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The Guaymas Basin Subseafloor
Sedimentary Archaeome Reflects
Complex Environmental Histories

Gustavo A. Ramı́rez,1,2,9,* Luke J. McKay,3,4 Matthew W. Fields,4,5 Andrew Buckley,1 Carlos Mortera,6

Christian Hensen,7 Ana Christina Ravelo,8 and Andreas P. Teske1

SUMMARY

We explore archaeal distributions in sedimentary subseafloor habitats of Guay-
mas Basin and the adjacent Sonora Margin, located in the Gulf of California,
México. Sampling locations include (1) control sediments without hydrothermal
or seep influence, (2) Sonora Margin sediments underlying oxygen minimum
zone water, (3) compacted, highly reduced sediments from a pressure ridge
with numerous seeps at the base of the Sonora Margin, and (4) sediments
impacted by hydrothermal circulation at the off-axis Ringvent site. Generally,
archaeal communities largely comprise Bathyarchaeal lineages, members of the
Hadesarchaea, MBG-D, TMEG, and ANME-1 groups. Variations in archaeal com-
munity composition reflect locally specific environmental challenges. Background
sediments are divided into surface and subsurface niches. Overall, the environ-
mental setting and history of a particular site, not isolated biogeochemical prop-
erties out of context, control the subseafloor archaeal communities in Guaymas
Basin and Sonora Margin sediments.

INTRODUCTION

Guaymas Basin, located in the Gulf of California, México, is a youngmarginal rift basin where active seafloor

spreading generates northeast-to-southwest trending axial troughs surrounded on both sides by extensive

flanking regions (Lizarralde et al., 2007). In contrast to mid-ocean spreading centers, axial troughs and

flanking regions of Guaymas Basin are covered by thick, organic-rich sediments that represent a combina-

tion of terrigenous input and biogenic sedimentation from the highly productive water column (Calvert,

1966). Magmatic intrusions, or sills, are embedded within the thick sediment layers, where they drive hydro-

thermal circulation (Lonsdale and Becker, 1985) and thermally alter buried organic matter (Seewald et al.,

1990), in the process generating complex petroleum compounds (Didyk and Simoneit, 1989), light hydro-

carbons and methane (Welhan and Lupton, 1987), carboxylic acids (Martens, 1990), and ammonia (Von

Damm et al., 1985). Since the sediments act as a heat-retaining thermal blanket, magmatic activity and

organic matter alteration and mobilization are not only limited to the spreading center but also occur at

considerable distance, up to 50 km off-axis (Lizarralde et al., 2010). Many of these off-axis sites resemble

cold seeps, where methane advection is linked to pathways formed by deeply buried magmatic sills (Gei-

lert et al., 2018). If the underlying sill is sufficiently shallow and hot, the hydrothermal underpinnings of these

off-axis sites becomes visible; the recently described Ringvent site provides an example (Teske et al., 2019).

In contrast, the Sonora Margin harbors classical cold seeps where sediment compaction drives reducing,

methane-rich seep fluids to the surface. Numerous seep sites with carbonate outcrops and cold seep fauna

have been observed on an eroding pressure ridge that follows the transform fault at the base of the Sonora

Margin (Simoneit et al., 1990; Paull et al., 2007); the seep communities at these sites are largely based on

methanotrophy and sulfide oxidation (Portail et al., 2015). Seep communities and sulfide-oxidizing micro-

bial mats are also widespread on the Sonora Margin slopes (Vigneron et al., 2014; Cruaud et al., 2017).

Finally, most of the extensive flanking regions of Guaymas Basin and the Sonora Margin slope are covered

by organic-rich sediments without particular seep or hydrothermal influence; these sediments consist of

mixed terrigenous runoff and biogenic components, dominated by diatoms (Calvert, 1966). Sediments

on the upper Sonora Margin underlying the oxygen minimum at ca. 600–800 m depth, lack bioturbation
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and show finely laminated, seasonally changing sedimentation patterns of spring diatom blooms and

terrestrial runoff during late summer trains (Calvert, 1964).

Here, to explore links between geochemical and biogeographical patterns in geologically complex set-

tings in the subseafloor, we survey the distribution of archaea in diverse sedimentary environments located

in the greater Northern Guaymas Basin and Sonora Margin regions. Our samples were collected during a

site survey with RV El Puma in October 2014 for the recently completed Integrated Ocean Discovery Pro-

gram Expedition 385 (http://publications.iodp.org/scientific_prospectus/385/index.html). Sampling areas

include background sediments from the Guaymas Basin flanking regions, Sonora Margin sediment within

the oxygen minimum zone, reducing sediment with cold seep characteristics from the base of the Sonora

Margin, and sediment from the off-axis Ringvent site where hydrothermal circulation andmethane seepage

is driven by a gradually cooling, buried shallow sill. We expand a previous limited sequencing survey of

these sediments focused on just one of these sites (Teske et al., 2019) by (1) extending the geochemical

analyses, (2) increasing the sampling resolution used for molecular sequencing (from one or two samples

per site to ~1-m intervals for all sites), (3) providing a wide breadth of comparative ecological analyses, and

(4) discussing the potential implications of our results at a basin-wide scale.

RESULTS

Sediment and Porewater Geochemistry

We surveyed archaeal distribution at six sites on the northwestern and southeastern off-axis regions of

Guaymas Basin and on the Upper Sonora Margin (Figure 1, Table S1). These locations represent four

different environmental settings: (1) Sediments on the Guaymas Basin flanking regions without hydrother-

mal or seep activity, represented by cores ContP03, ContP10, and ContP13; (2) the oxygen minimum zone

(OMZ) on the upper Sonora Margin (Calvert, 1964), represented by core OMZP12, (3) compacted, highly

reducing seep sediments from a pressure ridge, running along the transform fault that is cutting across

the base of the Sonora Margin (Paull et al., 2007; Simoneit et al., 1990), represented by core SeepP06,

and (4) the Ringvent site, characterized by off-axis hydrothermal circulation (Teske et al., 2019), represented

by core RNVP11 (Figure 1). At each site, sediment piston cores ranging from 5 to 486 cm below the seafloor

(cmbsf) were collected and geochemically characterized (Figure 2). The sediments are geologically young,

ranging in age between ~0.05K and ~20K calendar years, as determined by 14C dating (Teske et al., 2019).

The different cores show distinct geochemical characteristics.

Core SeepP06 contains sulfide in millimolar concentrations throughout the core. Below the zone of sulfate-

dependent methane oxidation at 1 m depth, methane accumulated to the highest concentrations of this

survey, > 10 mM. Porewater Dissolved Inorganic Carbon (DIC) concentrations were consistently high

and increased from 15 mM near the interface to nearly 50 mM with depth. These methane and DIC concen-

trations reached and in part exceeded the highest concentrations previously measured in Sonora Margin

seep fluids (Paull et al., 2007). Sediments of core SeepP06 yielded only approximately half of the porewater
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Figure 1. Continental and Bathymetric Hybrid Map Depicting the Location of Guaymas Basin and Sonora Margin

in the Gulf of California, and Relevant Coring Sites of the El Puma Cruise

The bathymetry blue scale is annotated with 100-m isobaths; the deepest areas in the axial valley range to just below

2,000 m.
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volumes of other cores, indicating porewater loss by pressure-induced compaction. Thus, core SeepP06

represents sulfidic, methane- and DIC-soaked, compacted seep sediments from the pressure ridge aligned

with the transform fault at the lower Sonora Margin (Simoneit et al., 1990; Paull et al., 2007). Based on

diatom assemblages in cemented carbonate rocks, seepage in this area has been ongoing since pre-Ho-

locene times (Paull et al., 2007).

Cores ContP03 and ContP10 share similar methane, sulfate, sulfide, and DIC profiles indicative of non-

reducing conditions where sulfate-reducing and methanogenic activities remain minimal and biogenic sul-

fide and methane occur only in micromolar trace concentrations. With total organic carbon (TOC) between

4 and 6 wt %, the sediments of core ContP10 are organic rich and represent the hemipelagic seafloor sed-

iments of Guaymas Basin that receive ample biogenic sedimentation, mostly by diatoms (Calvert, 1966).

The d13C values ranging from �20.12& to �20.51& are consistent with sedimentary organic material re-

sulting predominantly from phytoplankton input (Teske et al., 2002). Slowly increasing d15N values ranging

from 9.04& to 10.17& and gradually increasing C:N ratios downcore are consistent with microbial utiliza-

tion of nitrogen compounds in sedimentary biomass.

Contrasting with nearby core ContP10, Core RNVP11 shows the biogeochemical signatures of seawater in-

mixing at Ringvent, such as seawater sulfate concentrations, and previous hydrothermal alteration, as evi-

denced by silica dissolution and re-precipitation (Teske et al., 2019). Subsurface-derived porewater

methane in high concentrations of 1–1.5 mM coexists with porewater sulfate near seawater levels; sulfide

is largely absent and reaches 10–100 mMonly below 3 m depth. Core RNVP11 also stands out by having the

lowest DIC concentrations of all cores, approaching seawater DIC in the upper layers. Below 1 mbsf,

organic carbon d13C values are the lowest for all cores (d13C mean of �21.3), whereas C/N ratios are the

highest (C/N mean ratio of 9.31), suggesting the influence of isotopically light and nitrogen-depleted hy-

drocarbons (Peter et al., 1991) (Figure 2). In contrast to other cores, Core RNVP11 shows a strong gradient

of dissolved silica, increasing from 0.5–0.6 mM at the surface (similar to ContP10) to 0.9–1mM at the bottom

(Figure 2I). Silica dissolution requires a temperature window of 100�C–150�C and is therefore considered a

marker of hydrothermal activity (Peter and Scott, 1988), ultimately resulting in elevated concentrations of

dissolved silica in the water column of Guaymas Basin (Campbell and Gieskes, 1984).

Core OMZP12 differs from all other cores by its location in the oxygenminimum zone on the SonoraMargin

slope (Calvert, 1964). Throughout its length, the core showed the conspicuous lamination that is typical for

the absence of burrowing infauna and bioturbation in anoxic or severely hypoxic environments. Under

these conditions, millimolar concentrations of porewater sulfide permeate the entire sediment core

including the surface, otherwise only seen in compaction-induced seep sediments collected at the base

of the Sonora Margin (core SeepP06). The sulfate-methane transition zone occurs at approximately 1

and 2 m depth for SeepP06 and OMZP12, respectively. Similar to core SeepP06, porewater DIC increases

rapidly with depth, with a maximum value of 33 mM at 254 cmbsf. Sediment TOC, d13C, d15N, and C:N ratio

values generally resemble those of other cores in this survey.

Core ContP13, collected on the southeastern flanking region, differs from other cores by terrestrial input

from the Yaqui River. Methane, sulfate, sulfide, and DIC concentrations for this core follow similar depth

profiles as observed for cores ContP03 and ContP10. However, TOC varies between ~1 and ~5 wt % in

the first meter of sediment and between ~3 and ~6 wt % below, suggesting sedimentation pulses of varying

organic carbon load. Sediment organic matter d13C, d15N, and C:N ratios fall within the range of values

observed for other cores in this survey.

Diversity of the Guaymas Basin Archaeome

Rarefaction curves are plotted separately for samples in approximately 1-m depth intervals to examine po-

tential downcore trends (Figure 3). Starting at 3 m depth, observed species richness based on rarefaction

summaries are lower in Ringvent (Core RNVP11) sediment compared with other sediments (Figure 3, Table

S2). Substantially more sequence reads, and thus a higher number of observed species, were recovered

Figure 2. Geochemical Profiles for Guaymas Basin Piston Cores

Geochemical profiles for (A) Methane, (B) Sulfate, (C) Sulfide, and (D) DIC porewater concentrations; (E) Organic Carbon

content in weight %; (F) Organic Matter d13C values, and (G) d15N values; (H) Carbon to Nitrogen ratios, and (I) Silica

porewater concentrations. Geochemical data for site ContP03 are not available for the analyses depicted in (E)–(H).
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from the Sonora Margin OMZ sediment (Core OMZP12) relative to the other surveyed sites, below 1 m

depth (Figures 3C–3E). To account for different sequencing depths without resorting to rarefying the data-

set (McMurdie and Holmes, 2014), we estimated total diversity using a non-linear regression model for ra-

tios of consecutive frequency counts, a state-of-the-art method addressing the issue of heterologous

sequencing depths affecting richness estimates (Willis and Bunge, 2015). Results from this model indicate

no statistically significant (Pval < 0.05) differences among surveyed sites (Figure S1).

When beta diversity of the archaeal communities was examined for correlations with environmental meta-

data using two-dimensional principal coordinate analysis, distinct clustering patterns are observed (Fig-

ure 4A). Surface communities for all cores except OMZP12 cluster tightly along negative axis 1 values.

All OMZP12 samples cluster along axis 1 values greater than 0.01 independently of sediment depth. Sep-

aration along axis 2 partitions the SeepP06, RNVP11, and OMZP12 cores (with positive axis 2 values) from

subsurface samples of control cores ContP03, ContP10, and ContP13 with negative axis 2 values; the sur-

face samples of these cores cluster separately (Figure 4A). The influence of environmental factors (i.e.,

methane, sulfate, sulfide, DIC, water depth, and sediment depth) on community ordination is complex (Fig-

ures 4B–4G), and it appears likely that clustering patterns are not driven by these environmental parameters

alone. Water column depth (Figure 4F) appears to drive core OMZP12 clustering along larger positive

values for axis 1 but most likely represents a proxy for the influence of the OMZ that has persisted

throughout the Holocene (Moffitt et al., 2015).

Network Analysis

Network analysis based on the co-occurrence of all operational taxonomic units (OTUs) in each sample re-

veals that the deepest communities recovered from Core RNVP11 exhibit the greatest degree of separa-

tion (Figure 5). At a maximum ecological (Bray-Curtis) distance of 0.8 (i.e., the maximum distance allowed

between two samples to be considered connected in the graphical model), most samples share taxa co-

occurrence patterns, except for the deepest communities from core RNVP11 (Figure 5A). Decreasing the

minimum ecological distance in the model to 0.5 resolves three independent network clusters (Figure 5B).

Here, the two deepest samples from core RNVP11 share similar taxa co-occurrence patterns only with each

other and are excluded from the two emergent additional networks. In one of these networks, communities

near the seawater interface of all cores, with the exception of core RNVP11, connect at no more than 1 de-

gree of separation. Interface sample SeepP06 5cmbsf connects the near-interface sample cluster to all core

SeepP06 subseafloor (depth > 1 mbsf) samples. A third independent network shows non-random taxa co-

occurrence among subseafloor control sediments (cores ContP03, ContP10, ContP13), a subseafloor and a

near-interface sample from core RNVP11, and all samples from core OMZP12; the three deepest OMZP12

samples are only peripherally connected (Figure 5B).

Community Composition

Class-level community descriptions (SILVA132) assigned large membership fractions of the archaeal com-

munities to the Bathyarchaeia, Hadesarchaeaeota, and Thermoplasmata (Figure 6). Asgardarchaea (i.e., se-

quences classified as Lokiarchaea, specifically) were recovered from every cored site; however, their

percent community abundance remained below 0.01% in all samples (Table S2). We note that, when a sub-

set of these samples was studied using a different Archaeal-specific primer set, higher percentages of Lo-

kiarchaea were observed (Teske et al., 2019), implying a potential bias against this lineage in this study. The

Class Methanomicrobia, comprising methane-producing and methane-oxidizing members of the Eur-

yarchaeota, was detected in multiple cores but appeared most frequently at depth in core SeepP06. An

in-depth summary of the Methanomicrobia reveals the presence of methanogenic families (e.g., Methano-

microbiaceae) and anaerobic, methane-oxidizing ANME lineages (ANME-1, various ANME-2). Notably,

ANME-1 archaea dominate core SeepP06 sequence assignments comprising nearly 40% of the total com-

munity at 394 cmbsf in this core (Figure S2, Table S3). Order- or higher-level community taxonomic descrip-

tions for all samples generally contained 60% or greater unclassified community fractions (data not shown)

when automated taxonomic assignments were performed. In order to not rely on the uncertain output of

Figure 3. Depth Mapped Rarefaction Summaries (Color Coded to Match Surveyed Sites) for Complete High-

Quality Sequence Datasets Depicting Richness as Number of OTUs (97% Similarity Clustered) Observed per

Sequences Sampled

(A) Samples near the interface (0–10 cmbsf), (B) samples from ~100 cmbsf, (C) samples from ~200 cmbsf, (D) samples from

~300 cmbsf, and (E) samples from depths greater than or approximately equal 400 cmbsf.

ll
OPEN ACCESS

6 iScience 23, 101459, September 25, 2020

iScience
Article



−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01 0.02 0.03

Axis.1 [29.8%]

A
xi

s.
2

[1
4.

8%
]

0.0

5.0

10.0

Methane
(mM)

−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01 0.02 0.03

Axis.1 [29.8%]

A
xi

s.
2

[1
4.

8%
]

10

20

Sulfate
(mM)

−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01 0.02 0.03

Axis.1 [29.8%]

A
xi

s.
2

[1
4.

8%
]

0

5000

10000

Sulfide
(uM)

−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01 0.02 0.03

Axis.1 [29.8%]

A
xi

s.
2

[1
4.

8%
]

10
20
30
40

DIC
(mM)

−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01 0.02 0.03

Axis.1 [29.8%]

A
xi

s.
1

[2
9.

8%
]

900
1200
1500
1800

Water
Depth
(meters)

−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01 0.02 0.03

Axis.1 [29.8%]

A
xi

s.
2

[1
4.

8%
]

100
200
300
400

Sediment
Depth
(cmbsf)

3795

295
5

555 9
95

195
394
486394 304

105205

204

301

104

111

104

378
303

202210
310

105

204
304

−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01 0.02 0.03

−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01 0.02 0.03

Axis.1 [29.8%]

A
xi

s.
2

[1
4.

8%
]

ContP03
SeepP06
ContP10
RNVP11
OMZP12
ContP13

A

B

D E

F G

C

Figure 4. Archaeal Community Grouping Patterns

(A) Two-dimensional Principal Coordinate Analyses of Bray-Curtis dissimilarity distances from r-log normalized sequence count

data. Each community plotted is color coded to the core site and numerical labels indicate sediment depth (cmbsf). The first and

second axes explain 29.8% and 14.8% of the variance, respectively. Environmental metadata superimposed on ordination plot

are (B) methane, (C) sulfate, (D) sulfide, and (E) DIC concentrations, (F) water depth, and (G) sediment depth.

ll
OPEN ACCESS

iScience 23, 101459, September 25, 2020 7

iScience
Article



9

5

104

204

303

378

5

95

195

295

394

104

486

5

105

204

304

379

5
111

210

310

202

301

5

105

205

304

394 1

21

0420404

3

301

1

8

5

31

8

33

1

02

4

0

4

2
222952

3

1

95

4

0

0010

3033

78

101

044

5

1

37878

00000

555

5

11

00

88

295

4

33

3

97
0333330

33

304

99

4

1101

93793 99

0

888888

3003030303
379373793797999999

3033
55

9

20444

5

11111 1111111 1

333
113131333

44

3733

3
3333

304330

9999

11111111 111111155

44040

833378837

9595

30

5

00000003
33333 999999

5

011011

44044440444

8888888888

3
311310113 00 9999993737770

202020

11111

95

555

2

88888888888888888888888

7979999997999999999

22

55

22

010010303 11

88

0444

999937937999

011001

310333 0
030030000030000

5

04

55555

304

4

1051111

1

30

1100

210100
3030

100010100000 3033003303330033330000

5555555

111004404111111

555

5555

0

55

212 000

1

3300013030001

000

11

2

4404

95

11

2202

0100000

55555555555

5

333

5555555555

1051055

044444444

21010000100002

04444044040444

4

11

44

1044404400000000000044 303330333003333333300000000000333444441041 4000000000444444

00000

5055555

ContP03
SeepP06
ContP10
RVNP11
OMZP12
ContP13

A

9

5

104

204303

378

5

95295

394

104
486

5

105

204

304

379

5

111
210

310

202

301

5

105

205

304

394

204

1

88

131

4

2

1

00

5

11

11

10
1

0

0

3101
0

1
00

8

4041110

3788

01300013004204 01300

444

1

B

ll
OPEN ACCESS

8 iScience 23, 101459, September 25, 2020

iScience
Article



taxonomy pipelines, and to resolve archaeal taxonomy assignments in a manner that is consistent with

broadly accepted usage (Spang et al., 2017), we also describe community composition based on phyloge-

netic placement of dominant sequence variants for the most numerous 25 OTUs.

The majority of high-quality sequences in this study (73.0%) clustered into 25 OTU lineages (Figure 7A).

Archaeal communities were largely dominated by OTU lineages related to the Bathyarchaea (16 of the

top 25 OTUs). OTUs 01 to 03, the three most abundant lineages, belong to the MCG-1, MCG-2, and

MCG-3 Bathyarchaea subgroups (Kubo et al., 2012), respectively, with close relatives recovered fromGuay-

mas Basin and globally dispersed subseafloor habitats (Figure 7B). High-abundance lineages related to the

Marine Benthic Group-D within the Thermoplasmata (MBG-D; OTUs 04, 10, 11, 21, and 23) and the Terres-

trial Miscellaneous Euryarchaea Group (TMEG; OTU 08) were recovered from all cores and core depths

except the subsurface of Ringvent (Core RNVP11, depth > 1 mbsf). Two highly abundant lineages repre-

sented by OTUs 05 and 18 (Figure 7C) were recovered from every core except core SeepP06 and identified

as relatives of the Hadesarchaea, formerly known as South African Gold Mine Euryarchaea Group (SAG-

MEG)-1 (Baker et al., 2016). Lastly, OTU 14 clustered within anaerobic ANME-1 methanotrophs and was

most closely related to ANME-1 phylotypes from cold seep, hydrate, and brine habitats; OTU 14 did not

affiliate with the thermophilic ANME-1 Guaymas lineage recovered from hydrothermally active, hot sedi-

ments in Guaymas Basin (Biddle et al., 2012) (Figure 7C).

Differential Taxon Abundance Estimations across Ecological Niches

Differential abundance analyses (Wald Test, Pval = 0.01) were performed on various ecological models

following potential environmental niches suggested by ordination patterns (Figures 8 and 9). Only OTU lin-

eages among comparison groups containing more than 100 sequences were used for each test. We tested

the influence of sediment depth in the absence of seepage or hydrothermal influence, the impact of the

oxygen minimum zone waters on surficial and subsurface sediments, and the effect of hydrothermal distur-

bance. These analyses have to be qualified by the fact that they are based on patterns of sequence fre-

quencies, which are derived from the archaeal community but do not necessarily represent it in identical

proportions.

To test the estimated differential abundance of archaeal community members in near-surface (depth < 1

mbsf) and subsurface (depth > 1 mbsf) communities under conditions of normal hemipelagic sedimenta-

tion, we selected cores ContP03, ContP10, and ContP13; these cores lack hydrothermal, seepage, or

OMZ influence and, therefore, show the archaeal community of organic-rich Guaymas Basin sediments

in the absence of these selective factors. Here, over 43% of OTUs (n > 100 seqs) are differentially abundant

with depth (Figures 8A and 8B). Most differentially abundant taxa are estimated to have lower relative

abundances in near-surface relative to subsurface control sediment (Figure 8B). Lineages with higher

subsurface relative abundances include members of various Bathyarchaeal groups (MCG-1, MCG-3, and

MCG-6), a TMEG lineage (OTU 08) closely related to clones previously recovered from Guaymas Basin,

and a Hadesarchaea lineage (OTU 18) whose closest relatives are clones from deep Mediterranean waters

(Figures 7B and 7C). Among the top 25 OTUs in this study, the only highly abundant lineage that signifi-

cantly (Pval = 0.01) increases in relative abundance in near-surface relative to subsurface control sediment

(Figure 8A) is OTU 07, related to Guaymas Basin and Indian estuary sediment MCG-6 clones (Figure 7B).

The same lineage was also found to occur preferentially in surficial estuarine sediments in the White

Oak River, while avoiding the sulfide-rich, sulfate-reducing, and methanogenic conditions just a few cen-

timeters downcore (Lazar et al., 2015).

When archaeal abundance in all oxygen minimum core OMZP12 samples was checked against the shallow

sediment samples of the control cores (ContP03, ContP10, ContP13, see Figures 8C and 8D), over 50% of

archaeal OTUs (n > 100 seqs) present in surficial controls showed higher relative abundances in core

OMZP12. Of the 25 most highly abundant OTUs in this study, those that were differentially abundant in

this comparison (14 OTUs) increased in relative abundance in core OMZP12 (eleven of fourteen high

Figure 5. Network Analysis Based on the Co-occurrence of All OTUs at in Each Sample

Nodes represent all archaeal communities analyzed in this study. Nodes are color coded to match descriptions from

Figure 1A. Edges are unweighted interactions depicting OTU co-occurrence meeting arbitrary thresholds.

(A) Co-occurrence network threshold set at a maximum Bray-Curtis distance of 0.8.

(B) Co-occurrence network threshold set at a maximum Bray-Curtis distance of 0.5.
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abundance OTUs, Figure 8D). Only OTUs 07, 09, and 21, representing the Bathyarchaeal groups MGC-6

and MCG-2, and an MBG-D lineage, respectively, were more abundant in surficial control sediment

(Figure 8D).

We also tested for differentially abundant taxa between all core OMZP12 samples and subsurface control

sediment (Figure 8E). Here, only 31.1% of OTUs (n > 100 seqs) were differentially abundant; of the 25 most

abundant OTUs in this study only 4 showed significant abundance differences. Of these four archaeal

OTUs, OTUs 15 and 20, Bathyarchaeal lineages in the MCG-1 and MCG-2, respectively, increase in relative

abundance in subsurface control sediment. OTU 06 within the MCG-2 group, and OTU 19, an MCG lineage

tenuously related (bootstrap value <70%) to MCG-6, decreased in relative abundance in core OMZP12.

Overall, archaeal types occurring in anoxic subsurface sediments of core OMZP12 resemble those in other

subsurface cores to a large extent.

The hydrothermally influenced Ringvent core RNVP11 was compared against control core ContP10,

located only 1.6 km further west, at the same depth and local sedimentation regime (Figures 9A–9C). In

surficial sediment (>1 mbsf) this comparison revealed only one differentially abundant phylotype, OTU

18, within the Hadesarchaea (Figure 9B). On the other hand, the comparison of subsurface (>1 mbsf) com-

munities identified 43 OTUs, or 61% of all shared OTUs (n > 100 seqs), as differentially abundant between

these two sites (Figure 9C). Focusing on the top 25 highest abundance OTUs in this study, eleven OTUs

were differentially abundant. Eight taxa, comprising Bathyarchaeal, TMEG, MBG-D, and ANME-1 repre-

sentatives, were significantly more abundant in subsurface control sediment relative to Ringvent subsur-

face sediment (OTUs: 07, 08, 10, 11, 14, 15, 16, and 23). The remaining three taxa (OTUs 06, 12, and 25),
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Figure 7. Distribution and Phylogeny of Dominant Archaeal OTUs

(A) Heatmap depicting percent relative abundance distribution for the 25 most abundant OTUs, representing 73.0% of all

high-quality sequences in this study, for all cores and across all depths. Core labels are color coded to match the

collection sites depicted in the bathymetric map in Figure 1A. The phylogenetic association of each OTU lineage is

depicted above each OTU header. The percent of total reads represented by the 25 most abundant OTUs in each
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more abundant in the Ringvent subsurface, were classified as Bathyarchaea related to the MCG-1 and

MCG-2 subgroups.

Core SeepP06, from compacted seep sediments, was checked against both shallow and subsurface sedi-

ment samples of the control cores (ContP03, ContP10, ContP13, Figures 9D–9F). About 41% of archaeal

OTUs (n > 100 seqs) present in shallow controls and seep sediment were significantly differentially abun-

dant (Figure 9E). Of the 25 most highly abundant OTUs, most showed higher relative abundances in

seep sediment and included lineages classified as ANME-1, MBG-D, and TMEG (Figure 9E). When

comparing differentially abundant taxa between core SeepP06 and subsurface control sediment, 53% of

archaeal OTUs (n > 100 seqs) were differentially abundant (Figure 9F). Most of the OTUs in this comparison,

including the most abundant OTUs in this study (OTUs 01–03), increase in relative abundance in control

subseafloor sediments rather than in core SeepP06 sediment (Figure 9F).

DISCUSSION

Complex Determinants of Archaeal Ecosystem Structure

Overall, complex physical and geochemical factors structure sedimentary habitats and depth-related niches for

archaea in Guaymas Basin. Archaeal community ordination patterns reveal niche differentiation and some unex-

pected clustering patterns among the different sites (Figure 4A). Most notably, surficial communities of back-

ground control sedimentsContP03, ContP10, andContP13, at 5–10 cmdepth, cluster away from their respective

subsurface communities near 1 m depth and below (Figure 4A), consistent with infaunal bioturbation and aera-

tion as observed during Guaymas Basin Alvin dives. Taxa co-occurrence network patterns support this differen-

tiation between shallow and subseafloor control sediment sites (Figure 5B). The availability of electron acceptors

such as oxygen, nitrate, or oxidizedmetals very likely drives the depth-dependent niche separation observed in

background control sediment sites (ContP03, ContP10, and ContP13). Surface archaeal communities continually

change as sediment layers accumulate; given high sedimentation rates of 0.23–1 mm/year at Guaymas Basin

(Teske et al., 2019), it takes approximately 1,000–4,000 years for background surface communities to transition

to subsurface communities at 1 m depth. Interestingly, shallow versus subsurface differentiation is less apparent

in seep, OMZ, or hydrothermally influenced sites (Figure 5B); parameters other than sediment depth or surficial

redox regime are shaping archaeal community composition in seepage- or hydrothermally influenced habitats,

compared with the control sites.

The cores SeepP06 and RNVP11 represent different geochemical regimes (compaction-induced continental

margin seepage versus hydrothermal circulation, respectively), yet these two sites cluster tightly in ordination

space (Figure 4). Individual geochemical factors, for example, the sulfidic, methane-, and DIC-rich conditions

in SeepP06 would have indicated that OMZP12 should be its closest equivalent (Figure 2). The unexpected clus-

tering of SeepP06 and RNVP11 suggests that factors beyond current geochemical conditions, for example,

recent environmental disturbance, can influence archaeal community structure. For example, variable 14C age

data for the sediment column in core SeepP06 suggested prior perturbation by slumping, for example, during

steep slope collapse (Teske et al., 2019). At Ringvent (RNVP11), sedimentary community diversity may have been

reduced during prior episodes of thermal purging or high methane flux (Teske et al., 2019), selecting for a resil-

ient, yet potentially less diverse (Figure 3), ‘‘survivor’’ community.

Lastly, community ordination differentiates OMZ sediment from all other sedimentary habitats (Figure 4).

Although water depth appears to have a strong influence onOMZ sediment ordination (Figure 4F), we propose

that differences in redoxpotential at the sediment interfacedue to its direct contact with oxygen-depletedwater

(Calvert, 1964) rather thanwater columndepth is the key environmental constraint driving the ordinationpatterns

of OMZ sediment. A distinct archaeal community is consistent with the persistence of fully developed oxygen

minimum conditions on the Sonora Margin since approximately 13,000 years (Moffitt et al., 2015).

A ‘‘Forest View’’ of Archaea in Guaymas Basin Sediments

Archaea observed in this sedimentary habitat survey belong to the Bathyarchaea, the MBG-D and TMEG

lineages within the Thermoplasmatales, the Hadesarchaea (SAGMEG), and ANME-1 lineages, as shown

Figure 7. Continued

community is shown in the column labeled ‘‘% of community.’’ Maximum likelihood phylogenetic trees, with 100

bootstrap support, placing the top 25 most abundant OTUs within the following lineages: (B) Bathyarchaea, (C) the

Euryarchaeotal lineages MBG-D, TMEG, SAGMEG, and ANMEs.
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previously in a sequencing survey using different archaeal primers (Teske et al., 2019). The uncultured Bath-

yarchaea and MBG-D archaea pronouncedly dominate the dataset, and cold anoxic marine sediments

globally (Kubo et al., 2012; Lloyd et al., 2013). Bathyarchaea play an important role, tantamount to that

of the domain Bacteria, in the remineralization of complex organic matter in marine sediment (Lloyd

et al., 2013; Orsi et al., 2020); some of their members (MCG-8 lineage) use lignin, the second most common

biopolymer on Earth, as an energy source (Yu et al., 2018). Since Bathyarchaeota harbor the Wood-Ljung-

dahl pathway (WLP), they are implied in acetogenic subsurface metabolism (He et al., 2016). Recycling

fermentation products (CO2, hydrogen) with the acetogenic WLP during the breakdown of diverse sub-

strate types may provide the Bathyarchaea with an energetic advantage over classical fermenters in anoxic

A B

C D
E

Otu00001
Otu00002
Otu00003
Otu00005
Otu00006
Otu00007
Otu00008
Otu00009
Otu00013
Otu00017
Otu00018
Otu00019
Otu00021
Otu00024
Otu00027
Otu00028
Otu00029
Otu00031
Otu00037
Otu00038
Otu00042
Otu00047
Otu00048
Otu00051
Otu00055
Otu00061
Otu00063
Otu00070
Otu00071
Otu00077
Otu00078
Otu00079
Otu00081
Otu00085
Otu00088
Otu00097
Otu00103
Otu00106
Otu00111
Otu00113
Otu00118
Otu00119
Otu00120
Otu00124
Otu00128
Otu00130
Otu00132
Otu00136
Otu00139
Otu00140
Otu00155
Otu00164
Otu00189
Otu00197
Otu00210
Otu00216
Otu00231
Otu00263
Otu00265
Otu00276
Otu00332

−20 −10 0 10 20

Log2FoldChange

Ta
xo

n

SILVA132_Rank3

Bathyarchaeia

Hadesarchaeaeota

Methanomicrobia

Thermoplasmata

unclassifiedUnclassified

Methanomicrobia
Thermoplasmata

Hadesarchaeaeota
Bathyarchaeia

Otu00006
Otu00015
Otu00019
Otu00020
Otu00026
Otu00027
Otu00028
Otu00029
Otu00041
Otu00042
Otu00043
Otu00048
Otu00050
Otu00052
Otu00054
Otu00055
Otu00056
Otu00058
Otu00062
Otu00063
Otu00065
Otu00069
Otu00071
Otu00076
Otu00079
Otu00086
Otu00089
Otu00094
Otu00099
Otu00121
Otu00122
Otu00124
Otu00126
Otu00136
Otu00145
Otu00155
Otu00164
Otu00174
Otu00178
Otu00189
Otu00204
Otu00332

−20 −10 0 10 20

Log2FoldChange

Ta
xo

n

SILVA132_Rank3
Bathyarchaeia

Hadesarchaeaeota

Methanomicrobia

Thermoplasmata

unclassified

Non differentially
expressed OTUs
= 93 (68.9%)

Higher Relative Abundance
in Control Subsurface
= 24 (17.8%)

Higher Relative Abundance
in OMZ = 18 (13.3%)

Total shared OTUs
(n > 100 seqs)
= 135 (100%)

Increased
Relative
Abundance
in OMZ

Increased
Relative
Abundance
in Surface
Controls

Increased
Relative
Abundance
in OMZ

Increased
Relative
Abundance
in Subsurface
Controls

3795

295

5

555 9

95

195
394
486394 304

105
205

204

301

104

111

104

378
303

202210
310

105

204
304

−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01 0.02 0.03
Axis.1 [29.8%]

A
x
is

.2
[1

4
.8

%
]

3795

295

5

555 9

95

195
394
486394 304

105
205

204

301

104

111

104

378
303

202210
310

105

204
304

−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01 0.02 0.03
Axis.1 [29.8%]

A
x
is

.2
[1

4
.8

%
]

SeepP06

RNVP11
OMZP12

ContP03

ContP10

ContP13

Controls
Surface

Otu00001
Otu00002
Otu00003
Otu00005
Otu00007
Otu00008
Otu00013
Otu00015
Otu00017
Otu00018
Otu00019
Otu00024
Otu00027
Otu00031
Otu00034
Otu00037
Otu00038
Otu00040
Otu00041
Otu00043
Otu00047
Otu00048
Otu00051
Otu00052
Otu00054
Otu00056
Otu00060
Otu00061
Otu00062
Otu00065
Otu00069
Otu00076
Otu00077
Otu00078
Otu00083
Otu00099
Otu00103
Otu00119
Otu00123
Otu00145
Otu00178
Otu00197
Otu00198
Otu00265

−20 −10 0 10 20

Log2FoldChange

Ta
xo

n

SILVA132_Rank3

Bathyarchaeia
Hadesarchaeaeot
Thermoplasmata
unclassified

Higher Relative Abundance
in Control Subsurface
= 35 (34.7%)
Non diff. expressed OTUs
= 57 (56.4%)

Higher Relative Abundance
in Control Surface
= 9 (8.9%)

Total shared OTUs
(n > 100 seqs)
= 101 (100%)

Increased
Relative
Abundance in
Surface
Controls

Increased
Relative
Abundance
in Subsurface
Controls

Controls:
Subsurface

3795

295

5

555 9

95

195
394
486394 304

105
205

204

301

104

111

104

378
303

202210
310

105

204
304

−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01 0.02 0.03
Axis.1 [29.8%]

A
x
is

.2
[1

4
.8

%
]

3795

295

5

555 9

95

195
394
486394 304

105
205

204

301

104

111

104

378
303

202210
310

105

204
304

−0.02

−0.01

0.00

0.01

−0.02 −0.01 0.00 0.01 0.02 0.03
Axis.1 [29.8%]

A
x
is

.2
[1

4
.8

%
]

Controls:
Surface

Controls:
Subsurface

55 9

OMZ Total shared OTUs
(n > 100 seqs)
= 122 (100%)
Higher Relative Abundance
in OMZ = 41 (33.6%)
Higher Relative Abundance
in Control Surface = 20 (16.4%)

Non differentially
expressed OTUs
= 61 (50.0%)

Unclassified
Thermoplasmata
Hadesarchaeaeota
Bathyarchaeia

Unclassified

Methanomicrobia
Thermoplasmata

Hadesarchaeaeota
Bathyarchaeia

Figure 8. Differential Abundance Analyses Based on Wald’s Test (Significance: alpha = 0.01)

(A) Ordination depicting archaeal community clustering for surface and subsurface samples of control sites ContP03, ContP10, and ContP13.

(B) Differentially abundant OTUs in near-surface versus subsurface communities from control sites.

(C) Ordination depicting community clustering in OMZP12, and surficial versus subseafloor control sites.

(D and E) (D) Differentially abundant OTUs in OMZP12 compared with surficial and (E) subsurface communities from control sites. Note: OTUs 13, 17, and 21

are color coded as ‘‘unclassified’’ by SILVA132, but phylogeny analysis (see Figures 7B and 7D) places them as members of MCG-13 (OTUs 13 and 17) and

MBG-D (OTU 21).
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sediment (Schuchmann and Müller, 2016). It remains open whether acetogenic pathways are used for net

autotrophy or derive their substrates primarily from organic carbon sources (Lever et al., 2010); similar con-

siderations apply to the metabolically versatile MBG-D archaea (Zhou et al., 2019). Some Bathyarchaea har-

bor genes of the MCR complex, suggesting methylotrophic methanogenic activity and, perhaps,
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Figure 9. Differential Abundance Analyses Based on Wald’s Test (Significance: alpha = 0.01)

(A–C) (A) Ordination depicting community clustering in RNVP11 and ContP10. Differentially abundant OTUs in RNVP11 and ContP10 for (B) surface samples

and (C) subsurface samples.

(D) Ordination depicting community clustering in SeepP06, and surficial and subseafloor control sites.

(E and F) Differentially abundant OTUs in SeepP06 samples compared with (E) surficial and (F) subsurface communities from control sites. Note: OTUs 13, 17,

and 21 are color coded as ‘‘unclassified’’ by SILVA132, but phylogeny analysis (see Figures 7B and 7D) places them as members of MCG-13 (OTUs 13 and 17)

and MBG-D (OTU 21).
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syntrophic interactions with sulfate-reducing bacteria leading to the anaerobic oxidation of methane

(Evans et al., 2015). However, the dominant Bathyarchaea OTUs recovered in this study (MCG groups 1,

2, 3, 6, and 13, Figure 7B) are only distant relatives of methane-cycling marine Bathyarchaea, which fall

into MCG groups 15 and 16 (Evans et al., 2015). Hadesarchaea, originally described as the South-African

Gold Mine Miscellaneous Euryarchaeal Group (SAGMEG), are metabolically versatile anaerobic hetero-

trophs with the metabolic potential for CO and H2 oxidation coupled with nitrite reduction to ammonia

and are found in environments across broad (4�C –80�C) thermal ranges (Baker et al., 2016). One of two

frequently recovered Hadesarchaea lineages (OTU 05) is conspicuously present in high relative abundance

in subsurface sediment in Ringvent (RNVP11), where low observed sequence richness (Figure 3) coincides

with evidence (high silica porewater concentrations at depth indicative of a thermal dissolution of sedimen-

tary diatoms, Figure 2I) for a thermal purge in the past (Teske et al., 2019).

Unsurprisingly, the methane-cycling Methanomicrobia are rare in background sediments (ContP03,

Cont10, and Cont13) but increase in relative abundance in core SeepP06 and, to a much lower extent

(slightly over 2%), in core OMZP12 at 204 cm depth (Figures 6 and S2). Interestingly, a single ANME-1

OTU lineage, OTU14, is highly abundant in SeepP06 sediments (Figures 7A and 7C). This lineage is closely

related to ANMEs recovered from cold, anoxic habitats, such as seafloor seep sediments, methane hy-

drates, and hypersaline anoxic basins, and distinct from previously described ANME-1 phylotypes from So-

nora Margin cold seep sediments and potentially thermophilic ANME-1 phylotypes from Guaymas Basin

hydrothermal sediments (Biddle et al., 2012; Holler et al., 2011). Although ANME-1 archaea were generally

assumed to be obligate methanotrophs, this assumption has been challenged and this lineage has been

proposed as potentially methanogenic, based on its occurrence and activity in sulfate-depleted sediments

(Lloyd et al., 2011; Kevorkian et al., 2020); thus, the biogeochemical role of these archaea would be modu-

lated by the presence or absence of sulfate or concomitant changes in electron donors. ANME-2 and

cultured methanogenic lineages were observed in low percent abundances in all cores in this study (Fig-

ure S2). Interestingly, ANME-2 lineages were extremely rare, representing less than 0.05% of any sample

and less than 0.02% of any SeepP06 community (Figure S2, Table S3). The prevalence of ANME-1 over

ANME-2 in our survey is consistent with the ecophysiological preference of ANME-1 archaea for reducing,

sulfidic subsurface sediments and the preference of ANME-2 for near-surface sediments with intermittently

oxidizing conditions (Ruff et al., 2015; Rossel et al., 2011). Previous surveys of mat-covered seep sediments

on the Sonora Margin have revealed transitions from ANME-2 toward ANME-1 within short push cores of

maximum 17 cm depth (Vigneron et al., 2013).

Overall, we hypothesize that the archaeome in the sedimented flanking regions of Guaymas Basin is gener-

ally fueled by heterotrophic processes including the degradation of proteins, polymeric carbohydrates

(Ziervogel and Arnosti, 2020), and accumulating lipids (Teske et al., 2002) resulting from high sedimentation

rates driven by high levels of primary production in the water column. Diverse niche communities allow the

Guaymas archaeome to adapt to environmental challenges, such as hydrothermalism or methane seepage,

that are common in the greater Guaymas Basin area.

Ecological Comparisons: Differentially Abundant Taxa across Sedimentary Habitats

Near-Surface versus Subsurface Sediment Niches

When comparing the surficial to the subsurface archaeal populations in background control sediments, the

majority of OTUs estimated to be differentially abundant are significantly more abundant in the subsurface

relative to the surficial sediment, suggesting that benthic archaea prefer subsurface conditions (Figures 8A

and 8B). This trendmay also reflect the impact of electron acceptors; for example, oxygen permeates back-

ground sediments in Guaymas Basin for at least 1 cm (Teske et al., 2016, Figure 8B therein). Following a

recently proposed model for benthic microbial communities (Starnawski et al., 2017) the archaeal commu-

nity at the oxic water-sediment interface likely undergoes downcore selection, based on site-specific selec-

tive pressure, resulting in reduced diversity with depth but a higher prevalence of subsurface-adapted taxa

within a few thousand years after burial in anoxic subseafloor sediment. Benthic archaea, predominantly

Bathyarchaea and MBG-D lineages, survive on residual carbon sources that remain after burial and micro-

bial degradation in surficial sediments (Lloyd et al., 2013). Interestingly, catabolic activity and electron

donor diversity, rather than terminal electron acceptor type or burial time, appear to drive bacterial

OTU richness in anoxic subseafloor sediment (Walsh et al., 2016). This niche construction mechanism,

driven by the biotic microenvironment as opposed to abiotic environmental filtering (Aguilar-Trigueros
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et al., 2017), is potentially widespread across the large habitable volume represented by non-hydrother-

mally influenced subseafloor sediments in Guaymas Basin.

OMZ versus Control Sediment

When comparingOMZ and surficial background control sedimentary communities, 50% of high abundance

OTUs found across both habitats are significantly differentially abundant (Figure 8D). Two-thirds of the

differentially abundant taxa have higher relative abundances in the OMZ rather than the surficial back-

ground sediments. The MCG lineages MGC-6 and MCG-2 (OTUs 9 and 7) and an MBG-D phylotype

(OTU 21) increase in relative abundance in the surficial background controls relative to the OMZ sediment

(Figure 8D). Interestingly, MCG-6members bear hydrolases that specifically target plant-derived polymeric

carbohydrates (Lazar et al., 2016), a potential trait-environment relationship that may differentiate surficial

background control from OMZ sediment communities (Figure 8D). When comparing subsurface back-

ground control and OMZ sediment communities, the number of differentially abundant OTUs was about

equal across both environments; however, the majority (68.9%) of high abundance OTUs show no signifi-

cant differences in differential abundances across subsurface background controls and OMZ environments

(Figure 8E). This implies that the subsurface, rather than surficial, background control communities are

more similar to the OMZ communities, a point also corroborated by taxa co-occurrence network analysis

(Figure 5B). Thus, oxygen depletion in background subsurface sediment and oxygen depletion through

the overlying oxygen minimum zone of the water column (Calvert, 1964) result in some convergence be-

tween archaeal communities across geographically distant and environmentally distinct sedimentary

habitats.

Ringvent versus Control Sediment

The surficial archaeal communities of Ringvent (RNVP11) and its nearby control site (ContP10) are similar to

each other, as indicated by extensive co-occurrence networks (Figure 5) and by the dearth of differentially

abundant OTUs between the two cores (Figure 9B). A member of the Hadesarchaea, OTU18, is the only

differentially abundant lineage in Ringvent surficial sediment relative to the control; otherwise differences

in taxon relative abundance across these habitats are negligible. These sites are only 1.6 km apart and

therefore most likely share recent depositional histories and microbial inoculum sources, which validates

core ContP10 as a site-specific control for assessing the environmental determinants structuring subsurface

archaeal communities at Ringvent. The reduction in sequence recovery and, potentially, archaeal commu-

nity richness in subsurface Ringvent (RNVP11) sediment (Figure 3) is attributed to environmental selection

via hydrothermal purging as reflected in silica dissolution, or methane seepage driven by recent sill

emplacement that continues to drive hydrothermal circulation, selecting against microbes unable to with-

stand these chemical or thermal changes (Teske et al., 2019). Thus, OTUs with increased relative abun-

dances in Ringvent subsurface sediment compared with its nearby control site (Figure 9C) may occur via

two possible ecological scenarios: (1) surviving resilient microbes could dominate the habitat after their

competitors have been removed and (2) new arrivals after the disturbance could efficiently recolonize

the depopulated surface sediment.

Seep versus Control Sediment

Differential abundance comparisons show that the ANME-1, MBG-D, and TMEG lineages increase in rela-

tive abundance in the seep sediments, compared with controls (Figures 9D and 9E). Generally, methane

seeps are specialized microbial benthic habitats where methanotrophic archaea (ANME) and syntrophic

Deltaproteobacteria oxidize methane anaerobically exploiting sulfate as an electron acceptor (Lloyd

et al., 2010; Ruff et al., 2015). The dominance of these inter-domain syntrophic partners distinguishes sea-

floor seep habitats (Ruff et al., 2015). Archaeal community structure in SeepP06 sediments differs little with

depth; it is most similar, in terms of taxa overlap, to other samples from the same core (Figures 4 and 5).

Therefore, the influence of cold seepage drives community selection to a greater degree than the environ-

mental factors associated with depth-dependent niche differentiation observed in background control

sediment.

Comparison with other Sonora Margin cores highlights the seep characteristics of core SeepP06. Based on

the presence or absence of major archaeal lineages, SeepP06 archaeal communities are similar to surficial

(<1 mbsf) communities from Sonora Margin cold seeps, predominantly comprising Thermoplasmata

(MBG-D), Bathyarchaea, and ANME lineages (Cruaud et al., 2017). The SeepP06 archaeal communities

share dominant archaeal lineages—the Thermoplasmatales (MBG-D), Lokiarchaeota, and
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Bathyarchaeota—with Sonora Margin subsurface sediments (core BCK1 [Vigneron et al., 2014]). Interest-

ingly, the high proportion of ANME-1 archaea in SeepP06 is not shared by the Sonora Margin subsurface

core (Vigneron et al., 2014). The Sonora Margin subsurface sediment core has a deeper methane/sulfate

interface than SeepP06, ca. 4–5 m instead of 1 m, and contains little sulfide above 5 m depth, indicating

strongly attenuated seep influence in core BCK1 compared with SeepP06.

Core-Specific Features of the Benthic Archaeome

Controls that structure microbial communities in hydrothermal sediments of Guaymas Basin have been

studied extensively; for example, extreme temperature and porewater gradients shape microbial popula-

tion structure, genomic repertoire, and activities within a few centimeters depth beneath the seafloor

(McKay et al., 2012, 2016; Dombrowski et al., 2018). However, ecological factors influencing microbial

life in other sedimentary habitats at Guaymas Basin are comparatively unconstrained. By comparing

archaeal communities in diverse sedimentary habitats to background controls representative of standard

hemipelagic sedimentation, characteristic responses of the archaeal communities to these distinct environ-

mental settings are becoming apparent. Compaction-induced seepage near the base of the Sonora

Margin, and the resulting methane- and sulfide-rich porewater conditions in core SeepP06, selected for

anaerobic methane-oxidizing archaea (ANME-1) and for MBG-D archaea within the Thermoplasmata,

and reduced the relative proportion of Hadesarchaea and Bathyarchaeota. Prior disturbances by hydro-

thermal impact or strongmethane seepage, exemplified in the Ringvent sediments (RNVP11), also strongly

differentiated sedimentary archaeal communities from those in background controls. Observed commu-

nity richness in RNVP11 based on rarefaction curves appears reduced throughout much of the core; these

results resembled the outcome of a parallel study using different archaeal primers, and bacterial primers as

well (Teske et al., 2019). Lastly, anoxic bottom waters impinging on the sediment on the upper Sonora

Margin (OMZP12) drive similarities between anoxic surficial sediment at this site and anoxic subsurface

background control sediments. The anoxic redox state of the water-sediment interface may also enhance

archaeal richness estimates in the upper sediment column, potentially by facilitating the pelagic-benthic

transition of archaea or selecting against a bacteria-dominated interface (Xia et al., 2017). In brief, the

archaeal communities of different cores respond in different ways to specific local controls.

Environmental History Determines Ecological Context

The sediment cores shared similar biogeochemical parameters, such as sedimentary TOC, and organic

matter d13C, d15N and C:N ratios. Repeatedly, studies of uncultured microbes in the sedimentary

subsurface tried to correlate community composition with a wide range of biogeochemical or thermal

parameters, in the hope that these linkages provide insights into habitat preference and ecophysiology

of uncultured archaea (Lazar et al., 2015; McKay et al., 2016; Durbin and Teske, 2012). Although this strategy

can yield valuable results, we caution that patterns of archaeal community composition are not determin-

istically linked to biogeochemical parameters alone, rather, the full context of an ecological interpretation

requires that biological and geochemical observations are integrated with the environmental setting and

history of a site. For example, the lighter d13C values of sedimentary organic matter in RNVP11 (trending

toward �22& compared with most values clustering between 20& and 21&), the slightly elevated C:N ra-

tios at this site, increased Si concentrations at depth, or the elevated methane content superimposed on

seawater-like porewater characteristics are not in themselves critical factors that determine biological met-

rics in this core; these factors are significant because they reveal a depositional history of organic-rich sed-

iments overprinted by relatively recent hydrothermalism and methane flux that has left its footprint on the

present-day archaeal community. In another example, the archaeal communities of cores SeepP06 and

OMZP12 would be assumed to be similar, since both sites are rich in sulfide, methane, and DIC and

show rapid sulfate depletion concomitant with methane accumulation; these characteristics indicate

strongly reducing marine seep-like conditions with microbial methane and sulfur cycling by functionally

equivalent microbial communities. However, the distinct environmental settings and histories of these

two cores, at the heavily compacted, seep-influenced base of the Sonora Margin (SeepP06), and under

the persistent oxygen minimum zone waters of the upper Sonora Margin (OMZP12), ultimately select for

different archaeal communities.

Conclusion

In the greater Guaymas Basin and Sonora Margin area, complex geological and oceanographic processes

impose environmental controls on different sedimentary habitats and their archaeal populations relative to

background control sites. In background sediments, archaeal communities vary little with depth after the
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surface/subsurface transition; here, subsurface communities result primarily from long-term survival likely

conferred by relatively reduced mortality (Kirkpatrick et al., 2019). In contrast, localized factors, including

water column anoxia, methane seepage, and hydrothermal circulation, constrain the biodiversity and po-

tential biogeochemical activity of sedimentary Archaea across our benthic survey in specific ways. Overall,

our observations suggest that local sediment biogeochemistry should be viewed in a broader context—

within the history and evolution of a particular site—to reveal its influence on selective survival for certain

lineages and subsequent shaping of the resident archaeal community.

Limitations of the Study

The compositional nature of amplicon-based sequence studies precludes discussion of absolute abun-

dances. Piston coring disturbs small-scale structures near the water-sediment interface; thus, the potential

effect of bioturbation on surficial sediment redox state is not addressed in this study.

Resource Availability
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Data and Code Availability

All sequence data are publicly available at the following repository: NCBI under BioProject PRJNA553578

and accession numbers SRX6444849–SRX6444877.

Geochemical data are available at the BCO-DCO under these reference links:

Porewater methane data: https://www.bco-dmo.org/dataset/661750/data.

Porewater sulfate data: https://www.bco-dmo.org/dataset/661775/data.

Porewater DIC data: https://www.bco-dmo.org/dataset/661658/data.

Porewater sulfide: https://www.bco-dmo.org/dataset/661808/data.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Transparent Methods 31 

 32 

Sample Collection. All samples were collected using piston coring during R/V El Puma 33 

(Universidad Nacional Autónoma de México, UNAM) Expedition Guaymas14 to the Gulf of 34 

California, October 14-27th, 2014. A 5-m long piston core (RNVP11) was obtained on Oct 21, 35 

2014 from the central basin within the ring (27°N30.5090/111°W40.6860, 1749 m; core length 36 

4.9 m), parallel to a control core (ContP10) approx. 1 mile to the west of Ringvent 37 

(27°N30.5193/111°W42.1722; 1731 m depth, 3.93 m core length) collected on the same day. 38 

Core SeepP06 was obtained on Oct. 19 from the lower Sonora Margin, near its boundary with 39 

the Ridge flanks (27°N38.8367/111°W36.8595; 1681 m depth, 3.95 m core length). Core 40 

OMZP12 was taken on Oct. 22 from the upper Sonora Margin (27°N52.1129/111°W41.5902, 41 

667 m, 4 m core length) in the oxygen minimum zone as previously determined by water 42 

column oxygen profiling (Calvert 1964). Core ContP03 was collected on Oct. 17 from the 43 

northwestern end of the ridge flanks (27°N37.6759/ 111°W52.5740; 1611 m depth, 3.27 m 44 

core length. Core ContP13 was obtained on Oct. 22 from the southeastern ridge flank of 45 

Guaymas Basin (27°N12.4470/111°W13.7735, 1859m depth, 3.31 m core length).  46 

 47 

Geochemical Analyses. Porewater was obtained from freshly collected sediments on RV El 48 

Puma by centrifuging ca. 40 ml sediment samples in 50 ml conical Falcon tubes for ca. 5 to 10 49 

minutes, using a Centra CL-2 Tabletop centrifuge (Thermo Scientific) at 1000g, until the 50 

sediment had settled and produced ca. 8 to 10 ml of porewater.  Porewater was extracted from 51 

5 cm thick sediment samples, which are designated by the top of each sample. For example, a 52 

“95 cm” geochemistry sample extends from 95 to 100 cm below the sediment surface. Filtered, 53 

unamended, porewater samples prepared shipboard were stored at 4°C for shored-based 54 

analyses. Sulfate, sulfide, methane, and DIC porewater profiles for cores SeepP06, ContP10, 55 

RNVP11, and  OMZP12 were previously published (Teske et al 2019), and are re-plotted here 56 

for comparison with unpublished profiles from cores ContP03 and ContP13. Porewater 57 

analyses were performed as previously described, using the colorimetric Cline assay for 58 

sulfide, ion chromatography for sulfate, and GC-IRMS for DIC and methane (Teske et al 59 

2019). Carbon and nitrogen isotopic and elemental composition was determined at the Stable 60 

Isotope Laboratory (SIL) at the University of California, Santa Cruz (UCSC).  Bulk sediment 61 

δ15N and elemental ratio data were collected using 20 mg samples in Sn capsules; organic δ13C 62 

and elemental composition data were collected using 2.5 mg samples of acidified sediment in 63 



 3 

Sn capsules.  All samples were measured by Dumas combustion performed on a Carlo Erba 64 

1108 elemental analyzer coupled to a ThermoFinnigan Delt Plus XP isotope ratio mass 65 

spectrometer (EA-IRMS). An in-house gelatin standard, Acetanilide, and an in-house bulk 66 

sediment standard, “Monterey Bay Sediment Standard”, were used in all runs.  Reproducibility 67 

of an in-house matrix-matched sediment standard is <0.1‰ VPDB for δ13C and <0.2‰ AIR 68 

for δ15N. Data is corrected for blank, and for drift when appropriate. Carbon and nitrogen 69 

elemental composition was estimated based on standards of known composition, for which 70 

analytical precision is determined to be better than 1 %. Filtered but unamended porewater 71 

samples, stored at 4°C, were used for quantifying multiple stable ions, including silicate, by 72 

ion chromatography at GEOMAR, Kiel, Germany (Hensen et al 2007). All geochemical data 73 

in this study are publicly available at the Biological and Chemical Oceanography Data 74 

Management Office (BCO-DMO) under the following dataset IDs: 661750, 661658, 66175 75 

and 661808 for methane, DIC, sulfate and sulfide, respectively.  76 

 77 

3. DNA extraction and gene sequencing 78 

Samples for DNA sequencing [approx. 2 cm3 each] were obtained by syringe coring at the 79 

indicated depth [in cm] below the sediment surface. Freshly collected samples were 80 

immediately frozen (-80°C) for storage and transport back to shore. DNA for all survey sites 81 

was extracted from ~0.5-1.0 cm3 sediment sample volumes using the Powersoil DNA 82 

extraction kit according to the manufacturer’s instructions (QIAGEN, Carlsbad, CA, USA). 83 

Archaeal 16S rRNA gene amplicons from DNA extracts were generated using the following 84 

primer set: A751F: 5’-CGA CGG TGA GRG RYG AA-3’ and A1204R: 5’-TTM GGG GCA 85 

TRC NKA CCT-3’using the following thermocycling program: initial denaturation for 2 mins 86 

at 94°C, 30 x [94°C for 1 min, 55°C for 1 min, 72°C for 1 min], and a final 10 min extension 87 

at 72°C, as suggested elsewhere (Baker et al 2003). Amplicons were sequenced on an Illumina 88 

MiSeq platform (Illumina, San Diego, CA, USA) at the Center for Biofilm Engineering in 89 

Bozeman, Montana. Sequencing run specifications are found in the Visualization and Analysis 90 

of Microbial Population Structures (VAMPSs) website 91 

(https://vamps.mbl.edu/resources/primers.php) (Huse et al 2014).    92 

 93 

4. Sequence Processing    94 

Sequences were processed with mothur v.1.39.5 (Schloss et al 2009) following the mothur 95 

Illumina MiSeq SOP (Kozich et al 2013). Briefly, forward and reverse reads were merged into 96 
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contigs and selected based on primer-specific amplicon length and the following parameters: 97 

maximum homopolymers of 6bp, and zero ambiguities. High quality sequences were aligned 98 

against the mothur-recreated Silva SEED v132 database (Yarza et al 2010) and subsequently 99 

pre-clustered at 1% dissimilarity. As suggested elsewhere (Kozich et al 2013), spurious 100 

sequences are mitigated by abundance ranking and merging with rare sequences based on 101 

minimum differences of three base pairs. Chimeras were detected and removed using UCHIME 102 

de novo mode (Edgar et al 2011). Sequences were then clustered, by generating a distance 103 

matrix using the average neighbor method, into operational taxonomic units (OTUs, 97% 104 

similarity cutoff). OTU classification was performed on mothur using the SILVA v132 105 

database as implemented using the classify.seqs command using the Wang algorithm (kmer 106 

assignment with 1/8 kmer replacement as bootstrap) and cutoff=80 (minimal bootstrap value 107 

for sequence taxonomy assignment). All sequence data are publically available at the following 108 

repository: NCBI under BioProject PRJNA553578 and accession numbers SRX6444849- 109 

SRX6444877. 110 

 111 

5. Sequence Analyses  112 

5.1 Community Analyses and Visualizations 113 

Community analyses were performed in RStudio version 0.98.1091 (Racine 2012), 114 

implemented in R version 3.5.2, using the vegan (Oksanen et al 2015) and phyloseq (McMurdie 115 

and Holmes 2013) R-packages. Sample richness analyses used the R package breakaway 116 

(Willis et al. 2017) for inferring precision of diversity estimations given the heterologous 117 

sequencing depth. Data were rlog normalized using DESeq2 (Love et al 2014) prior to 118 

ordination using Bray-Curtis distances. An identical normalization strategy was used on Bray-119 

Curtis distances for co-occurrence network analysis performed using the makenetwork() 120 

phyloseq command and visualized using the igraph R-package. DESeq2 was also used to 121 

perform differential abundance analyses of taxa with low abundance taxa (n < 100 total reads 122 

per OTU) removed for the un-rarefied dataset, as suggested elsewhere (McMurdie and Holmes 123 

2014).  124 

 125 

5.2 Phylogenetic Analyses 126 

Sequence alignments were performed using the high speed multiple sequence alignment 127 

program MAFFT (Katoh and Standley 2013) with the command: mafft --maxiterate 1000 –128 

localpair seqs.fasta > aligned.seqs.fasta. Maximum likelihood trees with 100 bootstrap support 129 

were constructed using the RAxML (Stamatakis 2014) program using the following 130 



 5 

parameters: raxmlHPC -f a -m GTRGAMMA -p 12345 -x 12345 -# 100 -s aligned.seqs.fasta -131 

n T.tree, -T 4 ML search + bootstrapping. Newick trees files were uploaded to FigTree v1.4.2 132 

for visualization.   133 
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Core ID Latitude Longitude Collection  
Date (2014) 

Core Length 
(m) 

Water Depth 
(m) 

ContP3 27°N37.6759 
 

111°W52.5740 Oct. 17 3.27 1611 

SeepP6 27°N38.8367 
 

111°W36.8595 Oct. 19 3.95 1681 

ContP10 27°N30.5193 111°W42.1722 Oct. 21 3.93 1731 

RNVP11  27°N30.5090 111°W40.6860 Oct. 21 4.9 1749 

OMZP12 27°N52.1129 111°W41.5902 Oct. 22 4 667 

ContP13 27°N12.4470 111°W13.7735 Oct. 22 3.31 1859 

 134 
Table S1. Related to Figure 1. Core site metadata.  135 
  136 
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Sample Lokiarchaea 
ContP03_9 0.019% 
ContP03_104 0.007% 
ContP03_202 0.000% 
ContP03_301 0.000% 
SeepP06_5 0.024% 
SeepP06_105 0.009% 
SeepP06_205 0.000% 
SeepP06_304 0.000% 
SeepP06_394 0.000% 
ContP10_5 0.012% 
ContP10_104 0.000% 
ContP10_204 0.000% 
ContP10_303 0.000% 
ContP10_378 0.000% 
RNVP11_5 0.000% 
RNVP11_95 0.020% 
RNVP11_195 0.000% 
RNVP11_295 0.000% 
RNVP11_394 0.000% 
RNVP11_486 0.000% 
OMZP12_5 0.003% 
OMZP12_105 0.000% 
OMZP12_204 0.000% 
OMZP12_304 0.000% 
OMZP12_379 0.003% 
ContP13_5 0.006% 
ContP13_111 0.002% 
ContP13_210 0.000% 
ContP13_310 0.000% 

 137 
Table S2. Related to Figure 6. Percent of total community contribution of Lokiarchaea 138 
sequences in all samples based on SILVA132 taxonomic assignments.  139 
  140 
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 141 
  142 
 143 
 144 
 145 
 146 
 147 
 148 
 149 
 150 
 151 
 152 
 153 
 154 
 155 
 156 
 157 
 158 
 159 
 160 
 161 
 162 
 163 
 164 
 165 
 166 
 167 
 168 
 169 
 170 
 171 
 172 
 173 
 174 
 175 
 176 
 177 

 178 
Table S3. Related to Figure 6. Percent of total community contribution of ANME sequences 179 
in all samples based on SILVA132 taxonomic assignments. The All_ANME column shows the 180 
percent contribution of sequences classified as ANME in each sample. Columns ANME-1, 181 
ANME-2a-2b, and ANME-2c show the percent breakdown of the respective ANME lineages 182 
in each sample and their sum is equal to the All_ANME column percentage. 183 
 184 
 185 
 186 
 187 
 188 
 189 

        
Core_cmbsf All_ANME ANME-1 ANME-2a-2b ANME-2c 
ContP3_009 0.034 0.000 0.000 0.034 
ContP3_104 0.002 0.002 0.000 0.000 
ContP3_202 0.000 0.000 0.000 0.000 
ContP3_301 0.000 0.000 0.000 0.000 
SeepP6_005 0.030 0.018 0.012 0.000 
SeepP6_105 8.863 8.863 0.000 0.000 
SeepP6_205 32.063 32.063 0.000 0.000 
SeepP6_304 32.446 32.440 0.006 0.000 
SeepP6_394 39.810 39.810 0.000 0.000 
ContP10_005 0.111 0.088 0.024 0.000 
ContP10_104 0.092 0.092 0.000 0.000 
ContP10_204 0.003 0.000 0.003 0.000 
ContP10_303 0.447 0.447 0.000 0.000 
ContP10_378 0.000 0.000 0.000 0.000 
RNVP11_005 0.009 0.009 0.000 0.000 
RNVP11_095 0.000 0.000 0.000 0.000 
RNVP11_195 0.988 0.988 0.000 0.000 
RNVP11_295 0.000 0.000 0.000 0.000 
RNVP11_394 0.000 0.000 0.000 0.000 
RNVP11_486 0.000 0.000 0.000 0.000 
OMZP12_005 0.000 0.000 0.000 0.000 
OMZP12_105 0.123 0.121 0.002 0.000 
OMZP12_204 2.098 2.098 0.000 0.000 
OMZP12_304 0.629 0.629 0.000 0.000 
OMZP12_379 0.967 0.967 0.000 0.000 
ContP13_005 0.476 0.429 0.029 0.018 
ContP13_111 0.006 0.002 0.004 0.000 
ContP13_211 0.055 0.012 0.043 0.000 
ContP13_310 0.004 0.000 0.004 0.000 
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Sample Name 

DNA 
yield 
(ng/µL) 

Num. of seqs 
post Mothur 
QC and 
chimera 
removal 

ContP3_9 7 21,443 
ContP3_104 6.9 47,239 
ContP3_202 6.6 16,038 
ContP3_301 9.4 45,559 
SeepP6_5 9 17,196 
SeepP6_105 4.3 11,595 
SeepP6_205 9.1 9,274 
SeepP6_304 9.4 18,043 
SeepP6_394 8 10,047 
ContP10_5 9.2 25,975 
ContP10_104 7.7 12,289 
ContP10_204 8 35,076 
ContP10_303 14.5 29,782 
ContP10_378 7.6 25,682 
RNVP11_5 6.7 11,184 
RNVP11_95 6.7 30,452 
RNVP11_195 7.1 2,978 
RNVP11_295 7 19,515 
RNVP11_394 7.4 14,142 
RNVP11_468 7.9 29,851 
OMZP12_5 7.9 63,690 
OMZP12_105 9 51,384 
OMZP12_204 7.8 167,234 
OMZP12_304 7.3 154,763 
OMZP12_379 8.1 76,729 
ContP13_5 6.6 17,573 
ContP13_111 7.9 47,432 
ContP13_210 6.8 25,989 
ContP13_310 7.3 24,873 

 190 
Table S4. Related to Figure 3. Total DNA yield and high-quality sequence numbers for all 191 
samples.   192 
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 193 
 194 
Figure S1. Related to Figure 3. Breakaway estimate of total species richness with model 195 
confidence intervals for color-coded cored site for all depths.   196 
  197 
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 198 
 199 
Figure S2. Related to Figure 6. Methanomicrobia community composition for all cores in this 200 
survey. 201 
  202 



 12 

 203 
Works Cited 204 
Baker GC, Smith JJ, Cowan DA (2003). Review and re-analysis of domain-specific 16S 205 
primers. J of Microbiol Meth 55: 541-555. 206 
 207 
Calvert SE (1964). "Factors affecting distribution of laminated diatomaceous sediments in the 208 
Gulf of California" In Marine Geology of the Gulf of California, Vol. 3, eds. T.H. van Andel 209 
and G.G. Shor, (Tulsa: American Association of Petroleum Geologists Memorir) 3: 311-330. 210 
 211 
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011). UCHIME improves sensitivity 212 
and speed of chimera detection. Bioinformatics 27: 2194-2200. 213 
 214 
Hensen C, Nuzzo M, Hornibrook E, Pinheiro LM, Bock B, Magalhães VH et al (2007). Sources 215 
of mud volcano fluids in the Gulf of Cadiz—indications for hydrothermal imprint. Geochim et 216 
Cosmochim Acta 71: 1232-1248. 217 
 218 
Huse SM, Mark Welch D, Voorhis A, Shipunova A, Morrison HG, Eren AM et al (2014). 219 
VAMPS: a website for visualization and analysis of microbial population structures. BMC 220 
Bioinformatics 15. 221 
 222 
Katoh K, Standley DM (2013). MAFFT multiple sequence alignment software version 7: 223 
improvements in performance and usability. Mol Biol Evol 30: 772-780. 224 
 225 
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013). Development of a 226 
dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on 227 
the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79: 5112-5120. 228 
 229 
Love MI, Huber W, Anders S (2014). Moderated estimation of fold change and dispersion for 230 
RNA-seq data with DESeq2. Genome Biol 15: 550. 231 
 232 
McMurdie PJ, Holmes S (2013). phyloseq: an R package for reproducible interactive analysis 233 
and graphics of microbiome census data. PLoS One 8: e61217. 234 
 235 
McMurdie PJ, Holmes S (2014). Waste not, want not: why rarefying microbiome data is 236 
inadmissible. PLoS Comput Biol 10. 237 
 238 
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB et al (2015). vegan: 239 
Community Ecology Package. R Package Version 2.2-1. Available online at: http://CRANR-240 
projectorg/package=vegan. 241 
 242 
Racine JS (2012). RStudio: A Platform-Independent IDE for R and Sweave. Journal of Applied 243 
Econometrics 27: 167-172. 244 
 245 
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009). 246 
Introducing mothur: open-source, platform-independent, community-supported software for 247 
describing and comparing microbial communities. Appl Environ Microbiol 75: 7537-7541. 248 
 249 
Stamatakis A (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of 250 
large phylogenies. Bioinformatics 30: 1312-1313. 251 
 252 



 13 

Teske A, McKay L, Ravelo AC, Aiello I, Mortera C, Núñez-Useche F et al (2019). 253 
Characteristics and evolution of sill-driven off-axis hydrothermalism in Guaymas Basin- the 254 
Ringvent site. Scientific Reports 9. 255 
 256 
Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glöckner FO et al (2010). Update of 257 
the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl 258 
Microbiol 33: 291-299. 259 
 260 
 261 


	ISCI101459_proof_v23i9.pdf
	The Guaymas Basin Subseafloor Sedimentary Archaeome Reflects Complex Environmental Histories
	Introduction
	Results
	Sediment and Porewater Geochemistry
	Diversity of the Guaymas Basin Archaeome
	Network Analysis
	Community Composition
	Differential Taxon Abundance Estimations across Ecological Niches

	Discussion
	Complex Determinants of Archaeal Ecosystem Structure
	A “Forest View” of Archaea in Guaymas Basin Sediments
	Ecological Comparisons: Differentially Abundant Taxa across Sedimentary Habitats
	Near-Surface versus Subsurface Sediment Niches
	OMZ versus Control Sediment
	Ringvent versus Control Sediment
	Seep versus Control Sediment
	Core-Specific Features of the Benthic Archaeome

	Environmental History Determines Ecological Context
	Conclusion
	Limitations of the Study
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability


	Methods
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References



