
RESEARCH ARTICLE

Improved chromosome-level genome assembly and 

annotation of the seagrass, Zostera marina (eelgrass) [version 

1; peer review: 2 approved]

Xiao Ma 1, Jeanine L. Olsen2, Thorsten B.H. Reusch3, Gabriele Procaccini4, 
Dave Kudrna5, Melissa Williams6, Jane Grimwood6, Shanmugam Rajasekar7, 
Jerry Jenkins6, Jeremy Schmutz5,6, Yves Van de Peer 1,8,9

1Department of Plant Biotechnology and Bioinformatics, Ghent University - Center for Plant Systems Biology, VIB, Ghent, 9052, 
Belgium 
2Groningen Institute of Evolutionary Life Sciences, Groningen, 9747 AG, The Netherlands 
3GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Evolutionary Ecology, Kiel, 24105, Germany 
4Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, 80123, Italy 
5Department of Energy Joint Genome Institute, Lawrence Berkeley National Lab, Berkeley, CA, USA 
6HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA 
7Arizona Genomics Institute, School of Plant Sciences, University of Arizona Tucson, Tucson, AZ, 85721, USA 
8Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa 
9College of Horticulture, Nanjing Agricultural University, Nanjing, 210014, China 

First published: 15 Apr 2021, 10:289  
https://doi.org/10.12688/f1000research.38156.1
Latest published: 15 Apr 2021, 10:289  
https://doi.org/10.12688/f1000research.38156.1

v1

 
Abstract 
Background: Seagrasses (Alismatales) are the only fully marine 
angiosperms. Zostera marina (eelgrass) plays a crucial role in the 
functioning of coastal marine ecosystems and global carbon 
sequestration. It is the most widely studied seagrass and has become 
a marine model system for exploring adaptation under rapid climate 
change. The original draft genome (v.1.0) of the seagrass Z. marina
 (L.) was based on a combination of Illumina mate-pair libraries 
and fosmid-ends. A total of 25.55 Gb of Illumina and 0.14 Gb of Sanger 
sequence was obtained representing 47.7× genomic coverage. The 
assembly resulted in ~2000 unordered scaffolds (L50 of 486 Kb), a final 
genome assembly size of 203MB, 20,450 protein coding genes and 
63% TE content. Here, we present an upgraded chromosome-scale 
genome assembly and compare v.1.0 and the new v.3.1, reconfirming 
previous results from Olsen et al. (2016), as well as pointing out new 
findings.   
Methods: The same high molecular weight DNA used in the original 
sequencing of the Finnish clone was used. A high-
quality reference genome was 
assembled with the MECAT assembly pipeline combining PacBio long-
read sequencing and Hi-C scaffolding.  
Results: In total, 75.97 Gb PacBio data was produced. The final 
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assembly comprises six pseudo-chromosomes and 304 unanchored 
scaffolds with a total length of 260.5Mb and an N50 of 34.6 MB, 
showing high contiguity and few gaps (~0.5%). 21,483 protein-
encoding genes are annotated in this assembly, of which 20,665 
(96.2%) obtained at least one functional assignment based on 
similarity to known proteins.  
Conclusions: As an important marine angiosperm, the improved Z. 
marina genome assembly will further assist evolutionary, 
ecological, and comparative genomics at the chromosome 
level. The new genome assembly will further our understanding into 
the structural and physiological adaptations from land to marine life.
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Seagrass, Zostera marina, eelgrass, chromosome-scale genome 
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Introduction
Seagrasses are a polyphyletic assemblage of early-diverging monocotyledoneous plants belonging to the Alismatales
(Les, Cleland, and Waycott 1997; Du and Wang 2016); they are not true grasses (Poaceae). Several clades of seagrasses
arose independently from freshwater sister taxa 3-4 times between the Paleocene and late Eocene (~65-34 mya) and are
the only fully marine, flowering plants (~14 genera and ~65 species) (Chase et al. 2016). They occur in predominantly
soft-sediment, marine coastal environments worldwide (Green, Short, and Frederick 2003) and as engineering species
provide the foundation of three-dimensional habitats that are among the most productive and biodiverse (Costanza et al.
1997; Duffy et al. 2015). Seagrass meadows provide numerous ecosystem services, e.g., provisioning of fish and
invertebrates, retention of nutrients (Larkum, Orth, and Duarte 2006) and carbon sequestration (Fourqurean et al. 2012).
Unfortunately, they are also under threat related to human impacts (Waycott et al. 2009) that fundamentally change
coastal system dynamics (Duffy et al. 2015) and make restoration extremely difficult (van Katwijk et al. 2016). Effective
marine conservation strategies require integrative research perspectives between ecology and genomics (Hillebrand,
Jacob, and Leslie 2020) because ecological and evolutionary change can and do occur on the same time scales (Carroll
et al. 2007), e.g., genetic polymorphisms underlying critical traits or the role of genetic diversity at selectively relevant
sites for population resilience.

Zostera marina (eelgrass) is a marine model species with >3000 papers covering a wide variety of ecological,
evolutionary, conservation and biotech topics. Its unique, circumglobal, warm temperate to Arctic distribution has
allowed it to withstand numerous cycles of rapid climate change during the Pliocene glacial and interglacial periods
(Olsen et al. 2004), empirically demonstrating its capacity to adapt, acclimate and recover (Duarte et al. 2018), e.g., to
temperature (Franssen et al. 2011; Jueterbock et al. 2016; Jueterbock et al. 2020), salinity gradients/osmoregulation
(Shivaraj et al. 2017), ocean acidification (Zimmerman 2020) and potential pathogens (Brakel et al. 2014; Guan, Saha,
andWeinberger 2020; Zang et al. 2020). Further, clonal populations of Z. marina can persist for hundreds to thousands of
years ((Thorsten et al. 1999) for Z. marina, (Arnaud-Haond et al. 2012) for Posidonia oceanica)), yet have found ways to
adapt through periods of rapid climate selection via genotypic plasticity, fostered by somatic mutation (Yu et al. 2020)
and epigenetic modification of the methylome (DuBois, Williams, and Stachowicz 2020; Jueterbock et al. 2020).
Microbiome interaction studies are being conducted in parallel with eelgrass resequencing, e.g., bacterial (Cucio et al.
2016; Fahimipour et al. 2017; Wang, Tomas, and Mueller 2020; Eisen et al. 2017) and fungal (Ettinger, Voerman, et al.
2017; Ettinger, Williams, et al. 2017; Ettinger and Eisen 2019, 2020; Ettinger, Vann, and Eisen 2020) to inform
restoration strategies as well as meta-organismal function. Bioengineered salinity tolerance is also of interest (Wani et al.
2020).

The new assembly of the Z. marina reference genome will further advance studies in the aforementioned areas, as well as
comparative analyses of genome structure and evolution, as new reference genomes for representatives of the other three
seagrass lineages (i.e., Posidonia oceanica - Posidoniaceace, Cymodocea nodosa - Cymodoceaceae and Thalassia
testudinum - Hydrocharitaceae) come online in the near future along with Zostera mueller (Lee et al. 2016) and Zostera
japonica (unpublished).

Methods
Sequencing strategy
We used an aliquot of the same DNA that served as the basis for Z. marina v.1.0 genome. We sequenced the Z. marina
genome using a whole genome shotgun sequencing strategy and standard sequencing protocols. Sequencing reads were
collected using Illumina and PacBio platforms at the HudsonAlpha Institute for Biotechnology in Huntsville, Alabama,
USA. Illumina reads were sequenced using the Illumina HiSeq-2500 platform and the PacBio reads were sequenced
using the SEQUEL II platform. One 400 bp insert 2×150 Illumina fragment library (162.7× coverage), and one 2×150
Hi-C Illumina library were constructed using Dovetail Hi-C kit and sequenced to 581.1× coverage. Prior to assembly,
Illumina fragment reads were screened for PhiX contamination. Reads composed of >95% simple sequence were
removed. Illumina reads <50 bp after trimming for adapter and quality (q<20)were removed. The final read set consists of
280,181,449 reads for a total of 156.4× of high-quality Illumina bases. For the PacBio sequencing, a standard PacBio
long read library was constructed and a total of 8 PB chemistry 3.0 chips (10 hours movie time) were sequenced on a
Sequel 1, a sequence yield of 75.97 Gb, with a total coverage of 189.93x.

Genome assembly and construction of pseudomolecule chromosomes
The current v.3.1 assembly was generated by assembling the 5,615,408 PacBio reads (189.93x sequence coverage) using
the MECAT assembler (Xiao et al. 2017) and subsequently polished using ARROW (Chin et al. 2013).

Misjoins in the assemblywere identified usingHi-C data as part of the JUICERpipeline (Durand et al. 2016). Nomisjoins
were identified in the polished assembly. The contigs were then oriented, ordered, and joined together using HI-C data
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using the JUICER pipeline. A total of 89 joins were applied to the assembled contigs to form the final set of six
chromosomes. Each chromosome join is padded with 10,000 Ns. Significant telomeric sequence was identified using the
(TTAGGG)n repeat, and care was taken to make sure that it was properly oriented in the production assembly. The
remaining scaffolds were screened against bacterial proteins, organelle sequences, GenBank nr and removed if found to
be a contaminant.

Finally, homozygous SNPs and INDELs were corrected in the released consensus sequence using 40x of Illumina reads
(2x150, 400bp insert) by aligning the reads using bwa mem (Li 2013) and identifying homozygous SNPs and INDELs
with the GATK’s UnifiedGenotyper tool (McKenna et al. 2010). A total of 1,876 homozygous SNPs and 64,447
homozygous INDELs were corrected in the release.

Annotation of repetitive elements and noncoding RNAs
RepeatModeler v2.0 was used to build a custom repeat library for the genome assembly of Z. marina v.3.1. Subsequently,
RepeatMasker v4.1 was used to discover and classify repeats based on the custom repeat libraries from RepeatModeler
v2.0. Transfer RNAs (tRNA)were predicted by tRNAscan-SE v1.31 (Chan and Lowe 2019) with default parameters.We
also identified noncoding RNAs, such as microRNAs (miRNAs), small nuclear RNAs (snRNAs) and ribosomal RNAs
(rRNAs) by comparing with known noncoding RNA libraries (Rfam v14.2), using the cmscan program of Infernal v1.1.2
(Nawrocki and Eddy 2013). In addition, novel miRNA entries from the Z. marina v.1.0 assembly were aligned to hard-
masking Z.marina v.3.1 using SeqMap (Jiang andWong 2008)with nomismatches.We extracted ~ 110 bp upstream and
downstream sequences surrounding every aligned locus and discarded the miRNAs candidates located within protein
coding sequences or repetitive elements (“NNNNNNNNNNN”). The stem-loop structure and the minimum free energy
(MFE) were predicted for each region using the RNAfold program of the ViennaRNA v 2.1.1 (Lorenz et al. 2011) with
default settings. Finally, the results based on Rfam and Z.marina v.1.0 were combined into a non-redundant prediction
of miRNAs.

Gene prediction and functional annotation
Genome annotation was performed using a combination of ab initio prediction, homology searches and RNA-aided
alignment. Augustus (Stanke, Tzvetkova, andMorgenstern 2006)was used for ab initio gene prediction usingmodel training
based on protein structures and RNA-seq data from Z. marina v.1.0 (Olsen et al. 2016). For homology-based predictions, the
protein sequences of Z. marina v.1.0 andOryza sativawere downloaded from PLAZA (https://bioinformatics.psb.ugent.be/
plaza/) and aligned to Z. marina v.3.1 using TBLASTN with different e-values (Z. marina v.1.0 with e-value ≤ 1e-10 and
O. sativawith e-value ≤ 1e-5). Next, regions were mapped by these query sequences to define gene models using Exonerate
(Slater and Birney 2005). For RNA-aided annotation, we downloaded 23 libraries of Z. marina v.1.0 fromNCBI (BioProject
PRJNA280336). Firstly, we joined the paired-end reads using clc_assembly_cell to generate almost 2/3 of joined reads and
1/3 of un-joined reads. Then, we aligned the joined and un-joined RNA-seq data to Z. marina v.3.1 using HISAT2 (Kim,
Langmead, and Salzberg 2015) with the parameters “--max-intronlen 50000” and assembled into potential transcripts using
StringTie v2.1.1 (Kovaka et al. 2019). Further, TransDecoder v5.0.2 was used to predict open reading frames (ORFs) within
the assembled transcripts. Finally, genemodels obtained from all three approaches were integrated as the final non-redundant
gene set using EVidenceModeler (v.1.1.1) (Haas et al. 2008). Specifically, a set of 1,460 bad gene models identified by the
wgd software (Zwaenepoel and Van de Peer 2019) was manually curated using the genome browser GenomeView on the
ORCAE platform (https://bioinformatics.psb.ugent.be/orcae/) and the gene annotation results were evaluated by BUSCO
hits. Putative gene function was determined using InterProScan (Jones et al. 2014) with the different databases, including
PFAM, Gene3D, PANTHER, CDD, SUPERFAMILY, ProSite, and GO. Meanwhile, functional annotation of predicted
genes was also obtained by aligning the protein sequences against the sequences in public protein databases (Uniprot/
SwissProt database) using BLASTP with an e-value cut-off of 1�10-5.

Results and discussion
Genome size and assembly
A single genotype (or clone) of Z. marina from the northern Baltic Sea, Finnish Archipelago Sea had been subjected to
whole-genome assembly using Sanger and Illumina sequencing (referred to as Z. marina v.1.0) (Olsen et al. 2016). Since
PacBio technology can deliver longer reads, necessary to improve assembly contiguity and obtain a nearly complete,
reference genome, we re-sequenced the inbred, Finnish clone, leading to the final v.3.1 release, which contains 260.5Mb
of sequence, consists of 432 contigs with a contig N50 of 7.0Mb and a total of 87.6% of assembled bases into six pseudo-
chromosomes (2n = 12). Interestingly, during the assembly of the genome using Hi-C, it was noted that there was a
seventh “chromosome” (scaffold_7 in this release) with a length of 8.68Mb, consisting of mainly repetitive DNA and a
possible Nucleolus Organizing Region (NOR). Completeness of the euchromatic portion of v.3.1 assembly was assessed
using 20,450 annotated genes from Z. marina v.1.0. The screened alignments indicate that 20,342 (99.47%) of the
previously annotated version 1.0 genes aligned to the v.3.1 release. Of the remaining genes, 50 (0.24%) aligned at <50%
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coverage, while 58 (0.29%) were not found in the v.1.0 release. This shows a high degree of consistency between the two
versions. However, version 3.1 presents much higher contiguity and fewer gaps compared to the previously published
Z. marina v.1.0 (Table 1).

Repetitive elements and noncoding RNAs
We used ab initio approaches to identify and annotate repetitive sequences, which accounted for 67.12 % of Z. marina
v.3.1. 41.72 % of these TEs were long terminal repeat (LTR) elements (Table 2). Screening the Z. marina v.3.1 genome
against the Rfam v14.2 database using Infernal identified 546 tRNAs, 376 rRNAs, 93 miRNAs, and 134 snRNAs
(Table 3). In addition to the 93 known conserved miRNAs identified from Rfam v14.2, we also identified 23 novel
miRNAs candidates compared to 19 novel miRNAs candidates in Z. marina v.1.0, resulting in a total of 116 miRNAs
(Table 4).

Protein-coding genes
Through a combination of ab initio prediction, homology searches and RNA-aided evidence, we annotated 21,533 gene
models after masking repeat elements. After manually checking most gene models and improving 1395 incorrect gene
models on the ORCAE platform and adding 30 new genes based on RNA-seq evidence, the final annotation produced
21,483 gene models, 91.8% of which (19,739 genes) are supported by transcriptome data from leaves, roots and flowers.
On average, protein-coding genes in Z.marina v.3.1 are 3,300 bp long and contain 4.99 exons, values that are very similar
to those of Z.marina v.1.0. Notably, intron lengths greatly improved after manual curation (Table 5). BUSCO assessment
of the current gene set shows that the current annotation includes 95.7% complete genes in the embryophyte database10.
93.2% of the BUSCO genes were single copy while 2.5% of these BUSCO genes were found in duplicate. 0.5% of the
BUSCO genes were fragmented and 3.8% was missing, which could be due to some specific pathways missing in
Z. marina, compared to land plants (Olsen et al., 2016) (Table 6). BUSCO assessment in Z. marina v.3.1 shows more
complete genes and fewer fragmented genes than for Z. marina v.1.0 (Figure 1). 20,665 genes (96.2%) obtained at least
one functional assignment based on similarity to known proteins in the databases. Pfam domain information could be
added to 15,716 (73.2%) predicted genes, and 12,406 (57.7%) predicted genes could be assigned a GO term (Table 7).

Table 1. Comparisonof genomeassemblies for Zosteramarina v1.0 (Olsenet al., 2016) andv3.1 (current study).

Parameters Zostera marina v1.0 Zostera marina v3.1

Scaffolds length (Mb) 203 260.5

Scaffolds number 2,228 310

Scaffolds N50 (Mb) 0.486 34.6

Contigs length (Mb) 191 259.3

Contigs number 12,583 432

Contigs N50 (Mb) 0.08 7

Largest length (bp) 2,654,544 42,612,672

Table 2. Annotation of repeat elements.

Zostera marina v.3.1

Repeat types Length (bp) P (%)

DNA 14,881,010 5.71

LINE 10,538,203 4.05

SINE 228,565 0.09

LTR Gypsy 83,650,636 32.11

Copia 24,717,775 9.49

Pao 309,173 0.12

Other 4,041,971 1.55

Unknown 36,466,934 14.00

Total 174,834,267 67.12
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Table 3. Known miRNAs identified in the genome of Zostera marina (v1.0 and v3.1).

Number of loci

miRNA family Zostera marina v1.0 Zostera marina v3.1

miR1388 0 11

miR156 5 7

miR159 1 4

miR160 3 3

miR164 3 4

miR166 4 5

miR167 2 2

miR168 1 1

miR169 2 6

miR171 3 13

miR172 1 3

miR390 2 2

miR393 2 2

miR396 2 4

miR398 0 1

miR399 2 5

miR528 1 5

miR4414 1 8

miR5658 1 7

Total 36 93

Table 4. Novel miRNA candidates in Zostera marina (v1.0 and v3.1).

Number of loci

Novel miRNA family Zostera marina v1.0 Zostera marina v3.1

zmr-miR001 2 2

zmr-miR002 1 0

zmr-miR003 1 1

zmr-miR004 1 1

zmr-miR005 1 1

zmr-miR006 1 3

zmr-miR007 1 1

zmr-miR008 1 0

zmr-miR009 1 3

zmr-miR010 1 1

zmr-miR011 1 1

zmr-miR012 1 1

zmr-miR013 3 7

zmr-miR014 1 1

zmr-miR015 2 0

Total 19 23
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Conclusions
Here, we report a high-quality, chromosome-scale genome assembly of Z. marina using a combination of single-
molecule real-time sequencing and Hi-C scaffolding. Although a draft genome sequence for Z. marina has been available
for more than five years (Olsen et al. 2016), a chromosome-scale assembly and well-annotated reference genome is an
important step to further advance our understanding with respect to its metabolism, evolution and adaptation. As we
expected, there is a discrepancy in genome size between an Illumina-derived assembly and a PACBIO long read-derived

Table 5. Genome annotation statistics.

Statistics Zosma v1.0 Zosma v3.1 Zosma v3.1_before_curation

Protein coding genes 20,450 21,483 21,533

Mean gene length, bp 3,301 3,300 3,202

Mean CDS length, bp 1,177 1,225 1,207

Mean exon per gene 5.20 5.00 4.9

Mean exon length, bp 226 245 245

Mean intron length, bp 443 710 510

Table 6. BUSCO completeness assessment of protein coding sequences in Z. marina version 3.1.

Total number of BUSCO core genes queried 1614

Number of core genes detected

Complete 1544 (95.7%)

Complete + Partial 1552 (96.2%)

Number of missing core genes 62 (3.8%)

Scores in BUSCO format* C:95.7% [S:93.2%, D:2.5%], F:0.5%, M:3.8%, n:1614

Figure 1. Busco assessment results for Z. marina genomes v1.0 and v3.1.
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assembly, which is mainly due to the more accurate coverage of repetitive content. Nevertheless, the genome size of
259Mb still characterizes Z. marina as relatively compact monocot genome, and it is also the smallest genome among the
seagrasses where genome size estimates exist (JGI pilot analyses). Also, telomere and centromere regions are generally
captured more fully. As a first high quality, reference genome of an important marine angiosperm, v.3.1 of the genome of
Z. marina will provide a great resource for further comparative and evolutionary studies.

Data availability
Underlying data
NCBI BioProject: Zostera marina Genome sequencing and assembly. Accession number: PRJNA701932; https://
identifiers.org/ncbi/bioproject:PRJNA701932.

The genome assembly and annotation for Z. marina v.3.1 is also available from https://data.jgi.doe.gov/refine-download/
phytozome?organism=Zmarina and through the ORCAE platform (https://bioinformatics.psb.ugent.be/gdb/zostera/).
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The manuscript "Improved chromosome-level genome assembly and annotation of the seagrass, 
Zostera marina (eelgrass)" by Ma, Olsen, Reusch et al. is a well-written article about a unique 
genome of marine angiosperm plant Z. marina. The results convincingly present improving the 
genome assembly using PacBio and Hi-C strategies. The improvement is obvious, among others, 
from an increased number of coding genes by 1000 in comparison with the first assembly and 
almost removing fragmented hits in the BUSCO analysis results. 
 
I must say that I do not have any serious concerns about the methodology, results, and 
conclusions. The release of an improved genome is a great opportunity of the research 
community to have a powerful tool in genome-dependent studies of this extraordinary plant. 
 
My minor notes:

In the text, "come online in the near future along with Zostera mueller" probably should be "
muelleri". 
 

1. 

The sentence, "The remaining scaffolds were screened against bacterial proteins, organelle 
sequences, GenBank nr and removed if found to be a contaminant." would need rewording 
to be clear what "GenBank nr" means. Does it mean anything that is not obviously of Zostera 
species origin? 
 

2. 

I suggest using the "BWA-MEM algorithm" instead of "bwa mem". 
 

3. 

I do not understand what the (“NNNNNNNNNNN”) stands for. 
 

4. 

I think a short explanation of the assembly numbering would be helpful for readers. Was 
the Zosma2.0 published and is available somewhere? The JGI link shows v2.2 and v3.1. 
Actually v3.1 contains data named Zmarina_668_v2.0.fa.gz. The ugent link shows only V2. In 

5. 
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summary, the numbering is confusing and a bit more intuitive naming would be nice. 
 
In Peska et al., (2020)1, we showed there are two telomerase RNA genes in Z. marina. I 
wonder if assembly v3.1 confirms them as a set of separate genes or two alleles of the same 
gene? We also showed decompacted mitotic chromosome at the rDNA locus which might be 
a fragile site. Does it correspond to the observed "extra" pseudochromosome in the v3.1?

6. 
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The authors present a new assembly of eelgrass based on long read sequencing and Hi-C 
chromosome conformation capture technology. Altogether this is a well-prepared improvement 
on the existing genome assembly. In addition to improving the contiguity, also the manual 
curation of 1,460 gene models is very much welcome. 
 
For comparison purposes the authors could still produce a dot plot of the whole genome 
alignments of the old vs new version.
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