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Aim: To evaluate the effects of climate warming on biodiversity across spatial scales (i.e., α-, β- 19 

and γ-diversity) and the effects of patch openness and experimental context on diversity responses. 20 

Location: Global  21 

Time period: 1995 - 2017  22 

Major taxa studies: Fungi, Invertebrates, Phytoplankton, Plants, Sea weed, Soil Microbes, Zoo-23 

plankton  24 



 

Methods: We compiled data from warming experiments and conducted a meta-analysis to evaluate 25 

the effects of warming on different components of diversity (such as species richness and equivalent 26 

numbers) at different spatial scales (α-, β- and γ-diversity, partitioning β-diversity into species turn-27 

over and nestedness components). We also investigated how these effects were modulated by sys-28 

tem openness, defined as the possibility of replicates being colonized by new species, and experi-29 

mental context (duration, mean temperature change and ecosystem type). 30 

Results: Experimental warming did not affect local species richness (α-diversity) but decreased 31 

effective numbers of species by affecting species dominance. Warming increased species spatial 32 

turnover (β-diversity), although no significant changes were detected at the regional scale (γ-33 

diversity). Site openness and experimental context did not significantly affect our results, despite 34 

significant heterogeneity in the effect sizes of α- and β- diversity.  35 

Main conclusions: Our meta-analysis shows that the effects of warming on biodiversity are scale-36 

dependent. While local and regional inventory diversity remain unaltered, species composition 37 

across temperature gradients and the patterns of species dominance change with temperature, creat-38 

ing novel communities that might be harder to predict. 39 

Keywords: Climate change, Alpha and Beta diversity, Habitat fragmentation, Manipulative exper-40 

iments, Meta-analysis.  41 

 42 

Introduction 43 

 Climate change and its consequent increase in average global temperature are already af-44 

fecting important biological processes, such as rates of species dispersion, phenologies, range dis-45 

tributions, community assembly and biotic interactions (Cahil et al. 2012; Lurgi, López & Montoya 46 

2012; Peñuelas et al. 2013; Scheffers et al. 2016). These changes will likely accelerate extinction 47 

rates at the global scale in the coming decades (Urban et al. 2015), with important consequences to 48 

the provision of crucial ecosystem services (Bulling et al. 2010; Pecl et al. 2017; Peñuelas et al. 49 



 

2017; Scheffers et al. 2016), to local livelihoods and to the global economy (Lee, Schlemme, Mur-50 

ray & Unsworth 2015; Stern 2015).  51 

 Our understanding of the effects of warming on the biota is primarily centered on the re-52 

sponses of single species or on various measures of local diversity, i.e., α-diversity (Araújo & Luoto 53 

2007; Gruner et al. 2017; Wiens 2016; Antão et al. 2020). Recent syntheses of global change im-54 

pacts on α-diversity have spurred controversy. While some studies suggest declines in local average 55 

species richness (e.g., Cardinale, Gonzalez, Allington & Loreau et al. 2018; Gonzalez et al. 2016), 56 

others suggest that the average number of species is roughly constant over time (e.g., Dornelas et al. 57 

2014; Vellend et al. 2017). In any case, other important aspects of biodiversity, such as changes in 58 

differentiation diversity (i.e., compositional similarity among local communities, such as β- diversi-59 

ty) and higher levels of inventory diversity (i.e., diversity within spatial units, such as γ-diversity) at 60 

the regional level, are nevertheless usually neglected. 61 

 Measures of α-diversity, especially species richness, are insensitive to many possible 62 

changes within communities in response to environmental change (Hekkala & Roberge 2018; Hil-63 

lebrand et al. 2018). Focusing on species diversity at individual local communities limits our ability 64 

to understand spatial and temporal changes of ecosystems in response to both natural and anthropo-65 

genic factors (Chase et al. 2018). Identifying the independent effects of global warming in different 66 

components of species diversity is challenging, because warming is likely confounded with other 67 

environmental stressors, such as habitat loss and fragmentation. 68 

 The consequences of warming across local communities can be measured by metrics of β-69 

diversity. Changes in β-diversity may identify two important and contrasting phenomena: nested-70 

ness (communities with fewer species are subsets of richer communities) and spatial turnover (the 71 

replacement of species in one community by different species in another community; Baselga 2010; 72 

Baselga, Jiménez-Valverde & Niccolini. 2007). Nestedness can indicate non-random processes of 73 

species loss and/or gain across space, representing differences in species sensitivity to environmen-74 

tal gradients or disturbances. Turnover implies that the replacement of a set of species across a gra-75 



 

dient is driven by differences in the optimal niche, leading to environmental sorting or historical 76 

constraints (Baselga 2010; Baselga et al. 2007). Understanding the processes driving changes in β-77 

diversity provides crucial information to understand the impact of warming, assisting decision mak-78 

ers to choose relevant spatial scales for conservation (Bergamin et al. 2017; Legendre, Borcard, & 79 

Peres-Neto 2005). For instance, high levels of nestedness in open patches across a thermal gradient 80 

may indicate that species are being systematically lost at higher temperatures, and this loss cannot 81 

be compensated by dispersal or recolonization across the patches of habitat. High levels of species 82 

turnover, in contrast, may suggest that a particular set of species is being selected to occupy specific 83 

sections of the new climatic gradient (e.g., Hillebrand, Soininen & Snoeijs 2010) forming novel 84 

communities (Urban et al. 2012; Williams & Jackson 2007). 85 

 Establishing causal connections between changes in climate and biodiversity pose an extra 86 

challenge because non-experimental field studies rely on correlational data, which makes inferential 87 

interpretation troublesome (Stewart et al. 2013). Experimental meta-ecosystems offer a solution to 88 

this limitation, because they provide a unique opportunity to comprehend and predict responses of 89 

biodiversity to warming (Stewart et al. 2013), mimicking climatically induced changes in meta-90 

ecosystems with different levels of habitat patchiness and isolation.  91 

 Here, we present the results of a meta-analysis devised to evaluate the effects of increas-92 

ing average temperatures on biodiversity across spatial scales (i.e., α-, β- and γ-diversity). Recent 93 

syntheses on the effects of experimental warming have evaluated its effects on species diversity at 94 

local scales (Gruner et al. 2017). Thus, the knowledge of how warming affects biodiversity across 95 

spatial scales is an open and crucial question to be answered, in order to improve our ability to an-96 

ticipate and mitigate its effects. As processes that shape diversity patterns are spatially structured 97 

(Chase et al. 2018), we expect that responses at the local scale (α-diversity within replicates) will 98 

differ from responses at larger spatial scales (γ-diversity of the experimental system), and that 99 

warming will have a deleterious effect on α-diversity and increase rates of nestedness in β-diversity 100 

through a systematic loss of species less adapted to the new climatic conditions. This implies that γ-101 



 

diversity should be unaltered, given that richer patches should have levels of species diversity simi-102 

lar to the levels of the regional pool. 103 

 Our meta-analysis also evaluates the effect of important moderators, as previous meta-104 

analyses showed that the effects of warming on experimental meta-communities depend on experi-105 

mental design itself, including differences in temperature and time of manipulation and ecosystem 106 

type (Gruner et al. 2017; Marino et al. 2018). As habitat fragmentation has been shown to aggravate 107 

the effects of climate change in ecological communities (Opdam & Wascher 2004; Oliver et al. 108 

2015), we expect open patches, defined as the possibility of replicates being colonized by new spe-109 

cies, to be less prone to lose species, or at least, more likely to recover from species loss, as individ-110 

uals from resident species are able to migrate and (re) colonize open patches. 111 

 112 

Material and Methods 113 

 Data 114 

 We compiled data from published meta-community experiments (mesocosms or micro-115 

cosms), encompassing ecological communities (individual replicates) subject to warming and their 116 

corresponding controls. We used the search engines of the ISI Web of Science and Google Scholar 117 

with cross-referencing to find studies published between 1995 and 2017, using the same search 118 

string used by Gruner et al. (2017), who conducted an earlier meta-analysis of the effect of warming 119 

on α-diversity: “(temperature or warming) AND (diversity or evenness or richness) AND (experi-120 

ment*or mesocosm*or manipul*)”. We also included additional studies identified in the course of 121 

the literature review, following relevant citation tracks. Our search identified 131 studies published 122 

worldwide. We contacted authors requesting for raw community data, so we could calculate a 123 

standardized measure of β-diversity for each dataset. Based on primary data, we were able to extract 124 

67 datasets (from 28 studies; see Table 1 in Supporting Information) that were used in our analyses. 125 

We excluded datasets that used temperature manipulation (ΔT) in excess of 6°C, as these exceed the 126 



 

most extreme projections for global temperature increase by the end of the 21st century (Stocker et 127 

al. 2013). When studies reported manipulations at multiple temperatures, we averaged the experi-128 

mental temperature, as long as ΔT< 6°C. If ΔT was above 6°C in one of the treatments, we only 129 

used data from sampling units with experimental temperatures < 6°C. In case of studies with multi-130 

ple factors besides warming we partitioned the data into independent subsets within the levels of the 131 

other factors in order to estimate biodiversity metrics and effect sizes.  132 

 Measures of diversity across scales  133 

 Firstly, we computed two measures of α-diversity: species richness, i.e., the total number 134 

of identified taxa or operational taxonomic units (OTUs) and the effective number of species de-135 

rived from Hurlbert’s Probability of Interspecific Encounter (ENS.Pie; Chase & Knight 2013; 136 

McGlinn et al. 2019). ENS.pie represents the number of equally abundant species in a perfectly 137 

even community (Chase & Knight 2013; McGlinn et al. 2019). It offers many advantages over other 138 

diversity indices in meta-analytical approaches, as ENS.Pie is scale-independent (i.e. insensitive to 139 

sample grain and extent) when communities are distributed randomly (Chase & Knight 2013), and 140 

it is an unambiguous metric of effect size (Chase & Knight 2013). Thus, ENS.pie allows one to dis-141 

entangle sampling effects, from treatment effects that would alter the coexistence mechanisms of 142 

species in the experiment (Schuler et al. 2017). 143 

 Secondly, we calculated β-diversity among replicates within any given study, and parti-144 

tioned it into species turnover and nestedness components using two different approaches: (i) based 145 

on qualitative data (i.e., species presence/absence; see Baselga et al. (2007); (ii) based on quantita-146 

tive data. For quantitative data, we computed nestedness measuring the abundance gradient and 147 

species turnover as the balanced variation of abundance (Baselga 2010, 2013). This method	  uses	  148 

matching	  components	  in	  terms	  of	  species	  abundances	  to	  provide	  a	  partition	  of	  beta-‐diversity,	  149 

separating	   two	   components	   of	   abundance-‐based	   dissimilarity:	   balanced	   variation	   in	   abun-‐150 

dance.	  In	  this	  case,	  individuals	  of	  some	  species	  in	  one	  site	  are	  substituted	  by	  the	  same	  number	  151 

of	   individuals	   of	   different	   species	   in	   another	   site,	   and	   abundance	   gradients,	   in	  which	   some	  152 



 

individuals	  are	  lost	  from	  one	  site	  to	  the	  other	  (Baselga	  2013).	  Metrics of β-diversity range from 153 

0 (lowest dissimilarity) to 1 (highest dissimilarity), and in both cases, the partition is additive, ena-154 

bling the measurement of the total dissimilarity of experimental communities (Baselga 2013).  155 

 Thirdly, we calculated γ-diversity for both warming treatments and control, by counting 156 

the total number of species or OTUs at the end point of each experiment. 157 

 158 

 Meta-analysis 159 

 We calculated the log response ratio (lnRR; Borenstein, Hedges, Higgins & Rothstein 160 

2009) as our measure of effect size for all indices of α- and β-diversity. lnRR is a measure of the 161 

relative effect size, i.e. the proportional change in the response variable relative to the controls. As 162 

there is no replication at the study level to estimate the variance for γ-diversity, we estimated the 163 

raw difference between control and impact γ-diversity (Δ-gamma) as a measure of effect size 164 

(Borenstein et al. 2009) at the meta-community level. We evaluated differences in γ-diversity using 165 

anova, log-transforming species richness values. 166 

 To evaluate the effect of warming on α- and β-diversity, we first fitted random-effect 167 

models using lnRR as response variable, with the dataset identity as a random intercept. We meas-168 

ured heterogeneity (I2) of this random model as a mean to access the total variance component that 169 

was not explained by sampling variance, i.e., the percentage of total variation across studies that is 170 

owed to heterogeneity rather than chance itself (Higgins, Thompson, Deeks, & Altman 2003). To 171 

answer the remaining questions (the effect of site openness and experimental context), we then fit-172 

ted meta-regression models, using four experimental moderators: Δ temperature (difference be-173 

tween control and warming in Celsius degrees; range: 0.23 – 5 °C), study length (in number of 174 

days; range: 15 - 7,300 days), ecosystem type (categorical coded as dummy variables: freshwater, 175 

terrestrial, marine), and patch openness (binary state: system open or closed to migration of individ-176 

uals), which measures the potential of individual replicates to receive new species. This moderator 177 

was used as a proxy of patch openness for natural communities. 178 



 

 We evaluated the effects of each moderator on each level of diversity using a multi-model 179 

inference approach within an information-theoretic framework (Burnham & Anderson 2002). To 180 

evaluate model plausibility, we used Bayesian Information Criterion (BIC) and BIC weight (BIC-181 

wi), which measures the relative likelihood of the model given the data, normalized across the set of 182 

candidate models to sum to one for all possible models (Burnham & Anderson 2002). We also 183 

evaluated the importance of each moderator by computing its relative importance value based on 184 

BIC for all possible models. The information-theoretic approach used here allows the assessment 185 

and comparison of the support of several competing models, based on the probability of each model 186 

being the best model in the set of candidate models. The relative importance of a moderator (within 187 

the range 0-1) is the probability that a given moderator appears in the best model and it is estimated 188 

by summing the weights of each model where that moderator appears. It is important to stress that 189 

we used this approach in order to extract all the information from the set of possible models, and 190 

not to select the “best” model. This approach also allowed us to estimate the weighted average val-191 

ue for each model parameter (i.e., slopes and intercepts). We estimated a weighted averaged slope 192 

for each moderator based on all possible nested models and their respective model plausibility, 193 

measured by BICwi, (Burnham & Anderson 2002). We evaluated the significance of each modera-194 

tor building 95% confidence intervals for each averaged model parameter.  195 

 To estimate the effects of site openness and experimental context on γ-diversity, we used 196 

linear models within the same multi-model inference approach, using Δ-gamma as the response 197 

variable. All analyses were conducted in the R environment (R Core Team 2012).  198 

 199 

Results 200 

 Effects of warming on diversity 201 

 Experimental warming had no significant effect on species richness locally but reduced 202 

significantly the effective number of species (ENS.Pie), which decreased on average by 4.4% in 203 

warming replicates when compared to controls (lnRR ± se = -0.0450 ± 0.02; z-value = -2.2456; p = 204 



 

0.02; Fig. 1). For both controls and warming replicates, ENS.Pie was smaller than the observed 205 

richness (Fig S1.3). This reduction suggests that warming has a detrimental effect for rare or less 206 

frequent species, and a beneficial effect for dominant species, resulting in less equitable communi-207 

ties in warming replicates. Random models for α-diversity, i.e., richness and ENS.Pie, presented 208 

high and significant heterogeneity (mean I2 ± SD = 79.73 ± 1.22; Fig. 1).  209 

 210 

 Species turnover (or balanced gradient in species abundance in the case of quantitative 211 

data) was the main component of total β-diversity (Anova p-values < 0.001; Fig. 2). Overall, exper-212 

imental warming had no consistent effect on β-diversity, except for qualitative species turnover, 213 

which increased on average by 5.8% (lnRR ± se = 0.0563 ± 0.0208; z-value = 2.7066; p = 0.007; 214 

Fig. 3) when compared to controls. The overall mean effect size for all other measures of β-215 

diversity was not different from zero (Fig. 3). All models for β-diversity presented significant heter-216 

ogeneity (mean I2 ± SD= 46.53 ± 17.45; Fig. 3), with nestedness components being more heteroge-217 

neous than turnover components (Fig. 3). The increase of species turnover implies that warming is 218 

not causing net species gain or loss at the replicate level, with more tolerant species persisting in 219 

warming environments. This increase in species turnover did not affect the total number of species 220 

at the regional level (i.e., γ-diversity) in warmed meta-ecosystems (F1,132 = 0.008; p = 0.93). The 221 

average raw difference shows that 40.3% of the meta-ecosystems lost species at the species pool 222 

level, while 37.31% gained species, with the remaining 22.39% of the datasets showing constant 223 

species richness (x2 = 5.52, df = 2; p-value = 0.06). 224 

 225 

Openness and experimental context as mediators of the effects of warming 226 

 Contrary to our initial expectations, patch openness had no significant effect on any com-227 

ponent of diversity (Table 1; Fig. S1.1, Fig. S1.2, Fig. S1.3). Ecosystem type was amongst the main 228 

moderators explaining differences in the effect size for species richness, with terrestrial and marine 229 

systems having larger effect sizes for richness than freshwater systems (Table 1; Fig. S1.1). Exper-230 



 

imental ΔT had a significant effect on explaining variation in species richness. On average, ΔT was 231 

among the top moderators explaining differences in effect sizes for β-diversity (Fig. S1.2), although 232 

no slope differed from zero. Study duration had no significant effect on α-, β- and γ-diversity results 233 

and (Table 1; Fig. S1.1, Fig. S1.2, Fig. S1.3). 234 

 235 

Discussion 236 

 Effects of warming on components of diversity 237 

 We know little about the effects of climate change on biodiversity across spatial scales. 238 

Our meta-analysis found that experimental warming did not affect local species richness but altered 239 

the patterns of species dominance at the local scale and species turnover across space. Warming 240 

decreased the effective number of species (ENS.Pie) and increased spatial turnover, which in turn 241 

led to small increases in γ-diversity in some ecosystems. Chase & Knight (2013) have demonstrated 242 

that ENS.Pie should become increasingly lower than richness as the level of equitability decreases. 243 

Decreases in ENS.Pie respond to decreases in species evenness and not richness, suggesting a con-244 

sistent effect on relative species abundance, with some species becoming more dominant in warmed 245 

systems. Changes in dominance seem to be a recurrent response to warming (Harte & Shaw 1995; 246 

Hillebrand, Bennett, & Cadotte 2008; Kosten et al. 2012; Yvon-Durocher et al. 2015). Although 247 

increased local species dominance may lead to an increment of cascading extinctions (Zarnetske, 248 

Skelly & Urban 2012) and higher levels of β-diversity (Hillebrand et al. 2008), this effect was not 249 

strong enough to be detected by abundance-based measures of β-diversity.  250 

 Our results for α-diversity contrast with those reported in the meta-analysis by Gruner et 251 

al. (2017), in which warming decreased species richness while it had no effect on species evenness 252 

(although evenness decreased significantly in terrestrial systems). The difference between our re-253 

sults and those of Gruner and colleagues could be a consequence of the methodological approach 254 

used in our work, as we estimated α-diversity from raw data for each dataset, and not from pub-255 

lished values. Our methodological choice was due to the need to have standardized measures of β-256 



 

diversity, which were not directly available from published values. Our sample size was sufficiently 257 

large to detect regional changes in species diversity but may have not provided enough power to 258 

detect changes in local species richness. The partition of multifactorial data, i.e. studies with more 259 

factors than only warming, into independent subsets reduces sample size within data sets, and het-260 

erogeneity is larger between smaller than larger studies (IntHout, Ioannidis, Borm, & Goeman 261 

2015), which may have reduced our ability to detect changes in local species richness. Our ap-262 

proach, however, allowed us to analyze data consistently, producing comparable estimates of effect 263 

sizes, especially for β-diversity across studies.  264 

 Despite these differences between our results and those of Gruner et al. (2017), it is im-265 

portant to note that the effects of different components of global change on local species richness 266 

have been largely debated in the past years, with some proponents suggesting that, on average, spe-267 

cies richness is not declining at local scales (e.g., Dornelas et al. 2014; Hillebrand et al. 2018; Vel-268 

lend et al. 2017), and others suggesting that these claims may be based on poor or incomplete data 269 

and on the lack of well-defined temporal baselines for detecting changes in local species richness 270 

(e.g. Cardinale et al. 2018; Gonzalez et al. 2016). Recent syntheses have also shown that species 271 

richness does not decrease with warming (Suggitt, Lister & Thomas 2019; Antão et al. 2020; Yue et 272 

al. 2020). Observational studies have similarly demonstrated that climate has an important role in 273 

determining species richness at large scales but cannot account for the variation in species richness 274 

at finer scales (Field et al. 2009). Our results support this notion that the lack of effect on average 275 

local species richness and the increase in spatial turnover of species composition seems to be a 276 

common consequence of numerous human-induced disturbances (Dornelas et al. 2014; Hillebrand 277 

et al. 2018), including climate warming (Dornelas et al. 2014; Hillebrand et al. 2010). 278 

 Our meta-analysis provides critical information for understanding the consequences of 279 

climate change on meta-ecosystems, showing that spatial turnover becomes more common under 280 

warming scenarios. Understanding changes in community composition across local communities as 281 

a consequence of warming is crucial for choosing relevant spatial scales for conservation and the 282 



 

planning of protected areas (Bergamin, et al. 2017; Legendre et al. 2005). An important practical 283 

aspect to consider for conservation is that changes in community composition (i.e. β-diversity) pro-284 

vide information more relevant for conservation than less informative measures, such as indices of 285 

species richness and community diversity, which cannot account for differences among ecological 286 

communities or functional and evolutionary differences among species (Hekkala & Roberge 2018; 287 

Hillebrand et al. 2018). This aspect also applies to shifts in species dominance within communities, 288 

which respond faster to anthropogenic pressures than α-richness (Hillebrand et al. 2008, 2018), as 289 

we observed for ENS.Pie.  290 

 Contrary to our initial expectation that experimental warming would create higher levels 291 

of nestedness due to a systematic loss of species at the local scale, our results support the notion that 292 

warming promotes turnover in species composition by selecting species with distinct set of traits 293 

when compared to initial and/or control communities. This can correspond to two phenomena. In 294 

closed systems, the expansion of the upper bound of the temperature range in warmed treatments 295 

imposes a selection effect that seems idiosyncratic at the replicate level. In other words, warming 296 

seems to facilitate the establishment of different thermal-tolerant species in different replicates. In 297 

open systems, a wider range of temperature conditions is available, i.e., both control and warmed 298 

replicates can be colonized by species from the “regional” pool. This allows species to inhabit dif-299 

ferent parts of the thermal gradient. Such differential species sorting across the extended tempera-300 

ture gradient can lead to larger β-diversity values. In agreement with our results, species turnover 301 

has been shown to be the dominant component of total β-diversity in most ecological systems, inde-302 

pendent of taxonomic group or geographical region (Soininen, Heino & Wang 2017). Under in-303 

creasing temperatures, taxonomic and functional turnover seems also to be a recurrent pattern 304 

(Frainer et al. 2017; Hillebrand et al. 2010; Gibson�Reinemer, Sheldon & Rahel. 2015; Yvon-305 

Durocher et al. 2017), creating novel communities (Lurgi et al. 2012; Urban et al. 2012; Williams & 306 

Jackson 2007). 307 



 

 Numerous mechanisms, such as random reshuffling, species invasion and idiosyncratic 308 

rates of range shift, have been proposed as explanations for climate-driven spatial turnover (Gib-309 

son�Reinemer et al. 2015). However, increase in species turnover suggests that experimental 310 

communities are undergoing a process of species sorting, where warming changes the amplitude of 311 

temperature niches of species within communities, with pre-adapted species replacing resident ones 312 

along the temperature gradient (Loeuille & Leibold 2008). Species sorting has been suggested as a 313 

major mechanism in experimental warming studies for a broad range of taxa, inducing shifts in the 314 

selection of traits across the gradient (Elmendorf et al. 2012; Gibson�Reinemer et al. 2015; Frainer 315 

et al. 2017; Yvon-Durocher et al. 2017). Higher spatial turnover and its consequent novel assem-316 

blages nevertheless impose an extra and critical implication for climate scientists and policy-317 

makers, because they suggest that ecological communities may not be able to track climate change 318 

by shifting their ranges, even though species can (Gibson�Reinemer et al. 2015).  319 

 320 

 Explaining heterogeneous effects of warming on components of diversity 321 

 Physiological responses to environmental temperature, such as thermal scaling of perfor-322 

mance, i.e., changes in species growth, energy gain and activity patterns as a function of tempera-323 

ture, can determine the result of competitive interactions among species (Buckley & Roughgarden 324 

2006; Finstad et al. 2011). Thermal scaling might ultimately cause competitive exclusion due to 325 

niche retractions (Finstad et al. 2011). Competitive displacement is also an important mechanism 326 

changing community composition and turnover, which act in consonance with environmental filter-327 

ing (Leibold & Chase 2017). Besides changes in community composition itself, warming has also 328 

an effect on community structure, by altering competitive dominance, and consequently species 329 

abundance (Harte & Shaw 1995; Hillebrand et al. 2018), which may also explain the decreases in 330 

ENS.Pie we have observed in our results. As we mentioned before, warming seems to promote spe-331 

cies sorting, selecting species with new set of traits and adaptations, which might be suboptimal at 332 

control temperatures. This new set of traits might lead to competitive advantages and boost the 333 



 

dominance of new species (Dangles, Carpio, Barragan, Zeddam, & Silvain 2008; Kosten et al 334 

2012).  335 

 Patch openness had no significant effect on any component of diversity. Although rescue 336 

from deleterious disturbance, such as warming, depends on the potential for species to disperse and 337 

recolonize previously occupied patches, the relationship between dispersal and species diversity is 338 

complex, spatially contingent (Cadotte 2006) and strongly dependent on other biotic and abiotic 339 

factors (Shanafelt et al. 2018). Dispersal and species diversity relationship may display a unimodal 340 

curve, with diversity being maximized at intermediate levels of dispersal, and not at higher dispersal 341 

levels (Cadotte 2006; Shanafelt et al. 2018). Consequently, open systems with higher rates of immi-342 

gration do not necessarily retain more diversity than closed systems, and system openness might 343 

even have negative effects on local species richness in warmed systems (Gruner et al. 2017). We 344 

used patch openness as a proxy to habitat isolation, which together with habitat fragmentation has 345 

been historically considered one of the main threats to biodiversity (Haddad et al. 2015; Quinn & 346 

Harrison 1998). However, it has been recently pointed out that fragmentation alone may not be as 347 

deleterious as previously thought (Fahrig 2017, 2018, but see Fletcher et al. 2018), and habitat con-348 

figuration might be more important than fragmentation per se (Årevall, Early, Estrada, Wennergren, 349 

& Eklöf 2018). This calls the attention to the necessity of evaluating other habitat related issues in 350 

warming experiments, such as habitat availability and configuration, as well as species inherent 351 

ability to disperse. 352 

 Average I2 values suggest that most of the variability across studies is due to heterogenei-353 

ty rather than chance alone, especially for results from α- diversity analyses, which were more het-354 

erogeneous than those for β-diversity. Heterogeneity on the effects of warming on diversity depends 355 

on the experimental system for different components of inventory diversity (both α- and γ-356 

diversity). It has been shown that experimental marine systems tend to have higher average losses 357 

of species at the local level, compared to terrestrial and freshwater systems (Gruner et al. 2017), 358 

which differs from our results, as marine and terrestrial systems tended to gain more species than 359 



 

freshwater systems. However, time series from non-experimental marine communities show that 360 

species richness tend to increase with warming (Antão et al 2020).  361 

Contrary to our initial expectation, longer studies with higher ΔT did not have larger 362 

losses of species nor more nested communities as a consequence of sequential loss of diversity, de-363 

spite evidence that both components of β-diversity change monotonically over time (Angeler 2013). 364 

Our results for the effects of study length on local species richness and ENS.Pie are in agreement 365 

with the meta-analysis of Gruner et al. (2017), who also reported that study duration had no effect 366 

on α-diversity. Despite the relative importance of study duration for γ-diversity, our results for α- 367 

and β- diversity reinforce the notion that temperature change can be the main driver of changes in 368 

species composition, creating rapid changes and novel assembled communities across the warming 369 

gradient (Gibson�Reinemer et al. 2015), regardless of the duration of exposition. 370 

 371 

 Conclusions and way forward 372 

 Despite decades of research on the effects of warming on species diversity, only recently 373 

we have started to have robust syntheses of its effects in experimental meta-ecosystems (e.g., Grun-374 

er et al. 2017; Marino et al. 2018). However, most of the information available focused on local 375 

communities, with warming effects at the regional scale commonly neglected. Despite the acknowl-376 

edged limitations of our meta-analysis, and the inherent difficulties in translating lessons learned 377 

from experimental to real meta-ecosystems, our results support the need for a refocus of the agenda 378 

on global change consequences for biodiversity. The focus should shift from effects on local rich-379 

ness only to the full understanding of the effects on biodiversity at the regional scale. This poses 380 

important challenges for both experimental and observational designs. Although warming experi-381 

ments have become more complex over the past years, with an ever-increasing number of factors 382 

considered, we still lack appropriate protocols to detect changes in communities across spatial 383 

scales and across a large number of taxa and ecosystem types. Although our results showed that 384 

patch isolation per se might not be as deleterious as it is generally assumed, improving our under-385 



 

standing of the interaction between environmental perturbations, such as warming and fragmenta-386 

tion, is crucial to predict the future of our ecosystems in an increasingly modified world. 387 
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Tables:  580 

Table 1. Model-averaged parameter estimates of moderators of α-, β- and γ-diversity, based on 581 

all possible models. Values in parentheses represent the alpha risk for confidence intervals (α = 582 

0.05). Bold values represent significant slopes. 583 

 584 

Figures: 585 

Fig 1. Mean effect size ±95% CI from temperature changes experiments on both components of 586 

community α-diversity, species richness and effective number of species (ENS.Pie). I2 represents 587 

the amount of heterogeneity (i.e. variation in effect sizes), which is not accounted by the sampling 588 

error variance. Confidence Intervals above (or below) the dashed line show significant positive (or 589 

negative) effect sizes. Asterisks: significant (p< 0.05) I2.  590 

 591 

Fig 2. Bean plot showing differences in spatial turnover and nestedness, for both incidence based 592 

indices and abundance based indices. β-diversity values close to 0 represent low dissimilarity and 593 

values close to 1 represent high dissimilarity). Lines represent individual observations. Shaded area 594 

shows the distribution density. Thick lines represent the averages within each level. Dashed lines 595 

represent global average. 596 

 597 

Fig 3. Mean effect size ± 95% CI from temperature changes experiments on different aspects of 598 

community β-diversity. Nestedness and Turnover are incidence-based measures while gradient and 599 

balanced abundance are abundance-based measures. I2 represents the amount of heterogeneity, 600 

which is the variation in effect sizes, which is not accounted by the sampling error variance. Confi-601 

Incidence Abundance
Richness ENS.Pie Nestedness Turnover Nestedness Turnover Gamma

Delta temperature 0.044 (0.040) 0.007 (0.027) 0.076 (0.057) 0.011(0.167)
Openness  -0.003 (0.017) 0.031(0.109) 0.007 (0.039)  -0.071 (0.556)
Study duration 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
System 3.456 (2.657)
Marine 0.219( 0.112) 0.078 (0.160) 0.002(0.008)   -0.016 (0.055)
Terrestrial 0.268 (0.131) 0.144 (0.246) 0.001(0.009)

-0.002 (0.09) -0.025 (0.055) -0.001(0.004)
-0.003 (0.022) -0.001(0.018) -0.003 (0.019)

-0.001(0.001)

-0.001(0.008) -0.019 (0.076)
-0.002 (0.011) -0.066(0.166) -0.009 (0.033)



 

dence Intervals above (or below) the dashed line show significant positive (or negative) effect sizes. 602 

Asterisks: significant (p< 0.05) I2. 603 


