Comment on “Greenhouse gas emissions from marine decommissioned hydrocarbon wells: Leakage detection, monitoring and mitigation strategies” by Christoph Böttner, Matthias Haeckel, Mark Schmidt, Christian Berndt, Lisa Vielstädte, Jakob A. Kutsch, Jens Karstens & Tim Weiß

Martin Wilpshaar, Geert de Bruin, Noortje Versteijlen, Kaj van der Valk, Jasper Griffioen

1 TNO Geological Survey of the Netherlands, Princetonlaan 6, 3584 CB Utrecht, the Netherlands
2 Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, the Netherlands

1. Introduction

Böttner et al. (2020) acquired hydroacoustic water column imaging data at 43 gas wells in the UK sector of the North Sea. They observed so-called flares (bubble plumes) at 28 well head locations. Böttner et al. (2020) related these flares to leakage of natural gas along the outside of the well from shallow gas accumulations in the upper 1000 m below the seabed through supposed drilling-induced fractures surrounding the well path. Therefore, they labelled the flares from the seabed as anthropogenic methane leakage. Moreover, if the distance between the well and the nearest shallow gas accumulation is shorter than 300 m, leakage is “highly likely (100%)” and for a distance of more than 1000 m not likely. Based on a probability of leakage and leakage fluxes as deduced from two wells in the Norwegian sector, the authors estimated the methane leakage rate for all 1792 wells in their study area and concluded that gas release from decommissioned wells is a major source of methane in the North Sea.

Hydrocarbon gas emissions from marine decommissioned or not hydrocarbon wells have received considerable attention in the past years (Vielstädte et al., 2015; 2017; Leifer, 2015). This publication by Böttner et al. (2020), is a successor of Vielstädte et al. (2015; 2017) by the same research group and originally part of the PhD thesis (Ch. 3) of Böttner (2020). Methane leakage from shallow gas accumulations through drilling-induced fractures surrounding the borehole was earlier proposed by Vielstädte et al. (2017).

The topic of methane emissions associated with oil and gas production is not only scientifically interesting, it also raises considerable attention in society and politics. Vielstädte et al. (2017) triggered questions from Dutch parliament members to the minister of Economic Affairs and Climate, who is politically responsible for oil and gas production in the Netherlands. TNO Geological Survey Netherlands was asked to address these questions during which the scientific findings of Vielstädte et al. (2017) were evaluated as well. TNO (TNO, 2019; 2018) formulated fundamental critique to Vielstädte et al. (2015; 2017). The TNO reports, in which the anthropogenic methane leakage as described in Vielstädte et al. (2015; 2017) is insufficiently validated and overestimated (TNO, 2019), were input for the ministerial answering of the parliamentary questions.

Again, parliamentary questions in the Netherlands were asked to the minister in which reference is made to this successor publication of Böttner et al. (2020). Once more, we have the scientific opinion that fundamental shortcomings can be noted in the publication of Böttner et al. (2020). We feel the urge not only to share our critical response to this publication with the Dutch parliament and the ministry of Economic Affairs and Climate but also with the readers of the “International Journal of Greenhouse Gas Control”.

2. Topics of critique

Böttner et al. (2020) used hydroacoustic water column imaging to...
identify gas flares from the bottom of the North Sea in a part of the U.K. continental shelf. Our fundamental critique is that two logical explanations for the flares as observed were hardly considered or researched: natural leakage and leakage caused by well-integrity issues.

Instead Böttner et al. (2020) proposed an alternative leakage mechanism of drilling-induced fractures creating migration pathways for shallow gas accumulations along the borehole whereby the distance to these shallow gas accumulations determines the leakage probability. As elaborated below, this leakage mechanism is questionable since drilling-induced fracturing will not likely be created in the unconsolidated marine sediments where shallow gas accumulations exist. Moreover, the implied lateral migration from shallow gas accumulations to wells over large distances (< 1000 m) is unrealistic.

Moreover, no differentiation of natural and anthropogenic leakage is made and the ease in which the conclusions become transferred to methane leakage from onshore gas wells is not substantiated.

Finally, each subsection (seismic interpretation, water column imaging, statistical analysis, gas flare location and assessment of leakage rates) contains errors and/or hiatuses. Hence, the line of reasoning of Böttner et al. (2020) and the related conclusions are not properly supported by the results and leave room for alternative interpretations and improvements.

3. Natural methane leakage

Böttner et al. (2020) labelled all flares considered as anthropogenic leakage while natural methane leakage is hardly discussed nor considered as a potential source. Natural methane leakage is abundantly present in the study area from (1) shallow gas accumulations, (2) pockmarks, (3) subsurface salt domes, (4) ‘gas chimneys’ and/or (5) peat layers (Judd and Hovland, 2007; Verweij et al. 2018; Römer et al., 2017; Schroot et al., 2005; Fyfe et al., 2003; Böttner et al., 2019; Schneider von Deimling et al., 2015; Hovland et al., 1993, 2012; Heggland, 1998; Karstens and Berndt, 2015; Cartwright and Santamaria, 2015; Vielstädte et al., 2015; Brekke et al., 1997; Borges et al., 2016; Missiaen et al., 2002, Schumacher and Abrams, 1996). More specifically:

1 Böttner et al. (2020) attempted to show that the measured flares are sourced by shallow gas accumulations without discussing or realizing that these accumulations are naturally leaking systems (Verweij et al. 2018, Römer et al., 2017, Schroot et al., 2005). In short shallow gas accumulations are near hydrostatic pressure which indicates that the seals cannot hold a large gas column. Leakage (so called seal breach) occurs when the pressure exceeds a few bar above hydrostatic pressure, allowing the gas to migrate upwards. Furthermore, the accumulations are not filled to the spill point, and are sometimes found in multiple reservoir layers stacked vertically. These stacked reservoirs can be explained by a decreasing seal strength upward due to the decreasing effect of compaction upwards and the increased buoyancy of gas moving upward. Ultimately natural methane leakage occurs when a portion of the gas reaches the seabed and is vented into the sea and possibly the atmosphere, too (Verweij et al., 2018).

2 In the northern part of the Böttner et al. (2020) study area lies the Scanner Pockmark Special Area of Conservation (SAC). Pockmarks are geomorphological features that form in response to (explosive) venting of natural gas from the seafloor. Fyfe et al. (2003) showed that the Scanner Pockmark area is part of a much larger area (Witch Ground Basin) where pockmarks exist. The Scanner Pockmark area was also intensively studied by Böttner (2020) in his PhD thesis (Ch. 2) and published by Böttner et al. (2019), Böttner et al. (2019) documented > 1500 pockmarks over an area of 225 km² where a limited number have active vents. Böttner et al. (2019) showed a direct relation to shallow gas accumulations (bright spots) in the subsurface. Remarkably, these findings were not mentioned in Böttner et al. (2020) when discussing natural leakage.

3 In the southern part just across the border on the Norwegian side (concession block 1/9) lies the well-known Tømmeliten seep area (Schneider von Deimling et al., 2015; Hovland et al., 1993) situated above a subsurface salt dome. Subsurface salt domes as indicated on Fig. 3C of Böttner et al. (2020) like Tømmeliten “are notoriously leaky geoelastic megastructures and are often associated with surface seep manifestations on land and on the seafloor” (Hovland et al., 2012). Römer et al. (2021) shows also such a seafloor methane seepage relation to salt diapirism for the German North Sea.

4 Böttner et al. (2020) refer to “pre-existing fracture networks may favor the vertical migration of fluids through the overburden (Karstens and Berndt, 2015; Vielstädte et al., 2015)”. Gas chimneys are not uncommon in the North Sea (e.g. Heggland, 1998; Schroot et al., 2005; Karstens and Berndt, 2015) and are considered to indicate vertical fluid conduits for shallow and/or deep thermogenic gas accumulations (Cartwright and Santamaria, 2015). Measurements by Vielstädte et al. (2015) showed that one of the three investigated wells was drilled through such a seismic chimney structure. Böttner et al. (2020) was using the data from Vielstädte et al. (2015, 2017) but did not investigate if chimneys are present in the study area, if wells were drilled through a seismic chimney and what the role of these chimneys is in natural and anthropogenic leakage. Further see Appendix C.

5 Apart from the above discussed natural leakage or seeps, gas can escape from shallow layers such as buried Holocene peat (Brekke et al., 1997; Borges et al., 2016; Missiaen et al., 2002), which were not considered by Böttner et al. (2020) as potential source.

4. Anthropogenic methane leakage at wells

Integrity issues of hydrocarbon wells have been intensively studied in the past years. The issue is pointed out by Böttner et al. (2020): “...leakage may occur through faulty, damaged or corroded well casings and/or annuli commonly referred to as “well integrity issues” (Celia and Bachu, 2003; Gasda et al., 2004; Vrålstad et al., 2019). For abandoned wells, well integrity problems are obvious causes of leakage (Bachu, 2017). Nevertheless, Böttner et al. (2020) do not present well integrity issues as a candidate for the observed flares. Instead, they present an alternative process as most likely: “...for shallow marine sediment, we also consider that fluid migration may occur along the outside of the well through drilling-induced fractures surrounding the well path (Harrison et al., 1954; Gurevich et al., 1993; Aadnøy and Bell, 1998; Kårstad and Aadnøy, 2008; Bohnhoff and Zoback; 2010; Osborn et al., 2011; Vielstädte et al., 2015, 2017, 2019)”. Böttner et al. (2020) focused on drilling-induced fractures as the cause of methane leakage. This leakage mechanism was not further researched by the authors for the study area but based on publications describing fracturing around the borehole in (deep) consolidated brittle rocks. At the North Sea, shallow gas is only present in unconsolidated, Pleistocene sediments (Verweij et al., 2018, Veen et al., 2018, Boogaard and Hoetz, 2018), with different geological and geomechanical properties. There is no evidence provided that these fracturing mechanisms that could occur in deep brittle rocks can also be applied to shallow unconsolidated sediments. Fracturing of unconsolidated sediments is not likely or even impossible and consequently the leakage mechanism of drilling-induced fracturing is not realistic for the geographical settings at hand. Böttner et al. (2020) assumed that drilling induced fractures create a potential pathway for methane migration behind the casing and this pathway is always present at a well. After all, 100% of the wells that are closer than 300 m from a shallow gas pocket are leaking. One hundred percent chance of leakage is unrealistically high when compared to other studies (Bachu 2017, Boothroyd et al. 2016,
Kang et al. 2016, Townsend-Small et al. 2016, Schout et al. 2019), where most of these studies refer to onshore wells.

The authors confusingly conclude that “currently little quantitative data exist for leakage through drilling-induced fracture networks outside of the borehole, most information is related to blowout scenarios (e.g. Leifer and Judd, 2015; Landrø et al., 2019).” We point out that the large fractures that originate from a catastrophic blowout cannot in any way be compared to the small fractures that would be created during drilling through brittle rock, let alone drilling through unconsolidated sediments. Any comparison between these two types of fractures is invalid (Kaiser, 2017). This is obvious when we recall that the methane flux at the blowout UK22/4b is still 15,000 – 41,000 ton y⁻¹ (Table 1) and that the methane flux at a recent blowout in Ohio (USA) was 120 tons hr⁻¹ for a few months (Pandey et al., 2019).

Finally Böttner et al. (2020) stated “Our results show that if the distance between the well and the most proximal bright spot (…) is shorter than 300 m, leakage is highly likely (100%, 20/20 wells) and for a distance of more than 1000 m not likely (0/5 wells).” This means that methane must migrate laterally over large distances (300 to 1000 m). Böttner et al. (2020) explains that “… lateral gas migration may be favored by dipping beds (up to 1.2–1.4 km distance; Landrø, 2011).” Gas will move upward in dipping beds because of buoyancy and gets stuck at a trap. It is impossible that gas migrates down structure and away from its trap except when accumulation is going on and the spill point is surpassed. Böttner et al. (2020) do not address why a nearby well will initiate gas to migrate laterally down dip when gas tend to move upward due to buoyancy. As mentioned before, shallow gas accumulations are near hydrostatic pressure (Verweij et al. 2018) which indicates that the seals cannot hold a large gas column, allowing the gas to migrate upwards. This is confirmed by the fact that shallow gas is sometimes found in multiple reservoirs layers stacked vertically (Verweij et al., 2018, Boogaard and Hoetz, 2018). Hence, a negligible lateral pressure gradient is present between the well and the shallow gas accumulation at 300 – 1000 m away.

5. Comparing natural and anthropogenic methane leakage

Böttner et al. (2020) concluded that gas release from decommissioned wells is a major methane source where they compared their calculated rate with the leakage rates at five natural seep sites in the UK continental shelf (and not strictly the North Sea as suggested in their Table 2) to illustrate this. Remarkably, Böttner et al. (2020) and also Vielstädte et al. (2017) did not recognize that natural seeps are frequently found at the North Sea (or associated UK continental shelf (UKCS) as researched by Judd et al. (1997) and Tizzard (2008). Judd et al. (1997) estimated that 173,003 seeps are present at the UKCS with high densities in parts of the British sector of the North Sea including the area studied by Böttner et al. (2020). Furthermore, Kramer et al. (2017) concluded that a pockmark field (covering 915 km²) in the German offshore emitted a conservative estimated 5000 ton of methane gas in an episodic event of 3 months.

Table 1 presents a more complete list of estimates for methane fluxes from the seabed of the North Sea. One may note that the total fluxes from the natural seeps at the UKCS are considerably higher than the total leakages along wells as estimated by Vielstädte et al. (2017) and Böttner et al. (2020). The following conclusion of Böttner et al. (2020) is thus not supported by literature: “In comparison to the natural release of greenhouse gas (methane) into the water column of the North Sea, the release of greenhouse gases from marine decommissioned hydrocarbon wells is (…) larger than all known natural seepage sites combined.” Moreover, the highest referenced natural methane emission (of Böttner et al., 2020) of 478 ton per year (Römer et al., 2017) is less in absolute numbers compared to the findings of Böttner et al. (2020) but it occurs in a much smaller area. The natural leakage occurs in an area of 8 km² while the study area of Böttner is over 20,000 km².

Römer et al. (2021) concluded, only after detailed mapping of shallow gas (above subsurface salt domes) and flare locations at ten abandoned well sites in their study area of the German North Sea, that flare observations were spatially not related to these wells. The exact location of the interpreted gas flares of Böttner et al. (2020) in relation to the well location is unclear and not detailed enough. Consequently it is impossible to differentiate or support the causes of methane leakage.

In our view the article could have been improved when more focus was given to detailed flare locations (e.g. Römer et al., 2017 and 2021) also at locations where no wells exist to indicate natural leakage.

6. Transfer of conclusions to potential leakage on land

Böttner et al. (2020) transfer their findings to potential leakage from hydrocarbon wells on land: “An identification of shallow gas in correlation with drilled wells is needed on a regional to global scale to update the estimates of methane emissions from fossil fuels. This is particularly important on land as drilling-induced leakage along wells in this setting emits the methane directly into the atmosphere, because the mitigating water column is absent. Thus, decommissioned wells may play a key role in methane gas emissions from hydrocarbon provinces, particularly on land.” In our opinion, this extrapolation is not justified for a combination of reasons. First, the presence of pockmarks, shallow gas accumulations and bright spots is not self-evident for terrestrial areas. For the Netherlands, it holds that these features are frequently found offshore (Schoot and Schuttenhelm, 2003; Schroot et al., 2005) but TNO Geological Survey Netherlands is not aware of these features on land, where half of the Netherlands has been covered by seismic investigations. Second, horizontal groundwater flow is a common process in terrestrial environments as driven by spatial differences in hydraulic heads. Dissolution of upward migrating methane may occur in along flowing groundwater and this may completely remove upward migrating methane under appropriate conditions (Schout et al., 2020; Taberdangko et al., 2020). Third, methane oxygenation in the unsaturated zone (or shallow groundwater) may...
prevent methane leaking from gas wells to reach the surface (McMahon et al., 2018; Schout et al., 2019; Yin et al., 2020). Last, onshore hydrocarbon wells have a lower probability to show well integrity failure compared to offshore wells (King and King, 2013). This is due to the fact that onshore drilling is technically less difficult than offshore drilling, which may result in higher frequencies of well barrier failure and well integrity failure for the latter.

We agree with Bottner et al. (2020) that, decommissioned or not – hydrocarbon wells on land need proper attention when it comes to well leakage issues. However, it is not self-evident that leakage of shallow gas should be the primary focus. The focus should also be on well barrier integrity and well integrity (Davies et al., 2014; King and King, 2013). It is worth to point out that leakage along wells may also be at hand for groundwater wells as they also provide a short circuit between buried, methane-rich geological formations and the surface.

7. Errors and hiatuses in Bottner et al. (2020)

When studying the presented findings in order to see whether we could come to the same conclusions, we found that each subsection in the line of reasoning contains errors or hiatuses. The errors and hiatuses we found are discussed in Appendices A, B, and C. They can be summarized as follows:

A Seismic interpretation

The geophysical data interpretation of potential gas accumulations is very poor and requires significant revision. The reported distances (wells to bright spots) are not always in line with the presented images.

B Selective well usage

15 additional wells were measured (Water Column Imaging) but were not taken into account for their conclusions for unclear reasons.

C Statistical analysis and potential leakage of wells

The statistical analysis (e.g. the claim that the distance to shallow gas accumulations determines the leakage probability of wells) is contradicted by themselves (e.g. Bottner et al. (2019) studied a well with a 0 to 0.2 leakage probability that is located 100 m from a bright spot).

For the computation of regional leakage rates, they used flux data for a well for which they previously concluded that the measured methane leakage was not related to bright spots but to seismic turbidity (Viéstaste et al., 2015; 2017). There are inconsistencies between Bottner et al. (2020) and Bottner (2020). Both publications use the same data set but present, interpret and calculate it different and nevertheless come to the same total methane leakage estimate.

Hence the data handling shows serious shortcomings which leaves room for alternative interpretations and improvements.

8. Conclusions

We value the measurements made by Bottner et al. (2020) since measuring methane emission is an important scientific and social issue. However, the authors are too much focused on proving a relation between flares and shallow gas. In order to prove this relationship they use unproven and unlikely migration pathways for shallow gas and migration over considerable distances. This all results in unsupported assumptions, analyses that are not in accordance with standard geological and geophysical interpretation practices, data-handling errors and non-reproducible results.

As indicated in our Introduction, readers should keep in mind that this is more than only a purely academic exercise since it is closely followed in the political arena how to combat climate change. How much, and under what conditions, methane is leaking from the sea bottom and ultimately to the atmosphere has consequences for greenhouse effects as well as the associated political debate. In that regard, resources to diminish anthropogenic methane leakage should be targeted at the right places.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Seismic interpretation

The geophysical data interpretation of potential gas accumulations is very poor and requires significant revision. The reported distances (wells to bright spots) are not always in line with the presented images.

Used method is not suited for mapping shallow gas bright spots

The goal of the seismic analysis presented by Bottner et al. (2020) was to map in a (semi-) automatic way bright spots caused by shallow gas. The "PGSMegaSurveyPlus" 3D seismic dataset was used, that consist of numerous post-stack merged seismic surveys. These seismic surveys are especially used in oil and gas exploration/production for deeper targets. As a consequence of the merging, large differences in scaling (amplitude variations) between surveys exist. Next the RMS amplitude is calculated across the entire geological interval of interest. This methodology produces poor results, inaccurate outlines of bright spots, false negatives and (possibly) false positives. Figure A1 shows why this method yields poor results even when applied to a good (quality) seismic volume with shallow gas accumulations. The used method results in amplitude anomalies that do not reflect shallow gas accumulations correctly. When a similar workflow is applied to merged surveys (e.g. PGSMegaSurveyPlus) these errors become increased and differences between the seismic processing of the individual surveys is highlighted rather than geological features.

Moreover, the RMS amplitude map (Figs. 3D, 5 of Bottner) will highlight the differences in scaling between seismic cubes and not the stacked anomalies. Fig. 5 middle right of Bottner et al. (2020), shows that the results are unusable, since well 21/17a-6 is in the middle of a high RMS anomaly (bright spot), while the distance to the shallow gas related bright spot is reported to be 2400 m (appendix Bottner et al., 2020). The observation that "(...) there is no apparent and statistically significant relationship between the propensity to leak and the RMS amplitude and RMS standard deviation" indicates that this workflow yields unusable results.

Using incorrect data for the polarity attribute

A second consequence of using merged seismic data is that not all data is zero-phase (Brown, 2011) in the studied interval (Fig. 2 of Bottner et al., 2020). When seismic data is zero-phase, shallow gas is characterized by two reflectors (e.g. the reflections of the top and the bottom of the gas-filled interval). In Fig. 2 of Bottner et al., (2020) many of the seismic anomalies that are interpreted to be shallow gas, have three reflectors. This is a clear indication that the data is not zero-phase.

In order to identify if a high RMS response is indeed caused by shallow gas, an "apparent polarity attribute" is used by Bottner et al. (2020). This attribute only works when the data is zero phase and, as stated above, not all data is uniform zero phase. Consequently, this attribute is unreliable for identifying bright spots related to shallow gas.

Partial rotation of the wavelet is possibly more common than many interpreters realize, and combinations of phase reversal and tuning can complicate assessments of phase response. In either case, Bottner et al. (2020) make no mention of the likelihood of phase and polarity variations within their data.

Finally, Bottner et al. (2020) refer frequently to "bright spots with
They suggest that they verified that the bright spots are caused by shallow gas by comparing the top reflector of the bright spot to the reflector of the seabed and that they are opposites (i.e. when the sea bottom reflector is a peak the top of a bright spot caused by gas should be a trough or vice versa). However, a “polarity reversal” (also called phase change, Brown, 2011) is another type of direct hydrocarbon indicator (DHI) (see Fig. A2) and therefore Böttner et al. (2020) are effectively saying that shallow gas is causing not only a bright spot but also a phase reversal (i.e. two types of DHI’s combined). This is not the case for the depicted bright spots. Thus, the used terminology is not in accordance with standard geophysical interpretation practices (Brown, 2011).

Unproven and unlikely shallow gas accumulations

“(…) bright spots likely indicate the presence of shallow free gas (…)” (Fig. A2 of Böttner et al., 2020). The indicated bright spots are small, chaotic and located in a low. As indicated, the gas is free to move and is therefore unlikely to conform to lows, unless trapped in a stratigraphic trap (Doornenbal et al. 2019). No explanation is given for the occurrences of bright spots in lows. We are presented with too limited data to confirm that these bright spots are indeed caused by shallow gas. In general, interpretation of potential gas accumulations from anomalous seismic reflections in datasets such as the mega-merge volume used by Böttner et al. (2020) is highly problematic (Bulat and Long, 2006 and IOGP, 2013). Reliable interpretation of gas probability is dependent on a knowledge of seismic polarity, phase, frequency content and geological model. Actual interpretation of gas presence is dependent on AVO studies, inversion and synthetic modelling in the presence of well-log calibration data. Böttner et al. (2020) address none of these considerations and assume that all reversed phase bright spots represent gas, whereas lithological effects and tuning are at least as likely to be the
cause of the amplitude response (Van den Boogaard and Hoetz, 2018).

Errors in distance wells-to-bright spots

Fig. 6 of Böttner et al. (2020) shows a seismic cross-section and two attribute maps, the only illustration where the distance between wells shallow gas can be verified. The distance between well 16/26–24 and the bright spot is about 400 meters, which is less than half the reported distance of 950 m in the provided additional data (see our Fig. A3). It is unclear if this large difference is caused by errors in the figure or by measuring the distance on the (erroneous) RMS amplitude map. In any case, this distance cannot be reproduced by us. Furthermore, Fig. 6 of Böttner et al. (2020) contains multiple errors. Transect X-X’ is incorrectly depicted on the map B, because it does not cross the two wells when it is plotted on map C. Also, the bright spot that is visible on the transect does not line up with the RMS amplitude anomaly when compared to the map. This is most likely due to the ‘stacking of multiple anomalies’-effect of the RMS attribute but it could also be an error in the position of the transect.

Appendix B. Selective well usage

Böttner et al. (2020) concluded that 28 out of 43 wells release gas. We note that 15 more wells were measured during the cruises POS534, POS518 and MSM63 (Linke and Haeckel, 2018; Schmidt et al., 2019; Berndt et al., 2017) but were not included. There is no explanation why these wells were not taken into account. It is scientifically unsatisfactory that wells were not included without additional arguments for the reasons behind. Especially, since a group of wells was used to perform a quantitative upscaling of the findings towards the mega-survey area and a qualitative one for the North Sea as a whole. The statistics might change with 15 wells added to 43 ones.

POS534 and POS518 cruises - 5 wells not used

According to the provided track data of cruises POS534 and POS518, multibeam echosounder data was acquired at four wells (21/02-07, 21/02-1, 21/02-5 and 21/03b-3) and one well (22/03a-1), respectively (Fig. A4), but not included in the publication. Please note that these wells lie within the study area of the 3D seismic mega-survey.

MSM63 cruise (Scanner pockmark area) – 6 wells not used

Böttner et al. (2019) used data collected by MSM63 cruise (Berndt et al., 2017) in the Scanner pockmark area. Six wells are located in the study area (15/25b-1A, 15/25c-5, 16/21b-25, 16/21d-30, 16/21d-36, 16/21d-31) and all were imaged by multibeam echo sounder (Fig. A5, right side). Well 15/25b-1A in the Scanner Pockmark area is located very close to the Scanner pockmark (being the largest pockmark in the area) where a flare was seen at the pockmark location. It is unclear to us why these 6 wells were not included as data-points (Fig. 5, Böttner et al. 2020).

Wells used outside the mega-survey – 2 used, 4 wells not used

Two wells (22/02c-10 and 22/02b-15) lie within a window that was not covered by the ‘PGSMegaSurveyPlus’ 3D seismic dataset (see Fig. 5 of Böttner et al. 2020). Nevertheless, a distance to a bright spot was determined without 3D seismic data at these well locations. We consider this as unjustified: theoretically, a bright spot might be present closer. Remarkably, no leakage probability was plotted for these wells in Fig. 8 of Böttner et al. (2020), which seems inconsistent to us.

As part of the POS534, POS518 and MSM63 cruises, four more wells (14/29a-5, 20/04b-6, 20/04b-7, 14/29a-2) were investigated around the Goldeneye Field near the study area (Fig. A6). No flares were detected at these wells, while natural flares and pockmarks were observed in the area. These wells (and flares) lie outside the study area.
of the 3D seismic dataset, like wells 22/02c-10 and 22/02b-15. However, the presence of natural gas leakage at pockmarks and the absence of leakage at gas wells is worth being noted and not in line with their reasoning.

Wells near natural leakage sites

The main challenge is to differentiate between natural and anthropogenic leakage at well locations. While the authors are well aware of natural leakage no effort was made to distinguish the differences. On this subject Böttner et al. (2020) only quotes “Natural seepage from the seafloor in close vicinity to leaking wells (see wells 23/26a-11 & 30/01a-7 in Fig. 5; Linke and Haeckel, 2018)” suggests that wells are not necessarily cannibalizing natural release of methane from the seafloor but represent a new, anthropogenic fluid migration pathway”. How the differentiation between natural and anthropogenic leakage was made, is not explained. The report of the cruise (POS518) by Linke and Haeckel (2018) state: “…a natural seep was discovered above a buried salt dome, next to wells 31/01a-7 and 30/01f-8” . Please note that the reported wells by Linke and Haeckel (2018) are not identical to Böttner et al. (2020). As mentioned, natural seeps above salt domes are well known in this area (Tommeliten seep area). Linke and Haeckel (2018) suggest that the differentiation is made based on a distance to the well. Unfortunately, the distances between the wellheads and the flares are not specified and it is unclear what distances Böttner et al. (2020) have classified as leakage “from the well head location” and what distances are considered as natural leakage. The article could have improved by specifying flare locations in the study area irrespective of well locations (Römer et al. 2017).

Appendix C. Statistical analysis and potential leakage of wells

The statistical analysis (e.g. the claim that the distance to shallow gas accumulations determines the leakage probability of wells) is contradicted by themselves (e.g. Böttner et al. (2019) studied a well with a 0 to 0,2 leakage probability that is located 100 m from a bright spot).

For the computation of regional leakage rates, they used flux data for a well for which they previously concluded that the measured methane leakage was not related to bright spots but to seismic turbidity (Vielstädte et al., 2015; 2017).

There are inconsistencies between Böttner et al. (2020) and Böttner (2020). Both publications use the same data set but present, interpret and calculate it different and nevertheless come to the same total methane leakage estimate.

Probabilities of leakage

We noted some errors in the classification of the wells, which implies that 4 out of the 43 were incorrectly processed. Two of the 43 wells lie outside the PGS “Mega Survey Plus” 3D seismic survey. These wells should not have been used to derive the relationship between leaking at wells and the distance to a bright spot. Although they were used, no leakage probability was computed for these wells (see Fig. 8 of Böttner et al. 2020). This leaves 41 of the 43 measured wells for which a “probability of leakage” was computed. Of these wells, well 16/26–3 is located 570 m from a bright spot and falls in the “> 0.6–0.8” leakage probability group (compare Figs. 5 and 8 from Böttner et al., 2020). This leaves 41 of the 43 measured wells for which a “probability of leakage” was computed. Of these wells, well 16/26–3 is located 570 m from a bright spot and falls in the “> 0.6–0.8” leakage probability group (compare Figs. 5 and 8 from Böttner et al., 2020). According to the regression function of their Fig. 7 (Böttner et al., 2020) it should fall in the “> 0.4–0.6” leakage probability group. Well 16/26–3 has exactly the same distance to a bright spot as well 16/27b-5 (e.g. 570), and this well falls in the “> 0.4–0.6” leakage probability group. Well 21/06b-6 is classified as a “0.2 – 0.4 leakage probability group” while the regression fit of Fig. 7 of Böttner et al., (2020) places it in the “0.4–0.6 leakage probability group”.

Furthermore, well 15/25b-1A, that was discussed by Böttner et al.
Fig. A5. Six wells in the Scanner pockmark complex were studied on the research cruise MSM63 (figure on the right after Berndt et al., 2017; Böttner et al., 2019). Böttner et al. (2020) selected 43 wells but did not include the 6 wells (yellow dots) in the Scanner Pockmark Area (figure on the left, Fig. 5 from Böttner et al., 2020). The multibeam bathymetry map of the Scanner pockmark complex area (right) illustrates the intensive measurement campaign and the presence of seabed depressions interpreted as natural pockmarks (blue spots).

Fig. A6. Wells and pockmarks were studied in the Goldeneye area on cruise MSM63 (Modified from Berndt et al., 2017). Right: Multibeam bathymetry map shows pockmarks (blue dots). All wells had no flare. The presence of natural gas leakage at pockmarks and the absence of leakage at gas wells is worth being noted and not in line with the reasoning of Böttner et al. (2020).
(2019), was drilled in close proximity (400 m) of the large Scanner’ pockmark (see Fig. A5) which brings upon long-lasting seepage with active flares. Underneath this specific pockmark is a large bright spot present (Fig. A7), indicative of a shallow gas accumulation. Based on the seismic cross-sections published by Böttner et al. (2019), the well is drilled 100 meters from this bright spot (apparent distance). Although, numerous passes were made over this well during cruise MSM-63 (Fig. A5, right), no leakage was reported by Böttner et al. (2019). Furthermore, Böttner et al. (2020) did not include this well in their list of “leaking wells in the vicinity of natural leakage”. We, therefore, conclude that this well is not leaking. This is in sharp contrast with their conclusions that all wells drilled within a 300 m distance to a shallow gas bright spot leak. Remarkably, our deduction that the well is not leaking is confirmed by the leakage probability of Böttner et al. (2020) which is > 0.2–0.4 according to their Fig. 8. However, this well should fall into the ‘high leakage probability’ (0.8–1.0) group according to the assumptions made by Böttner et al. (2020) based on its proximity to a bright spot. In conclusion, the probability class of well 15/25b-1A seems erroneous which potentially disproves their conclusion that “the distance between the well and the most proximal bright spot with polarity reversal is shorter than 300 m, leakage is highly likely (100%, 20/20 wells)”.

Selection leakage rates from 3 Norwegian well sites

Böttner et al. (2020) use data on gas release at three decommissioned hydrocarbon wells as investigated by Vielstädte et al. (2015) from the same research group. These three wells lie in the Norwegian sector less than 50 km away from the northeastern corner of the area studied by Böttner et al. (2020). Vielstädte et al. (2015, 2017) estimated the annual methane release rate at well 15/9–13 where a bright spot was present as 1 ton y$^{-1}$, at well 16/4–2 where no bright spot was as 4 ton y$^{-1}$ and at well 16/7–2 where both a bright spot and a seismic chimney were present as 19 ton y$^{-1}$. Unfortunately, Vielstädte et al. (2015, 2017) did not provide any error estimates on their release rate estimates as the values play such an important role in subsequent papers. In their regionalization of methane release, Böttner et al. (2020) chose the rates from the first two wells (15/9–13 and 16/4–2) as input in the calculations and excluded well 16/7–2. This is remarkable in different ways.

First, no shallow gas pocket is present at well 16/4–2 according to Fig. 5 of Vielstädte et al. (2015). This is recognized by Vielstädte et al. (2015) and explained as follows: “near-surface sediments (Fig.5C., 1–0.4 s two-way-traveltime TWT) show seismic turbidity, which might indicate an unfocussed distribution of gas (Judd and Hovland,1992)”. In other words, the methane leakage at well 16/4–2 is not related to bright spots. However, Böttner et al. (2020) did relate well 16/4–2 to bright spots without giving an explanation why they changed their interpretation. Furthermore, the closest shallow gas bright spot is small (approximately 200 by 100 m) and roughly 950 m away from the well (Fig. 5 of Vielstädte et al., 2015). This is at the very limit at which Böttner et al. (2020) are claiming that gas release along abandoned wells originates from shallow gas pockets occurs. The fact that this well leaks 4 times more than a well that actually penetrates shallow gas is remarkable. Also, how the gas can migrate from a 200 by 100 m gas pocket laterally over a distance of 950 meters is at least extraordinary and needs explanation.

Second, it is illogical to exclude one well (16/7–2) that shows a seismic chimney and also a bright spot as non-representative. Chimneys are not uncommon in the North Sea (e.g. Heggland, 1998; Schroot et al., 2005; Karstens and Berndt, 2015) and are considered to indicate vertical fluid conduits (Cartwright and Santamarina, 2015). There are various seismic interpretation packages (e.g. OpendTect ChimneyCube), that can be used to detect which wells were drilled in a seismic chimney (Tingdahl et al., 2001). Following their line of reasoning to exclude well 16/7–2 (one out of three), all wells drilled in a seismic chimney (found in the study area) should be excluded. However, the presence or absence of seismic chimneys at abandoned wells was not investigated by Böttner et al. (2020).

Vielstädte et al. (2015) explicitly raised the question what the cause is for the high release rate for well 16/7–2 drilled through a gas chimney: ‘to what extent the migrating gas appears to separate from the borehole fracture and uses pre-existing conduits created by the chimney sometime in the geological past.’ In other words: to what extent is the gas release around this well natural and not anthropogenic? In regionalizing the gas release rate from three studied wells, the subsequent question arises what the gas release rate at regional scale is for wells drilled through a chimney? This question did not become addressed by Böttner et al. (2020) which makes any comparison between natural and anthropogenic release of methane in the North Sea incomplete.

Böttner et al. (2020) and Böttner (2020)

The publication of Böttner et al. (2020) is based upon the PhD thesis

![Fig. A7. Well 15/25b-1A is located 100 m from a bright spot above which a natural pockmark (Scanner) is present (depression in yellow surface). From Böttner et al. (2019).](image-url)
of Böttner (2020). Both publications use the same data set but present, interpret and calculate it different and nevertheless come to the same total methane leakage estimate. In Böttner’s PhD thesis, only 14 out of 1792 wells have a high leakage likelihood (Chapter 3, Table 1 of Böttner, 2020) in contrast to 926 wells which are likely to leak with a 95% confidence interval according to Böttner et al. (2020). Consequently, many wells that were classified as ‘low leakage probability’ in the PhD thesis, became classified as ‘high leakage probability’ in the publication. This large difference is clear when Fig. 8 of Böttner et al. (2020) is compared with Fig. 3.8 from his thesis. Although the leakage probabilities and calculations according to the two publications are entirely different, the methane leakage estimate is the same. These large differences in interpretation of the same data is remarkable and should at least be clarified.

References

