
1.  Introduction
The Arctic Ocean is highly influenced by climate change (Steiner et al., 2015). It has experienced rapid sea 
ice retreat (Maslanik et al., 2011) and increases in temperature (Steele et al., 2008), primary production 
(Arrigo & van Dijken, 2015; Arrigo et al., 2008), freshwater storage (Giles et al., 2012; Mauritzen, 2012; Mor-
ison et al., 2012), Pacific water inflow (Woodgate et al., 2012), and ocean acidity (Qi et al., 2017). Climate 
change alters primary production and the whole marine ecosystems in the Arctic (Babin, 2020). Primary 
production increased by 57% between 1998 and 2018 in the Arctic Ocean (Lewis et al., 2020). The increase 
in primary production during the last decade (2008–2018) was likely sustained by an influx of new nutri-
ents, while the increases reported between 1998 and 2008 resulted from sea ice loss (Lewis et al., 2020). 
These changes in primary production could indirectly influence by-products of biological activities, such 
as dimethylsufide (DMS) and its algal precursor dimethylsulfoniopropinate (DMSP) (Stefels et al., 2007). 
Accordingly, a recent remote sensing study indicated that summertime DMS emissions increased at a mean 
rate of 13.3 ± 6.7 Gg S decade−1 (∼33% decade−1) due to a loss of sea ice north of 70°N between 1998 and 
2016 (Galí et al., 2019).

DMS has been hypothesized to affect cloud condensation nuclei (CCN) and cloud formation, and thus, 
regulate the Earth's radiation budget (Charlson et al., 1987), although this hypothesis is still under debate 
(Quinn & Bates, 2011). Nonetheless, it has been shown that Arctic sea ice melt leads to atmospheric new 
particle formation (Collins et al., 2017; Dall´Osto et al., 2017), for which one of the controlling factors is the 
release of oceanic DMS (Abbatt et al., 2019; Becagli et al., 2016 ; Leaitch et al., 2013; Mahmood et al., 2019). 
The causes of the Arctic amplification (AA), a phenomenon describing how Arctic temperatures increase 
twice as fast as the global average, are currently debated but reasons included the loss of sea ice and changes 
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in cloudiness (Dai et al., 2019; He et al., 2019; Taylor et al., 2013). There is clearly an interplay between sea 
ice loss, cloudiness, and AA, but the driving factors and feedback signs remain to be fully understood. For 
example, recent findings show counterintuitive results that low lead flux (contributing heat and moisture) 
periods are associated with abundant boundary layer clouds, while fewer boundary layer clouds are ob-
served for high lead flux periods (Li et al., 2020). Another recent publication outlines the so-called Arctic 
cloud puzzle and points to a coordinated observation campaign and special issue discussing many relevant 
points for AA, aerosols, and clouds (Wendisch et al., 2019) (see more information in its special issue: https://
amt.copernicus.org/articles/special.issue10_971.html). Undoubtedly, changes in seawater DMS and DMS 
emission should be considered in this complex system, as they inevitably affect the products of atmos-
pheric oxidation and the corresponding formation of particles and clouds over the Arctic Ocean (Gabric 
et al., 2018; Quinn et al., 2009; Sharma et al., 2012).

So far, a considerable number of DMS-related studies were conducted in the Arctic (Levasseur,  2013). 
Nonetheless, limited DMS data collected in the Arctic Ocean is available in the Pacific Marine Environ-
mental Laboratory (PMEL) DMS database (https://saga.pmel.noaa.gov.dms) and most of these investiga-
tions were conducted in the Central Arctic Ocean (Uhlig et al., 2019), Atlantic Ocean sector of the Arctic 
Ocean (Galí and Simó, 2010) and in the Canadian Archipelago (Jarníková et al., 2018; Lizotte et al., 2020). 
Some recent Arctic Ocean studies have, however, helped to shed light on atmospheric DMS (Ghahrema-
ninezhad et al., 2017; Mungall et al., 2016; Park et al., 2018), DMS and DMSP dynamics in sea ice (Galindo 
et al., 2014, 2015; Gourdal et al., 2018, 2019; Park et al., 2019) and modeling climatological DMS and its 
impact on climate (Hayashida et al., 2017, 2020; Kim et al., 2018; Galí et al., 2019). Although previous mod-
eling studies have predicted that DMS emissions in the Arctic Ocean will increase significantly because of 
the loss of summer sea ice and the increase in primary production (Browse et al., 2014; Gabric et al., 2005; 
Galí et al., 2019), direct evidence of this increase remains rare, as annual field measurements of surface 
seawater DMS before and after sea ice retreat are scarce.

The purpose of this study was to obtain a better understanding of the changes in surface seawater DMS and 
its sea-to-air flux (FDMS) after the summer sea ice retreat in the western Arctic Ocean. Subsequently, we tried 
to identify the key driving factors of the intra-annual variability in seawater DMS and FDMS in order to better 
predict their future changes in Arctic Ocean.

2.  Materials and Methods
2.1.  Cruise Information

Measurements were performed on board the R/V Xue Long during the Chinese sixth Arctic Research Ex-
pedition (CHINARE) from July 28 to September 10, 2014 (Figure 1). The cruise track was composed of 
two legs: transect 1 (T1), from the Chukchi Sea to the Canada Basin, from July 28 to August 15, 2014; and 
transect 2 (T2), from the Canada Basin to the Chukchi Sea, from August 25 to September 10, 2014. Parame-
ters such as nutrients, salinity, temperature, and fluorescence were measured at the conductivity-tempera-
ture-depth (CTD) stations along T1.

2.2.  Underway Measurements

The surface seawater samples were continuously brought to the analysis system through the ship's seawater 
pump system at a depth of 4 m. Underway measurements of surface seawater DMS were performed using 
a custom-made purge-and-trap system coupled with gas chromatography pulsed flame photometric de-
tection (Trace GC, Thermo Company) (Zhang & Chen, 2015). As described in Zhang et al., (2020), various 
DMS concentration standards (0, 2, 5, 10, 20, 50 nmol L−1) were diluted from pure liquid DMS (>99.0%, 
Sigma-Aldrich) in standard seawater (salinity = 35) for calibration. The measurement system allowed the 
collection of one seawater DMS sample every 10 min with a detection limit of 0.05 nmol L−1. One data point 
was obtained at every 2–3 km along the track assuming an averaged ship speed of 10 knots. Unfiltered and 
gravity-filtered (glass fiber filter; Whatman; 0.7 μm) seawater samples were collected for the measurements 
of DMSPd (dissolved) and DMSPp (see the stations in Figure S1). About 11.5 ml filtered seawater was col-
lected directly in a glass tube (∼12 ml) from a 50 ml filter tower, and 0.5 ml 10 M NaOH was added to it. 
The tube was sealed and kept in a 4°C dark room for degradation for at least 12 h (Zhang & Chen, 2015). It 
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was reported that the large volume gravity filtration method could cause cell breakage and release of DMSP 
(Kiene & Slezak, 2006). Therefore, our results of DMSPd measurements were possibly slightly higher than 
in seawater. The precision of DMSP measurements is the same as that for DMS measurements.

An automatic system (GO Flow pCO2 system, model 8050, General Oceanic Inc., Miami, FL) was installed 
on board for underway pCO2 measurements, and calibration was performed using CO2 standard gases from 
the National Oceanic and Atmospheric Administration (NOAA) with mixing ratios of 244.25, 366.86, and 
546.98 ppmv (CO2/air) (Gao et al., 2012). Other parameters, such as the sea surface temperature (SST), salinity 
(SSS) and wind speed, were obtained from the shipboard underway CTD system (SBE21) or meteorological ob-
servation system (Figure S2, Figure S3). Sea ice information with a spatial resolution of 6.25 km was obtained 
from the University of Bremen (Spreen et al., 2008) (https://seaice.uni-bremen.de/data/amsr2/, Figure 2).

2.3.  Water Column Parameters

A Rosette sampler with Niskin bottles was used to collect seawater from different depths. Nutrient samples 
were filtered through acid-cleaned cellulose acetate membranes (0.45 μm). Nitrate plus nitrite, phosphate 
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Figure 1.  Cruise information and previous measurements in the Arctic Ocean. (a) The location of cruise tracks during the Chinese sixth Arctic Research 
Expedition in 2014 (dashed green box). (b) The details of cruise tracks and isobaths in the study area. Note that the Chukchi Sea and Canada Basin boundaries 
follow the 200–250 m isobaths. (c) Previous dimethylsufide (DMS) data points (from the Pacific Marine Environmental Laboratory (PMEL) database) in the 
study area from July to September. The legend for the inset corresponds to the contribution number in the database. The references No. 115 and No. 25 are 
Sharma et al. (1999) and Bates et al. (1990), Bates et al. (1987), respectively.

https://seaice.uni-bremen.de/data/amsr2/
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and silicate were measured on board using a continuous flow analyzer (Skalar San++, Breda, Netherlands), 
and nitrite was measured using a spectrometric method (Zhuang et al., 2018). Additional parameters, such 
as salinity, temperature, and fluorescence, were detected by an SBE 911 plus CTD profiler and a Seapoint 
chlorophyll fluorometer (Sea-bird, Bellevue, Washington) attached to the CTD profiler.

2.4.  Sea Ice Core Sampling and Measurements

We collected five ice cores using a MARK II driller (American, i.d. 9 cm) (Figure S4). The ice cores were 
cut into pieces at 10 cm intervals and stored in a clean sealed container. Similar to the method in Galindo 
et al. (2014), the ice was allowed to slowly thaw in the sealed container at the 4°C. A gas-tight glass syringe 
was used to sample the melted water, and DMS concentrations were measured using the same method as 
during the underway sampling. The melting process in our protocol might introduce a slight loss of DMS 
from leaks in the vessel compared with the dry-crushing method or the stable isotope addition method 
(Stefels et al., 2012).
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Figure 2.  (a) and (c) Distribution of surface water dimethylsufide (DMS) concentrations and FDMS along T1. The DMS hotspot (deep red) is marked in plot (a). 
(b) and (d) Distribution of surface water DMS concentration and FDMS along T2. Note that the sea ice cover area at high latitudes is denoted as SCA and the sea 
ice retreat area is denoted as SIR. These regions were divided into two parts based on the boundary of the Chukchi Sea and Canada Basin presented in Figure 1b 
(marked with a red arrow). Dashed red line in (a, c) and (b, d) are the sea ice edge during the period of T1 and T2 respectively. To ensure the readability of the 
plots, the DMS concentration and flux scales are capped at 10 nmol L−1 and 15 μmol m−2 d−1, respectively. The white to blue background represents the mean 
sea ice cover during the survey.
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2.5.  FDMS Calculation

The FDMS was calculated as follows:

F 1 A K C C /Hw g    � (1)

where A is the fraction of sea surface covered by ice, K is the total gas transfer velocity. Cw and Cg are the 
seawater and air DMS concentrations, respectively. However, we did not measure the DMS concentration in 
air. Because the atmospheric DMS can influence the FDMS calculation in polar regions (Zhang et al., 2020), 
we calculated the Cg as in Galí et al. (2019), where they estimated atmospheric DMS as a constant fraction 
of Cw, Cg = Cw/252.75 (Land et al., 2014). The Henry's law solubility is indicated as H (Dacey et al., 1984). 
The partitioning of the gas transfer coefficient between air-side and water-side control can change due to 
low SSTs and at moderate wind speeds (McGillis et al., 2000). Thus, we should consider both the water-side 
and air-side when calculating FDMS.

F 1 A k 1 C C /Hw w g     � (2)

k 0 222U 0 333U Sc /600w 10
2

10 DMS

1 2
   . .

/
� (3)

where kw is the water-air side transfer velocity, and here we used the widely implemented empirical param-
eterization of Nightingale et al. (2000) as in Equation 3. The Schmidt number of DMS (ScDMS) is a function 
of the SST (Saltzman & Quere, 2009); 600 is the Schmidt number of CO2 in freshwater at 25°C. 10 m wind 
speed is indicated by U10. The atmospheric gradient fraction is indicated by γɑ in Equation  4 (McGillis 
et al., 2000), indicating the partitioning between air-side and water-side control.

    1 1/ k / ka w� (4)

where ka is air-water side transfer coefficient and ɑ is the Ostwald solubility coefficient. These parameters 
were calculated as described in McGillis et al. (2000) and the references therein

k 659U M/Ma 10 H2O

1 2
   /� (5)

   


3525/ K 9.464T
eɑ� (6)

where M is the molecular weight of DMS or H2O and T is the sea water temperature (K). Because the height 
of the wind speed measurements on the ship was approximately 27 m, we converted the wind speed into 
that at 10 m as follows (Hsu et al., 1994):

U U Z /Zx 10 x 10/   p� (7)

where Ux is the observed wind speed at 27 m, Zx and Z10 are heights of 27 and 10 m, respectively, and p 
depends on atmospheric stability and underlying surface characteristics and is set to 0.11 (Hsu et al., 1994).

3.  Results and Discussion
3.1.  DMS Concentrations and FDMS Along the Transects in the Western Arctic Ocean

DMS concentrations decreased from the Chukchi Sea to the shelf margin and to the Canada Basin (Fig-
ure 2). The mean DMS concentrations were 1.2 ± 1.3 nmol L−1 (ranging from 0.1 nmol L−1 to 8.4 nmol L−1, 
n  =  2,285) along transect 1 (T1) and 1.4  ±  2.4  nmol  L−1 (ranging from 0.1  nmol  L−1 to 17.4  nmol  L−1, 
n  =  1,770) along transect 2 (T2), respectively. The distributions of particulate DMSP (DMSPp; ranging 
from 1.3 nmol L−1 to 33.6 nmol L−1, n = 48) and dissolved DMSP (DMSPd; ranging from 0.3 nmol L−1 to 
22.5 nmol L−1, n = 49) were consistent with the DMS distribution (See the DMSP stations and relevant 
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DMS levels in Figure S1 and Figure S2). Strong positive correlations were found between the distributions 
of DMS and DMSPd (r2 = 0.634, n = 49, p < 0.05), DMS and DMSPp (r2 = 0.525, n = 48, p < 0.05) and DMS 
and total DMSP (DMSPt, r2 = 0.576, n = 48, p < 0.05).

Here we present the surface water DMS distribution at a much finer resolution and compared our obser-
vations with the existing data found in the PMEL database (comprising only discrete measurements, Fig-
ure 1, most of which were collected along the Alaskan coast (Bates et al., 1987; Bates et al., 1990; Sharma 
et al., 1999)). This comparison shows that the DMS levels measured during our cruise were higher than 
those previously measured in the Chukchi Sea. DMS concentrations as high as 17.4 nmol L−1 were observed 
near the Bering Strait. In contrast, north of 76°N, the mean value of 0.4 ± 0.2 nmol L−1 (n = 1,159) was 
just half the mean value of 0.8 ± 0.8 nmol L−1 (n = 19) previously measured in September–October 1985 
(Bates et al., 1987; Bates et al., 1990) and July 1994 (Sharma et al., 1999), but nearly two times higher than 
the mean value of 0.2 ± 0.2 nmol L−1 reported for August–September 2011 by Uhlig et al. (2019). These dif-
ferences in DMS mean concentrations are likely because these campaigns, either ours or the previous ones, 
only captured one portion of the seasonal cycle.

FDMS varied considerably along the two cruise tracks (Figures 2c and 2d). The mean FDMS along T1 and T2 were 
1.1 ± 2.0 μmol m−2 d−1 (0–17.3 μmol m−2 d−1, n = 2123) and 3.5 ± 9.2 μmol m−2 d−1 (0–69.4 μmol m−2 d−1, 
n = 1,533), respectively. Strong FDMS were calculated for the Chukchi Sea, whereas low FDMS were calculated 
north of 70°N. This distribution pattern of FDMS is consistent with the simulation results of Galí et al. (2019). 
FDMS values from T1 in Chukchi Sea were consistent with Lana et al. (2011) climatology, while those calcu-
lated from T2 were much higher. It should be noted that our observations provide greater spatial coverage 
over the high latitude Arctic Ocean than included in the Lana et al. (2011) climatology. Highest FDMS were 
found near the Bering Strait due to the high surface seawater DMS concentration (>10 nmol L−1) and the 
relatively high wind speeds (>10 m s−1). In the Canada Basin, the calculated low FDMS could be explained by 
the low DMS concentrations (<0.5 nmol L−1) and the presence of heavy sea ice cover.

It should be noted that other sources of DMS not investigated during our study may contribute to the DMS 
fluxes to the atmosphere in the ice-covered Arctic in spring. Among them, two additional sources of DMS 
must be considered here, melt ponds and the sea ice per se. As high DMS levels could be found in melt 
ponds on sea ice at high latitudes in the Arctic (Park et al., 2019), they may have contributed to DMS emis-
sions during our expedition. A recent study found that the bottom-ice DMS could be transported upward 
across the ice and up to the atmosphere through the ice, with fluxes ranging between 0.40 μmol m−2 d−1 
and 0.47 μmol m−2 d−1 through diffusion and bulk transport respectively (Gourdal et al., 2019). Thus, direct 
emissions through the permeable sea ice may have also contributed to the DMS fluxes during our study. 
Nonetheless, if we only consider the DMS emission from the open water, our high-resolution data demon-
strate that the high-latitude western Arctic open ocean was a weak source of DMS during the sampling 
period.

As we mainly focused on the DMS release from the open ocean, FDMS was computed using the surface 
seawater DMS concentrations and a total gas transfer velocity (K), which is calculated using the sea ice con-
centration, wind speed, and SST (see Methods). This assessment was performed before and after the sea ice 
retreat, as this will allow us to unravel the influence of summer sea ice retreat in the Arctic in future years. 
In the following discussion, the data collected in the sea ice retreat area (SIR) of T2 was divided into two 
regions (marked in Figures 2b and 2d). One region was located in the Canada Basin (SIR 01) and the other 
one covered the area where a DMS hotspot occurred in T1 (SIR 02).

3.2.  Changes in Surface Seawater DMS Levels Between the Transects

A DMS hotspot, located in the Chukchi Sea shelf break region, with concentrations reaching 8.4 nmol L−1 
(Figure 2a), was detected in the sea ice zone (∼73°N, sea ice concentrations generally above 50%, Figure 2a 
and Figure  3a), where we observed very low pCO2 levels (below 150  μatm), high DMSPp and DMSPd 
concentrations of 33.6 nmol L−1 and 22.6 nmol L−1, respectively (Figure S2), subsurface high nutrient levels 
(Figures 4d and 4e) and abundant biomass (fluorescence signal, Figure 3f). The low pCO2 levels suggest 
high biological uptake of CO2 (Cai et al., 2010). The sea ice was rapidly melting, indicated by the signif-
icant decrease of salinity (Figure S2), which could favor the growth of phytoplankton through releasing 
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micro-nutrients, like iron (Wang et al., 2014). The nutrient depletion in near surface waters indicated that a 
phytoplankton bloom possibly occurred under the sea ice from early July (Arrigo et al., 2012). Shelf break 
upwelling may explain the high nutrient levels in the subsurface (Spall et al., 2014). This process persists 
during the winter season, producing nutrients that can be used directly during the next melt season (Trem-
blay et al., 2011). However, the DMS hotspot was no longer present when the ship returned in September, 
as the area was free of sea ice. The mean level of DMS decreased from 3.1 nmol L−1 to 1.2 nmol L−1 (SIR 02, 
Table 1). The pCO2 increased to above 200 μatm, indicating that the uptake of CO2 by phytoplankton was 
not as strong as during T1. Although we did not measure nutrient concentrations, phytoplankton activity 
and water mass physical characteristics along T2 as we did for T1, the observed low DMS concentrations 
could be attributed to the fact that bloom period had ceased for a relatively long time (i.e., one month had 
passed since the initial observation of the hotspot area) (Stefels et al., 2007). Additionally, even though the 
wind speed increased significantly to a mean level of 11.2 m s−1 after the sea ice retreat, the strong winds 
along with the shelf break upwelling seemed to have been insufficient at eroding the vertical stratification, 
bringing nutrients to upper mixed layer and stimulating primary productivity (Tremblay et al., 2011).

In the Canada Basin, the mean DMS concentration increased slightly from 0.3 nmol L−1 to 0.5 nmol L−1 in 
the sea ice cover area (SCA), whereas the mean DMS concentration remained unchanged (0.5 nmol L−1) in 
SIR 01 (Table 1). Generally, the DMS concentrations along the cruise track remained at low levels (below 
0.5 nmol L−1) and did not change after sea ice retreat (Figures 2a and 2b). We also found that DMS values 
remained low and constant while the pCO2 value decreased to about 250 μatm (Figure 3). This decrease in 
pCO2 was mainly related to the sea ice melting process, as the mixing of seawater with low-CO2 meltwater 
is known to reduce pCO2 (from around 300 μatm) by 50–60 μatm (Cai et al., 2010). This suggests that sea 
ice melting alone caused the observed change in the physical properties of the surface water, with no sig-
nificant effect of phytoplankton productivity. Thus, our results suggest that sea ice melting had a limited 
influence on DMS levels at these high latitudes during our campaign. Additionally, the direct contribution 
of DMS from the sea ice melting to the surrounding water was also limited according to the low DMS levels 
we measured in the sea ice cores (Figure S4). Indeed, in contrast to the high DMS levels measured in sea ice 
cores, for example, DMS levels more than 100 nmol L−1 at the bottom of ice in Beaufort Sea in the summer 
(see in Levasseur, (2013) and references therein), very low DMS levels (generally below 0.5 nmol L−1) were 
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Figure 3.  Distribution of surface seawater dimethylsufide (DMS) concentration and pCO2. (a) Data acquired along T1; 
(b) Data obtained along T2. The daily sea ice distributions along the cruise tracks are presented as well.
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determined in sea ice cores collected from the high latitudes during our survey (Figure S4). The concentra-
tions of DMS precursors were low as well, DMSPp and DMSPd concentrations in the surface being generally 
below 3 nmol L−1 and 1.5 nmol L−1, respectively (Figure S2), indicating that the potential to produce DMS 
from the degradation of DMSP was not strong. Additionally, the fluorescence signal indicated that algal bio-
mass was low in the upper mixed layer in the Canada Basin (Figure 4f; Figure 5e), leading to the low surface 
seawater DMS and DMSP values in the Canada Basin.

In the Chukchi shelf region, the comparison of the results between the two transects indicates that the DMS 
levels greatly increased near 68°N and that the region of elevated DMS levels expanded northward slightly 
in September (Figures 2a and 2b). However, in the northern region between ∼69°N and ∼71°N, the DMS 
levels slightly decreased. Along both transects, high DMS levels coincided with low pCO2 levels (as low 
as 150 μatm, Figure 3), suggesting high phytoplankton activity. Thus, the high DMS levels were possibly 
driven by the high phytoplankton activity. As different phytoplankton functional types produce DMSP at 
varying levels, the phytoplankton distribution is likely responsible for the significant temporal and spatial 
variability in the DMS distribution during the expedition. For instance, the relatively high DMSPp levels 
(∼20 nM) found at the stations near Point Hope characterized by low nutrients concentrations (Mathis 
et al., 2007) were possibly caused by high-DMSP producers. It is well known that diatoms (the low-DMSP 
producers) are the main phytoplankton group in the Chukchi shelf region during summer, and that the 
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Figure 4.  Distribution of nutrients in relation to surface seawater dimethylsufide (DMS) in the western Arctic Ocean. (a) Locations of conductivity-
temperature-depth (CTD) stations along T1. The section R, panels (c)–(f), correspond to stations labeled R on the map in (a). (b). Relationships between DMS 
and Si and total N in surface water of all stations in (a). The panels on the right show depth profiles of (c) salinity, (d) Si, (e) total N, and (f) fluorescence along 
section R.
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spread of the low-nutrient Alaska Coastal Current (ACC) can favor the activities of dinoflagellates and 
chrysophytes (high-DMSP producers) (Zhuang et al., 2016). Therefore, the different nutrient levels might 
affect the DMS concentrations by influencing the phytoplankton community structure.

3.3.  Changes in FDMS Between the Transects

Under heavy sea ice cover conditions, calculated FDMS values in the Canada Basin were very low, such as in 
SCA and SIR 01 (Figures 2c and 2d; Table 1). After the sea ice retreat, as expected the mean FDMS increased 
approximately 4-fold, from 0.3 μmol m−2 d−1 to 1.2 μmol m−2 d−1. This increase was driven by K, the mean 
value of which increased from 3.6 cm h−1 to 8.5 cm h−1 whilst the mean seawater DMS levels remained 
unchanged. Although the calculated FDMS values were not high after sea ice retreat, a larger amount of DMS 
could be released into the atmosphere as the open water area increased.

In the Chukchi sea, an increase in FDMS was calculated not only in the ice cover area (SIR 02), but also in the 
open shelf water regions. The increase was particularly important in the hotspot area of SIR 02, after the sea 
ice barrier was removed. In this area, the mean FDMS increased from 1.4 μmol m−2 d−1 to 4.1 μmol m−2 d−1, 
even though already the DMS mean concentration decreased nearly 3-fold. Similar to the fluxes in the 
Canada Basin, the increase in FDMS could be attributed to the variations in K value. In contrast, the in-
crease in FDMS in the open water area resulted from both changes in DMS concentrations (increased from 
3.1 nmol L−1 to 5.1 nmol L−1) and K value (increased from 6.9 cm h−1 to 10.7 cm h−1).

Besides the identified effect of the sea ice cover on FDMS, we found that the variations in wind speed is another 
critical factor that influences the FDMS in the high-latitude Arctic Ocean by affecting the K values, as expected 
from typical gas transfer parameterizations. We observed a slight increase in mean sea water temperature 
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Transect Area
Seawater DMS 

(nmol L−1)
Wind speeds 

(m s−1) K (cm h−1) FDMS (μmol m−2 d−1) Sea ice condition Note

T1 Chukchi sea 68°N−71°S 3.1 ± 1.4 6.8 ± 1.3 6.9 ± 2.3 4.6 ± 3.1 Open water

0.9–6.9 4.1–9.2 2.8–12.2 0–17.4

T2 Chukchi sea 64°N−71°S 5.1 ± 4.4 8.6 ± 2.7 10.7 ± 5.7 16.4 ± 18.6 Open water Highest DMS 
values1.6–17.4 3.4–13.9 1.9–24.9 1.1–69.4

T1 Chukchi Sea SIR 02 3.1 ± 1.4 7.5 ± 1.9 7.3 ± 3.1 1.4 ± 1.5 cover Hotspot

1.3–8,4 2.6–11.0 1.1–15.0 0–7.6

T2 Chukchi Sea SIR 02 1.2 ± 0.3 11.2 ± 3.4 14.8 ± 6.9 4.1 ± 1.5 Retreat ▽ ▲

0.8–2.1 6.1–16.2 5.1–26.7 1.8–7.3

T1 Canada Basin SIR 01 0.5 ± 0.4 5.1 ± 1.7 3.6 ± 1.9 0.3 ± 0.4 Cover

0.1–10.5 0–1.90.1–4.3 0.4–9.9

T2 Canada Basin SIR 01 0.5 ± 0.3 8.3 ± 3.1 8.5 ± 4.7 1.2 ± 1.1 Retreat ○ ▲

0.8–13.9 0.2–20.1 0.01–6.70.2–1.5

T1 Canada Basin SCA 0.3 ± 0.1 4.4 ± 1.5 2.7 ± 1.5 0.01 ± 0.02 Cover Very low 
values0–0.080.2–1.0 1.0–8.9 0.2–8.8

T2 Canada Basin SCA 0.5 ± 0.2 3.4 ± 2.3 2.1 ± 2.0 0.04 ± 0.09 Cover Very low 
values0–8.00.1–1.0 0–8.3 0–7.8

Note. The increase or decrease in seawater DMS after sea ice retreat is indicated by △ and▽ respectively. The increase or decrease in FDMS after sea ice retreat 
is indicated by ▲ and ▼ respectively. The symbol ○ was used to show that the DMS concentration remained unchanged after sea ice retreat. The range is 
shown below the corresponding mean values.

Table 1 
Mean Seawater DMS, Wind Speeds, Total Transfer Velocity of DMS (K), DMS Sea-To-Air Flux (FDMS), and Sea Ice Condition During the Two Transects in the 
Selected Distinct Regions
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(0.26°C in the SIR 01 and 0.89°C in the SIR 02 respectively) after the sea ice retreat, resulting in a small de-
crease in the calculated Sc value and the atmospheric gradient fraction (γa), and leading to a slight increase in 
K values. Additionally, the warming of surface water could also enhance the release of DMS via the decrease of 
DMS solubility (Dacey et al., 1984). However, this has little effect on the flux. Finally, the wind speed increased 
2.5-fold and 2.1-fold in SIR 01 and SIR 02 respectively, causing a marked increase in K in the SIR.

In contrast to the high-latitude SIR, the mean sea water temperature in the open water area of the Chukchi 
Sea decreased from 7.0°C to 5.7°C, which caused a decrease in K value. Thus, the calculated increase of the 
K value in this region was mainly caused by changes in wind speeds (mean values varied from 6.8 m s−1 to 
8.6 m s−1), rather than variations in sea water temperature. Nonetheless, the decline in summer sea ice ex-
tent has been shown to increase the air-ocean exchange of momentum, moisture and heat, which enhances 
the strength and size of Arctic storms (Long & Perrie, 2012) and wind speed (Ardyna et al., 2014). These 
results stress the importance to pay more attentions to the influence of future variations in wind speed var-
iation and their effects on oceanic DMS emissions.

3.4.  Impact of Nutrient Supply on DMS Distribution

Although a linear relationship between DMS and nutrients was not found (Figure 4b), the comparison of their 
distribution highlights some interesting features. In the permanently nutrient poor regions, like in the upper 
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Figure 5.  Distribution of nutrients in the Canada Basin. (a). Location of stations, indicated by their notation, used in the right panels. (b)–(e); The plots in the 
right panels show depth profiles of (b) salinity, (c) Si, (d) total N, and (e) fluorescence along the latitudes.
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layer water of the Canada Basin (Coupel et al., 2015), low DMS and DMSP concentrations (Figure S2) were ob-
served. The highest levels of nutrients were associated with intermediate DMS concentrations (2–5 nmol L−1), 
suggesting an early bloom stage. However, the highest DMS concentrations were mainly found coincidentally 
with low nutrients. As discussed above, this might be explained by succession of phytoplankton types, where 
the diatoms (low-DMSP producers) are often replaced by high-DMSP producing phytoplankton, such as dino-
flagellates and chrysophytes, during post-bloom stages following when the nutrients are depleted. Another 
possible explanation is that there can be a temporal lag between the peak of a bloom and peak in seawater 
DMS. This temporal lag, often reported during previous studies, can be attributed to the time lag between 
DMSP release by algae and its consumption by bacteria, leading to its conversion into DMS (Simó, 2001).

In the Canada Basin, both Si and total N (sum of nitrate, nitrite and ammonium) concentrations were low 
in the upper layer mixed water (depth < 50 m, Si < 5 μM, total N < 2.5 μM) (Figures 4d and 4e; Figures 5c 
and 5d). In addition, the salinity vertical profiles indicate that the upper mixed layer of the Canada Basin was 
dominated by a fresher water mass, and that the thickness of the layer (salinity < 30) increased northward from 
∼10 m at ∼74°N (Figure 4c) and at ∼72°N (Figure 5b) to ∼40 m at ∼80°N. These results suggest that phyto-
plankton growth in the Canada Basin was limited by the availability of nutrients, and that deep nutrients were 
not brought to the surface effectively. Following sea ice retreat, our results show no significant change in the 
nutrient levels in the upper layer water mass, thereby preventing phytoplankton growth (Figure 4f; Figure 5e).

Previous studies identified an increase in freshwater storage in the western Arctic Ocean, and suggested 
that this freshwater was prevented from leaving the Arctic Ocean by the wind-driven spin-up of the Beau-
fort Gyre (Giles et al., 2012; Mauritzen, 2012). Additionally, it is suggested that the enhanced eddy activity 
in response to sea ice loss in the western Arctic will increase the persistence of this freshwater upper layer 
(Armitage et al., 2020) and further limit the vertical nutrient supply from the deep ocean. Thus, although an 
ice-free summer in the Arctic Ocean may occur sooner than previously expected (Stroeve et al., 2007; Stro-
eve et al., 2012), DMS concentration may not increase significantly due to the low availability of nutrients 
for phytoplankton in the western Arctic Ocean basin.

The influence of nutrient depletion on DMS production in the Chukchi shelf region was also examined. Espe-
cially at the DMS hotspot (∼73°N), the strong decline in DMS levels between the two transects can be explained 
by the decrease in phytoplankton biomass attributable to nutrient depletion (Cota et al., 1996). As discussed 
above, the resupply of nutrients after the bloom may have been inhibited by the strong vertical stratification 
(Spall et al., 2014). Although nutrient-rich waters, such as the Bering Shelf Water (BSW) and Anadyr Current 
(AC) (Grebmeier & Mcroy, 1988) (Figure S1), pass through the Bering Strait, nutrients are rarely transported to 
the high latitudes due to their rapid utilization by phytoplankton in the shelf region. This process is probably 
responsible for the low nutrient concentrations measured between 68.5°N and 74°N (Figures 4d and 4e). In 
contrast, the area in the vicinity of the Bering Strait possibly maintained high biomass and associated high DMS 
levels during our investigation period due to an abundant supply of nutrients from the AC and BSW.

4.  Summary and Implications
We investigated how the levels of surface water DMS and FDMS vary after sea ice retreat in western Arctic 
Ocean. Our results reveal that nutrient supply is an important factor affecting the surface seawater DMS 
concentrations. Low and stable surface seawater DMS (<0.5 nmol L−1) before and after sea ice retreat in the 
Canada Basin could be attributed to low phytoplankton activity resulting from insufficient availability of 
nutrients due to the strong stratification characterizing the upper mixed layer of the basin. In most of the 
Chukchi Sea, the inefficient nutrient supply from both the Pacific inflow water and shelf break upwelling 
could not maintain high phytoplankton activity in the late summer, leading to a decline in surface seawater 
DMS levels. Additionally, although the FDMS values are not high in the high latitude Arctic Ocean, enhanced 
FDMS after sea ice retreat was calculated. Besides the loss of sea ice cover, we show that wind speed is an-
other critical factor driving the FDMS increase. Thus, enhanced storminess in the Arctic Ocean (Ardyna 
et al., 2014; Long & Perrie, 2012) could possibly elevate the DMS emission via increased wind speed in the 
future. Based on our findings, changes in primary production, nutrient availability, freshwater storage/sea 
ice, and surface seawater temperature have the potential to impact the seawater DMS distribution and FDMS. 
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One should keep in mind that additional alterations of climate-related parameters such as ocean acidifica-
tion could also affect DMS emissions (Six et al., 2013).

The future variability of surface water DMS is closely related to the changing primary production in the 
Arctic Ocean (Galí et al., 2019). The increase in primary production is caused by sea ice loss because of 
the increase of the surface area exposed to sunlight and the longer growth season for phytoplankton (Ar-
rigo et al., 2008; Tremblay et al., 2015; Vancoppenolle et al., 2013). Moreover, the changes in the strength 
of Pacific inflow water (Corlett & Pickart, 2017; Woodgate, 2018; Woodgate et al., 2012) and of the shelf 
break upwelling (Spall et al., 2014; Tremblay et al., 2011) are expected to increase primary production and 
affect nutrient supply. The supply of new nutrients was found to be the reason for increased phytoplankton 
biomass, which drove the recent decadal (2009–2018) rise in Arctic Ocean primary productivity (Lewis 
et al., 2020). Additionally, large phytoplankton blooms beneath the sea ice can cause nutrient depletion in 
the early spring (Arrigo et al., 2012; Horvat et al., 2017), severely reducing the amount of nutrients available 
to support phytoplankton growth after the retreat of the ice cover, if the nutrient resupply is weak. Fully 
understanding how surface seawater DMS distributions and FDMS will respond of these complex and inter-
related variations will require more work in the future.

Another aspect is that DMS emissions could be enhanced by the ongoing thinning of the sea ice and the con-
comitant increase of melt ponds in the Arctic Ocean during the spring ice cover season (Gourdal et al., 2018; 
Levasseur, 2013; Park et al., 2019; Sharma et al., 1999). A recent study also indicated that DMS ventilation 
through permeable ice, for example, upward transport from the bottom of the sea ice through the permeable 
brine network (∼0.4 μmol m−2 d−1), could contribute DMS to atmosphere (Gourdal et al., 2019). These con-
tributions to DMS emissions are still challenging to evaluate, as insufficient measurements of DMS in melt 
ponds and ice-to-air DMS flux during the spring and summer in the Arctic Ocean have been performed.

We notice that the large increase in surface seawater temperature over decades might have a potent impact 
on the inter-annual increase of FDMS. According to the recent 2019 Arctic Report Card (Richter-Menge 
et al., 2019), the mean surface seawater temperature in August 2019 was about 1–7°C warmer than that 
of 1982–2010 August in the Beaufort and Chukchi Sea. This change in temperature might lead to an in-
crease in FDMS from 3.0% to 22.9% if we assume the other parameters, i.e., wind speed and seawater DMS 
levels, remain stable. Results from a study in the subpolar region indicated that the warming of the Bering 
Sea resulted in a significant increase in DMS, DMSP and FDMS (Li et al., 2019). A warmer summer Arctic 
Ocean might have the same effect on both seawater DMS and FDMS (Gabric et al., 2005). Therefore, the high 
latitude oligotrophic western Arctic Ocean, where only a small fraction of DMS emission was found (Galí 
et al., 2019), will possibly be altered under the warmer season.

Data Availability Statement
The Methods section contains the web links to the publicly available datasets used in this study. The pCO2 
data set and other cruise parameters can also be downloaded from the Chinese National Arctic and Antarc-
tic Data Center (http://www.chinare.org.cn/data, record number 19 on the Chinese page; please do not use 
the English page). The surface water DMS data set can be obtained from the Supporting Information S1. 
The DMS data set will also be uploaded to a publicly accessible database, like the PMEL DMS database 
(http://saga.pmel.noaa.gov.dms). For additional questions or data related to this study, please contact the 
corresponding author (zhangmiming@tio.org.cn).
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