
Scalable and Interactive
Real-Time Visualization

of Time Series Data

Bachelor’s Thesis

Tim Koch

September 28, 2020

Kiel University

Department of Computer Science

Software Engineering Group

Advised by: Prof. Dr. Wilhelm Hasselbring
Sören Henning, M.Sc.

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel, 28. September 2020

iii

Abstract

Time series data is everywhere. Everything that can be measured can be measured over
time, which forms the definition of time series data. Visualization helps in perceiving this
data by reducing the cognitive load. Interaction with the data can lead to an even better
experience for users.

This thesis evaluates an approach of an interactive and scalable visualization of time
series data. The approach consists of enhancing an existing visualization library and adding
new features to meet the requirements. The library already supports real-time visualization
and the postulated support for user interactions. To enable its scalability, a cache to reduce
bandwidth load is integrated. Moreover, prefetching algorithms increase the performance
of the solution.

After introducing the approach, this thesis also describes its integration into an existing
web application. On this integration a feasibility and performance evaluation is conducted,
which shows its advantages over the current version of the web application. Additionally,
it proves the support for interactions like panning and zooming in the chart, as well as
a real-time functionality. Moreover, the presented solution is scalable and does not show
performance weaknesses in our test scenarios.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2

1.2.1 G1: Enhanced Interactivity by Dynamic Data Loading 2
1.2.2 G2: Real-Time Functionality . 2
1.2.3 G3: Scalability and Performance . 2
1.2.4 G4: Integrate Approach into the Titan Control Center Frontend 3
1.2.5 G5: Rewrite CanvasPlot as TypeScript Code 3

1.3 Document Structure . 3

2 Foundations and Technologies 5
2.1 Industrial DevOps . 5
2.2 The Industrial DevOps Platform Titan . 5

2.2.1 Titan Control Center Architecture . 6
2.2.2 Titan Control Center Frontend . 7

2.3 The Web Frontend Framework Vue.js . 9
2.4 The Visualization Library D3 . 10
2.5 The Plotting Library CanvasPlot . 10
2.6 The TypeScript Programming Language . 11

3 Evaluation of a Base Approach 13
3.1 Evaluation Criteria . 13

3.1.1 Framework Criteria . 13
3.1.2 Conceptual Criteria . 14

3.2 Evaluated Approaches . 15
3.2.1 The System Management Visualization Tool LiveRAC 15
3.2.2 Interactive Visualization Tool ATLAS for Large Time Series Data . . . 15
3.2.3 The Visual Exploration System ForeCache 16
3.2.4 The Customized D3-Wrapper CanvasPlot 17

3.3 Evaluation of Possible Base Approaches . 18

4 Visualization Approach 21
4.1 Requirements for Dynamic Data Loading . 21

4.1.1 Features to Maintain in the Titan Control Center 21
4.1.2 Features yet to be Implemented into the Titan Control Center 21

4.2 Approach for a Scalable and Interactive Visualization 22

vii

Contents

4.2.1 Architectural Design . 22
4.2.2 Data Flow . 22
4.2.3 Conceptual Approach to Meet the Requirements from Section 4.1 . . 23
4.2.4 Approach to Enhance Scalability . 23

4.3 Approach for Migrating to TypeScript . 24

5 Implementation 25
5.1 Migration of CanvasPlot to TypeScript . 25

5.1.1 Split CanvasPlot into Two Files . 25
5.1.2 Introduce TypeScript’s Class Inheritance for CanvasPlot 25
5.1.3 Add Types to CanvasPlot . 26

5.2 Implementation of a Scalable and Interactive Solution 26
5.2.1 Implementation of the Class and File Structure 26
5.2.2 Implementation of the DownloadManager 27
5.2.3 Implementation of the Zoom Handler 28
5.2.4 Caching the Data . 28
5.2.5 Retrieving Data Points from the Cache 30

5.3 Integration of Jest as a Test Framework . 30
5.3.1 Testing the Injection of Non-Overlapping Intervals 31
5.3.2 Testing the Calculation of Uncached Time Periods 31

6 Evaluation 33
6.1 Evaluation Environment . 33
6.2 Evaluation of Feasibility . 33

6.2.1 Methodology . 33
6.2.2 Results and Discussion . 35
6.2.3 Threats to Validity . 37

6.3 Evaluation of Performance . 38
6.3.1 Methodology . 38
6.3.2 Results . 38
6.3.3 Discussion . 40
6.3.4 Threats to Validity . 41

7 Related Work 43

8 Conclusions and Future Work 45
8.1 Conclusions . 45
8.2 Future Work . 46

8.2.1 Future Work within our Solution . 46
8.2.2 Future Work within the Titan Control Center 46
8.2.3 Future Work within the Field of Scalable Visualizations 46

viii

Contents

Bibliography 47

ix

Chapter 1

Introduction

Time series data is a key component in engineering, business, and science. Providing
visual representations for this type of data helps people to better interpret the inherent
information. Line charts are widely used as such visualizations of data. To automate the
process of converting time series data into charts, a programmatical approach can be
valuable. Many frameworks and libraries have been published for this reason. Enabling
the user to interact with the charts can improve the user experience and thus enhance the
benefit of those charts. This interaction can be, for example, zooming through multiple
detail levels and temporal resolutions.

The informativeness can be further improved by using real-time data. Therefore, visual-
ization tools have to cope with the inherent challenges of processing real-time data. While
providing this feature, such tools should still scale well with big amounts of data. This
includes handling scaled data performantly as well as reducing the amount of displayed
data to a human-perceivable level.

1.1 Motivation

The Titan project is a research project on how to transfer the DevOps approach into
industrial production environments such as factories [Hasselbring et al. 2019]. DevOps is
the concept of bundling development and operation of software closer [Lwakatare et al.
2015]. It especially aims at reducing release cycle times.

Within this project, the Titan Control Center serves as a platform for monitoring and
analyzing the Industrial DevOps processes [Henning et al. 2019]. It provides an information
dashboard [Few 2006] built as a single-page application with Vue.js [You 2014]. Among
others, it uses time series charts to visualize power consumption data from the connected
industrial environment. The charts are rendered using the CanvasPlot1 visualization library.

The current implementation meets most of the requirements for informative time series
charts mentioned above. Still, there are possible improvements to introduce. In this thesis
we are aiming at the scalability and interactivity. The charts used in the Control Center are
already interactive in a way that the user can zoom into the chart to see different detail
levels. Despite that, the system fetches the data points to display only once, which happens
on the initial page load. Because downloading all data points from the underlying database

1https://github.com/a-johanson/canvas-plot

1

1. Introduction

would be impossible for large data sets, only data points for a specific interval are fetched.
By default configuration, this interval includes the last 60 minutes. That is why older data
can only be made visible by selecting a past date and time in a dedicated input form. This
configuration could of course be modified to a bigger interval, but this approach would
not be scalable.

The motivation of this thesis is to find and implement an approach to dynamically load
data when needed. This includes loading data for other periods when zooming out, as well
as loading a higher resolution of data for the given period when zooming in. The objective
is to enable this feature without decreasing the performance of the chart tool.

1.2 Goals

The overall goal of this thesis is to evaluate an approach to enhance the interactivity of time
series charts. Given that, the approach is to be implemented into the Titan Control Center.

1.2.1 G1: Enhanced Interactivity by Dynamic Data Loading

The existing solution including CanvasPlot is missing a functionality to dynamically load
additional data points. The first goal of this thesis is to implement this feature. There are
two main reasons for this goal. It enhances the user experience since the user will be able to
see data for a time period longer than one hour. With that, it also supports data comparison
over a longer period, which is an essential part of analyzing time series data.

1.2.2 G2: Real-Time Functionality

The current state of implementation already enables real-time visualization. While imple-
menting 1.2.1, this behavior shall not be discarded because of its benefit for monitoring
production environments in real-time.

1.2.3 G3: Scalability and Performance

When implementing the dynamic loading feature, scalability is important to keep the
solution interactive under massive loads. Missing performance could render the achieve-
ments in interactivity useless. We have to assure that only a reasonable amount of data
is (dynamically) loaded into the application. For example, it would inevitably lead to
decreased performance, if we loaded data points for each second over periods of weeks or
months.

2

1.3. Document Structure

1.2.4 G4: Integrate Approach into the Titan Control Center Frontend

After fulfilling the goals G1, G2, and G3, we will integrate a prototype into the Titan
Control Center. Therefore, the prototype is integrated into a git fork of the Control Center
Frontend, whereafter we create a merge request.

1.2.5 G5: Rewrite CanvasPlot as TypeScript Code

The code of CanvasPlot uses ECMAScript 5 (short ES5), a JavaScript version that does not
support classes. There are multiple reasons to convert this code to a TypeScript class with
ES6. Firstly, almost all of the frontend components within the Titan project are written
in TypeScript. So converting the CanvasPlot would strongly contribute to a consistent
code base of the whole project. Secondly, TypeScript provides the advantage of static
type-checking. Moreover, the code can be cleaned up using classes and arrow functions
from ES6 [Saboury et al. 2017].

1.3 Document Structure

Following this introductory chapter, we present the technologies and foundations used in
this thesis in Chapter 2. Thereafter, suitable base approaches to build our solution upon are
evaluated in Chapter 3. This includes identifying reasonable criteria the candidates have to
meet, as well as introducing the approaches, and the final appraisal.

Then, we describe the approach for our solution in Chapter 4. We therefore determine
requirements the final solution has to meet and then derive an approach from them. In
Chapter 5 we describe how we integrate our approach into the Titan Control Center fron-
tend. Following the implementation, we conduct a feasibility and performance evaluation
in Chapter 6. Related work is presented in Chapter 7 before we end with drawing a
conclusion and reviewing possible future work in Chapter 8.

3

Chapter 2

Foundations and Technologies

The following sections introduce foundations and technologies, which are used in the
thesis. Section 2.1 describes the Industrial DevOps approach and Section 2.2 details the
Titan platform. Moreover, the web framework Vue.js is introduced in Section 2.3. Then, the
visualization library D3 and the plotting library CanvasPlot are introduced in Section 2.4
and Section 2.5 respectively. Finally, we present the TypeScript programming language in
Section 2.6.

2.1 Industrial DevOps

Traditionally, the development of software is separated from its operation. This approach,
however, complicates the communication, collaboration, and integration. DevOps is the
concept of bundling development and operation of software closer [Lwakatare et al. 2015].
That helps developers and maintainers to work effectively and seamlessly.

Arising from the DevOps concept, Industrial DevOps is the same concept brought to
industrial production environments [Hasselbring et al. 2019]. It proposes to transfer the
methods and culture of DevOps and apply them to environments such as factories. To
accomplish the goals of this concept, the development process in Industrial DevOps should
be a cyclic, continuous adaptation process. Within the process, the system is monitored and
analyzed during its operation. Then, new requirements are identified based on the analysis
result. Finally, adaptions to meet the new requirements are implemented and monitored
again. Crucial to the implementation phase is continuous integration to react flexibly on
new requirements [Henning et al. 2019].

2.2 The Industrial DevOps Platform Titan

The goal of the Titan research project is to build a software platform for integrating and
monitoring industrial production environments using Industrial DevOps [Hasselbring et al.
2019]. Skilled employees shall be empowered to modify the work flows using flow-based
programming [Morrison 2010]. Thus, no dedicated programmer is needed to apply small
changes in the system [Hasselbring et al. 2019].

5

2. Foundations and Technologies

<<microservice>>

Sensor

Management

Visualization I

<<microservice>>

Forecasting
<<microservice>>

Anomaly

Detection

<<microservice>>

Statistics
<<microservice>>

History
<<microservice>>

Aggregation
<<edge component>>

Integration

Visualization II

REST

Figure 2.1. The architecture of the Titan Control Center [Henning et al. 2020]

2.2.1 Titan Control Center Architecture

Within the Titan research project, the Titan Control Center is a system for integrating,
analyzing, and visualizing power consumption data from various sources within industrial
production [Henning et al. 2020]. Its architecture is presented in Figure 2.1.

The system is built using the microservice pattern [Hasselbring and Steinacker 2017].
Loosely coupled services are responsible for handling different tasks that run in isolated
containers and do not share any state. Power consumption data is imported using the
Integration component, which converts the data into a standardized format used in the
whole approach [Henning 2018].

The Aggregation service is used to group the power consumption data of multiple
devices and thus provide aggregated data. Three more services conduct their own analyses
on the data. While the Statistics service provides statistical information like trends in the
data, the Anomaly Detection service is used for monitoring possible anomalies. Boguhn
[2020] also implemented a Forecasting service.

In order to publish the recorded data within the system, the History service provides
access to the database in the form of an API. Currently, four different endpoints exist. One
is used for power consumption data of single devices and the second is used for group of
devices. The two other endpoints are used to provide temporal aggregated data for both
single and grouped devices. Those two endpoints provide minutely and hourly power
consumption data. More endpoints for other temporal aggregation levels can be added.

6

2.2. The Industrial DevOps Platform Titan

Figure 2.2. Screenshot of the Titan Control Center Frontend

2.2.2 Titan Control Center Frontend

In addition to the microservices used in the Titan Control Center and described in Sec-
tion 2.2.1, the system also contains two visualization components. In this thesis, we con-
centrate on the first component, which we refer to as the Titan Control Center Frontend.
It is a web based frontend to monitor and analyze the recorded power consumption data
[Henning et al. 2019]. The single-page application built with Vue.js displays multiple charts
with data for the power consumption of production environments. A screenshot of the
Titan Control Center Frontend is shown in Figure 2.2.

The Current Architecture in the Titan Control Center

This paragraph introduces the architecture of the Titan Control Center Frontend. It consists
of multiple pages, where three of them display time series charts. Those three pages are
the landing page, a sensor details page, and a page providing a comparison chart.

The landing page and the sensor details page both delegate the chart drawing to the
SensorHistoryPlot component, while the comparison page uses the ComparisonPlot compo-
nent. Both the SensorHistoryPlot and the ComparisonPlot are wrapper components for the
visualization library CanvasPlot, which is introduced in Section 2.5. The SensorHistoryPlot

additionally uses the MovingTimeSeriesPlot as a manager to handle updates of the data
displayed by CanvasPlot. An excerpt of the software architecture within the Titan Control

7

2. Foundations and Technologies

Landing Page Comparison PageSensor Details Page

SensorHistoryPlot

ComparisonPlot

CanvasPlot

MovingTimeSeriesPlot

<<use>>

<<use>>

<<use>>

<<use>><<use>>

<<use>>

Figure 2.3. Excerpt of the Control Center Frontend architecture

Center Frontend is outlined in Figure 2.3.

The Data Flow of the ComparisonPlot

Both the SensorHistoryPlot and the ComparisonPlot described in the paragraph above
handle the download of data points themselves, without any delegation to dedicated
components.

The ComparisonPlot fetches data whenever a new device or device group is added to the
comparison. It then issues a HTTP GET request against the backend. The exact endpoint
depends on whether the added entity is an device or a group of devices. The query contains
a filter, so that only data points from within the last hour are fetched. After the response
containing the data points arrives, ComparisonPlot calls CanvasPlot to let it draw the new
data points. This sequence is displayed in Figure 2.4.

8

2.3. The Web Frontend Framework Vue.js

Comparison
Plot

Backend
Services

CanvasPlot

Actor

HTTP Get Request

addDataSet

HTTP Response

fetchNewData

addDataSet

Add Device

Figure 2.4. Sequence diagram for adding a device to the ComparisonPlot

The Data Flow of the SensorHistoryPlot

More logic is involved in the SensorHistoryPlot. Loading the page, it fetches data points
similar to the ComparisonPlot. Which device the data is fetched for is defined externally.
On the root page, aggregated data for all devices are fetched, while the device can be
set specifically on the sensor details page. When the response from the backend arrives,
SensorHistoryPlot calls its manager MovingTimeSeriesPlot, which then saves the data
points and calls CanvasPlot to display the data.

In order to support real-time analyses of the data, SensorHistoryPlot uses a repeater
which fetches new data points every second. These queries contain a filter that forces
the backend to only respond with the data points recorded since the last fetch. The
responses on those repeated queries then invoke an update of the stored data points in the
MovingTimeSeriesPlot, which again updates CanvasPlot.

2.3 The Web Frontend Framework Vue.js

Vue.js (or just Vue) is a JavaScript framework aiming at building user interfaces [You 2014].
It does so by building single-page applications (SPA). SPAs are applications that run in

9

2. Foundations and Technologies

the user’s web browser in the form of a single web page. User interactions that lead to
displaying a new page are not realized by loading a new page from a server, but instead by
rendering it directly in the browser. That is why SPAs are client-side rendered applications
by definition. However, these applications can still communicate with a server. As an
example, this can be used to fetch more data to display. In sophisticated applications, the
client can even load more chunks of JavaScript that were not included in the first response.
This enables smaller and thus faster frontends.

Vue.js encourages a component-based code structure with largely independent com-
ponents. That means, a Vue component includes its own logic as well as its own layout
and design. This encapsulation helps making the components vastly reusable and allows
a structure of composed Vue components. Components may contain other components,
which leads to a hierarchical structure with one root component containing all other
components [Ehrenstein 2019].

The framework also provides a sophisticated data flow model. Data exchange and thus
communication is only allowed between a parent and a child component. A data flow
between siblings is impossible to prevent cyclic dependencies. Moreover, children can only
emit events to their parent components but are not allowed to change the parent’s state.

This data flow model is also used in Vue’s concept of directives. Directives allow
developers to bind logic to layout elements. Thus, the state of elements can be bound to
variables for example.

2.4 The Visualization Library D3

The Titan Control Center uses the data-visualization framework D3 for its charts [Bostock
2020]. Its approach is to bind data to a Document Object Model (DOM) and make it accessible
for data-driven transformations. By making the visualization objects accessible, D3 provides
flexibility and enables the control with the full tool set of web standards such as HTML,
CSS and SVG. Beside that, D3 is also considered a very fast visualization tool [Bostock et al.
2011]. It also supports dynamic interactions, large data sets, and animations.

2.5 The Plotting Library CanvasPlot

CanvasPlot was built following a research on how to visualize large data sets efficiently
[Johanson et al. 2016]. It is a library that extends the visualization library D3. CanvasPlot
provides a simplified API to efficiently use a subset of the D3 plot types including a time
series plot. Rendering underlying elements needed to display a sophisticated chart (e.g.,
labels or a grid) are managed by the library, which further simplifies its usage. Moreover it
handles user interactions and assures a performant displaying process.

The code of CanvasPlot implements the JavaScript-typical prototypal inheritance [Eshke-
vari et al. 2017]. One base function CanvasDataPlot provides base functionality. Several

10

2.6. The TypeScript Programming Language

Figure 2.5. Screenshot of the ComparisonPlot within the Titan Control Center Frontend

children implement different visual representations like a time series chart or a vector
diagram.

In the Titan Control Center Frontend introduced in Section 2.2.2, CanvasPlot is cur-
rently used for two different purposes. Firstly, it displays a graph representing the power
consumption of either aggregated devices or single devices, depending on what the user
enters in an external input field. Secondly, CanvasPlot can be used to display comparisons
of either aggregated or single devices. Therefore, two or more graphs are plotted into the
same chart. A screenshot of this ComparisonPlot is shown in Figure 2.5.

2.6 The TypeScript Programming Language

TypeScript is a typed superset of JavaScript [Bierman et al. 2014]. Because of this superset
relation, every JavaScript program is a TypeScript program. TypeScript enriches JavaScript
by adding a static type system, classes, interfaces, and a module system. However, the type
system’s types are optional, in order to keep the flexibility of JavaScript and to migrate
from JavaScript to TypeScript in a gradual way [Feldthaus and Møller 2014]. It is to note
that TypeScript’s static type system does not provide strict type safety at run time. This is
also to keep the system nonrestrictive.

TypeScript code can be transpiled to JavaScript code, which can run in all ecosystems
that handle JavaScript. This shallow translation process converts each TypeScript expression
into its representation in JavaScript.

11

Chapter 3

Evaluation of a Base Approach

The main goal of this thesis is to develop a solution for scalable and interactive real-time
visualization of time series data. In order to fulfill this goal, we have to assess related work
in this field and identify one framework to build our approach upon.

For this purpose, we elaborate evaluation criteria in order to choose the best suiting
framework for our needs. Every solution is then reviewed based on these criteria.

3.1 Evaluation Criteria

We identified two groups of criteria to evaluate frameworks with. The first group consists
of framework criteria, which allow us to assess the ability of the solutions to serve as a code
framework for our goal. The second group describes the conceptual criteria of the given
solutions. This enables us to adapt concepts from one or more previous solutions without
necessarily using their code frameworks.

3.1.1 Framework Criteria

The framework criteria are used to assess frameworks based on their ability to serve as a
base framework for our goals. The following criteria are summarized in Table 3.1.

License represents the license under which the framework is provided. This license should
enable us to use and modify the framework free of charge.

Open Source indicates whether the source code of the framework is public. This can be
useful in order to conduct minor changes, in the case of a license that allows modifying
the code base.

Language defines the language of the framework. In order to fit into the code base of the
Titan Control Center, a TypeScript framework is recommended.

Release Date represents the release date of the latest corresponding scientific paper. Not
taking the software’s release date but the release date of the paper occurred to be useful,
because all of the evaluated frameworks were developed for scientific use only.

13

3. Evaluation of a Base Approach

Table 3.1. Evaluation criteria

Criterion Value Range Requirements

Framework Criteria

License License name non-proprietary

Open source yes / no yes

Language Language name TypeScript

Release date Date newer than 2015

Conceptual Criteria

Time series capability yes / no yes

Interactivity Description of supported actions Zooming, Panning

Real-time capability yes / no yes

Scalability Description of scalability goal Support large time series data

3.1.2 Conceptual Criteria

In order to provide a more granular ranking for the base solutions, conceptional criteria
are used in addition to the framework criteria.

Time Series Capability indicates whether the base approach supports the visualization of
time series data.

Interactivity determines the ability of the evaluated approach to provide interactive charts.
Especially the possibility to zoom through multiple resolution levels and to pan in the
visual representation of the data is a key requirement for our approach. This criterion
supports goal G1 (Section 1.2.1).

Real-Time Capability indicates, whether the solution is able to display real-time data. Visu-
alizing real-time data of power consumption is a desired feature in the Titan Control
Center, which is already implemented and shall be kept. This criterion supports Goal
G2 (Section 1.2.2).

Scalability represents the scalability of the solution under evaluation. It is to note that this
shall only decide, whether a solution aims at providing scalability. Evaluating up to
which exact limit a solution scales well is not in the scope of this thesis. Scalability is

14

3.2. Evaluated Approaches

here meant in terms of analyzed data, not the amount of users the system is capable to
serve concurrently. This criterion supports goal G3 (Section 1.2.3).

3.2 Evaluated Approaches

In this section we present four solutions that have been used for similar use cases.

3.2.1 The System Management Visualization Tool LiveRAC

LiveRAC is a visualization system that was built to analyze large collections of system
management time series data [McLachlan et al. 2008]. Its goal is to provide high information
density, while allowing the users to zoom into group of charts in order to obtain a
detailed insight. This zooming from condensed information into fully qualified visual
data representation is called semantic zooming. Semantic zooming is not scaling views
proportionally, but instead adding or removing properties of the visual representation. It
thus balances the view on a good level of information density, between being nearly empty
and being overloaded.

This technique is already used in the current implementation of the Titan Control Center.
When users zoom into the provided time series charts, it begins to show circles for each
data point, which disappear again on a lower zoom level. Hovering over those circles with
the mouse, boxes show the x and y value of the data point. Thus, semantic zooming allows
to provide more information when enough space is given, and prevents overloaded UI
elements.

Unfortunately, LiveRAC does not implement semantic zooming as zooming by scrolling
with a mouse or a touch pad. It allows the user to choose the shown time interval by using
two date input fields. Moreover, it is scalable in a way that the application never freezes
and always shows indicators when data is fetching. But it neither implements caching
algorithms nor other techniques to minimize data fetching time when zooming through
different detail levels.

This is why LiveRAC aims to solve the same goals as this thesis, but does not serve
well as a base framework for our solution. Additionally, the solution was built using Java,
which does not fit into the TypeScript code base of the Titan Control Center.

3.2.2 Interactive Visualization Tool ATLAS for Large Time Series Data

ATLAS is a visualization tool for displaying temporal data [Chan et al. 2008]. It uses several
techniques to accomplish its main goal of enabling smooth interactions in massive time
series data sets. The corresponding paper defines smooth interactions as fluid behaviour
for operations like panning and zooming.

The researchers propose a solution consisting of three components. The database system
has to store massive data sets and, more importantly, has to enable data fetching with

15

3. Evaluation of a Base Approach

the lowest possible latency. Every latency would impede the goal of smooth interactions.
ATLAS uses kdb+, an in-memory database with high performance in time series data
[Kapadiya 2018]. As the second component, a query distribution server handles the load
balancing of database queries. Its job is to minimize both the query time in the database
and the transfer time to the frontend.

The third component is the visual interface, which displays charts with the data fetched
from the database system. Within one chart the user can zoom in, zoom out, pan left, and
pan right.

Crucial to the ATLAS concept is its technique of predictive caching. It effectively
hides the system latency arising from querying and fetching data from the backend. The
researchers observed that interactions in the charts are likely to carry momentum, which
means, for example, that users are likely to continue panning left once started. This
observation is key to their predictive caching algorithm. Setting a maximum operation
speed for panning and zooming, the algorithm can simply calculate when the end of the
prefetched interval is reached. Based on this calculation it issues new queries to fetch data
before the user reaches areas where no data is fetched yet. ATLAS also approximates the
query time, which enables the system to fetch the data not earlier than it is needed, which
again serves well in scalability and performance.

Because ATLAS is not a framework, we can not build our solution upon it. But in-
stead we will take its predictive caching algorithm into consideration to benefit from its
performance.

3.2.3 The Visual Exploration System ForeCache

ForeCache is a visualization system for exploring aggregate views of data [Battle et al.
2014]. The system consists of a three-tier architecture containing a visual interface, a
middleware layer for caching, and a backend layer with a database management system.
The corresponding paper describes how the system can be used for spatial data.

ForeCache’s core concept is the usage of so-called chunks, which represent non-
overlapping subsets of data. Multiple layers of chunks enable users to zoom through
different resolution levels. Each layer spans over the complete data set, which means that
every point in the data set is available in all possible resolution levels.

The visual interface provides a viewer for the spatial data, which allows the user to pan
and zoom. Panning is possible in the four directions up, down, left, and right. Zooming
in allows to display a higher resolution, while zooming out displays less details but at a
greater scale. When the user conducts an operation in the viewer, the frontend issues data
queries to the middleware in order to receive the data to display in the requested areas.

ForeCache’s middleware receives the data queries from the frontend and again dis-
patches the query to the backend layer. It also serves as a cache for the system to speed up
repeated queries. The backend computation layer handles the data storage of the system
using a database management system. It also computes the chunks from the raw data in
multiple layers.

16

3.2. Evaluated Approaches

In order to keep its interactivity, ForeCache uses prefetching to dynamically load chunks
of data. It therefore works with multiple models to predict which chunks to fetch and in
which order. The first model is the momentum model, which assumes that a user is likely
to continue its operation in the spatial view. ATLAS uses a similar assumption [Chan et al.
2008]. Secondly, ForeCache integrates the hotspot model. This model uses tracking data
of past user sessions and identifies popular chunks of data that were queried more often
than others. Using this data, a hotspot data chunk to the right of the current view could be
fetched earlier than a data chunk below of the current view, even if the momentum of the
operation points downwards.

As a third model, ForeCache applies the n-gram model. It tries to identify probable
interaction patterns by storing and analyzing past interactions as word sequences, or
n-grams. ForeCache currently uses 2-length and 3-length n-grams, which could be ("down",
"right") and ("down", "down", "right") respectively. Note that ForeCache is built to handle
spatial data, which is why the directions represent the directions of panning in the data.
The n-gram model thus tries to predict popular interaction patterns and load chunks of
data accordingly.

Two more models used by ForeCache are the normal model and the histogram model.
Their goal is to predict how users can move between clusters of chunks, which is not fully
handled by the previous models. Both of them use statistical methods to achieve this goal.
We will not discuss those models in detail because they specifically aim at spatial data and
not at time series data.

Which chunks are prefetched at a specific point of time is determined by combining the
results of all five prediction models. Each model ranks the possible chunks to load in a list.
These lists then get merged into a final ranking, which determines the chunks to be loaded
from the backend. Users may assign weights to the models, which specify their impact on
the final ranking. Thus, the system provides functionality to modify the prefetch process
based on personal experience.

3.2.4 The Customized D3-Wrapper CanvasPlot

CanvasPlot is introduced in Section 2.5. The scope of the following text is to evaluate it
based on the criteria described above.

Users can navigate in the displayed time series charts. Zooming by mouse wheel allows
them to analyze different temporal resolutions of data, however, data is not dynamically
fetched based on the zoom level. It also enables semantic zooming like LiveRAC (see
Section 3.2.1). In this case, CanvasPlot shows boxes with detail information on each data
point, whenever there are very few data points displayed. If there are too many data points
displayed to show detail boxes on each point, then those boxes disappear. Panning left and
right helps to navigate within one specific temporal resolution level.

Real-time functionality is added by another wrapper, built into the Titan Control Center.
The Wrapper is requesting the latest data from the server in constant intervals. This interval
is currently set to 1000 milliseconds. If new data points are available they are inserted into

17

3. Evaluation of a Base Approach

visualization graph. The graph then moves forward if the latest data points from before the
download were in the displayed interval. This ensures that the graph always shows the
real-time data if the user watches it, but does not move when the user analyzes historical
data. Unless otherwise stated, we refer to CanvasPlot as the core JavaScript library in
conjunction with its Titan wrapper.

3.3 Evaluation of Possible Base Approaches

Table 3.2 shows an overview of the presented frameworks and solutions. Because Canvas-
Plot is the only open source framework among the evaluated solutions, we will use it as a
base framework for our thesis.

It is then to determine, which concepts of the other solutions shall be adapted and
implemented into the Titan Control Center. Three of the four conceptual criteria are already
met by CanvasPlot. It provides time series capability as well as real-time capability. The
interactivity goals from Section 1.2.1 are also accomplished by CanvasPlot.

This leads to the conclusion that only those concepts have to be adopted that provide
scalability enhancements to the system. Therefore, the sophisticated predictive caching
models of ForeCache appear to be most-suitable for our needs. Because ForeCache uses
spatial data, we will have to modify the models use time series data. This again is very
similar to the ATLAS concepts, which can be adopted as well.

18

3.3. Evaluation of Possible Base Approaches

Table 3.2. Framework and conceptual comparison

Criterion LiveRAC ATLAS ForeCache CanvasPlot

License no information free to use no information Apache License
2.0

Open
Source

no no no yes

Language Java no information JavaScript with
D3.js

JavaScript with
D3.js

Release 2008 2008 2014 2016

Time
Series
Capability

yes yes no yes

Interactivity Navigation by
date input fields

Navigation by
panning, zoom-
ing by mouse
wheel

Navigation by
panning, zoom-
ing by mouse
wheel

Navigation by
panning, zoom-
ing by mouse
wheel

Real-Time
Capability

yes no no yes

Scalability Built to analyze
large time series
data collections

Built to enable
smooth interac-
tions with large
data sets

Built to analyze
large data sets
using minimal
amount of data
chunks

Built to effi-
ciently display
large time series
data sets

19

Chapter 4

Visualization Approach

The following sections address the goals from Section 1.2. We start by presenting an
approach for loading data dynamically based on the state of the diagram. After that, a
way to maintain the real-time functionality is shown. We also describe how we manage to
migrate the code base to TypeScript.

4.1 Requirements for Dynamic Data Loading

In order to provide a valid approach for the goals of this thesis, the requirements of the
solution have to be identified. These requirements consist of both features existing in the
current Control Center, and features yet to be implemented.

4.1.1 Features to Maintain in the Titan Control Center

Section 2.2 introduces the Titan Control Center including its frontend, while Section 3.2.4
describes the features of CanvasPlot. Our solution should maintain the current features in
the Titan Control Center. In detail, this includes the device comparison chart and the chart
for single or aggregated devices. Both charts should sustain their interactivity regarding
the zoom and pan actions. This partly supports goal G1 (Section 1.2.1).

Additionally, the real-time capability of the SensorHistoryPlot should be preserved.
This supports goal G2 (Section 1.2.2).

4.1.2 Features yet to be Implemented into the Titan Control Center

The requirements of the paragraph above aim at maintaining the current interactivity and
real-time capability of CanvasPlot as implemented in the Titan Control Center. In order to
support the remaining goals of this thesis described in Section 1.2, more features have to
be implemented.

The main task is to enhance the interactivity of the current version of CanvasPlot,
because it only loads data for a constant period of time. Users that analyze data from larger
time periods have to set this period by hand in dedicated fields as described in Section 2.2.2.
This leads to a limited efficiency in analyzing the data using the current version of the
Titan Control Center.

21

4. Visualization Approach

A major requirement for our solution hence is to mitigate these limits of interactiveness
within the chart. Therefore, the user has to be enabled to pan through all the data available.
If this is not possible to achieve, then the user has to have at least the impression of panning
limitlessly through the data.

CanvasPlot should also allow users to view data points aggregated over time. The
current implementation already allows semantic zooming in the chart as described in
Section 3.2.4. This however only enhances the charts clear look for very few data points,
because it does not consolidate data points when possible. Especially in charts with
thousands of data points the view becomes overloaded. Therefore, the solution has to
provide a feature to choose a reasonable temporal resolution of the data displayed in
CanvasPlot.

4.2 Approach for a Scalable and Interactive Visualization

After identifying the requirements in Section 4.1, this section presents the final approach
of the thesis. It is divided into the architectural design, the data flow, an approach for
implementing the new features, and the approach to enhance the scalability.

4.2.1 Architectural Design

Chapter 2 describes the current architecture of CanvasPlot within the Titan Control Center.
This architecture is modified in order to meet the requirements made in Section 4.1. The
ComparisonPlot is not modified and continues to serve as a visualization component for
comparisons of multiple devices.

The SensorHistoryPlot, however, is modified substantially. It now only serves as a parent
component for the CanvasPlot chart. A new class TimeSeriesPlotManager is introduced,
which handles the data flow instead. This supports the idea of separating visualization
from data handling.

The new DataSet class manages the available time series data in a given resolution.
Multiple DataSet instances are stored by another new class, the MultiResolutionData.
This class thus represents a multi-resolution data set. One instance of it is held by the
TimeSeriesPlotManager in order to access the data.

4.2.2 Data Flow

The current data flow related to CanvasPlot within the Titan Control Center is introduced in
Section 2.2.2. Between frontend and backend, the existing data flow is maintained. Henning
et al. [2020] added new endpoints in the backend, in order to support temporal aggregated
data. This enables the frontend to request data from the minutely and hourly endpoint.

22

4.2. Approach for a Scalable and Interactive Visualization

4.2.3 Conceptual Approach to Meet the Requirements from Section 4.1

The goals of this paper are mainly accomplished by the new TimeSeriesPlotManager. Be-
cause it is only applied to the history plot and not to the comparison plot, it does not
harm the operation of the latter. This accomplishes the requirement of maintaining the
comparison plot described in Section 4.1.

In order to maintain the real-time feature of the system, the TimeSeriesPlotManager

takes over this task from the SensorHistoryPlot. As the latter did before, it fetches new
data every second and applies it to the chart. It then moves the chart, in the case it was set
to show the latest data. This accomplishes the real-time requirement from Section 4.1 and
G2 from Section 1.2.2.

These two requirements were accomplished without adding new features. So far, only
refactoring took place. To meet the requirement of enabling the user to pan limitlessly
through the data, dynamic data loading is necessary. Loading all data at once would not
scale well, as evaluated in Section 1.2.3. That is why the TimeSeriesPlotManager enables a
listener on the chart, which is invoked on zoom and pan actions. It then fetches the data
for the displayed period of time from the backend and calls CanvasPlot to display it.

With this approach, however, CanvasPlot displays empty areas, when the user zooms
out or pans left or right. This is why the time period which data is requested for, is tripled.
Thus, the user can pan a whole screen length to the left or to the right without seeing
empty areas. This supports interactive and efficient analyzes on the data.

The last feature requirement is to support multiple temporal resolutions. This is made
possible by the new temporal aggregated endpoints implemented in the backend, as men-
tioned in the paragraph above. If a zoom or pan action occurs, the TimeSeriesPlotManager

determines a reasonable resolution level and issues a query accordingly to the backend.

4.2.4 Approach to Enhance Scalability

The features required in Section 4.1 are all accomplished with the modifications described
above. However, the goal of this thesis is not only to provide an interactive time series
visualization, but a scalable solution as well. Requesting temporal aggregated data already
reduces the amount of transferred data to an extent. This amount can be reduced even
further using caching algorithms. Those algorithms enable our system to be interactive
even with low bandwidths, while the load on the backend decreases as well. This supports
the scalability goal of this thesis described in Section 1.2.3.

The caching algorithms of our solution are responsible for two tasks. They have to store
the fetched data in a way that it is accessible for further requests. Secondly, they determine
whether requested data is already cached and can be displayed without further requests
against the backend. Moreover, they are able to identify requests for time periods of which
subperiods are already cached. Thus, the cache can modify requests to the backend in a
way that data is fetched for only those time periods, where no data is cached yet.

23

4. Visualization Approach

4.3 Approach for Migrating to TypeScript

TypeScript was introduced in Section 2.6. Because CanvasPlot has been written in plain
JavaScript, it does not integrate well in the code base of the Titan Control Center. That is
why we chose to migrate it to TypeScript. In order to adapt CanvasPlot to the rest of the
code base, we decided to replace its prototypal inheritance with the inheritance system of
TypeScript. It is to note that TypeScript’s class system only hides the prototypal inheritance,
because it is transpiled to exact this prototypal inheritance.

CanvasPlot was originally developed to be included in a script tag in an HTML response.
That is why its code was bundled into one single file, which should be changed as well. We
propose to split the code into two files based on the inheritance structure of CanvasPlot.
One main file should contain the base class of CanvasPlot, while other files contain the
different visual representations. Thus, the lines of code in the main file can be decreased,
while the readability increases.

24

Chapter 5

Implementation

One major goal of this thesis is to integrate the approach described in Chapter 4 into
the Titan Control Center. Therefore, we will present the implementation of our solution
in a bottom-up direction. First, the migration of CanvasPlot to TypeScript is described
in Section 5.1. After this, the approach for a scalable and interactive visualization from
Section 4.2 is implemented in Section 5.2.

5.1 Migration of CanvasPlot to TypeScript

The approach for migrating CanvasPlot to TypeScript id described in Section 4.3. It should
use the inheritance system of TypeScript and be split into two files for a better readability.
Therefore, three steps of modifications are necessary, which are described in the following
sections.

5.1.1 Split CanvasPlot into Two Files

The first step of migrating CanvasPlot to TypeScript is to split its code base into two
separate files. This increases the readability and thus mitigates the probability of errors in
the following refactoring process. In this step, we also introduce TypeScript files, because
the CanvasPlot library was originally written in JavaScript. Also, the CanvasDataPlot has to
be imported in the file containing the CanvasTimeSeriesPlot.

The first file contains the CanvasDataPlot function, while the second one contains the
CanvasTimeSeriesPlot. Not being required for our solution, the CanvasVectorSeriesPlot

and CanvasDataPlotGroup functions are deleted.

5.1.2 Introduce TypeScript’s Class Inheritance for CanvasPlot

Introducing TypeScript’s class inheritance is the second step in the process of migrating
CanvasPlot to TypeScript. First, the CanvasDataPlot function is turned into a class. Therefore,
a class wrapper is built, the variables of CanvasDataPlot are turned into class variables and
the function itself is adapted to serve as a constructor for its class. The same is applied to
the CanvasTimeSeriesPlot function.

25

5. Implementation

After this, the prototype functions of CanvasDataPlot and CanvasTimeSeriesPlot are
migrated into class functions of the according class. Finally, the CanvasTimeSeriesPlot is
set to inherit from CanvasDataPlot.

5.1.3 Add Types to CanvasPlot

The main reason to use TypeScript is its sophisticated type system. It provides confidence
in developing in larger code bases by checking type safety at compile time (see Section 2.6).
Providing type safety, the TypeScript transpiler will not compile the project before we add
types to our created classes.

Therefore, types are added to every class variable and to every function parameter.
Additionally, a new type DataPoint is introduced in order to describe the data format
CanvasPlot uses for its data points.

5.2 Implementation of a Scalable and Interactive Solution

We present an approach for a scalable and interactive solution in Section 4.2. After migrating
to TypeScript in Section 5.1, we describe the implementation of the approach in this section.
Therefore, the proposed class structure is implemented in Section 5.2.1. Then, a manager
class responsible for fetching the data from the Titan Control Center History service is
implemented in Section 5.2.2. In order to enable dynamic data loading, the necessary zoom
handler is described in Section 5.2.3. Lastly, the implementation of the caching algorithms
is detailed in Section 5.2.4.

5.2.1 Implementation of the Class and File Structure

In Section 4.2 we describe the architectural approach for our solution. The implementation
of the proposed class structure is very similar. As stated in the approach, the ComparisonPlot

remains unchanged. The SensorHistoryPlot however only serves as a visual container for
CanvasPlot and loses its internal logic to manage and update the data in CanvasPlot. This
functionality is overtaken by the TimeSeriesPlotManager, which is instantiated and assigned
to the CanvasPlot by SensorHistoryPlot.

The TimeSeriesPlotManager uses multiple other classes. Firstly, it holds a read only
reference to a MultiResolutionData instance, which handles the data storage for different
temporal resolutions. It secondly stores a DownloadManager instance, which is responsible
for the communication with the backend. The DownloadManager is described in detail in
Section 5.2.2. Moreover, the DataPoint class is used to represent data points consisting of a
date and a value. A TimeDomain class serves as an abstract representation of the x domain
of CanvasPlot. This structure is visualized in Figure 5.1.

The TimeSeriesPlotManager and its used classes are bundled in a dedicated directory.
An index file in this folder exports the TimeSeriesPlotManager class and the DataPoint class.

26

5.2. Implementation of a Scalable and Interactive Solution

SensorHistoryPlot

-handleZoom()
-updateRealTimeData()
-determineResolutionLevel()
-injectDataPoints()
-updateDomains()

TimeSeriesPlotManager

+getDataPoints(resolutionLevel)
+setDataPoints(resolutionLevel, dataPoints)
+injectDataPoints(resolutionLevel, dataPoints)
+getUncachedIntervals(resolutionLevel, start, end)

MultiResolutionData

+fetchNewData(resolutionLevel, from, to)
-fetchNewWindowedData(resolutionLevel, from, to)
-fetchNewRawData(from, to)

DownloadManager

+toArray()

DataPoint

-start : integer
-end : integer

+getLength()
+toArray()
+toDateArray()
+shift(timeInMs : integer)
+of(domain : TimeInterval)

TimeDomain

-dataPoints : DataPoint[]
-cachedIntervals : TimeInterval[]

+getDataPoints()
+getUncachedIntervals()
+setDataPoints()
+injectDataPoints()

DataSet

-start : integer
-end : integer

TimeInterval

CanvasPlot

0..*

1..*

provide data

manages

<<use>>

downloads with

<<use>>

Figure 5.1. Excerpt of the implemented class structure

Only these two classes are used by other components. Index files enable developers to
import components from the directory the file is in rather than from the actual component
file. Thus, maintainers of this code do not have to know about the file structure within the
TimeSeriesPlotManager directory. This supports encapsulation in our implementation.

5.2.2 Implementation of the DownloadManager

The DownloadManager plays a major role in our solution. It is responsible for the connection
to the backend in order to fetch data points to display. As described in Section 5.2.1, the
DownloadManager is used by the TimeSeriesPlotManager.

The class only provides one public function which is fetchNewData. As arguments it
takes the temporal resolution level to fetch and the time period to fetch the data for.
Based on the resolution level, the function calls either the fetchNewRawData function or the
fetchNewWindowedData function. Windowed data is the term for temporal aggregated data
used in the backend. Both functions take the time period to fetch data for as an argument
and return promises containing the requested data points. Promises are JavaScript’s way of
resolving asynchronous calls.

The fetchNewWindowedData function additionally takes the desired resolution level as an
argument. It then determines the corresponding backend endpoint for its request using a

27

5. Implementation

simple dictionary, which maps the numerical resolution level to URL strings.
For the fetchNewRawData requests the endpoint additionally differs depending on

whether the power consumption of a single device or a group of devices is displayed. In the
current implementation, five different endpoints are used in total by the DownloadManager.
There are three resolution levels supported, which results in three different windowed
endpoints. On these endpoints, there is no separation whether single device or a device
group is displayed. Additionally, two endpoints for the raw data are supported. Those are
the endpoints for separate single devices and device groups.

5.2.3 Implementation of the Zoom Handler

The zoom handler is a key part of our solution. Despite the name, it is not only called on
zoom actions in the chart, but on pan actions as well. Thus, it can react on changed time
periods being displayed in CanvasPlot. When the TimeSeriesPlotManager is instantiated
and assigned to a CanvasPlot, it sets the onZoom callback function of CanvasPlot to its own
zoom handler function.

Because a simple pan action would cause the zoom handler to be invoked once per
frame, the function is debounced. Debouncing is a technique to limit function calls by not
calling the original function, until a certain time passed after the last event. The currently
implemented debounce time is 100 milliseconds. This prevents the zoom handler from
being called more than once per user interaction.

When the zoom handler is called, it first determines the x domain of the current view
in CanvasPlot. It then retrieves the start and the end of the displayed time period and
calculates the span of it. By the span of the x domain, it determines the resolution to fetch.
In the current implementation, three resolution levels are supported. Up to a span of 15
minutes, the zoom handler calls the DownloadManager to fetch raw data. If less than 11 hours
are displayed, 15-minute windows are requested. Otherwise, hourly aggregated data is
fetched.

After the resolution level has been determined, the DownloadManager is called to fetch
the data. Therefore, the time period to fetch data for is tripled as a simple prefetching
algorithm. When the data is received, CanvasPlot is called to display the new data points.

5.2.4 Caching the Data

In Section 5.2.2 we presented the DownloadManager, which is called on pan and zoom actions
by the zoom handler from Section 5.2.3. It is now to determine, how the data points retrieved
from the backend are added to the cache. Therefore, the injectDataPoints function is called
when data points are received from the backend. The function takes an array of the new
data points and the requested resolution level as arguments. Responsible for storing the
data points is an MultiResolutionData class instance, which TimeSeriesPlotManager stores
a reference to.

28

5.2. Implementation of a Scalable and Interactive Solution

1 function inject (existingData: [Date, number][], toInject: [Date, number][]) {

2 existingCounter, injectCounter = 0;

3 resultArray = [];

4
5 while (<resultArray not filled with all data points>) {

6 existingDate = existingData[existingCounter] OR infinity;

7 injectDate = toInject[injectCounter] OR infinity;

8
9 if (existingDate < injectDate) {

10 resultArray.append(existingData[existingCounter++]);

11 } else {

12 resultArray.append(toInject[injectCounter++]);

13 }

14 }

15 return resultArray;

16 }

Listing 5.1. Pseudocode of the inject function

An instance of this data class again stores an array of DataSet instances. This DataSet

represents all stored data points for a single resolution level. Hence, the multiple data sets
stored by MultiResolutionData represent data sets for different resolution levels.

The DataSet provides functions to retrieve the stored data points, to set them to a new
array of data points, and to inject data points into the existing array. Whenever data points
are retrieved from the backend, the MultiResolutionData is called to inject the data points
to the data set with the same resolution level. Thus, we build a multi-dimensional caching
system representing the different resolution levels.

The injection of data points is done by a separate, pure function. Pure functions are those
that do not produce observable side-effects [Nicolay et al. 2015]. We chose to implement a
pure function here in order to ease testing, which is further described in Section 5.3.

This inject function takes two arrays of data points as arguments as shown in Listing 5.1.
It then merges the arrays by providing two counters iterating over the arrays and choosing
the older data point to add it to the new array. The resulting array is returned and stored
by the data set.

In addition to storing the data points, the cached time periods are tracked as well.
Therefore, the data set holds an array of time periods representing those cached periods.
After new data points are injected, the injectInterval function is called with the stored
cached periods as well as the period of the new data points. This function again returns an
array of non-overlapping time periods representing the cached periods.

29

5. Implementation

5.2.5 Retrieving Data Points from the Cache

Caching data is useless without retrieving it afterwards to speed up requests and decrease
load on the server. The caching is detailed in Section 5.2.4. Here, we present how the data
retrieval is implemented in our solution for the Titan Control Center.

Whenever the DownloadManager is invoked to fetch new data points, it first calls the
getUncachedIntervals function on the data set. This function expects the time period to
fetch data for as an argument. Based on the periods that have been cached before, it
returns an array of intervals which represent yet uncached time periods. Afterwards, the
DownloadManager issues GET requests only for the missing data to the backend. Thus, data
is not fetched twice, which supports smooth interactions in CanvasPlot.

Because there are multiple uncached time periods possible for a single request, one
DownloadManager call may result in multiple GET requests to the backend. All requests are
promised (see Section 5.2.2) and merged into one array of data points after they resolve.

5.3 Integration of Jest as a Test Framework

Section 5.1 and Section 5.2 describe the implementation of a scalable and interactive
real-time visualization for the Titan Control Center. While implementing this, we took
advantage of a testing framework called Jest, in order to provide a tested and thus reliable
solution.

Jest is an open-source framework built at Facebook for testing JavaScript applications
[Moroz 2019]. It consists of a test runner, an assertion library, and a mocking library.
Additionally, Jest is shipped with a test-coverage tool. Prior to our solution, no unit
tests were used in the Titan Control Center Frontend. Tests that aim at monitoring the
dependencies and static code analysis are conducted within the continuous integration
process of the Titan Control Center Frontend [Latte et al. 2019].

In our implementation, Jest is not linked to any continuous integration pipeline, but it
can be implemented easily in future work. This means that the test suites only run when
started manually, which can be done by using a newly added script and typing npm test.
In watch mode, Jest monitors file changes and re-runs the related tests accordingly. This
mode can be invoked with npm run test:watch.

We used Jest in our implementation for a test-driven development regarding the
two most complicated operations related to the TimeSeriesPlotManager. The first tested
function is injectInterval mentioned in Section 5.2.4. The second function is called
invertedIntervalIntersections and is used for calculating the uncached time periods
in Section 5.2.5. Both functions and their tests will be presented in the following sections.

30

5.3. Integration of Jest as a Test Framework

5.3.1 Testing the Injection of Non-Overlapping Intervals

We introduce the injectIntervals function in Section 5.2.4. It is a pure function that helps
to track cached time periods. Two parameters are expected. The first is an array of time
periods representing the currently cached time periods. The second parameter expects a
time period representing the newly cached data. Serving as a method to track the cached
time periods, its goal is to return an array of non-overlapping time periods consisting of
the prior cached periods merged with the new period.

Five test scenarios have been identified. In all scenarios, two cached periods exist before
merging. The details of the period to be merged are determined by the specific scenario.
The new period lays before or after the existing periods, in between them, or it spans over
them depending on the test case. Thus, the injectIntervals function is tested with the
most common inputs.

5.3.2 Testing the Calculation of Uncached Time Periods

In Section 5.2.5 we describe, how data is retrieved from the cache of our solution. The
DownloadManager calls getUncachedIntervals of the data set, which returns those time peri-
ods that no data is yet cached for. Calculating these uncached time periods (or intervals)
means inverting the cached intervals in order to retrieve the uncached intervals.

The function that inverts the cached intervals is called invertedIntervalIntersections,
because it inverts the intersections of the intervals or time periods. It was developed using
a test-driven approach, which includes evaluating test scenarios first. For this function,
six test scenarios have been identified. As in Section 5.3.1, two cached periods are stored
and the details of the period to be requested are determined by the specific scenario. The
requested period lays before or after the existing periods, in between them, or it spans
over them depending on the test case. Thus, the invertedIntervalIntersections function
is tested with the most common inputs.

31

Chapter 6

Evaluation

In Chapter 4 we evaluate an approach for the goals of this thesis, whereafter we describe
the implementation in Chapter 5. To support the scalability goal G3, the solution and its
performance must be assessed. This is the goal of the following chapter.

Section 6.1 introduces the common experimental setup for our analyses. Section 6.2 and
Section 6.3 will then conduct feasibility and performance evaluations respectively.

6.1 Evaluation Environment

The tests in the following sections are all conducted in the same environment, specified in
Table 6.1.

We start the Titan Control Center Frontend from the local webpack development server.
The used backend services are provided by a local docker-compose cluster [Sochat 2019].
In the feasibility evaluation, sample data is used to represent power consumption data of
an industrial environment. It is accessible as temporal non-aggregated data having one
value every 10 seconds. Additionally, minutely and hourly aggregated data is provided.

In the performance evaluation, power consumption data of a newspaper printing
company located in Kiel, Germany is used. It spans over more than 4 years and is addition-
ally aggregated into hourly and daily data. The underlying data has a resolution of one
measurement per 15 minutes which we upsampled to use minutely data.

6.2 Evaluation of Feasibility

The goal of this section is to evaluate whether the requirements described in Section 4.1 are
fulfilled. We provide test scenarios in Section 6.2.1, where each consists of integration tests.
Those scenarios are simulated in Section 6.2.2. Afterwards, possible threats to the validity
of our results are described in Section 6.2.3.

6.2.1 Methodology

In order to test the feasibility of our approach, we conduct analyses on our implementation
based on use cases. We call them scenarios in the following. A scenario consists of one or

33

6. Evaluation

Table 6.1. Evaluation environment

Element Specification

CPU Intel(R) Core(TM) i7-7700HQ

Clock Rate 2.80 GHz

Cores 4 (8 virtual)

RAM 16 GB

OS Microsoft Windows 10 Education

OS Version 10.0.18363 Build 18363

Web Browser Google Chrome Version 85.0.4183.83 (Official Build) (64-bit)

more subsequent user interactions, which represent typical actions in analyzing a time
series chart.

The scenarios can be split in two main parts according to the requirements described
in Section 4.1. Scenarios 1 to 3 aim at evaluating the features that existed before our
solution was implemented and were to be maintained. Scenarios 4 to 6 shall prove that the
newly implemented features fulfill their requirements. We assume that the Control Center
Frontend is loaded first in every of the following scenarios and the initial data points are
fetched as well.

Scenario 1: Comparing Power Consumption Data of More Than One Device

The first scenario handles a feature, which was implemented before and has to be main-
tained by our solution. In this scenario, we use the comparison plot to compare the power
consumption of multiple devices.

To assure that graphs can be compared for multiple single devices as well as for multiple
groups of devices, the comparison is done for one single device and one device group.

Scenario 2: Interact With the Plot

In the second scenario, the interactivity of the chart is tested. Maintaining support for zoom
and pan actions is another requirement evaluated in Section 4.1. In this scenario, the user
conducts zoom and pan actions on the chart.

We therefore navigate to the landing page of the Titan Control Center. On the upcoming
chart displaying the total power consumption of the system, zoom and pan actions are
conducted.

34

6.2. Evaluation of Feasibility

Scenario 3: Analyze Real-Time Power Consumption Data

In order to fulfill goal G2 (see Section 1.2.2), this scenario evaluates the real-time analysis
capabilities of our solution. Therefore, we navigate to the landing page of the Titan Control
Center. We then zoom into the chart displaying the total power consumption of the system,
until the plot uses the highest-possible temporal resolution. Afterwards, we pan the chart
to move the current time into view.

The plot should now move with the time passing, in order to always show the latest
data.

Scenario 4: Panning Through the Data Infinitely

Scenario 4 is the first scenario to prove the feasibility of the newly implemented features
as described in Section 4.1. To simulate this scenario, we conduct the same steps as in
scenario 3. We then pan through the data backwards in time for at least more than 2 hours
in displayed time.

This was not possible before the implementation of our solution as described in Sec-
tion 2.2.2.

Scenario 5: Analyzing Data in Multiple Temporal Resolutions

In this scenario, we analyze the power consumption data in multiple temporal resolutions.
We therefore navigate to the landing page in order to view the total power consumption
plot of the system.

The graph should display the data in the second of three different temporal resolution
levels. We then zoom into the chart in order to view the highest temporal resolution and
zoom out to see the lowest resolution subsequently.

Scenario 6: Use Prefetching to Enhance User Experience

Prefetching is a technique we described in Section 5.2.3. Scenario 6 aims at testing the
feasibility of this approach in our solution. Therefore, scenario 4 is simulated again,
including the panning backwards in time. As long as the pan span does not exceed the
width of the chart, no areas without data points should appear. This would implicate that
data of a full chart length is prefetched.

6.2.2 Results and Discussion

The following section describes which observations we make while simulating the scenarios
from Section 6.2.1. It also discusses whether those observations match our expectations for
the given scenario.

35

6. Evaluation

Scenario 1: Comparing Power Consumption Data of More Than One Device

In order to simulate scenario 1, we navigate to the comparison page and click on Add Plot.
As comparands, we choose the root device group My Company and a single device called
Server 1.

Graphs for both data sets are displayed properly. Panning and zooming is supported as
well. This is the behaviour we expected for scenario 1. We conclude that comparing power
consumption data of more than one device is working as expected. The design did not
change, hence the screenshot in Figure 2.5 is still valid for the comparison plot.

Scenario 2: Interact With the Plot

To simulate scenario 2, we navigate to the landing page in order to view the total power
consumption chart. We then zoom into the chart using the mouse wheel, pan left, pan right,
and zoom out again.

The chart follows all of the four interactions. While zooming, it even changes the
resolution level, when a resolution limit was exceeded. This should be tested in scenario 5,
but does not corrupt scenario 2. Hence we conclude that we successfully maintained the
interactivity of CanvasPlot.

Scenario 3: Analyze Real-Time Power Consumption Data

Analyzing real-time data is a key requirement of this thesis presented in Section 4.1. The
steps to be taken to simulate scenario 3 are described in Section 6.2.1.

The chart moves itself with the time passing, meaning that the latest data is always
displayed. This is the behaviour we expected.

Scenario 4: Panning Through the Data Infinitely

In order to simulate scenario 4, we navigate to the total power consumption chart again.
We then pan through the data backwards in time.

Data is fetched and displayed dynamically which results in a limitless panning back-
wards in time. It is only restricted by the beginning of data recorded. We conclude that
infinitely panning through the data is made possible by our solution.

Scenario 5: Analyzing Data in Multiple Temporal Resolutions

As in the scenarios before, we simulate this scenario using the total power consumption
chart on the landing page. Initially, the chart loads the second of three resolution levels. By
zooming in, we retrieve the highest-available temporal resolution. Zooming out gives us
the lowest resolution level, which currently is hourly aggregated. We hence conclude that
analyzing data in multiple temporal resolutions is supported by our solution.

36

6.2. Evaluation of Feasibility

Figure 6.1. Screenshots from scenario 5: non-aggregated and minutely data

Figure 6.1 shows screenshots of scenario 5. After zooming in, the chart displays temporal
non-aggregated data as shown in the left screenshot. On the right, minutely data is shown.
Zooming out further would result in displaying hourly data.

Scenario 6: Use Prefetching to Enhance User Experience

Scenario 6 aims at proving the feasibility of prefetching in our solution. We therefore
simulate scenario 4 again, including panning through the data.

As long as the panning span of one single pan action does not exceed the width of the
chart, no empty areas are displayed. This behaviour is limited by the frequency of pan
actions, the server latency, and by the download bandwidth. When multiple pan actions
are conducted before the prefetched data arrives, empty areas will occur. Despite the limits,
we classify this scenario as feasible.

6.2.3 Threats to Validity

For the evaluation of feasibility in this section we only used the environment described in
Section 6.1. This includes the hardware environment as well as the software components
and especially the Chrome browser. As a consequence, our results are only conditionally
transferable to other environments since those can differ in their behaviour. Especially, the
visualization was not tested in arbitrary web browsers. In general, our evaluation only
comprises central scenarios and does not cover all specific edge cases.

37

6. Evaluation

6.3 Evaluation of Performance

After evaluating the feasibility of our solution in Section 6.2, the next section aims at
evaluating the performance and scalability of our solution. In Section 6.3.1 we describe the
methodology of our evaluation, followed by the presentation of the results in Section 6.3.2.
Those results are then discussed in Section 6.3.3. Section 6.3.4 assesses possible threats to
the validity of the evaluation.

6.3.1 Methodology

For the performance evaluation, the experimental setup is the same as in the feasibility
evaluation. It is described in Section 6.1. However, the data set for this evaluation is different
than the one described in other chapters of this thesis. In order to evaluate scalability and
performance, we needed more data to test our solution with. Hence, power consumption
data of a single device monitored from June 2015 to August 2019 with a temporal resolution
of 15 minutes is used. We upsample the data to one measurement value per minute, thus
our sample set contains 2,635,200 data points. Hourly and daily data is provided by
temporal aggregations as well.

In our evaluation, the performance of the current implementation of the Titan Control is
measured, as well as the performance of our new solution. We therefore chose to compare
the load times for the chart with different amounts of data. Both versions are tested with
data of 21, 22, ..., 210 days. For each time span, the chart is loaded 100 times. Then, the
processing time is measured and stored. This measurement contains preparing the fetch
request, the response time of the backend services, the handling of the response, and the
time to draw the resulting plot. Since both the frontend and the backend services run
locally, the response time is not affected by delays in external networks.

We modified both of the frontend versions to automatically reload the chart and
to double the requested time period after 100 measurements. They also calculate the
processing time themselves by storing two timestamps. The first is set to when the fetch is
prepared and the second timestamp stores the current time when the chart is fully drawn.
Then, the difference is taken as the final measurement. Those measurements are then sent
to a server specifically created to receive these values and to store them in CSV files for
later analyses.

6.3.2 Results

The measurements of the evaluation are plotted in Figure 6.2 and Figure 6.3, displaying
the results of the current implementation and the new implementation respectively. These
boxplot diagrams show the processing time in milliseconds for fetching and drawing data
for the given amount of days. Each box represents the measured processing times lying
between the first and the third quartile. Thus, it represents 50% of the sample. Moreover,
the vertical lines originating from the boxes called whiskers indicate the total range of

38

6.3. Evaluation of Performance

100

1000

10000

21 22 23 24 25 26 27 28 29 210

Days of displayed data

P
ro

ce
ss

in
g

tim
e

in
 m

s

Figure 6.2. Time to fetch and draw data for given number of days - current implementation

the sample. The upper end of the lines hence marks the maximum value of the sample,
while the lower end marks the minimum value. Points above the upper whisker represent
statistical outliers. Values are considered outliers, if they are greater than the 3rd quartile
plus 1.5 times the range between the second and third quartile.

It is to note that we use logarithmic scales in the charts, in order to enhance the
visualization of exponentially growing time spans to fetch data for. While the x axis uses a
base-two logarithmic scale, the y axis opts for a factor of ten.

Figure 6.2 visualizes the results for the current version. It shows that the processing
times increases when the number of days to display data for grows. While it takes less than
100 milliseconds to fetch and draw data points for 4 days and less, the same process takes
more than 10 seconds for 1024 days. We can presume that the growth of the processing
time is linear to the days of displayed data.

The results of the new solution, however, do not show linear growth, which is shown in
Figure 6.3. For 2, 4, and 8 days of displayed data, the median processing time lies around 20
milliseconds. Processing 16, 32, and 64 days of data takes around 14 milliseconds. For more
days to display, the processing time then rises until it reaches a median of 32 milliseconds
when displaying 1024 days.

39

6. Evaluation

10

100

1000

21 22 23 24 25 26 27 28 29 210

Days of displayed data

P
ro

ce
ss

in
g

tim
e

in
 m

s

Figure 6.3. Time to fetch and draw data for given number of days - new implementation

6.3.3 Discussion

The performance results described in Section 6.3.2 for the current implementation and
our new solution both meet our expectations. Because the current version does not fetch
temporal aggregated data, the linear growth of processing time is reasonable. Two time
periods result in the same processing time, if the time span is equal. Hence, the processing
time grows according to the time period.

The results from the new solution shown in Figure 6.3 can also be explained by the
underlying approach. For the performance evaluation, the default resolution level for the
displayed data was changed in order to handle the hourly and daily data. Therefore, the
highest available resolution is only requested if the time span to display is less than one
day. If data for more than one day is fetched but for less than two weeks, than hourly data
is requested. Otherwise, daily data is downloaded from the backend services. This change
assures that only a reasonable amount of data is fetched and displayed.

This switching between resolutions explains why the measurements are smaller than
the ones from the current implementation. Minutely data as used by the current version
is never fetched by the new solution, because we always measure the processing time for
more than one day. The decrease between 8 and 16 days of displayed data is triggered by

40

6.3. Evaluation of Performance

the change from hourly to daily data, because data for more than two weeks is fetched.
Since no resolution level greater than daily data is provided, the processing time for more
days then rises as expected.

The decrease of processing time from 25 to 26, however, is surprising, because there is
no possible change in resolution levels. This can be caused by measurement error, which
again could be caused by multiple reasons. Those reasons are described in the following
section.

6.3.4 Threats to Validity

The environment we run the performance evaluation in is not specifically designed to
support a microservice architecture like the Titan Control Center. Moreover, all components
of the Control Center are executed on the same physical machine. Those components hence
compete for computational resources on this machine. Additionally, the evaluation is run
in a desktop environment, which adds even more processes to run in parallel to our test
setup. These reasons can lead to measurement errors in our evaluation.

41

Chapter 7

Related Work

The solution in this thesis is built upon the Titan Control Center introduced by Henning
[2018]. It is responsible for monitoring the electrical power consumption within the Titan
platform (see Section 2.2). Our solution also uses CanvasPlot by Johanson et al. [2016]
for visualizing the power-consumption using line charts. CanvasPlot itself wraps the
open-source data visualization framework D3 by Bostock [2020]. The Titan Control Center,
CanvasPlot, and D3 are introduced in Chapter 2.

The information arising from monitoring industrial environments using the Control
Center is a key component to support the Industrial DevOps approach proposed by Has-
selbring et al. [2019]. A coherent circle consisting of monitoring and analyzing, identifying
requirements, adapting the system, and automatic testing before deploying the software
into production is introduced by the authors of the paper. Additionally, a concept for an
organizational structure is presented. It shall support quick adjustments to the system by
encouraging people from different domains to work together.

In Chapter 3 we evaluate existing approaches for scalable and interactive time series
visualization in order to identify a base approach for our solution. Thus, four related
approaches are presented in Section 3.2. LiveRAC, ATLAS, ForeCache, and CanvasPlot are
visualization libraries that all aim at supporting large sets of time series data.

LiveRAC is introduced in Section 3.2.1. It is a tool providing visualizations for system
management time series data [McLachlan et al. 2008]. The strengths of this library is its use
of semantic zooming which means not to zoom proportionally but adding or removing
properties of the visual representation. This technique helps balancing the information
density on a well-defined level. A US patent for semantic zoom filed is abandoned but
still assigned to Microsoft Technology Licensing LLC [Pittappily 2013]. In contrast to our
approach, LiveRAC does not implement any caching algorithms or other techniques to
minimize data exchange volume. Moreover, it does not support pan actions in its charts.

ATLAS however is not built for a specific type of time series data [Chan et al. 2008].
Its goal is to maintain interactivity of time series plots while displaying large data sets. In
detail, the authors of the corresponding paper define interactivity in supporting smooth
interactions like panning and zooming. In our thesis, we adopted their goal in conjunction
with its definition.

While we focus on presenting a frontend meeting our requirements, ATLAS additionally
sets up a high-performance server architecture. The system consists of the frontend itself, a
query distribution server acting as a load balancer, and a kdb+ database specifically built

43

7. Related Work

for time series data. ATLAS introduces the concept of predictive caching which hides the
latency of the system by prefetching data. It therefore anticipates which data might be
viewed after the next user interaction and then requests it from the database. For this thesis,
we adopted this concept to enhance the interactivity of our solution.

ForeCache as the third of the evaluated approaches adds the concept of using multiple
prediction models in the prefetching process [Battle et al. 2014]. Those models all make
assumptions about which data is viewed next and thus define which data is prefetched first.
For example, one model assumes that a user action like panning will continue rather than
stop immediately and thus proposes to prefetch the data that lies in the direction of the pan
action. Another model works with recorded user sessions to identify so-called hotspots in
the data which are more likely to be viewed than other spots. For our implementation we
implemented the first model only, which proves sufficient in the performance evaluation in
Section 6.3. In contrast to the other evaluated libraries and our approach, ForeCache does
not display time series data but spatial data instead. Its approach to prediction models,
however, can be valuable for time series data as well.

44

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis we presented an approach for scalable and interactive visualizations of time
series data. We therefore first explained our motivation for this field of work and identified
the goals for this thesis. Thereafter, we introduced the foundations and technologies that
were used in our solution. In order to build our implementation on a reliable base approach,
we assessed four visualization libraries based on framework and conceptual criteria. In this
evaluation, we identified CanvasPlot as such a base library for our solution.

We then constructed several requirements which our implementation had to meet in
order to support all goals described in the first chapter. Based on them, we introduced
our approach for an interactive and scalable visualization of time series data. It consists of
using CanvasPlot as a base solution, maintaining its features like real-time capability and
support for zoom and pan actions, and adding more abilities. These include the support
for temporal aggregated data, caching, and prefetching. We also presented an approach for
migrating CanvasPlot to TypeScript.

After having finalized the approach, we began with the implementation by migrating to
TypeScript. Then, we introduced the new class and file structure within the Titan Control
Center Frontend to meet the requirements. A download manager was implemented to
fetch data from the Control Center backend services. The zoom handler was introduced in
order to react on zoom and pan actions conducted by the user. To meet the scalability goal
of this thesis, we also integrated caching algorithms.

Following the implementation and integration into the frontend, an evaluation of our
solution was conducted. We therefore evaluated its feasibility in six scenarios which all
showed positive results. Then, we tested the performance of the current version of the
frontend and our new approach. Therefore, we measured the time to fetch and draw data
points for numerous time spans, which clearly showed an advantage of the new solution.

We provide our implementation as a package [Koch 2020] that contains the Titan Control
Center Frontend including our visualization solution from Chapter 5. It also includes the
versions tested in the performance evaluation, as well as the used log server. In order to
provide backend services for those versions, we append a docker-compose file to start all
necessary Titan Control Center services.

45

8. Conclusions and Future Work

8.2 Future Work

During our work on this thesis, we identified multiple aspects that can be considered in
future work. These aspects can be classified by their proximity to our solution and the
Titan research project.

8.2.1 Future Work within our Solution

Our solution meets all the goals we define in Section 1.2. However, the evaluated approaches
encourage to go further. Especially ForeCache’s use of multiple prediction models to
determine which data is prefetched could be interesting for future enhancements of our
approach [Battle et al. 2014]. As described in Section 3.2.3, it predicts the data to be viewed
next by consulting five different prediction models.

Most of them aim at spatial data instead of time series data, but the so-called hotspot
model could yield interesting results in our solution too. It works by recording user sessions
and storing the most often displayed data. Then it assumes that those hotspots will be
viewed more often in future user sessions and will prioritize them in the prefetching process.
Future work can integrate this feature in order to enhance the prefetching proposed in this
thesis.

8.2.2 Future Work within the Titan Control Center

The evaluation in Chapter 6 shows that the scalability of our approach depends on the
temporal resolution levels of the time series data provided by the backend services. This
leads to the need of more such endpoints when the data set grows in order to maintain the
level of performance observed in this thesis.

In the current and in the new implementation, CanvasPlot repeatedly requests the
latest data from the backend services in constant intervals. Thus, the visualization latency
includes the time until the next logical tick of the timer when the next data fetch is
conducted. This latency hence can be diminished by introducing an implementation of the
WebSocket protocol [I. Fette and A. Melnikov 2011]. Using this protocol allows server-sent
messages containing the latest data which could be sent immediately after the values are
received and processed by the backend services. After implementing this technique we can
expect a vastly decreased latency [Pimentel and Nickerson 2012].

8.2.3 Future Work within the Field of Scalable Visualizations

Outside of the Titan context, a scientific evaluation could be conducted to test the scalability
limits of a solution combining the approaches of ATLAS and ForeCache. From ATLAS one
could adopt its query distribution server and the high-performance database kdb+ which
is specifically designed to store large time series data sets. Adding ForeCache’s prediction
models could result in a system with astonishing performance benchmarks.

46

Bibliography

[Battle et al. 2014] L. Battle, R. Chang, and M. Stonebraker. Dynamic generation and
prefetching of data chunks for exploratory visualization. IEEE InfoVis Posters Track
(2014). (Cited on pages 16, 44, 46)

[Bierman et al. 2014] G. Bierman, M. Abadi, and M. Torgersen. Understanding TypeScript.
In: ECOOP 2014 – Object-Oriented Programming. 2014. (Cited on page 11)

[Boguhn 2020] L. Boguhn. Forecasting power consumption of manufacturing industries
using neural networks. Bachelor’s Thesis. Kiel University, Department of Computer
Science, 2020. (Cited on page 6)

[Bostock et al. 2011] M. Bostock, V. Ogievetsky, and J. Heer. D³ data-driven documents.
IEEE Transactions on Visualization and Computer Graphics (2011). (Cited on page 10)

[Bostock 2020] M. Bostock. D3.js - data-driven documents. Library Catalog: d3js.org. url:
https://d3js.org/ (visited on 05/02/2020). (Cited on pages 10, 43)

[Chan et al. 2008] S.-M. Chan, L. Xiao, J. Gerth, and P. Hanrahan. Maintaining interactivity
while exploring massive time series. In: 2008 IEEE Symposium on Visual Analytics Science
and Technology. 2008. (Cited on pages 15, 17, 43)

[Ehrenstein 2019] S. Ehrenstein. Distributed sensor management for an industrial DevOps
monitoring platform. Bachelor’s Thesis. Kiel University, Department of Computer
Science, 2019. (Cited on page 10)

[Eshkevari et al. 2017] L. Eshkevari, D. Mazinanian, S. Rostami, and N. Tsantalis. JSDeodor-
ant: class-awareness for JavaScript programs. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). 2017. (Cited on page 10)

[Feldthaus and Møller 2014] A. Feldthaus and A. Møller. Checking correctness of TypeScript
interfaces for JavaScript libraries. In: Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications - OOPSLA ’14. 2014.
(Cited on page 11)

[Few 2006] S. Few. Information dashboard design: the effective visual communication of data.
2006. (Cited on page 1)

[Hasselbring et al. 2019] W. Hasselbring, S. Henning, B. Latte, A. Mobius, T. Richter, S.
Schalk, and M. Wojcieszak. Industrial DevOps. In: 2019 IEEE International Conference on
Software Architecture Companion (ICSA-C). 2019. (Cited on pages 1, 5, 43)

[Hasselbring and Steinacker 2017] W. Hasselbring and G. Steinacker. Microservice archi-
tectures for scalability, agility and reliability in e-commerce. In: 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW). 2017. (Cited on page 6)

47

https://d3js.org/

Bibliography

[Henning 2018] S. Henning. Prototype of a scalable monitoring infrastructure for industrial
DevOps. Master’s Thesis. Kiel University, Department of Computer Science, 2018.
(Cited on pages 6, 43)

[Henning et al. 2020] S. Henning, W. Hasselbring, H. Burmester, A. Möbius, and M. Woj-
cieszak. Goals and measures for analyzing power consumption data in manufacturing
enterprises. arXiv:2009.10369 [cs] (2020). (Cited on pages 6, 22)

[Henning et al. 2019] S. Henning, W. Hasselbring, and A. Mobius. A scalable architecture
for power consumption monitoring in industrial production environments. In: 2019
IEEE International Conference on Fog Computing (ICFC). 2019. (Cited on pages 1, 5, 7)

[I. Fette and A. Melnikov 2011] I. Fette and A. Melnikov. The WebSocket protocol. RFC 6455.
RFC Editor, 2011. (Cited on page 46)

[Johanson et al. 2016] A. Johanson, S. Flögel, C. Dullo, and W. Hasselbring. OceanTEA:
exploring ocean-derived climate data using microservices. In: Proceedings of the Sixth
International Workshop on Climate Informatics (CI 2016). 2016. (Cited on pages 10, 43)

[Kapadiya 2018] A. A. Kapadiya. Visualisation of multi-service system net-work with d3.js
& kdb+/q using websocket. Global Journal of Computer Science and Technology (2018).
(Cited on page 16)

[Koch 2020] T. Koch. Thesis Artifacts for: Scalable and Interactive Real-Time Visualization of
Time Series Data. 2020. url: https://doi.org/10.5281/zenodo.4041682. (Cited on page 45)

[Latte et al. 2019] B. Latte, S. Henning, and M. Wojcieszak. Clean code: on the use of
practices and tools to produce maintainable code for long-living software. Living Systems
(2019). (Cited on page 30)

[Lwakatare et al. 2015] L. E. Lwakatare, P. Kuvaja, and M. Oivo. Dimensions of DevOps. In:
Agile Processes in Software Engineering and Extreme Programming. 2015. (Cited on pages 1,
5)

[McLachlan et al. 2008] P. McLachlan, T. Munzner, E. Koutsofios, and S. North. LiveRAC:
interactive visual exploration of system management time-series data. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. 2008. (Cited on pages 15,
43)

[Moroz 2019] B. Moroz. Test automation of a react-redux application with jest and enzyme.
Bachelor’s thesis. South-Eastern Finland University of Applied Sciences, 2019. (Cited
on page 30)

[Morrison 2010] J. P. Morrison. Flow-based programming, 2nd edition: a new approach to
application development. 2010. (Cited on page 5)

[Nicolay et al. 2015] J. Nicolay, C. Noguera, C. De Roover, and W. De Meuter. Detecting
function purity in JavaScript. In: 2015 IEEE 15th International Working Conference on
Source Code Analysis and Manipulation (SCAM). 2015. (Cited on page 29)

48

https://doi.org/10.5281/zenodo.4041682

Bibliography

[Pimentel and Nickerson 2012] V. Pimentel and B. G. Nickerson. Communicating and
displaying real-time data with WebSocket. IEEE Internet Computing (2012). (Cited on
page 46)

[Pittappily 2013] T. Pittappily. Semantic zoom. U.S. patent 2013/0067398 A1. 2013. (Cited
on page 43)

[Saboury et al. 2017] A. Saboury, P. Musavi, F. Khomh, and G. Antoniol. An empirical
study of code smells in JavaScript projects. In: 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER). 2017. (Cited on page 3)

[Sochat 2019] V. Sochat. Singularity compose: orchestration for singularity instances. Journal
of Open Source Software (2019). (Cited on page 33)

[You 2014] E. You. Vue.js. Vue.js. 2014. url: https://vuejs.org/ (visited on 05/01/2020).
(Cited on pages 1, 9)

49

https://vuejs.org/

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.2.1 G1: Enhanced Interactivity by Dynamic Data Loading
	1.2.2 G2: Real-Time Functionality
	1.2.3 G3: Scalability and Performance
	1.2.4 G4: Integrate Approach into the Titan Control Center Frontend
	1.2.5 G5: Rewrite CanvasPlot as TypeScript Code

	1.3 Document Structure

	2 Foundations and Technologies
	2.1 Industrial DevOps
	2.2 The Industrial DevOps Platform Titan
	2.2.1 Titan Control Center Architecture
	2.2.2 Titan Control Center Frontend
	The Current Architecture in the Titan Control Center
	The Data Flow of the ComparisonPlot
	The Data Flow of the SensorHistoryPlot

	2.3 The Web Frontend Framework Vue.js
	2.4 The Visualization Library D3
	2.5 The Plotting Library CanvasPlot
	2.6 The TypeScript Programming Language

	3 Evaluation of a Base Approach
	3.1 Evaluation Criteria
	3.1.1 Framework Criteria
	3.1.2 Conceptual Criteria

	3.2 Evaluated Approaches
	3.2.1 The System Management Visualization Tool LiveRAC
	3.2.2 Interactive Visualization Tool ATLAS for Large Time Series Data
	3.2.3 The Visual Exploration System ForeCache
	3.2.4 The Customized D3-Wrapper CanvasPlot

	3.3 Evaluation of Possible Base Approaches

	4 Visualization Approach
	4.1 Requirements for Dynamic Data Loading
	4.1.1 Features to Maintain in the Titan Control Center
	4.1.2 Features yet to be Implemented into the Titan Control Center

	4.2 Approach for a Scalable and Interactive Visualization
	4.2.1 Architectural Design
	4.2.2 Data Flow
	4.2.3 Conceptual Approach to Meet the Requirements from Section 4.1
	4.2.4 Approach to Enhance Scalability

	4.3 Approach for Migrating to TypeScript

	5 Implementation
	5.1 Migration of CanvasPlot to TypeScript
	5.1.1 Split CanvasPlot into Two Files
	5.1.2 Introduce TypeScript's Class Inheritance for CanvasPlot
	5.1.3 Add Types to CanvasPlot

	5.2 Implementation of a Scalable and Interactive Solution
	5.2.1 Implementation of the Class and File Structure
	5.2.2 Implementation of the DownloadManager
	5.2.3 Implementation of the Zoom Handler
	5.2.4 Caching the Data
	5.2.5 Retrieving Data Points from the Cache

	5.3 Integration of Jest as a Test Framework
	5.3.1 Testing the Injection of Non-Overlapping Intervals
	5.3.2 Testing the Calculation of Uncached Time Periods

	6 Evaluation
	6.1 Evaluation Environment
	6.2 Evaluation of Feasibility
	6.2.1 Methodology
	Scenario 1: Comparing Power Consumption Data of More Than One Device
	Scenario 2: Interact With the Plot
	Scenario 3: Analyze Real-Time Power Consumption Data
	Scenario 4: Panning Through the Data Infinitely
	Scenario 5: Analyzing Data in Multiple Temporal Resolutions
	Scenario 6: Use Prefetching to Enhance User Experience

	6.2.2 Results and Discussion
	Scenario 1: Comparing Power Consumption Data of More Than One Device
	Scenario 2: Interact With the Plot
	Scenario 3: Analyze Real-Time Power Consumption Data
	Scenario 4: Panning Through the Data Infinitely
	Scenario 5: Analyzing Data in Multiple Temporal Resolutions
	Scenario 6: Use Prefetching to Enhance User Experience

	6.2.3 Threats to Validity

	6.3 Evaluation of Performance
	6.3.1 Methodology
	6.3.2 Results
	6.3.3 Discussion
	6.3.4 Threats to Validity

	7 Related Work
	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work
	8.2.1 Future Work within our Solution
	8.2.2 Future Work within the Titan Control Center
	8.2.3 Future Work within the Field of Scalable Visualizations

	Bibliography

