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Abstract— Gravity and magnetic inversion are important
methods for comprehensive quantitative interpretation of data
obtained in, e.g., mineral, oil and gas, and geothermal explo-
ration. At present, the 3-D joint inversion technology of gravity
and magnetic data is facing challenges from large-scale data
exploration applications. In this letter, a new algorithm for 3-D
joint inversion of gravity and magnetic data with high accuracy
and low computational cost is presented. We use the geometric
trellis method to perform fast forward calculations and then
introduce the sparse constraint and adaptive sensitivity matrix
into the model constraint terms. The inexact structural resem-
blance method is then used to add the cross-gradient constraint
penalty term to the objective function. Finally, an algorithm (DS-
TGN) combining data-space (DS) and truncated Gauss–Newton
(TGN) methods is used to solve the joint inversion objective
function. Numerical experiments with synthetic data show that
the proposed algorithm can significantly reduce the computa-
tional cost and obtain high accuracy density and magnetization
models with structural resemblance and sharp boundaries. We
also apply the DS-TGN algorithm to data obtained in the
area of Greater Khingan in northwestern Heilongjiang, China.
The underground density and magnetization distribution results
provide a high-resolution geological model for the detection of
skarn-type deposits.

Index Terms— Cross gradient, data space (DS), gravity method,
joint inversion, magnetic method, truncated Gauss–Newton
(TGN).

I. INTRODUCTION

GEOPHYSICAL inversion refers to inferring the spatial
distribution of subsurface properties from geophysical

data. This may provide information on the physical and
elastic properties of the subsurface, as well as the geometric
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shapes of geological targets of interest. However, uncertain-
ties and nonuniqueness are common in geophysical inversion
results [1]. To reduce the ambiguity of the inversion results
and obtain more accurate information of the subsurface prop-
erties, different types of regularization methods or a priori
information [2]–[5] can be used.

With the maturity of separate inversion technology and
the complexity of the exploration environment, the idea of
joint inversion of integrated geophysical data has attracted
widespread attention [6]–[10]. For the joint inversion of
different geophysical datasets, the most important issue is
how to couple model parameters. Currently, there are two
general joint inversion frameworks, namely, joint inversion
of petrophysical coupled parameters and joint inversion of
structurally coupled parameters. Joint inversion based on
petrophysical coupled parameters introduces some prior rock
physical property relationships into the inversion to improve
the correlation between the physical properties [9], [11], [12].
Joint inversion based on structurally coupled parameters, how-
ever, seeks similar structure distributions between different
physical properties [13], [14]. An example of the latter is
the cross-gradient structure coupling method proposed by
Gallardo and Meju [14], which has been widely recognized
and adopted [6], [7], [10], [14]–[17].

For gravity and magnetic data, many scholars have devel-
oped 3-D joint inversion algorithms using structure coupling
methods [18]–[21]. These methods mainly aim at improving
the resolution of gravity and magnetic data, with less focus
on computation efficiency and memory consumption. The 3-D
gravity and magnetic joint inversion algorithm still uses tradi-
tional solving methods, such as least squares, Gauss–Newton
(GN), and conjugate gradient (CG) methods. While the inver-
sion resolution is improved, it is also necessary to optimize the
calculation efficiency and memory consumption of the inver-
sion. As such, lower computational cost algorithms suitable
for 3-D gravity and magnetic joint inversion using structurally
coupled parameters are desired.

Inspired by a 2-D data-space (DS) joint inversion in our
previous study [10], we propose an improved 3-D DS joint
inversion algorithm. In [10], we combined the DS method with
the classical GN inversion method and applied it to the 2-D
multiple parameter joint inversion. This can effectively reduce
the dimension of the inversion iteration equation and improve
the calculation efficiency and memory consumption of the joint
inversion. However, this method needs to store the Jacobian
matrix, which will consume a lot of memory for 3-D joint
inversion. To avoid storing the Jacobian matrix, we introduce
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a truncated Gauss–Newton (TGN) method [22]–[24], which
uses the CG method to approximately solve the GN iteration
equation by a forcing term. By combining the DS and TGN
methods, we present an algorithm referred to as DS-TGN and
perform 3-D gravity and magnetic joint inversion by using
the geometric trellis fast forward method [25] and the inexact
structural resemblance (IESR) method [26] to further reduce
the computational cost and memory consumption.

In the present work, we introduce the principle of joint
inversion based on structurally coupled parameters in Sec-
tion II. Next, in Section III, we present the DS-TGN algorithm
used to solve the joint inversion objective function. In Sec-
tions IV and V, we present joint inversion results obtained from
synthetic data and field data, respectively. Finally, Section VI
provides the conclusion.

II. STRUCTURAL CROSS-GRADIENT JOINT INVERSION

There are usually two strategies for minimizing the cross-
gradient function. One involves the use of the cross-gradient
function as the equality constraint, added to the objective
function by the Lagrange multiplier method to solve the min-
imization problem [6,] [10], [14], [17], [18], usually referred
to as the exact structural resemblance method (ESR). The sec-
ond strategy is to directly add the cross-gradient function
to the objective function by a penalty term and minimize
it [15], [16], [27], which is usually referred to as the IESR
method. We choose to apply the IESR method mainly because
it allows for flexible adding of prior structure information
and it is easier to combine with different optimization algo-
rithms [26].

The objective function for cross-gradient joint inversion of
density and magnetic data is as follows:

�(m1, m2) =
2∑

i=1

(di − fi(mi ))
TC−1

di
(di − fi(mi ))

+
2∑

i=1

λi (mi − mir)
TC−1

mi
(mi − mir)

+βi tT(m1, m2)t(m1, m2) (1)

where di(i = 1, 2) represent the gravity and magnetic
data, and the corresponding model parameters mi (i = 1, 2)
represent the density and magnetization, respectively.
mir(i = 1, 2), respectively, represent the reference model of
density and magnetization. Cdi (i = 1, 2) and Cmi (i = 1, 2)
represent the data and model covariance matrices, respectively.
The forward response of the gravity and magnetic method
fi(mi ) (i = 1, 2) is a linear function, which can be expressed
as fi(mi ) = Ai mi . Ai is the Jacobian matrix of the forward
response. λ is the regularization factor, using the method
in [28]. t is the cross-gradient function (see [18] for a deriva-
tion of its discrete form and partial derivative). β is the struc-
tural weighting factor, which is calculated by the ratio method.

In this letter, the gravity and magnetic forward adopts a fast
method of geometric trellis. There is an equivalent relationship
between the position of the model unit of the same layer and
the observation point. It is only necessary to calculate the
kernel function of the first model unit of each layer, and the
kernel functions of other model units can be found through

the equivalent relationship, thus improving the calculation
efficiency. The model constraint term adopts the L0-norm
regularization term, which can handle sharp boundaries. The
specific expression is

�m(mi ) = 1

2
ln

(
m2

i + ε2
)
. (2)

We transform the model constraint term minimization prob-
lem into an iterative reweighted L2-norm minimization prob-
lem, i.e., �m(mi ) = ‖Wmi mi‖2. The model weighting matrix
Wmi can be expressed as

Wmi =
(

∂�m(mi )

∂mi

/
mi

)1/2

= (
m2

i + ε2
)−1/2

. (3)

The inversion result obtained by (1) will show anomalous
bodies concentrated on the surface. This is because the kernel
function of gravity and magnetic data attenuates with increas-
ing depth, resulting in the skin effect of the inversion result.
To improve the influence of the skin effect, a model integration
sensitivity matrix, i.e., Si = diag(AT

i Ai )
1/2 (i = 1, 2),

is added to the model constraint. At this point, the model
constraint can be rewritten as

C−1
mi

= ST
i WT

mi
Wmi Si . (4)

For convenience, we integrate the model vectors, m =
[m1; m2] and d = [d1; d2]. The objective function of the
(k + 1)th iteration after integration is expressed as

�(mk+1) = (d − Amk+1)
TC−1

d (d − Amk+1)

+λ(mk+1 − mref)
TC−1

m (mk+1 − mref)

+βt(mk+1)
Tt(mk+1) (5)

where t(mk+1) ∼= t(mk) + Bk(mk+1 − mk) and Bk is the
Jacobian matrix of the cross-gradient function.

III. DATA-SPACE TRUNCATED GAUSS–NEWTON METHOD

The objective function in (5) is numerically solved by the
GN method, and the expression of the model parameters mk+1

in the model space (MS) is as follows:
mk+1 = mk + (

ATC−1
d A + λC−1

m + βBT
k Bk

)−1

× (
ATC−1

d d̂k − βBT
k t(mk)

)
(6)

where d̂k = d − Amk and mr = mk .
In (6), the dimension of the inverted matrix of MS is

Nm × Nm , which is controlled by the size of the model
parameter Nm . For actual 3-D problems, the number of model
parameters is usually large, which makes it impractical to
use the GN inversion method. To improve the computational
efficiency of the GN method when solving the linear equations
in (6), it is necessary to reduce the dimension of linear
equations. This may be achieved by the DS method [29], [30],
and the calculation of linear equations is transferred from the
MS domain to the DS domain. Note that in [30], the iterative
GN linear equations do not include the structural constraints in
(6). The model update expression based on DS is as follows:

�mk+1 = (
ATC−1

d A + λC−1
m

)−1(
ATC−1

d d̂k
)

= Cm
(
ATC−1

d ACm + λI
)−1(

A−T
)−1

C−1
d d̂k

= CmAT
(
ACmAT + λCd

)−1
d̂k (7)
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TABLE I

MAXIMUM MEMORY CONSUMPTION DURING THE CALCULATION OF DIF-
FERENT JOINT INVERSION METHODS

where I is the identity matrix, ATC−1
d A + λC−1

m is a positive
semidefinite symmetric matrix of size Nm ×Nm , and ACmAT+
λCd is a positive semidefinite symmetric matrix of size Nd ×
Nd . Nd is the number of data, and Nd is usually much smaller
than Nm .

In [10], the model update expression for the joint inversion
in the DS domain is given, but it is based on an ESR method to
construct and calculate the 2-D objective function. The linear
equations are then directly solved iteratively. We apply the
IESR method instead to construct and calculate the 3-D objec-
tive function. Thus, we rederive the model update expression
in the DS domain as follows:

�mk+1 = (
ATC−1

d A+ λC−1
m +βBT

k Bk
)−1(

ATC−1
d d̂k − βBT

k tk
)

= CkAT
(
ACkAT + Cd

)−1
d̂k

+βCkAT(
ACkAT + Cd

)−1
ACkBT

k tk − βCkBT
k tk

= CkAT
(
R−1

k Lk

) − βCkBT
k tk (8)

where Ck = (λC−1
m + βBT

k Bk)
−1, Lk = d̂k + βACkBT

k tk , and
Rk = ACkAT + Cd .

We do not directly solve (8), because storing the Jacobian
matrix requires a lot of memory space. Instead, we use a
TGN method to solve (8). The TGN method combines the
GN and CG methods. In each iteration, the CG method is
used to approximately solve the GN iterative equations in
order to obtain the model update. Using the CG method to
solve the GN iterative equation requires dozens or hundreds of
iterations. Although storing of the Jacobian matrix is avoided,
it nevertheless takes a substantial amount of time to perform
forward calculations repeatedly. In order to mitigate this,
a forcing term is needed to control the accuracy of solving
GN iteration equations. The choice of the forcing term directly
affects convergence, efficiency, and robustness of the TGN
method.

The DS-TGN method can be divided into two main iterative
loops. The outer joint inversion loop computes Lk , but not Rk

and A. The inner loop is used to minimize Rkx = Lk with
the CG method. The solution process only needs to form the
product Rkp of the matrix vector, where p is an arbitrary DS
vector, instead of actually forming the matrix Rk , effectively
avoiding the formation and storage of the Jacobian matrix A,
which only need to calculate Ap and ATq, and p and q are,
respectively, Nm-dimensional sum and Nd-dimensional vector.
Both of these two matrix-vector products can be calculated by
solving a forward problem. The forcing term ζ = min [0.05,
1/k, norm(Lk)] is used to control the solution accuracy of the
inner loop [22]. When the relative residual error is less than
the forcing term, the inner loop is terminated.

Fig. 1. (a)–(c) Slices of theoretical density models. Density models obtained
by (d)–(f) separate inversion with DS-TGN. (g)–(i) Joint inversion with DS-
GNCG. (k)–(m) Joint inversion with DS-TGN. The results are obtained for
(a), (d), (g), and (k) z = 300 m depth section, (b), (e), (h), and (l) x = 1200 m
cross section, and (c), (f), (j), and (m) y = 450 m cross section.

IV. SYNTHETIC DATA EXAMPLE

In this section, we will compare the 3-D joint inversion
results of gravity and magnetic data obtained via the DS
Gauss–Newton method (DS-GN), the DS-GN conjugate gra-
dient method (DS-GNCG), and the DS-TGN method in terms
of memory consumption and resolution. We designed a model
with four anomalous bodies of different mesh sizes in the MS.
The three methods were used to perform joint inversion cal-
culations on the models. The maximum memory consumption
during joint inversion is shown in Table I. All computations
were performed on an i7-8750H 2.21-GHz machine with
16 Gbyte of RAM. With an increase in the number of model
meshes, the 3-D joint inversion obtained via the DS-GN
method consumes significantly more memory, and ordinary
computers can no longer meet the memory requirements.
The memory consumption required for the DS-GNCG and
DS-TGN methods, however, increases slowly, and even if the
number of meshes reaches hundreds of thousands or even
millions the computations can be performed on an ordinary
computer.

In order to compare and analyze the resolution of the
inversion results obtained from the DS-GNCG and DS-TGN
methods, we present first the gravity and magnetic joint
inversion results of model I (30 × 30 × 30). The physical
properties, geometric sizes, and top burial depths of the
anomalous bodies are shown in Figs. 1(a)–(c) and 2(a)–(c).
The subsurface is discretized into 30 × 30 × 30 prisms with
a sampling size of 50 m in x-, y-, and z-directions. We use
a homogeneous half-space model of 0 g/cm3 and 0.001 A/m
for the initial model. The initial regularization is λ1 = 10−2

and λ2 = 10−4.
The separate inversion results obtained by solving (7) using

the TGN algorithm are shown in Figs. 1(d)–(f) and 2(d)–(f).
The joint inversion results obtained from the DS-GNCG algo-
rithm are shown in Figs. 1(d)–(f) and 2(d)–(f). This method
uses the CG method to accurately solve the GN equation
(residual typically must be set to less than 10−6). The joint
inversion results obtained from the DS-TGN algorithm are
shown in Figs. 1(g)–(i) and 2(g)–(i). Fig. 3(a) and (b) shows
the RMS value obtained throughout the iterations for both
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Fig. 2. (a)–(c) Slices of theoretical magnetization models. Magnetization
models obtained by (d)–(f) separate inversion. (g)–(j) Joint inversion with
DS-GNCG. (k)–(m) Joint inversion with DS-TGN. The results are obtained
for (a), (d), (g), and (k) z = 300 m depth section, (b, (e), (h), and (l) x =
1200 m cross section, and (c), (f), (j), and (m) y = 450 m cross section.

Fig. 3. Misfit curve for separate and joint inversion of (a) gravity data and
(b) magnetic data.

examples. Note that the misfit of the inverted gravity data
becomes larger in the fourth iteration, mainly because the
algorithm starts the joint inversion calculation from the fourth
iteration and only performs a separate inversion before in
order to speed up the iteration convergence. The resolution of
the magnetic separate inversion is higher than the gravity, so it
will impose more structural constraints on the density model.
The two joint inversion algorithms can obtain inversion results
similar to the true model, whether in regard to the geometric
shape of the anomalies or in terms of physical values,
especially for the density model. Due to the addition of the
model integration sensitivity matrix and the sparse constraint
L0− norm, we can retrieve sharp boundaries and eliminate
the skin effect of the inversion results. For the synthetic case,
the DS-GNCG algorithm required approximately 3.07 h,
whereas the DS-TGN algorithm required approximately
0.93 h. This shows that the DS-TGN algorithm can meet
the resolution requirements of 3-D gravity and magnetic data
joint inversion, with smaller memory consumption and higher
computational efficiency.

V. REAL DATA EXAMPLE

To evaluate the practical applicability of the algorithm
proposed in this letter, we apply the algorithm to field data
obtained in the Huzhong area of Greater Khingan in northwest-
ern Heilongjiang, China. The study area has frequent magma
activities and is rich in mineral resources. The Yanshanian
intermediate-acid magma intruded into the Jixianggou forma-
tion carbonate rock and produced contact metasomatism in
its contact zone and interlayer structure, forming a skarn-
type polymetallic deposit in the study area. For the detailed
geological background, see [31]. The field measured data

Fig. 4. (a) Gravity data and (b) magnetic data from a lead–zinc polymetallic
deposit region in China. The black point is the observation point and the white
five-pointed star is a known deposit area.

Fig. 5. (a) and (b) Slices of density model after separate inversion. (c) and
(d) Magnetization model after separate inversion. (e) and (f) Density model
after joint inversion. (g) and (h) Magnetization model after joint inversion.
Slices (a), (c), (e), and (g) show the horizontal cross sections at z = 260 m.
Slices (b), (d), (f), and (h) show the vertical cross sections at y = 800 m. The
black dotted circle is the predicted deposit area.

include 640 gravity and 640 magnetic data (see Fig. 4). The
point distance and line distance are 40 m. The inclination and
declination values of the ambient field were about I = 69.7◦
and D = −11.35◦, respectively. We assume that there is only
an inductive magnetization source.

For the inversion process, the underground space is divided
into a cube of size 20 × 32 × 20. All model cells were set to
0 g/cm3 and 0.001 A/m for the starting model. Fig. 5 shows
the results of a horizontal and a vertical cross section of
the separate and joint inversion. We found that the density
and magnetization models obtained from separate inversion
[Fig. 5(a)–(d)] have great structural differences, which brings
difficulties to comprehensive interpretation. In particular, the
density model has a large area divergence problem, even if the
sparse constraint is used. However, the joint inversion results
[Fig. 5(e)–(h)] improve the structural similarity between the
density and magnetization models. The density model obtains
a sharp and clear structure distribution of underground by the
contribution of the structural constraints of the magnetization
model. Because the ore deposit in the study area is a skarn-type
deposit, the deposit is produced by the contact between intru-
sive granodiorite and metamorphic rock, which has high mag-
netic and high-density anomalies. Through the joint inversion
results, we seek high magnetic and high-density anomalous
areas, which can delineate the distribution of skarn deposits in
this area, as shown by the black dotted circle in Fig. 5(e)–(h).
Comparing the known deposit location in Fig. 4, we can find
that the inferred deposit is consistent with the real deposit
area, further verifying that the algorithm in this letter can
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accurately recover the underground density and magnetization
distribution and has certain validity and practicability.

VI. CONCLUSION

Based on the DS joint inversion method, we have success-
fully developed a new DS-TGN joint inversion method. The
method has been applied on gravity and magnetic datasets,
including both synthetic data and real data obtained in the
field. Numerical simulating tests indicate that with an increase
in the number of model meshes, 3-D joint inversion per-
formed via the DS-GN method consumed significantly more
memory, and ordinary computers can no longer meet the
memory requirements. However, the memory consumption of
the DS-GNCG and DS-TGN methods increases slowly, thus
allowing us to invert 3-D joint inversion of large gravity and
magnetic datasets with a personal computer (PC) requiring
only small memory consumption. In addition, the DS-TGN
method requires less calculation time than the DS-GNCG
method due to the added forcing term, which improves the
calculation efficiency of the joint inversion. Real data example
shows that the DS-TGN joint inversion method can obtain
sharp, clear, and consistent structure density and magnetization
models. According to the high-density and high magnetic
anomalies in the joint inversion results, the location of skarn
deposits can be accurately delineated. It further illustrates that
the DS-TGN joint inversion method is an effective technical
means for the exploration of skarn deposits, which can provide
reference and guidance for the same type of deposits.
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