Analysis of the Surface Mass Balance for Deglacial Climate Simulations.

Kapsch, Marie-Luise , Mikolajewicz, Uwe, Ziemen, Florian Andreas , Rodehacke, Christian B. and Schannwell, Clemens (Submitted) Analysis of the Surface Mass Balance for Deglacial Climate Simulations. Open Access The Cryosphere . DOI 10.5194/tc-2020-173.

tc-2020-173.pdf - Submitted Version
Available under License Creative Commons: Attribution 4.0.

Download (20Mb) | Preview

Supplementary data:


Most studies analyzing changes in the surface mass balance (SMB) of the Greenland ice sheet are limited to the last century, due to the availability of observations and the computational limitations of regional climate modeling. Using transient simulations with a comprehensive Earth System Model (ESM) we extend previous research and study changes in the SMB and equilibrium line altitude (ELA) for deglacial climate conditions. An energy balance model (EBM) is used to downscale atmospheric processes. It determines the SMB on higher spatial resolution and allows to resolve SMB variations due to topographic gradients not resolved by the ESM. An evaluation for historical climate conditions (1980–2010) shows that derived SMBs compare well with SMBs from regional modeling. Throughout the deglaciation changes in insolation dominate the Greenland SMB: 1) The increase in insolation and associated warming early in the deglaciation result in an ELA and SMB increase. The SMB increase is caused by compensating effects of melt and accumulation, as a warmer atmosphere precipitates more. After 13 ka before present (BP) melt begins to dominate and the SMB decreases. 2) The decline in insolation after 9 ka BP leads to an increasing SMB and decreasing ELA. Superimposed on these long-term changes are episodes of significant SMB/ELA decreases, related to slowdowns of the Atlantic Meridional Overturning Circulation (AMOC) that lead to cooling over most of the Northern Hemisphere. To study associated changes in the ice sheet geometry, the SMB data set is made available to the ice sheet modeling community.

Document Type: Article
Refereed: Yes
Open Access Journal?: Yes
DOI etc.: 10.5194/tc-2020-173
ISSN: 1994-0416
Projects: PalMod
Date Deposited: 16 Sep 2020 12:43
Last Modified: 16 Sep 2020 12:43

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...