
Journal Pre-proof

Thermal limits and preferences of large branchiopods (Branchiopoda: Anostraca and
Spinicaudata) from temporary wetland arid zone systems

Murphy Tladi, Ryan J. Wasserman, Ross N. Cuthbert, Tatenda Dalu, Casper
Nyamukondiwa

PII: S0306-4565(21)00165-0

DOI: https://doi.org/10.1016/j.jtherbio.2021.102997

Reference: TB 102997

To appear in: Journal of Thermal Biology

Received Date: 7 August 2020

Revised Date: 6 April 2021

Accepted Date: 16 May 2021

Please cite this article as: Tladi, M., Wasserman, R.J., Cuthbert, R.N., Dalu, T., Nyamukondiwa, C.,
Thermal limits and preferences of large branchiopods (Branchiopoda: Anostraca and Spinicaudata) from
temporary wetland arid zone systems, Journal of Thermal Biology (2021), doi: https://doi.org/10.1016/
j.jtherbio.2021.102997.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd.

https://doi.org/10.1016/j.jtherbio.2021.102997
https://doi.org/10.1016/j.jtherbio.2021.102997
https://doi.org/10.1016/j.jtherbio.2021.102997


Murphy Tladi: Conceptualization, Supervision, Funding, Writing- Original draft 

preparation, Data collection, Data analyses 

Ryan Wasserman: Conceptualization, Methodology, Supervision, Funding 

Conceptualization Writing- Original draft preparation, Data analyses 

Ross Cuthbert: Conceptualization, Methodology, Data analyses, Writing 

Tatenda Dalu: Conceptualization, Methodology, Data analyses, Writing 

Casper Nyamukondiwa: Conceptualization, Methodology, Supervision, Writing- Original 

draft preparation. 

 

Jo
urn

al 
Pre-

pro
of



1 
 

Thermal limits and preferences of large branchiopods (Branchiopoda: Anostraca 1 

and Spinicaudata) from temporary wetland arid zone systems 2 

 3 

Murphy Tladi1, Ryan J Wasserman2,1, Ross N. Cuthbert3, Tatenda Dalu4, Casper 4 

Nyamukondiwa1 5 

1 Department of Biological Sciences and Biotechnology, Botswana International 6 

University of Science and Technology, Palapye, Botswana 7 

2Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa 8 

3 GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany 9 

4 Aquatic Systems Research Group, School of Biology and Environmental Sciences, 10 

University of Mpumalanga, Nelspruit 1200, South Africa 11 

*Corresponding author e-mail: r.wasserman@ru.ac.za 12 

 13 

  14 

Jo
urn

al 
Pre-

pro
of



2 
 

Abstract 15 

Large branchiopods are specialist crustaceans adapted for life in temporary, thermally 16 

dynamic wetland ecosystems. Certain large branchiopod species are, however, 17 

restricted to specific temporary wetland types, exemplified by their physico-chemical 18 

and hydroperiod characteristics. Here, we contrasted the thermal preference and critical 19 

thermal maxima (CTmax) and minima [CTmin]) of southern African anostracans and 20 

spinicaudatans found exclusively in either temporary rock-pool or pan wetland types. 21 

We hypothesised that environment of origin would be a good predictor of thermal 22 

preference and critical thermal limits. To test this, Branchiopodopsis tridens (Anostraca) 23 

and Leptestheria brevirostris (Spinicaudata) were collected from rock-pool habitats, 24 

while Streptocephalus cafer (Anostraca) and a Gondwanalimnadia sp. (Spinicaudata) 25 

were collected from pan habitats. In contrast to our hypothesis, taxonomic relatedness 26 

was a better predictor of CTmax and temperature preference than environment of origin. 27 

Spinicaudatans were significantly more tolerant of high temperatures than anostracans, 28 

with L. brevirostris and Gondwanalimnadia sp. median CTmax values of 45.1 °C and 44.1 29 

°C, respectively, followed by S. cafer (42.8 °C) and B. tridens (41.4 °C). Neither 30 

environment or taxonomic relatedness were good predictors of CTmin trends, with B. 31 

tridens (0.9 °C) and Gondwanalimnadia sp. (2.1 °C) having the lowest median CTmin 32 

values, followed by L. brevirostris (3.4 °C) and S. cafer (3.6 °C). On the contrary, 33 

temperature preferences differed according to taxa, with spinicaudatans significantly 34 

preferring higher temperatures than anostracans. Leptestheria brevirostris and 35 

Gondwanalimnadia sp. both spent most time at temperatures 30-32 °C, S. cafer at 18-36 

20 °C and B. tridens at 21-23 °C. Constrained thermal traits reported here suggest that 37 
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the studied anostracans might be more susceptible to projected climatic warming than 38 

the spinicaudatans, irrespective of habitat type, however, these taxa may also 39 

compensate through phenotypic plasticity.  40 

 41 

Keywords: Botswana, Branchiopodopsis, critical thermal limits, Gondwanalimnadia, 42 

Leptestheria, Streptocephalus, thermal preference. 43 

 44 
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Introduction 46 

The density of temporary depression wetlands in the southern African region is among 47 

the highest worldwide (Goudie and Wells, 1995; Hamer and Brendonck, 1997). 48 

However, even within these unique systems, there are a variety of distinct temporary 49 

wetland habitat types which include vernal and rock pools among others (Calhoun et al., 50 

2017). Habitat heterogeneity is a driver of biological diversity and is important for the 51 

maintenance of species (Tews et al., 2004; Stein et al., 2014; Fine, 2015). On an 52 

evolutionary time-scale, abiotic features determine biological inhabitant characteristics 53 

for fitness, while at the ecological time-scale, these features drive biological community 54 

dynamics (Carroll et al., 2007). However, climate change is expected to affect 55 

temporary wetlands in a number of ways, including shifts in acute and chronic 56 

temperature dynamics (Meehl and Tebaldi, 2004; Stillman, 2019; Xu et al., 2020) as 57 

well as inundation patterns associated with shifting rainfall and evaporation dynamics 58 

(Kusangaya et al., 2014). Temperature is one of the main environmental factors driving 59 

ectotherm fitness (Sanders et al., 2007; Stein et al., 2014). As such, there has been 60 

increasing interest from ecologists on elucidating how changes in climate will likely 61 

affect invertebrate biodiversity (e.g. Parmesan and Yohe, 2003; Parmesan, 2006; 62 

Thuiller, 2007; Deutsch et al., 2018). Lower and upper thermal activity limits of 63 

invertebrates are significant predictors of organismal performance, fitness, 64 

biogeography and overall survival and are thus often used for predicting ectotherm 65 

responses to shifting environments (Chown and Nicolson, 2004; Calosi et al., 2010; 66 

Deutsch et al., 2018; Arribas et al., 2012). However, most empirical studies have 67 

focused on terrestrial (Addo-Bediako et al., 2000; Dillon et al., 2010; Hoffman et al., 68 
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2013; Deustch et al., 2018) and marine (Stillman and Somero 2000; Stillman, 2003; 69 

Gunderson et al., 2016) organisms. The few studies on thermal regimes of freshwater 70 

systems in the region were carried out in river systems (Dallas, 2008; Dallas and Ketley, 71 

2011). Only little information is available on the thermal physiology of temporary wetland 72 

specialist fauna in the region (see Lagerspetz and Vainio, 2006).  73 

Determining the thermal activity limits of organisms is fundamental for biological and 74 

autecological investigations, providing insight on fitness and habitat suitability (Huey 75 

and Stevenson, 1979; Stillman and Somero, 2000; Stillman, 2003; Chown and Nicolson, 76 

2004; Andersen et al., 2015). Thermal activity limits can provide insight on critical 77 

temperature thresholds and preferred temperatures of organisms, aiding in the 78 

understanding of population distribution and even sink and source dynamics 79 

(Dzialowski, 2005; Calosi et al., 2008; 2010; Sunday et al., 2012). It is also useful for 80 

predicting how environmental changes may alter species spatio-temporal population 81 

phenologies, abundance and dynamics (Kingsolver, 1989; Chown and Nicolson, 2004; 82 

Robinet and Roques, 2010). Tolerance has been quantified using either a static 83 

method, time of collapse at a constant stressful temperature, or a dynamic method, 84 

where the end point temperature of collapse is measured by increasing or decreasing 85 

temperature at a constant ramping rate (Rezende et al., 2014). Lower and upper 86 

thermal limits investigations typically explore critical activity endpoints e.g. critical 87 

thermal minima (CTmin) and maxima (CTmax) (Lutterschmidt and Hutchison, 1997; 88 

Terblanche et al., 2011; Andersen et al., 2015), while others explore temperature 89 

preferences (e.g. Dillon et al., 2009; Hering et al., 2009). Critical thermal limits 90 

assessment determines the activity ranges upon which an organism operates optimally 91 
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and those that are potentially stressful to lethal (Loeschcke and Hoffmann, 2007). They 92 

are relatively easy to measure under laboratory settings but correlate extreme well with 93 

invertebrate species distributions (Andersen et al., 2015). These have often been 94 

investigated using static and more ecologically relevant dynamic protocols (Chown and 95 

Nicolson, 2004; Terblanche et al., 2007; 2011). The preferred temperatures, however, 96 

show those temperatures that are better suited for population recruitment success, as 97 

well as the optimal temperatures for organism rearing (Chown and Nicolson, 2004). As 98 

shown by Huey and Kingsolver (1993), the temperatures at which populations can 99 

perform optimally are positively correlated to the upper thermal limits of the same 100 

populations.  101 

 102 

Large branchiopods are specialist temporary wetland crustaceans occupying aquatic 103 

habitats that rely on rain, snow melt, underground springs and even condensation 104 

(Blaustein and Schwartz, 2001). The large branchiopods are comprised of clam shrimps 105 

(Spinicaudata, Laevicaudata, and Cyclestherida), fairy shrimps (Anostraca) and tadpole 106 

shrimps (Notostraca) (Brendonck et al., 2008). These organisms have adapted for life in 107 

temporary aquatic ecosystems through the development of rapid life cycles and the 108 

production of dormant eggs (Brendonck, 1996). Usually, these habitats remain dry for 109 

variable periods during the year and have unpredictable inundation patterns 110 

(Vanschoenwinkel et al., 2009; Martin et al., 2016). As such, individuals that emerge 111 

from dormant eggs following inundation need to develop rapidly, attain sexual maturity 112 

and produce eggs. The group typically produces resting stage eggs (cysts) that can 113 

remain in sediment for many years before hatching (Wang and Rogers, 2018). 114 
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Temporary wetland types are diverse and are characterized by different physico-115 

chemical conditions associated with their underlying geology and nature of their 116 

hydroperiods (Williams, 2002; Carrino-Kyker and Swanson, 2007). Indeed, certain large 117 

branchiopod species are restricted to certain temporary wetland types (Hamer and 118 

Martens, 1998; Helm, 1998; Timms, 2006). As such, the characteristics of different 119 

wetland types likely have evolutionary implications for inhabitants (e.g. Van Buskirk and 120 

Steiner, 2009). In arid subtropical Botswana, small rock pools on rocky outcrops and 121 

pans (clay-lined ponds) are common (Buxton et al., 2020). These environments typically 122 

contain large branchiopods, although the species that occur in these two environments 123 

are often discrete. Given the differences in size, depth and underlying geology of these 124 

temporary wetlands, it is likely that they are characterized by different thermal 125 

dynamics. However, it remains unknown whether the thermal profiles of specialist large 126 

branchiopod species differ according to their respective wetland habitat types, or 127 

whether they are constrained according to taxonomic relatedness. In related organisms, 128 

environmental history has large consequences for key thermal traits (see 129 

Nyamukondiwa and Terblanche, 2010). This means that organisms often beneficially 130 

adapt to their habitat environment, synonymous with the beneficial acclimation 131 

hypothesis which suggest that acclimation in an environment induces organisms to 132 

develop traits that help them survive better in that same environment (see e.g. Leroi et 133 

al., 1994; Wilson and Franklin, 2002; Sgrò et al., 2016). 134 

 135 

The ecology of large branchiopods and temporary wetlands have been intensively 136 

studied (Samraoui et al., 2006; Mabidi et al., 2016; Bird et al. 2019). However, there 137 
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remain pervasive gaps in the knowledge of thermal profiles of most large branchiopods. 138 

Thermal profiling could aid in understanding the threat that climate change poses on 139 

large branchiopods. Climate models project that if mitigation measures would fail, parts 140 

of southern Africa are expected to be drier in future (Engelbrecht et al., 2015; Maúre et 141 

al., 2018). Given that temporary wetland habitats are ecologically among the most 142 

extreme aquatic environments (Mahoney et al., 1990), they may be particularly 143 

susceptible to such changes. Shifting climates, for example increase mean 144 

temperatures and temperature variability which may affect large branchiopod fitness 145 

(Bartolini et al., 2013). For example, both stressful high and low temperatures affect key 146 

activity and life history traits e.g. locomotion, mating, molting and development (Azra et 147 

al., 2018; Tang et al., 2020). Change in inundation patterns may also negatively 148 

interrupt the life cycle of large branchiopods. This may cause habitats to dry up before 149 

emerged individuals attain sexual maturity or may compromise the cyst-bank in the 150 

sediment through protracted dry periods.  151 

Given the broad significance of large branchiopods’ thermal fitness in explaining their 152 

responses to climate change, we contrasted the thermal profiles of select anostracans 153 

and spinicaudatans found exclusively in temporary rock-pool and pan wetland types. 154 

We hypothesized that the rock-pool specialist large branchiopods would have higher 155 

thermal activity limits and wider temperature preference than pan specialist large 156 

branchiopods, as smaller water bodies (rock pools) both heat and cool more variably 157 

and rapidly than larger water bodies (pans) (de la Fuente and Meruane, 2017). Indeed, 158 

the climate variability hypothesis predicts similar relationships, whereby a positive 159 

relationship exists between thermal tolerance traits (critical thermal limits) and range of 160 
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temperatures experienced by organisms (Gutiérrez-Pesquera et al., 2016). Given the 161 

presence of representatives of the select species groups in each habitat type, we could 162 

assess if habitat or taxonomic relatedness is a better predictor of thermal fitness. 163 

Although based on only a few species, the information from this study will help bridge 164 

the knowledge gap on large branchiopods thermal biology and motivate further works. 165 

Thermal activity thresholds are also important and may help mechanistic models looking 166 

at how climate change will affect large branchiopods and may help improve 167 

understanding of optimal conditions for activity.  168 

 169 

Materials and Methods 170 

Study site and pond temperature monitoring 171 

The study was conducted in the Central District of Botswana, between the towns of 172 

Sherwood (22°56'3.78"S, 27°53'28.52"E) and Palapye (22°32'59.68"S, 27° 7'59.66"E) 173 

(Fig. 1). The study region is classified as arid, with a high mean annual temperature of 174 

28.5 ºC and a low total rainfall of 443.8 mm (Kenabatho et al., 2012; Akinyemi and 175 

Abiodun, 2019). The region typically receives rainfall between October and April 176 

(Batisani and Yarnal, 2010). For the first component of the study, two major wetland 177 

types were categorized, rock pools and pans, each containing Anostraca and 178 

Spinicaudata representatives. Five such rock pools and five pans were selected for 179 

thermal characterization over their hydroperiods (Table S1), of which some were also 180 

used for the collection of animals (component 2: see section below for details). For this 181 

first component, programmable data logger probes and software (HOBOware Pro, 182 

version 3.7.16, Massachusetts, USA) were used for the monitoring of temperatures in 183 
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the wetlands. Loggers (0.5˚C accuracy) were set to 1 h sampling frequencies and 184 

deployed in the centre of each wetland and allowed to record temperatures between 185 

December 2019 and February 2020.  186 

 187 

Species selection and collection 188 

Preliminary surveillance showed anostracan Branchiopodopsis tridens Daday, 1910 and 189 

spinicaudatan Lepthestheria brevirostris Barnard, 1924 were found in rock pools. In 190 

turn, the anostracan Streptocephalus cafer (Lovén, 1847) and spinicaudatan 191 

Gondwanalimnadia sp. were consistently found in pans between Palapye and 192 

Sherwood. The second component of the study comprised lab-based experiments. For 193 

the experimental components, animals were collected during the austral summer rainy 194 

season in 2019 and 2020. From rock pools and pans, adult large branchiopods were 195 

collected by gently pulling sweep nets through the water. A square sweep net (20 cm × 196 

10 cm; 500 µm mesh) was used to sample rock pools, while a round sweep net 197 

(diameter: 30 cm; 1 mm mesh) was used to sample the pans. Captured animals were 198 

gently transferred from the sweep nets into 5 L containers, filled with source water, 199 

following protocols by Martin et al. (2016). Since Leptestheria brevirostris was only 200 

found in one pond (22°35'55.6"S, 27°07'51.6"E), all other species used in the 201 

experiments were collected from one pond each where possible, or from wetlands in 202 

very close proximity to one another. This was done to reduce, potential conspecific 203 

diversity effects associated with meta-populations across different wetlands as much as 204 

possible. Branchiopodopsis tridens were collected from rock pool site (22°35'46.1"S, 205 

27°07'16.5"E), while Streptocephalus cafer were collected from a pan site 206 
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(22°52'16.0"S, 27°47'42.7"E). The presently unidentified Gondwanalimnadia sp. (Tladi 207 

et al., 2020) were collected from two pans in close proximity to one another 208 

(22°52'16.0"S, 27°47'42.7"E; 22°49'45.9"S, 27°37'18.1"E), as individual numbers were 209 

relatively low in both ponds (Fig. 1). In the laboratory, samples were maintained in 210 

shallow containers (100 cm × 70 cm) using water (strained through a 500 µm filter) 211 

collected from their respective source wetlands, in climate chambers (HPP 260, 212 

Memmert GmbH + Co.KG, Germany) set at 28 °C (± 1 °C) under a 12:12 light:dark 213 

photocycle. These were kept at low but optimal densities of 5 organisms per liter to 214 

prevent stressful effects of overcrowding confounding our thermal activity assays 215 

(Sørensen and Loeschcke, 2001). All experiments were done within 2 days of specimen 216 

collection. Upon completion of each experiment, individuals were immediately 217 

transferred to 70% ethanol for identification verification. All collection, handling and 218 

disposal of the invertebrates were done following standardised university approved 219 

protocols. 220 

 221 

Critical thermal limits 222 

Individuals were placed in 10 isolated chambers (test tubes) within double-jacketed 223 

chambers (organ pipe) connected to a programmed water bath (Lauda Eco Gold, Lauda 224 

DR.R. Wobser GMBH and Co. KG, Germany) such that the programmed water bath 225 

regulates temperature changes in the isolated chambers (as in Sinclair et al., 2015; 226 

Machekano et al., 2020) (Fig. S1). The water bath was filled with a 1:1 water:propylene 227 

glycol ratio, which was circulated through the system to maintain uniform temperatures 228 

within the test tubes. An additional chamber was used for temperature verification within 229 
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the system using digital thermometer (Fluke 53/54IIB, Fluke Cooperation, USA) (Fig. 230 

S1). The test tubes were filled with 50 ml of species-specific source wetland water. The 231 

water bath was programmed to have a 10 minutes temperature equilibration time at 28 232 

°C before increasing temperature for CTmax or decreasing for CTmin at a ramping rate of 233 

0.25 °C/minute (Verberk et al., 2018). Critical thermal limits depend on methodological 234 

context and can vary with starting temperature, ramping, and organismal environmental 235 

history (acclimation) and others (Terblanche et al., 2007). An equilibration timing of 10 236 

minutes is sufficient to ensure all organisms have the same body temperature 237 

(Stevenson1985). On the other hand, the start temperature was selected as the highest 238 

temperature other than incubation temperature that did not affect the activity of all 239 

species, per preliminary results. This enabled changes in activity to be monitored easily 240 

by looking at the reference start temperature which was higher than the incubation 241 

temperature. The samples were then examined every 0.5 minutes for cessation of 242 

motion and response to mild mechanical stimulus. New individuals were used for each 243 

replicate. Critical thermal limits were defined as the temperature at which the animal lost 244 

coordinated muscle function in response to physical stimulation (Lutterschmidt and 245 

Hutchson, 1997; Nyamukondiwa and Terblanche, 2010; Salachan and Sørensen, 246 

2017). For each species, the same critical thermal limits experimental procedures were 247 

followed. The sample sizes for each species, according to environmental availability, 248 

were as follows: B. tridens (CTmin n = 46, CTmax n = 54), S. cafer (CTmin n = 50, CTmax n 249 

= 56), Gondwanalimnadia sp. (CTmin n = 50, CTmax n = 50) and L. brevistoris (CTmin n = 250 

49, CTmax n = 54).  251 

 252 
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Thermal preference 253 

A thermal gradient stage was connected to two programmed water baths, one at high- 254 

and the other at a low temperature. The high temperature-water bath was set at 50 °C 255 

and the low temperature-water bath at 5 °C to regulate the temperature gradient on the 256 

stage. A three lane (700 × 71 mm per lane) PVC half square-pipe water holding stage 257 

was placed on top of the thermal gradient stage with each lane holding 500 ml species-258 

specific source water (Fig. S2). The temperature setting of the two water baths enabled 259 

the establishment of a thermal gradient from ≈ 10 to ≈ 40 °C in each of the lanes. A 260 

single individual was placed in each lane at ≈ 25 °C and allowed to acclimate for 30 261 

minutes. The animals were then observed for an hour, with temperature recorded at 262 

their position in the lanes every minute using a digital temperature thermometer (Fluke 263 

53/54IIB, Fluke Cooperation, USA). Initially, ten experimental runs for each species 264 

were carried out so that a sample size of 30 was obtained, with observations used to 265 

determine the temperatures preferred by the species. Data from trials where individuals 266 

lost equilibrium or stopped swimming for periods of longer than five minutes were 267 

treated as compromised and excluded. A total of 14 individuals were ultimately used for 268 

analysis for S. cafer, 20 replicates were used for B. tridens, while 22 and 17 replicates 269 

were used for Gondwanalimnadia sp. and L. brevirostris, respectively. 270 

 271 

Data analysis 272 

Wetland Thermal Profiles 273 

In order to directly compare temperatures of wetlands, temporal synchronisation was 274 

deemed necessary. For the period of 18–24 January 2020, all the study wetlands 275 
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contained water at the same time, and as such, temperature data from this period was 276 

used for comparison between wetland types. From the hourly temperature data, daily 277 

habitat maximum (HTmax), minimum (HTmin) and average (HTmean) values were 278 

determined for each of the 7 days from each data logger. Data loggers were 279 

successfully retrieved from all five rock pools, however data loggers from one pan were 280 

missing. As such, temperature measurements of n = 5 were available for the rock pools 281 

and n = 4 for the pans. Differences in HTmax, HTmin, their range and HTmean, between 282 

wetland types, were analysed using separate linear mixed effects models with individual 283 

wetlands included as a random effect to account for repeated measures over time 284 

(Bates et al., 2015). In other words, each temperature variable was modelled separately 285 

with wetland type (rock pools and pans) as an explanatory variable. Diagnostic plots 286 

confirmed data conformed to parametric assumptions.  287 

 288 

Critical thermal limits 289 

Differences in CTmax and CTmin across the different species were analysed using 290 

separate Kruskal-Wallis tests followed by Dunn tests post-hoc (Ogle et al., 2020), as 291 

residuals violated assumptions of parametric testing. Accordingly, the two models model 292 

included species (four levels) as an explanatory variable for CTmax or CTmin. 293 

 294 

Thermal preference 295 

Occurrences related to thermal preferences were analysed using zero-inflated 296 

generalised linear mixed models assuming a negative binomial distribution (Brooks et 297 

al., 2017). Model diagnostics were checked using simulated residuals (Hartig, 2020). 298 
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Here, occupancy counts were summed for each replicate and examined as a function of 299 

temperature and species, and their interaction. Individual experimental subjects were 300 

included as a random effect to account for repeated measures and inter-individual 301 

variation within species. Temperatures were classified into discrete 3 °C bands and 302 

considered categorically in the model. As such, the model considered counts of species 303 

occurrence within each temperature band as a function of species and temperature, and 304 

their interaction. Tukey tests were used for post-hoc pairwise comparisons of significant 305 

effects. All statistical analyses were performed in R v.4.0.2 (R Core Team, 2020).  306 

 307 

Results 308 

Wetland Thermal Profiles 309 

Differences in HTmax between rock pools and pans were significant (F1,7 = 42.99, p < 310 

0.001), with rock pools on average reaching 6.0 °C higher maximal temperatures than 311 

pans (Fig. 2). Furthermore, HTmean between rock pools and pans also differed 312 

significantly (F1,7 = 9.98, p < 0.05), with rock pools 1.8 °C warmer than pans overall. 313 

However, there were not significantly differences in HTmin between rock pools and pans 314 

(F1,7 = 0.79, p > 0.05). A general pattern was observed in that the coefficients of 315 

variance were higher in rock pools than in pans for both the dry period and hydroperiod, 316 

and the minimum-maximum range was indeed significantly greater (F1,7 = 47.46, p < 317 

0.001) (Fig. S3). 318 

Critical Thermal Limits 319 

The CTmax differed significantly across species (χ2 = 144.16, df = 3, p < 0.001) (Fig. 3a). 320 

Generally, CTmax was highest in L. brevirostris (highest heat tolerance) followed by 321 

Jo
urn

al 
Pre-

pro
of



16 
 

Gondwanalimnadia sp. then S. cafer and lastly with the lowest CTmax, B. tridens. 322 

Leptestheria brevirostris exhibited significantly the highest CTmax median (45.1 °C), and 323 

was significantly greater than all other species (all p < 0.01). Gondwanalimnadia sp. 324 

followed, with a median CTmax of 44.1 °C that significantly exceeded S. cafer (42.8 °C) 325 

and B. tridens (41.4 °C) (both p < 0.001). Streptocephalus cafer CTmax also significantly 326 

exceeded B. tridens (p < 0.001).  327 

The CTmin also differed significantly among species (χ2 = 64.31, df = 3, p < 0.001) (Fig. 328 

3b). Generally, CTmin was lowest in B. tridens folllowed by Gondwanalimnadia sp. then 329 

L. brevirostris and lastly with the highest CTmin (least cold tolerance), S. cafer. 330 

Branchiopodopsis tridens had significantly lowest CTmin (median = 0.9 °C) (highest cold 331 

tolerance) compared to L. brevirostris (median = 3.4 °C) and S. cafer (median = 3.6 °C) 332 

(both p < 0.001), but not lower than Gondwanalimnadia sp. (median = 2.1 °C) (p > 333 

0.05). In turn, Gondwanalimnadia sp. was significantly more cold tolerant (lower CTmin) 334 

than L. brevirostris and S. cafer (both p < 0.001), with those two species having a more 335 

similar CTmin statistically (p > 0.05).  336 

 337 

Thermal preference 338 

Thermal occurrences among species differed significantly owing to a significant two-way 339 

‘temperature × species’ interaction term (χ2 = 114.58, df = 27, p < 0.001). Preferences of 340 

S. cafer peaked between 18–20 °C, B. tridens between 21–23 °C, whilst both 341 

Gondwanalimnadia sp. and L. brevirostris peaked at 30–32 °C (Fig. 4). Leptestheria 342 

brevirostris was the only species to occupy high temperatures > 38 °C, yet was 343 

reciprocally relatively rarely detected < 15 °C. Streptocephalus cafer was significantly 344 
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more prevalent at 15–20 °C than L. brevirostris, whilst the converse was true at 345 

temperatures above 30 °C (all p < 0.05). Streptocephalus cafer was also significantly 346 

more prevalent than B. tridens at 15–17 °C, and Gondwanalimnadia sp. greater than L. 347 

brevirostris at this temperature (both p < 0.05). Further, S. cafer was significantly less 348 

prevalent than Gondwanalimnadia sp. at 30-32 °C (p < 0.01). Leptestheria brevirostris 349 

had significantly higher occurrence than B. tridens and S. cafer at 33–35 °C, and all 350 

species at above 36 °C (all p < 0.05) (Fig. 4). 351 

 352 

Discussion 353 

In contrast to our hypothesis, the present study showed that wetland type was not a 354 

consistent determinant of thermal fitness of the few selected large branchiopods. Rock 355 

pools showed greater temperature fluctuations and recorded both higher and lower 356 

temperatures than pans. However, taxonomic grouping was a strong predictor of heat 357 

tolerance and thermal preference trends among the four species, with the 358 

spinicaudatans exhibiting significantly greater heat tolerance (CTmax) and higher 359 

temperature preferences than the anostracans, irrespective of wetland type. Critical 360 

thermal maxima and preference experiments were in consonance, among the four 361 

species, with spinicaudatans tending to occur at elevated temperatures (30–32 °C) 362 

compared to anostracans (18–23 °C). However, CTmin values were neither according to 363 

taxonomic grouping nor environment type, with anostracan species comprising both the 364 

least (S. cafer) and most (B. tridens) cold-tolerant taxa. Within these taxonomic 365 

generalities in thermal responses, species-specific differences were also apparent. The 366 

rock pool anostracan B. tridens exhibited significantly lower CTmax compared to the pan 367 
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anostracan S. cafer. The spinicaudatans similarly showed significant differences 368 

between their respective heat tolerances, with the CTmax for the rock-pool species L. 369 

brevirostris higher than that of the pan taxon Gondwanalimadia sp. Whilst peak 370 

occurrences were similar between spinicaudatans, L. brevirostris exhibited the 371 

significantly greatest occurrences at highest temperatures, and was the only taxon to 372 

occur above 38 °C, and which seldom occurred below 15 °C. The findings of the 373 

present study contribute novel insights into thermal tolerances and preferences of 374 

understudied temporary wetland groups, and thus identifies species which may be most 375 

vulnerable to localised pressures as temperatures shift. Overall, all species here have a 376 

working thermal range of approximately ~15–40 °C. On the other hand, land surface 377 

temperatures are expected to increase beyond 40 °C in future, especially when 378 

mitigation measures against climate change fail (Engelbrecht et al., 2015). This 379 

represents a potential threat to the fitness of these aquatic organisms in the face of 380 

climate change. This threat may be more pronounced in rock pools than pans since 381 

rock pools already experience temperatures closer to 40 °C regularly. However, 382 

organisms often cope to stressful temperatures through shifting their phenotypes (Sgrò 383 

et al., 2016) or through behavioural microhabitat selection (Pincebourde and Woods, 384 

2020). The role of these mechanisms in compensating for large branchiopods’ fitness 385 

under stressful environments is unknown and warrant future investigation. 386 

Several factors might have an influence in the observed thermal fitness traits among 387 

taxa. Critical thermal limits in aquatic species are known to be limited by several factors 388 

(see e.g. Terblanche et al., 2007) including phenotypic plasticity, which is constrained 389 

by the genome (Chown and Nicolson, 2004; Sgrò et al., 2016). This limits capacities for 390 
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intraspecific tolerance to be different among populations of the same species. 391 

Furthermore, insect thermal fitness is highly subtle and constrained by a diversity of 392 

other factors including species, age, sex, nutrition, ontogeny, environmental history, and 393 

others (Chown and Nicolson, 2004; Bowler and Terblanche, 2008; Nyamukondiwa and 394 

Terblanche, 2010). Moreover, critical thermal limits measured here also depend on 395 

methodological context. Thus factors such as ramping rate, starting temperature and 396 

acclimation temperatures may all have effects on critical activity limits (Terblanche et 397 

al., 2007). Overall, these thermal tolerance results suggest that across both rock pool 398 

and pan habitats, the studied anostracans are likely to be affected before 399 

spinicaudatans by temperature increases associated with climate change. However, 400 

anostracans are widely distributed, ranging from extreme cold to extreme hot 401 

environments. As such, the reason why anostracans were more vulnerable to warming 402 

remains unknown and warrants further investigation. We speculate here, with caveats 403 

that anostracans may be more vulnerable because of (1) inhabiting environments close 404 

to their thermal limits and (2) that they may not be able to remodel their thermal 405 

phenotypes suffice to buffer against climate change effects (see Stllman 2003;  van 406 

Heerwaarden et al., 2016). In particular, increasing incidences of heat waves (Thuiller, 407 

2007; Tewksbury et al., 2008; Stillman, 2019; Xu et al., 2020) could result in potential 408 

population extirpation of vulnerable taxa owing to rapid acute temperature effects, 409 

should they exceed thermal maxima. These effects may be particularly adverse in small 410 

habitats (i.e., rock pools) where there is a lower potential for refugia from warming 411 

effects. Small rock-pools have lower thermal inertia, they warm quicker and warmer 412 

waters have lesser oxygen than colder waters (Willmer et al., 2005). Thus, warming 413 
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waters may constrain other metabolic processes through oxygen limitation as well as 414 

constraining thermal tolerance. Furthermore, the limited capacity for genetic change in 415 

large branchiopods, owing to the hatching of eggs from different generations in each 416 

hydroperiod (Simovich and Hathaway, 1997), might limit future capacities to adapt to 417 

changing climates.   418 

Further work is required to elucidate potential for population-level differences among 419 

large branchiopods in discrete wetland habitats, as well as impacts of thermal regime on 420 

resting egg hatchability (Al-Tikrity and Grainger, 1990; Tladi et al., 2020). Thermal 421 

tolerances and preferences might exhibit population-level differences within species, 422 

according to the thermal regimes attributed to different habitat types. The results may 423 

additionally be influenced by the organism’s thermal history (Crickenberger et al., 2020) 424 

and carry-over effects (O’Connor et al., 2014; Dickson et al., 2017). This calls for 425 

improvement of experimental methodology e.g. using high throughput assays to 426 

measure thermal fitness traits coupled with time analysis software to more accurately 427 

predict temperature preference (McMahon et al., 2008; Andreassen, 2019; Awde et al., 428 

2020). Nonetheless, the results suggest that, even where taxa have adapted to different 429 

wetland types, large branchiopods thermal fitness appears to be relatively similar within 430 

their taxonomic grouping.  431 

Our results suggest that for temporary aquatic habitats, resilience to higher 432 

temperatures may be somewhat grounded in taxonomic grouping, with the studied 433 

spinicaudatans having significantly higher heat tolerance and preference than 434 

anostracans in the region. However, low temperature tolerance was not readily 435 

distinguishable between taxonomic groups, given species-specificity in responses. 436 
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However, much larger sample sizes are needed before taxa-wide assertions can be 437 

made. Anostracans are more widely distributed, across regions that attain very warm 438 

and cold conditions, than Spinicaudatans (Thiéry, 1996; Brtek ad Mura 2000). However, 439 

large branchiopods are largely eurythermal, given that they have evolved for life in small 440 

aquatic environments typically characterized by large diurnal temperature fluctuations. 441 

As such, the results of this study need to be interpreted with caution as these findings 442 

may not be reflective of anostracans and spinicaudatans more broadly. Further work 443 

should also seek to elucidate population-level differences in temperature tolerances and 444 

preferences in these and other temporary wetland biota, to better predict adaptabilities 445 

over time as well as future community composition under changing climates. 446 

Furthermore, future work should explore the role of behavioral microhabitat selection 447 

and phenotypic plasticity in buffering climate change associated effects on large 448 

branchiopod thermal fitness and ecology. 449 
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 742 

Figure 1. Locations of the rock-pools and pans in which, temperature loggers were 743 
deployed in central district, Botswana. For the lab-based experiments, 744 
Branchiopodpopsis tridens was collected from rock-pool A and Leptestheria brevirostris 745 
from rock-pool B, while Streptocephalus cafer was collected from pan C and 746 
Gondwanalimnadia sp. from pans C & D  747 

 748 
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 750 

Figure 2. Daily habitat maximum (HTmax), minimum (HTmin) and average (HTmean) 751 
values from a) rock-pools and b) pans. Values were derived between 18-23 January 752 
2020 when all wetlands were inundated at the same time, facilitating direct comparison. 753 
Raw data are points. Hashed lines are mean values of all data points. 754 

 755 

  756 

Jo
urn

al 
Pre-

pro
of



36 
 

 757 

Figure 3. Box plots showing (a) critical thermal maxima of Streptocephalus cafer (n = 758 
56), Branchiopodopsis tridens (n = 54), Gondwanalimnadia sp. (n = 50) and 759 
Leptestheria brevirostris (n = 54) (°C) and (b) critical thermal minima (°C) of 760 
Streptocephalus cafer (n = 50), Branchiopodopsis tridens (n = 46), Gondwanalimnadia 761 
sp. (n = 50) and Leptestheria brevirostris (n = 49). Jittered points are raw data. In the 762 
boxplots, the horizontal bar displays the median, the box gives the interquartile ranges 763 
and the whiskers show the largest and smallest values up to 1.5 × interquartile range. 764 
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 766 

Figure 4. Thermal preference occurrences of Streptocephalus cafer, Branchiopodopsis 767 
tridens, Gondwanalimnadia sp. and Leptestheria brevisrostris across temperature 768 
bands. Medians are shown alongside standard errors (SE). 769 
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Electronic Supplementary Material 772 
 773 
Table S1. Locations of the rock pools and pans used for thermal characterization during hydroperiods, as well as large 774 
branchiopod species encountered in each wetland. Programmable data logger (0.5˚C accuracy) were set to 1 h sampling 775 
frequencies and deployed, on the bottom in the centre of each wetland, and allowed to record temperatures between 776 
December 2019 and February 2020. Wetlands used to sample animals for the experimental components of the study are 777 
outlined (A,B,C,D) and correspond with Figure 1. B. tridens = Branchiopodopsis tridens, L. brevisrostris = Leptestheria 778 
brevisrostris, S. cafer = Streptocephalus cafer. 779 
   780 

Wetland GPS Dimensions when full: 
length (m) × width (m) 

Studied species present Wetland code 

(see Fig. 1) 

Rockpool 1 22°35'48.4"S 27°08'05.5"E  4.2 × 4.0 B. tridens  

Rockpool 2 22°35'49.6"S 27°07'59.6"E 5.8 × 5.5 B. tridens  

Rockpool 3 22°35'45.8"S 27°07'15.8"E 3.4 × 2.6 B. tridens  

Rockpool 4 22°35'46.1"S 27°07'16.5"E 2.4 × 2.6 B. tridens A 

Rockpool 5 22°35'55.6"S 27°07'51.5"E 1.5 × 0.5 B. tridens, L. brevisrostris B 

Pan 1 22°37'26.4"S 27°07'35.3"E 50 × 50 S. cafer  

Pan 2 22°49'45.9"S 27°37'18.1"E 14 × 10 S. cafer, Gondwanalimnadia sp. D 

Pan 3 22°52'16.0"S 27°47'42.7"E 76 × 54 S. cafer, Gondwanalimnadia sp. C 

Pan 4 
Pan 5 

22°42'56.8"S 27°12'32.4"E 
22°50'25.5"S 27°39'34.2"E 

142 × 1.5 
55 × 21 

S. cafer, Gondwanalimnadia sp. 

S. cafer, Gondwanalimnadia sp. 
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 782 

 783 

Figure S1. Organ pipe design for the critical thermal limit experiment. The programmed 784 
water bath (20L) regulates the heat in the test tubes through circulation of temperature 785 
controlled 1:1 water:propylene glycol through the jacket system. Ten replicate test tubes 786 
(1-10) house the test animals, while the reference test tube (R) is used to monitor 787 
temperature within the test tubes.  788 
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 790 

Figure S2. Schematic representation of the thermal stage set-up showing a) aerial view 791 

of the 3-laned PVC pipes, each holding water, and b) lateral view of the PVC lanes on 792 

top of the metal thermal gradient stage, fed by cold water on the left and warm water on 793 

the right from respective water baths.  794 
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 797 

Figure S3. Mean (± standard deviation) daily habitat coefficient of variation in 798 

temperatures (HTcv) across five pans (a and c) and rock-pools (b and d) in the Palapye 799 

region, during a synchronised dry phase (2-7 November 2019) and hydroperiod (18-24 800 

January 2020). 801 
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Highlights 

 Thermal biology of rock-pool and pan specialist branchiopods were contrasted 

 wetland type was not a good predictor of branchiopod thermal preference/limits 

 spinicaudatans preferring higher temperatures than anostracans 

 spinicaudatans were more tolerant of high temperatures than anostracans 

 anostracans may be more susceptible to projected climatic warming 
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