated with crystals becoming larger
in the 2016-2018 population relative to that of 2002 and those in Eilat. Crystal size suggests
that less carbonate is precipitated in the SEMS specimens. This is also reflected by the
higher wart density and axes sizes of the Red Sea samples, compared to those from the
Mediterranean (p-adjusted < 0.05). Keeping in mind that the SEMS is an ultra-oligotrophic
region, these changes in the sclerites might be due to calcification under more stressful
conditions, resulting from a preference for warmer water and rapid skeletal growth, and
increased incorporation of metabolic carbon, as was found in the reef-building gastropods
D. petraeum complex (Sisma-Ventura, Yam & Shemesh, 2014).

CONCLUSIONS

Our results suggest that the increase of minimum winter temperatures, which is a regional
manifestation of global climate change (Sisrma-Ventura, Yam ¢ Shemesh, 20145 Amitai et
al., 2020), enabled the successful colonization and recent spreading of tropical M. erythraea
populations along the SEMS coast, by prolonging the thermally favorable calcification
season. This study shows, for the first time, the response of the introduced soft coral
M. erythraea to the SEMS, a fast-warming and ultra-oligotrophic environment. This
observation is part of the overall story of “tropicalization” of the Mediterranean, and it
provides insight into how species migrate and colonize under the combined effects of
warming surface oceans and increased oligotrophy, driven by global climate change.
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