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Summary 
Ongoing changes in ocean climate (e.g., warming trends) are accompanied by increases in 
frequency and intensity of extreme weather events (e.g., heatwaves), particularly in shallow-
water habitats. Traditionally, empirical studies intending to project the ecological impacts of 
environmental variability have focused on species or community responses to shifts in average 
conditions (trends), extracted from days to weeks-long experiments under static treatment 
conditions. Henceforth, some studies have applied nonlinear averaging on performance curves 
established under static treatments and predicted (based on Jensen’s Inequality) that 
fluctuations might significantly modulate the responses to environmental trends (e.g., daily 
cycles). However, as species might express cumulative stress responses under continuous 
critical exposures, the performance curves based on static experimental conditions commonly 
show a concave drop over the beyond-optimal interval of the environmental factors in focus. 
Accordingly, nonlinear averaging usually predicted fluctuations’ adverse effects, neglecting the 
role of acclimation, stress recovery, and evolutionary adaptation. Instead, some other studies 
have empirically found that alternative (positive) fluctuation effects on time-integrated 
performance might also be relevant. Most of these studies highlighted the need to incorporate 
environmental fluctuations into experimental designs but did not go beyond the observed 
patterns’ mere description. This thesis provides a general introduction to the above issues and 
then tries to move forward by investigating (i) the environmental fluctuations’ long-term 
impacts on fitness-related traits (e.g., growth) at beyond-optimal average conditions, (ii) the 
role of fluctuation-mediated metabolic suppression and recovery, and (ii) how these relations 
may be modulated by warm adaptation forces (acclimation and selection). Such practice and its 
required method development are optimized by focusing on cyclic (daily) temperature 
fluctuations, i.e., one of the most common and ecologically important environmental forces, 
and an ecosystem engineer, the mytilid mussel Mytilus spp., from the Western Baltic Sea.  
The first Chapter describes the Fluorometer and Oximeter equipped Flow-through Setup 
(FOFS), the experimental design, and data processing protocols for recording metabolic 
performance (feeding and aerobic respiration) of benthic filter-feeders in response to fine-tuned 
environmental variability. The FOFS method’s functionality is successfully demonstrated 
through recording mussels’ responses during short-term (one-day) thermal fluctuation cycles. 
In the following research, FOFS is used in short-term assays to evaluate mussels’ capacity to 
suppress and recover their metabolic performance over successive phases of stressful and 
benign temperatures.  
Chapter 2 presents a combination of a long-term (5 weeks) experiment, a short-term (one-day) 
FOFS assay, and an associated upscaling framework (nonlinear averaging). The results show 
that (i) daily high-amplitude thermal cycles improved mussel growth when fluctuations were 
imposed around an extreme average condition representative of end-of-century heatwaves. In 
contrast, (ii) the thermal cycles negatively affected mussel growth at a less extreme average, 
representing today’s peak summer temperatures in the region. Furthermore, (iii) nonlinear 
averaging of the short-term (non-acclimated) thermal feeding responses could well predict 
fluctuation impacts observed on growth rates from the long-term experiment. Merging these 
findings with physiological and mathematical principles, I propose a simple prediction 
framework based on various possible time-dependent changes in thermal metabolic 
performance. The framework explains how fluctuations, mediating metabolic suppression and 
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recovery, can be beneficial or detrimental to ectotherm’s long-term performance, depending on 
the fluctuations’ average and amplitude.  
Chapter 3 then tests whether and how intensified summer thermal regimes would result in 
higher heat tolerance in individuals’ daily thermal metabolic suppression and recovery. Mussels 
were grown from juveniles (transplanted mussels) or larval recruits (recruited mussels) under 
current versus warmed (end-of-century extreme) summer regimes in a near-natural mesocosm 
setting. Then, mussels’ feeding and aerobic respiration rates were assessed in response to a mild 
temperature for six hours (baseline performances) followed by two 24 h fluctuation cycles in 
mild to critical temperature range. The results show that the warmer history negatively impacted 
transplanted mussels’ four-month growth rates while not leading to changes in the baseline and 
the daily pattern of metabolic performances. The recruitment was substantially (96.5 %) less in 
the future (+ 4 °C) compared to the current summer thermal regime. These potentially selected 
recruits were more capable of recovering their feeding and respiration rates in benign phases of 
daily temperature fluctuations and expressed lower baseline respiration rates (metabolic 
demand). These findings support the hypotheses that (i) extremely warm events may select for 
rare heat-tolerant individuals of marine ectotherms at their very early life-history stages, (ii) 
lower metabolic demand is a mechanism for such heat tolerance, and (iii) the capacity to acquire 
such tolerance through acclimation is minor. 
Overall, this research highlights the significance of studying the metabolic performance of 
ectothermic species at timescales relevant to natural fluctuations to advance our understanding 
of climate change impacts on aquatic systems. Whether selection-induced shifts in stress 
tolerance can lead to ectotherms’ evolutionary adaptation to ocean warming is an essential 
research subject of future studies. 
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Zusammenfassung 
Stattfindende Veränderungen des Ozeanklimas (z.B. Erwärmung) werden, insbesondere in 
Flachwasserlebensräumen, von einer Zunahme der Häufigkeit und Intensität extremer 
Wetterereignisse (z.B. Hitzewellen) begleitet. Empirische Studien, dessen Ziel es ist die 
Auswirkungen von Umweltschwankungen vorherzusagen, haben sich traditionell auf die 
Reaktionen von Arten oder Gemeinschaften auf Verschiebungen unter konstanten Bedingungen 
(sogenannten Tendenzen) konzentriert. Diese Daten wurden aus oft tage- bis wochenlangen 
Experimenten unter statischen Behandlungsbedingungen gewonnen. Kürzlich haben Studien 
die nichtlineare Mittelung (‘Jensen’s Inequality‘ = Ungleichung) auf Temperatur-
Leistungskurven angewendet, welche unter statischen Behandlungen erstellt wurden. Die 
Vorhersagen zeigten, dass die Reaktionen auf Umwelttendenzen durch die Schwankungen (z.B. 
Tageszyklen) moduliert werden können. Da jedoch viele Arten unter kontinuierlich kritischen 
Stressbedingungen kumulative Stressreaktionen ausdrücken können, zeigen deren resultierende 
Leistungskurven üblicherweise einen konkaven Abfall über das nicht-optimale Intervall des 
jeweiligen Umweltfaktors. Dementsprechend prognostizierte die nichtlineare Mittelung 
normalerweise die nachteiligen Auswirkungen von Umweltschwankungen, wobei die Rolle 
von Akklimatisierung, Erholung von Stress, sowie der der evolutionären Anpassung 
vernachlässigt wurde. Weitere Langzeitstudien haben gezeigt, dass auch alternative (positive) 
Schwankungseffekte auftreten könnten. Sie betonten die Notwendigkeit, 
Umweltschwankungen in zukünftige Experimente einzubeziehen, konnten jedoch nicht über 
die bloße Beschreibung der beobachteten Muster hinausgehen. In dieser Arbeit werden 
zunächst allgemein die oben genannten Themen, die Vorhersagemethoden und ihre jeweiligen 
Annahmen vorgestellt. In den drei Hauptkapiteln untersuchte ich zusammen mit meinen 
Koautoren die Auswirkungen zyklischer Temperaturschwankungen, einer der ökologisch 
wichtigsten Umweltparameter, auf einen wechselwarmen Ökosystemingenieur, die Muschel 
Mytilus spp., aus der Westlichen Ostsee. Ich testete prinzipienbasierte (mechanistische) 
Hypothesen, um zu erklären inwieweit sich kurzfristige Wetterbedingungen, z. B. täglich bis 
wöchentliche thermische Schwankungen, auf marine Wechselwarme Tiere auswirken, 
insbesondere bei stressigen Durchschnittsbedingungen wie extremen Sommern oder längeren 
Hitzewellen. 
Im ersten Kapitel beschreibe ich den mit Floreszenz- und Sauerstoffsonden ausgestattete 
Experimentieraufbau, das sogenannte‚ Fluorometer and Oximeter equipped Flow-through 
Setup‘ (FOFS), das experimentelle Design und die Datenverarbeitungsprotokolle zur 
Aufzeichnung der Stoffwechselleistung, einschließlich der Fütterungs- und aeroben 
Atmungsraten von bodenlebenden Filtrierer als Reaktion auf eine genau abgestimmte 
Umgebungsvariabilität. Ich demonstriere erfolgreich die Funktionalität der FOFS-Methode, 
indem ich die Reaktionen der Muscheln während kurzfristiger (eintägiger) thermischer 
Schwankungszyklen aufzeichne. In den folgenden Kapiteln wende ich die FOFS-Methode in 
Kurzzeitversuchen an, um die Fähigkeit von Muscheln zu testen, ihre Stoffwechselleistung in 
aufeinanderfolgenden Phasen anstrengender und entlasteter Temperaturen zu unterdrücken und 
wiederherzustellen. In Kapitel 2 wende ich eine Kombination aus der kurzfristigen (eintägigen) 
FOFS-Methode und einem längerfristigen (5-wöchigen) Experiment, sowie dem dazugehörigen 
Upscaling-Approach (nichtlineare Mittelung) an. Ich zeige, dass tägliche thermische 
Schwankungen mit hoher Amplitude das Muschelwachstum verbessern, wenn Schwankungen 
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um einen extremen Durchschnittswert appliziert wurden, der für Hitzewellen zum Ende des 
Jahrhunderts repräsentativ ist. Im Gegensatz dazu wirkten sich die thermischen Schwankungen 
negativ auf das Muschelwachstum in einem weniger extremen Durchschnittswert aus, was 
heutigen Maximaltemperaturen in der Region im Sommer entspricht. Diese Ergebnisse legen 
nahe, dass Schwankungen das Wachstum nur bei kritisch hohen Durchschnittstemperaturen 
verbessern. Darüber hinaus weise ich darauf hin, dass eine nichtlineare Mittelung der 
kurzfristigen (nicht akklimatisierten) thermischen Fraßreaktionen (die FOFS-Methode) die aus 
dem Langzeitexperiment beobachteten Schwankungsauswirkungen auf die Wachstumsraten 
gut vorhersagen konnte. Indem ich meine Ergebnisse mit physiologischen und mathematischen 
Prinzipien zusammenführe, schlage ich eine einfaches Konzept vor, welches auf verschiedenen 
möglichen und zeitabhängigen Veränderungen der thermischen Stoffwechselleistung basiert. 
Das Konzept erklärt, wie Schwankungen eines Umweltparameters, der die Unterdrückung und 
Erholung des Stoffwechsels vermittelt, je nach Mittelwert und Amplitude der Schwankungen 
für die Langzeitleistung des wechselwarmen Organismus von Vorteil oder nachteilig sein 
können. In Kapitel 3 teste ich, ob (und wie) Akklimatisation oder gezielte Selektion durch 
extreme sommerliche Temperaturen zu Individuen mit höherer Hitzetoleranz bei ihrer täglichen 
Unterdrückung und Erholung des thermischen Stoffwechsels führen kann. In einer 
viermonatigen Inkubation wurden Muscheln unter Verwendung eines nahezu natürlichen 
Mesokosmen-Systems aktuellen und erwärmten (extremen) Sommertemperaturen, 
prognostiziert für das am Ende des Jahrhunderts, ausgesetzt. Ich konnte keinen signifikanten 
Einfluss der vorhergehenden Temperatur in der Fütterungs- oder Atmungsleistung von 
transplantierten Muscheln finden. Jedoch war die Besiedlung der Mesokosmen in erwärmten 
Bedingungen wesentlich (96,5%) geringer als unter Kontrollbedingungen. Im Vergleich dazu 
waren die potenziell selektierten Muscheln (neu gesiedelt) in der Lage, ihre Fütterungs- und 
Atmungsraten in den Entspannungsphasen täglicher Temperaturschwankungen besser 
wiederherzustellen, und zeigten in der Phase vor der Schwankung niedrigere Atmungsraten. 
Die Ergebnisse unterstützen die Hypothesen, dass (i) extrem warme Temperaturereignisse 
seltene hitzetolerante Individuen mariner Wechselwarmer in ihren sehr frühen Lebensstadien 
selektieren können und (ii) ein geringerer Stoffwechselbedarf ein Mechanismus für eine solche 
höhere Hitzetoleranz sein kann. 
Im Allgemeinen unterstreicht diese Forschung die Bedeutung der Untersuchung der 
Stoffwechselleistung von Wechselwarmen-Arten in natürlich relevanten Zeiträumen, um unser 
Verständnis zu den Auswirkungen des Klimawandels auf aquatische Systeme zu verbessern. 
Eine weitere Bewertung der hier getesteten Hypothesen und die Frage, ob gerichtete Selektion 
Erhöhungen der mittleren Stresstoleranz von Populationen zu ihrer evolutionären Anpassung 
an die Erwärmung der Ozeane führen können, sind wesentliche Forschungsthemen zukünftiger 
Studien. 
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General Introduction 
Toward understanding environmental fluctuations’ impacts on marine organisms 

The setting in which marine species and populations assemble and evolve is characterized by 

external traits, including physicochemical (or environmental) characteristics such as seawater 

temperature, salinity, oxygen, pH, and nutrients, and biological factors such as predation, 

competition, or parasitism. These external traits commonly fluctuate over space and time, with 

higher frequency and amplitude in shallow regions (Boyd et al., 2016) compared to more stable 

deep-sea habitats (Goocii and Schopf, 1972). Theoretically, a long-term time series of an 

external factor collected in a particular locality can be composed of a decadal or centennial 

trend, systematic (multi-)decadal to daily fluctuations, and stochastic fluctuations of different 

durations (minutes to months to decades) (Ma et al., 2020). The fluctuations can be due to 

climate events such as North Atlantic Oscillation, El Niño or La Niña events (Soares et al., 

2014; Ma et al., 2020) or, on shorter timescales, caused by seasonal and diurnal variation in 

solar irradiance (Helmuth and Hofmann, 2001). Besides, up and downwelling and tidal events 

(Lima and Wethey, 2012; Vajedsamiei et al., 2014; Saleh et al., 2020), as well as biological 

activities (e.g., respiration and photosynthesis) (Saderne et al., 2013), can influence systematic 

and stochastic environmental variability, especially in shallow marine habitats (Wahl et al., 

2016). 

How environmental fluctuations shift by ongoing climate change is still mostly unknown. What 

is highly probable is that climate change induces unusual long-term environmental trends (e.g., 

warming, acidification, and deoxygenation), shifting the fluctuations’ baseline conditions 

(Lima and Wethey, 2012). For example, due to ongoing shifts in climatological baselines, 

shallow-water organisms are increasingly exposed to days- to months-long supra-optimal 

thermal conditions (Holbrook et al., 2019). Besides, seasonal to diurnal temperature 

fluctuations will have warmer peaks in coastal and shallow-water regions (Wang and Dillon, 

2014).  

An organism’s potential for performance in response to external (abiotic and biotic) variations 

is defined by the inherited genetic and epigenetic traits given (Devey, 2005). In theory, an 

organism’s performance can be assumed to be an n-dimensional function of external predictor 

variables (Hutchinson and MacArthur, 1959; Kearney et al., 2010; Blonder, 2017). In empirical 

practices, however, the parsimonious functional relationships, e.g., thermal performance curves 

(TPCs), are commonly defined based on a particular (experimentally-simulated) scenario 

(Angilletta, 2006). The initial condition and variability patterns of all influential predictors, 
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including those manipulated and not manipulated in the experiment, characterize the specific 

scenario. However, this parsimony is usually at the expense of less capacity to generalize from 

the empirical performance curves. To date, studies intending to predict the ecological impact of 

climate change have focused on species or communities’ responses to static environmental 

conditions signifying the trends (Deutsch et al., 2008). Until recently, environmental 

fluctuations have been mostly neglected (Jentsch et al., 2007), while they can have significant 

consequences for organisms’ performance as suggested by theoretical frameworks (Ruel and 

Ayres, 1999; Martin and Huey, 2008) and empirical evidence (Niehaus et al., 2012; Kingsolver 

et al., 2015). Yet, advancement in this field of research demands a critical evaluation of the 

methods and their assumptions (Helmuth et al., 2014; Sinclair et al., 2016). 

 

Prediction of fluctuations’ long-term effects based on performance curves 

Here I provide an inclusive overview of the mathematical definition of environmental 

fluctuation effects, considering single or multiple predictors (e.g., temperature, light, dissolved 

oxygen, salinity, and pH). This general framework will be tailored later in Chapter 2 to predict 

the long-term impacts of (daily) temperature fluctuations on a filter-feeder’s metabolic 

performance and growth. 

A (multi-dimensional) performance curve can be identified with additive (or non-additive) 

effects of predictors on the performance, in which the joint (compound) impacts of predictors 

are or are not equal to the sum of single forces alone (Gunderson et al., 2016). The mixed partial 

derivative of an additive performance function with two different variables is equal to zero 

( !"#
!$%!$&

= 0), whereas that for a non-additive performance function is not necessarily equal to 

zero. The mixed partial derivative explains how performance changes induced by one predictor 

are altered by another predictor, for example, how temperature-induced changes in growth are 

altered due to the food-level variation. When the mixed partial derivative is negative (or 

positive), it represents antagonistic (or synergistic) effects of the predictors (Koussoroplis et al., 

2017). Further, variation across predictor values may appear to be disproportional to changes 

in the performance due to nonlinearity in the respective predictor-performance relationship 

(nonlinear averaging or Jensen’s Inequality, Jensen, 1906; see also Fig. S1 in Chapter 2). 

Indeed, when the second partial derivative of the performance curve (around a hypothetical 

point) with respect to a single predictor (meaning (!
"#
!)%"

)) is positive, the performance response 

would be accelerated. The opposite is true for negative derivatives. 
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One of the most commonly used clear-cut mathematical technique to explain the predictor 

variability effects is the Taylor expansion of moments in which a nonlinear function (e.g., a 

performance curve) is substituted by its truncated Taylor-polynomial approximation expanded 

around the mean value(s) of the predictor(s) (Soubra and Bastidas-Arteaga, 2014). In ecology, 

the moment-approximation method was initially used by (Chesson et al., 2005) to define the 

Scale Transition Theory, theoretically describing the effects of spatial variability (variance and 

covariance) in one or two predictors on population-level performances. The method was 

recently used to describe the potential effects of single predictor variability on the organism-

level performance (Denny and Benedetti-Cecchi, 2012; Dowd et al., 2015). More recently, 

Koussoroplis et al. (2017) merged the approach with the co-limitation concept (Sperfeld et al., 

2016) to explain the potential impacts of variability in two resources on organism performance. 

The Moment-approximation method has been increasingly applied in ecology. Equations below 

approximately describe the effects of real-world scenarios of multi-predictor variability on the 

mean and the variance of the performance (Soubra and Bastidas-Arteaga, 2014). 

Eq. 1.1. *[,(./, .1,… , .3)] = ,67$8, 7$" ,… , 7$9: +
/
1∑ ∑ !"#

!$%!$&
(.= − 7$%)(3?@/3=@/ .? − 7$&) 

Eq. 1.2. ABC[,(./, .1,… , .3)] = ∑ ∑ !#
!$%

!#
!$&

(.= − 7$%)(3?@/3=@/ .? − 7$&) 

In the first equation (Eq. 1.1) *[,(./, .1,… , .3)] is the first moment or expectation of a 

performance curve with n predictors, representing the estimated average of the performance 

curve’s outputs (e.g., the mean performance of an organism over a specific period during which 

the predictors were being manipulated). The first term on the right side of the equation, 

,67$8, 7$",… , 7$9:, is the output of the performance curve where the performance curve’s 

input dataset represents the mean values of the predictors. The second term indicates the 

variance [or covariance] in [or between] predictor(s), (.= − 7$%)(.= − 7$%) [or (.= − 7$%)(.? −
7$&)], which can have consequences for the mean performance only if the performance curve 

has some nonlinearity [or non-additivity] components around the predictor’s mean(s). The 

variance of each predictor interacts with its corresponding nonlinear term; for example, for a 

function of two predictors and around predictor X1 (imagine X1 and X2 are the temperature and 

food level, respectively), it is calculated as /1
!"#6DE8,DE":

!$8"
F$81 . At the same time, the covariance 

of each pair of predictors interacts with their corresponding combinatory effect (e.g., for two 

specific predictors X1 and X2, 
!"#6DE8,DE":

!$8!$" F$8$"). 
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The second equation (Eq. 1.2) describes the second moment or variance of a performance curve, 

representing the main components driving the performance variance. According to that, the 

performance-variance is related to (i) the product of the predictor’s variance and the squared 

slope of the performance curve (with respect to each of the predictors, e.g., for X1: 

G!#6DE8,DE":!$8 H
1
F$81 ), and (ii) summation of the product of each pair of the predictor’s covariance 

multiplied by corresponding first partial derivatives (e.g., for X1 and X2: I2 !#
!$8

!#
!$"K F$8$"). 

According to that, the sign and magnitude of the covariance between each pair of predictors 

and the respective (interacting) slopes are essential to define the variability of the performance. 

In marine ecosystems, the covariance between external traits commonly occurs; for example, 

the temperature and light level fluctuate daily. The temperature, salinity, pH, dissolved oxygen, 

and nutrient levels are simultaneously altered during upwelling. However, the effect of different 

predictor covariance scenarios for mean organismal performance and fitness has remained less 

investigated (also not experimentally investigated in this thesis; see Koussoroplis and Wacker, 

2016). In Table 1.1, we present qualitative predictions on how the performance variance may 

be influenced by different predictor covariance scenarios and the interacting slopes, based on 

the theoretical expectations (the bivariate version of Eq. 1.2 described in the previous 

paragraph). For example, one can imagine the temporal variability of light and temperature, 

which have positive daily covariance. Such (co)variability can be associated with the broadest 

daily variance in an autotrophic benthic organism’s performance when both external traits 

fluctuate in intervals with enormous similar-sign effects on the performance (where the slope 

of the respective performance curve is the highest with respect to both factors). This scenario 

is highlighted by blue in Table 1.1. 

Table 1.1. Qualitative prediction of the consequences of two predictors’ covariance for the performance variance 
based on Taylor expansion of variance of a bivariate function (eq. 1.2.). PD denotes the partial derivative. The 
blue-highlighted raw indicates the specific scenario where the covariance is positive and the slope of the 
performance curve is also positive with respect to both factors; thus, larger variance in both predictors will result 
in larger performance variance over a specific period. 

Sign of PD of 
predictor i 

Sign of PD of 
predictor j 

Sign of the product of 
PDs 

Sign of the 
covariance 

Change in performance 
variance 

+ - - - + 
+ - 

+ + + - - 
+ + 

- + - - + 
+ - 

- - + - - 
+ + 
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The approximation method can be applied to provide quantitative or qualitative predictions, 

especially useful for hypothesizing about the effects of the predictor’s (co)variability in 

experimental climate change ecology. However, it must be noted that the approximation method 

is derived from Taylor (polynomial) approximation of performance curves. Therefore, its 

accuracy is higher when the approximated function’s shape (order) agrees more with the initial 

performance curve in the predictors’ intervals of interest. For simplicity, I presented 

components of third-order Taylor expansion of the mean (i.e., based on the third-order Taylor 

polynomial) and the first-order expansion of the variance of a general multivariate function. 

Notably, the approximation method can provide an upscaled relation (see Chapter 2), 

decomposing predictor effects into the predictor’s mean and variability effects. When the 

predictor’s distributions (e.g., thermal regimes of a particular environment) are known, and the 

upscaled relation (and the decomposition) is not needed, one may prefer to predict performance 

under different variability scenarios (nonlinear averaging) via applying the predictor’s data sets 

into the performance curve. One can use a bootstrapping technique (e.g., Benedetti-Cecchi, 

2005), conducting numerous random samplings with replacement from predictor’s (joint) 

distribution and using the samples as inputs to a performance curve to obtain a rich output-

dataset (performance dataset) with a specific probability distribution function. 

 

Biological modulation of performance curves as gaps in empirical knowledge 

Applying the mathematical frameworks to predict environmental variability’s consequences 

assumes that an environmental predictor's immediate effect on an organism’s performance 

remains temporally constant. Thus, the predictions neglect the time-dependent effects, 

particularly the modulatory role of compensational acclimation, accumulation of stress, and 

evolutionary adaptation (Davenport and Davenport, 2005; Wittmann et al., 2008; Kingsolver 

and Woods, 2016; Sinclair et al., 2016). 

Acclimation includes complex regulatory processes in response to environmental stimuli, 

which may preserve or recover the homeostasis and long-term performance (i.e., Beneficial 

Acclimation Hypothesis; Leroi et al., 1994; Huey et al., 1999). In this sense, (compensational 

or beneficial) acclimation is in contrast with stress response or reverse acclimation (Precht 

1958; Havird et al., 2020). Acclimation may first start with functional inertia in response to 

external fluctuations, e.g., volume-dependent thermal inertia (Harris, 1909). Acclimation then 

involves processes such as the phosphagen system keeping ATP concentrations stable during 

exercise/hypoxia (Ellington, 2001), cyclic gene expression counter expected stress during 
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diurnal fluctuations may (Podrabsky and Somero, 2004), and seasonal reshuffling of cellular 

machinery, including membrane lipids, mitochondrial density, enzyme concentrations, and 

isoforms (Hofmann and Todgham, 2010). Acclimation during or after exposure to a stressful 

event (e.g., heatwave) may functionally prepare the organism for successive stress events 

(Walter et al., 2013). Accordingly, acclimation may also occur independently for static beyond-

optimal conditions and fluctuating beyond-optimal conditions with the same average. 

Notably, fluctuations may modulate the fitness response to a critical average condition, even 

when the organism does not express compensational or reverse acclimation during critical 

exposures. Potentially, this phenomenon may occur when fluctuations mediate alternations 

between phases of tolerance (with minor thermal damage) and recovery phases at milder 

conditions (Schulte et al., 2011; Wahl et al., 2015; also see Chapter 2). This phenomenon is 

mostly neglected while being quite relevant for ectotherms that evolved an elastic capacity of 

metabolic suppression and recovery in response to fluctuating stress regimes. In metazoans, 

suppression of metabolic performance commonly involves decreases in the feeding rate, 

followed by reductions in aerobic respiration and occasional transition to anaerobic metabolism 

(Sokolova and Pörtner, 2001). The metabolic suppression is often mediated through post-

translational modification of existing enzymes (Falfushynska et al., 2020), followed by changes 

in gene expression, membrane composition, and enzyme profiles (Podrabsky and Somero, 

2004). Elongation of the suppression phase at constant but critical conditions may render the 

organism vulnerable to stress. For example, ectotherms commonly express cumulative stress 

responses under continuous exposure to critical temperatures (Deutsch et al., 2008), possibly 

due to their inability to maintain the balance between the demand for metabolic substrates and 

the supply capacity (Schulte et al., 2011; see Chapter 2 and 3). Thus, TPCs established under 

static treatment levels commonly show a concave drop over the beyond-optimal to the critical 

temperature interval, resulting in predictions of thermal fluctuations’ adverse impacts by 

nonlinear averaging (Martin and Huey, 2008; Vasseur et al., 2014; see also Fig. S1 in Chapter 

2). Notably, nonlinear averaging on performance curves generated at timescales (e.g., hours) 

that relate to (daily) fluctuation cycles (i.e., in general, the upscaling approach; Chesson et al., 

2005; Denny and Benedetti-Cecchi, 2012; Denny, 2019) may allow us to predict fluctuations’ 

refuge effects (Chapter 2). 

Yet, performance curves can also be altered through the evolutionary adaptation of populations. 

Microbial organisms, having short generation times and high population densities, can evolve 

within weeks or months due to selection on both pre-existing tolerant genotypes or de novo 

mutations (Padfield et al., 2016). However, the adaptation through beneficial genetic mutation 
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may not be fast enough to preserve longer-generation macro-organisms facing global changes 

(Somero, 2010). Instead, the directional selection of existing stress-tolerant genotypes may 

result in evolutionary adaptation of longer-lived species (Logan et al., 2014, 2018; Ma et al., 

2014; Gilbert and Miles, 2017). Empirical evidence is needed to understand whether and how 

climate change-driven extreme events can enforce such directional selection (Grant et al., 2017; 

Al-Janabi et al., 2019).  

In the context of climate change ecology, empirical investigations have, so far, mainly focused 

on addressing (i) whether the organism’s long-term performance differs between fluctuating 

and constant regimes (e.g., Frieder et al., 2014; Kingsolver et al., 2015; Morón Lugo et al., 

2020) and (ii) whether the performance under fluctuating regimes can be predicted based on 

performance curves established under static treatments (e.g., Niehaus et al., 2012; Bernhardt et 

al., 2018). Their findings have emphasized the need to incorporate environmental fluctuations 

into experimental designs. However, to date, a lack of principle-based (mechanistic) hypotheses 

has limited the ability to generalize from empirical findings (Gouhier and Pillai, 2019). To move 

forward, this thesis tries to relate the effects of environmental variability on metabolic (energy-

budget) performance, particularly the fluctuations-mediated metabolic suppression and 

recovery, to the impacts on fitness-related traits (i.e., long-term performance such as survival, 

growth, and reproduction rates), and explain how these relations can be modulated due to 

acclimation or rapid evolutionary adaptation. 

 

The study system 

A prerequisite for such investigations is the ability to continuously record marine ectotherms' 

metabolic performance in response to short-term environmental fluctuations. Such an 

experimental approach is yet far from developed. To progress, in practice, a focus on the effect 

of a single environmental variable that is more controllable and ecologically highly influential 

would be necessary considering the time and financial constraints of a doctoral study. It is also 

essential to concentrate on a single species that is not only of considerable ecological value but 

can also be preserved and fed in a laboratory setting. Notably, necessary reliable information 

about the physiological functioning of the study species under static (benign) conditions should 

be available. Therefore, the research presented in Chapters 1, 2, and 3 mainly focuses on the 

impacts of cyclic (daily) temperature fluctuations on the blue mussel (Mytilus spp.).  

Temperature is the most influential environmental predictor of ectotherms’ metabolic 

performance (Pörtner, 2012). Daily temperature fluctuations are common in shallow marine 
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habitats and may modulate the impact of intensifying heatwaves on benthic communities 

(Safaie et al., 2018). Ocean climate warming and the associated weather changes are the most 

ecologically influential component of ocean climate change, particularly in shallow 

ecosystems, altering the biogeographical distribution of many species (Barry et al., 1995; 

Sagarin et al., 1999; Wethey et al., 2011).  

In shallow coastal habitats of the Western Baltic Sea, our study region, seawater temperature 

fluctuates by 1–6 °C (at depths ca. 1 m) due to daily irradiance variation and up to 8 °C due to 

days to weeks-long upwelling and heatwave events (Franz et al., 2019; Pansch and Hiebenthal 

2019). By the end of the 21st century, the average sea surface water temperature is projected to 

increase by 1.5–4 °C in the Baltic Sea (Gräwe et al., 2013; Meier et al., 2012). Baltic Sea’s 

coastal habitats is ideal for our study not only because their past and future thermal regimes 

(and, in general, environmental conditions) are well characterized and projected (Lennartz et 

al., 2014; Reusch et al., 2018) but also as they commonly experience minor (< 10 cm) tidal shift 

in water levels (Medvedev et al., 2016). Thus, the effect of temperature on the Baltic Sea’s 

benthic organisms can be experimentally assessed without considering aerial exposure as a 

covariate. 

Our study organism is the ectothermic filter feeder Mytilus edulis trossulus (Stuckas et al., 

2017), the dominant species complex forming the Baltic Sea’s mussel beds (Larsson et al., 

2017). Genus Mytilus has a worldwide distribution, and its various species form mussel beds in 

the sub- and intertidal habitats of temperate- and cold-water ecosystems (Zippay and Helmuth, 

2012). Mussels’ filtration activity can contribute to the cycling of nutrients and energy (Gili 

and Coma, 1998), regulating the load of suspended particulate organic matter and contaminants 

such as heavy metals (Widdows et al., 1998), and controlling the population density and 

community structure of micro-planktonic primary producers and pathogens in shallow marine 

ecosystems (Burge et al., 2016). Besides, these bivalves contribute substantially to 

commercially important aquaculture industries that provide food and non-food services with an 

annual global worth of ~ 35 billion US dollars (van der Schatte Olivier et al., 2018). 

Reliable basic physiological information is available for Mytilus spp. Importantly, the 

relationships of filtration and aerobic respiration to the body size (Hamburger et al., 1983; 

Pleissner et al., 2013) are needed for testing the performance of a developing experimental 

setup. The species is also known to express remarkable suppression (and recovery) of metabolic 

performance, the capacity which is further investigated in this thesis.  
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The cryptophyte Rhodomonas salina (cultured at 16 °C by the Kiel Marine Organism Culture 

Centre at GEOMAR, KIMOCC) is applied as a live food source as its efficiency has been 

confirmed in several published studies (Clausen and Riisgaard, 1996; Riisgård et al., 2013; 

Sanders et al., 2018). Only a few published studies described the thermal biology of R. salina 

(Hammer et al., 2002; Chaloub et al., 2015; Gómez et al., 2016). Most recently, Gómez et al. 

(2016) successfully cultured several strains of R. salina at temperatures of 19–29 °C, suggesting 

that the species is tolerant to high seawater temperatures. Still, independent tests are needed to 

check the robustness of the KIMOCC-cultured R. salina against experimental temperature 

regimes (Chapter 1). 

Details and relevance of the study system are also explained in the upcoming chapters. 

 

Aims, hypotheses, and findings 

The three chapters of this thesis mainly aim at providing insights on (i) how cyclic temperature 

fluctuations impact ectotherms’ performance at critical baseline temperatures, with an emphasis 

on (ii) the role of metabolic suppression and recovery capacity, and finally on (iii) how this 

capacity may be altered by directional selection or acclimation.  

Chapter 1 describes and successfully demonstrates the functionality of the Fluorometer- and 

Oximeter-equipped Flow-through Setup (FOFS), an empirical setup for recording benthic filter 

feeders’ metabolic traits, including filtration and aerobic respiration activities, at an 

unprecedented temporal resolution under simulated dynamic environmental conditions 

(Chapter 1; Vajedsamiei et al., 2021). The proposed method includes the protocol for semi-

automated data processing through Python scripts, making the method more understandable 

and adaptable for future studies. This method can be applied to (i) produce species’ short-term 

TPCs and in (ii) side incubations to investigate how long-term exposure to different scenarios 

of environmental variability may affect the predictor-metabolic response relations, as 

conducted in the second and third chapters of this thesis. 

Chapter 2 tests the hypothesis stating that short-term thermal fluctuations can be not only 

detrimental to organisms but, at times, also be beneficial to marine ectotherms exposed to 

scenarios of current to future summer heatwaves. This study supports the hypothesis by 

assessing the long-term daily-fluctuation impacts on Mytilus growth at benign to critical thermal 

averages. In a second step, using data collected in the short-term FOFS assay, I indicate 

mussels’ capacity to suppress and recover feeding and aerobic respiration in response to a 24 h 

fluctuation in the temperature range as utilized in the longer-term experiment. Finally, the 
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upscaling from short-term (non-acclimated) TPCs shows that the predicted fluctuations’ 

impacts on feeding well explain the long-term fluctuation impacts on growth. I propose a simple 

framework describing the context-dependent stress sensitivity of ectotherms under fluctuating 

versus constant stress regimes.  

Chapter 3 extends the inquiry line to answer related eco-evolutionary questions: How thermal 

history in the form of extreme summer conditions lead to improved heat tolerance in ectotherm 

populations? In this chapter, I evaluate feeding and respiration rates of Mytilus mussels with 

different thermal histories in response to a mild temperature for six hours followed by two 

successive 24 h fluctuation cycles in the range of mild to critical temperatures. The results 

indicate that extremely warm summers (heatwave events) may not result in warm beneficial 

acclimation of mussels but may select rare individuals of higher heat-tolerance at the very early 

life-history stage. Besides, the data support the supposition that lower demand for metabolic 

substrates can be a mechanism for higher heat tolerance. 

 

Chapters and contributions of authors 

Parts of this doctoral thesis have been published or submitted as research articles: 

Chapter 1: Simultaneous recording of filtration and respiration in marine organisms in 

response to short-term environmental variability 

Authors: Jahangir Vajedsamiei, Frank Melzner, Michael Raatz, Rainer Kiko, Maral Khosravi, 

and Christian Pansch 

History: Published in Limnology & Oceanography: Methods 

Contributions: J.V. designed and developed the method, run the experiment, and wrote the 

manuscript. F.M., R.K., and C.P. verified the analytical methods. F.M. encouraged J.V. to run 

the blank trials and write the Oxygen-calculator script. M.R. and R.K. verified the Python 

scripts. M.R. verified the mathematical procedures and encouraged J.V. to add a detailed 

derivation of the dampening-effect correction. M.K. assisted J.V. in setting up and 

implementation of the experiment. All co-authors discussed the results, as well as reviewed and 

contributed to the final manuscript. 

 

Chapter 2: Burden or relief? Impact of cyclic thermal variability on ectotherms capable of 

metabolic suppression 
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Authors: Jahangir Vajedsamiei, Frank Melzner, Michael Raatz, Sonia Moron, and Christian 

Pansch 

History: Resubmitted (on Dec. 28, 2020) and under review in Functional Ecology 

Contributions: J.V. and C.P. designed the study. J.V. developed the mechanistic framework, 

ran the experiments, analyzed the data, and wrote the manuscript. F.M. and C.P. verified the 

experimental methods. M.R. verified the mathematical procedures. S.M. assisted J.V. during 

the long-term experiment. All co-authors discussed the results, as well as reviewed and 

contributed to the final manuscript. 

 

Chapter 3: The higher the needs, the lower the tolerance: Extreme events may select ectotherm 

recruits with lower metabolic demand and heat sensitivity 

Authors: Jahangir Vajedsamiei, Martin Wahl, Andrea Schmidt, Maryam Yazdanpanahan, and 

Christian Pansch 

History: Submitted (by Jan. 31. 2021) to Frontiers in Marine Science 

Contributions: J.V., M.W., and C.P. designed the study. J.V. developed the hypotheses and 

performed the modelling and analyses, and wrote the manuscript. M.Y., and A.S. assisted J.V. 

during the experiments. All co-authors discussed the results, as well as reviewed and 

contributed to the final manuscript. 
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Abstract 

Climate change imposes unusual long-term trends in environmental conditions, plus some 
tremendous shifts in short-term environmental variability, exerting additional stress on marine 
ecosystems. This paper describes an empirical method that aims to improve our understanding 
of the performance of benthic filter feeders experiencing changes in environmental conditions, 
such as temperature, on time scales of minutes to hours, especially during daily cycles or 
extreme events such as marine heatwaves or hypoxic upwelling. We describe the Fluorometer 
and Oximeter equipped Flow-through Setup (FOFS), experimental design, and methodological 
protocols to evaluate the flood of data, enabling researchers to monitor important energy budget 
traits, including filtration and respiration of benthic filter-feeders in response to fine-tuned 
environmental variability. FOFS allows online recording of deviations in chlorophyll and 
dissolved oxygen concentrations induced by the study organism. Transparent data processing 
through Python scripts provides the possibility to adjust procedures to needs when working in 
different environmental contexts (e.g., temperature versus pH, salinity, oxygen, biological cues) 
and with different filter-feeding species. We successfully demonstrate the functionality of the 
method through recording responses of Baltic Sea blue mussels (Mytilus) during one-day 
thermal cycles. This method practically provides a tool to help researchers exposing organisms 
to environmental variability for some weeks or months, to relate the observed long-term 
performance responses to short-term energy budget responses, and to explain their findings 
with the potential to generalize patterns. The method, therefore, allows a more detailed 
description of stress-response relationships and the detection of species’ tolerance limits. 
 
Keywords: ecology, energetics, fluctuations, functional traits, SFG, warming 

 

  

  



 

 
24 

Introduction 

Benthic filter-feeders play critical roles in the cycling of nutrients and energy in numerous 

marine habitats (Gili and Coma 1998; Dame et al. 2001). Their filtration activity can regulate 

the load of suspended particulate organic matter and contaminants such as heavy metals 

(Widdows et al. 1998) as well as the population density and community structure of micro-

planktonic primary producers and pathogens in shallow waters (Burge et al. 2016). Due to their 

profound effect on structural heterogeneity, species diversity and functioning of ecosystems, 

various species of benthic filter-feeders are viewed as ecosystem engineers (Dame et al. 2001). 

Besides, benthic filter-feeders support commercially important aquaculture industries that 

provide food and non-food services with an annual global worth of ~ 35 billion US dollars (van 

der Schatte Olivier et al. 2018). 

In shallow marine ecosystems, benthic filter-feeders can experience short-term systematic or 

stochastic fluctuations in ambient seawater conditions (daily to weekly cycles) due to weather 

events, irradiance variation, tides or wind-driven changes in water levels, upwelling and 

downwelling events, and changes in biological activity (Wahl et al. 2016; Boyd et al. 2016). 

Ongoing climate change induces long-term (annual to decadal) unusual trends in environmental 

conditions (e.g., warming, acidification, and deoxygenation), as well as shifts in short-term 

fluctuation patterns of environmental regimes (Lima and Wethey 2012), which threatens 

benthic taxa, including filter-feeders (Przeslawski et al. 2008). To advance our empirical 

understanding of organisms’ performance in a changing ocean, developing experimental setups 

for high temporal resolution monitoring of organisms’ energetics traits in dynamic 

environments and automated data processing is crucial. This enables a more detailed description 

of stress-response relationships and detection of species’ tolerance limits. 

The two most important energy budget traits of benthic filter-feeders, filtration (feeding) and 

respiration rates, can be monitored through flow-through setups (Riisgård 2001; Filgueira et al. 

2006; Bayne 2017). In a closed chamber setup (including intermittent closure techniques), the 

filtration activity of the organism can substantially decrease or stop due to depletion of food 

before a significant oxygen-depletion signal (i.e., respiration) can be detected (Widdows 1976) 

and the physicochemical conditions can be controlled less efficiently. Importantly, during 

exposure to suboptimal food levels, filter-feeders usually decrease and decelerate their filtration 

and aerobic metabolism to conserve energy (Kittner and Riisgård 2005; Riisgård et al. 2006; 

Tang and Riisgård 2016). In a flow-through setup, the experimental food level can be manually 

or automatically maintained within the range of interest. However, so far, the application of 
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flow-through setups has been mostly limited to investigations on a single response (filtration or 

respiration) to constant treatment conditions (Riisgård 2001; Filgueira et al. 2006; Pleissner et 

al. 2013). Widdows (1973) measured filtration or respiration of mussels under constant 

temperatures based on weekly snapshot-measurements of phytoplanktonic food and dissolved 

oxygen concentrations in water flowing into and out of an experimental chamber using an 

oximeter and a Coulter counter. High-temporal resolution (continuous) recording of filtration 

and respiration responses in parallel was only described by Haure et al. (2003) who used a flow-

through setup equipped with a laboratory fluorometer and an oximeter in a short (three hours) 

experiment. One limiting factor preventing more frequent use of such experimental setups in 

the past could have been the high cost of measurement equipment (especially the laboratory 

fluorometer) limiting replication of measurements. Furthermore, it is technically challenging to 

record the responses of filter-feeders exposed to environmental fluctuations in an air- and water-

tight flow-through setup, as time, temperature, and other physical and chemical factors can 

confound measurements. 

In this paper, we present an experimental method developed for monitoring rates of filtration 

and respiration in parallel as well as simplistic estimation of filter-feeders’ surplus of energy 

available for growth (Scope for Growth, SFG), in response to short-term environmental 

fluctuations. We describe the design of our setup in conjunction with the protocols used for 

semi-automated data processing. We also implement and test the method in an experiment on 

the responses of blue mussels (Mytilus spp.) from the Baltic Sea to daily thermal fluctuation 

cycles. Finally, we discuss the benefits and constraints of the setup and recommend directions 

for future applications, such as its potential applicability to multi-factorial investigations. 

 

Materials and Procedures 

The Setup 

We designed a Fluorometer- and Oximeter-equipped Flow-through Setup (FOFS) with the 

ability to simulate thermal regimes and to record physiological parameters of benthic filter-

feeders. FOFS is schematically illustrated in Fig. 1 (see also the photographic view in 

Supplementary Information Fig. S1). The peristaltic pump ‘Pump1’ (ISMATEC MCP 12 

channels, Cole-Parmer, Wertheim, Germany) creates a constant flow of seawater from a multi-

parameter-controlled source tank (600 L; Kiel Indoor Benthocosms, KIBs, described in Pansch 

and Hiebenthal 2019) to the ‘dilution tank’ (250 mL). The peristaltic pump ‘Pump2’ 

(ISMATEC REGLO digital four channels, Cole-Parmer, Wertheim, Germany) produces a 
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steady flow of phytoplankton food suspension from the ‘food tank’ to the dilution tank. The 

cryptophyte Rhodomonas salina (cultured at 16 °C by the Kiel Marine Organism Culture Centre 

at GEOMAR, KIMOCC) is applied as the food source in our setup as in many other experiments 

with filter-feeding marine invertebrates (e.g., Clausen and Riisgård 1996; Riisgård et al. 2013; 

Sanders et al. 2018). Before each experiment, the food tank (~ 10 L) is filled with a high-

concentration R. salina suspension (e.g., ~ 3×105 cells mL-1). The food concentration in the 

dilution tank can be adjusted according to the needs of the study organisms by varying 

concentration, composition and pumping rates of Pump1 and Pump2. The resulting food 

suspension is pumped from the dilution tank into four separate paths (PathC and PathS1–3). PathC 

represents the control path where oximetry and fluorometry are conducted in the absence of the 

study specimen, while PathS1–3 can harbor one or more specimen per unit (Figs. 1 and S1). For 

higher replication, the number of parallel paths can be easily increased. Along each path, the 

food suspension flows first into a cylindrical Plexiglas chamber (100 mL; incubation or 

oximetry chamber) through an inlet at its lower part of the sidewall. After filling the chamber, 

the suspension flows out via an outlet at the top of the incubation chamber and into a cylindrical 

non-transparent PVC chamber (350 mL; fluorometry chamber). Finally, the suspension 

discharges from the outlet located at the upper part of the fluorometry chambers. Relatively thin 

(here 0.80- and 2.54-mm inner diameter in Pump2- and Pump1-paths, respectively) silicon 

tubes in the setup reduce settling rates of the phytoplankton suspension. Plexiglas tube-

compatible connectors are used as inlets and outlets of the chambers. The suspensions inside 

the food and dilution tanks, and incubation and fluorometry chambers are steadily mixed by 

laboratory magnetic stirrers (HI190M, HANNA instruments, USA; Figs. 1a, b, and S1). 

Dissolved oxygen concentration is recorded via sensor spots (SP-PSt3-NAU, PreSens Precision 

Sensing, Regensburg, Germany; resolution ± 0.1 % O2 at 20.9 % O2 or ± 0.04 mg L-1 at 9.1 mg 

L-1) attached to the inner surface of the incubation chambers (Figs. 1a, b, and S1). Sensor spots 

are read out by an oximeter (OXY-4 mini, PreSens Precision Sensing, Regensburg, Germany) 

through optical fibers connected to the cylinders’ outer surface. Configuration and data logging 

are achieved using the corresponding software. Sensor spots are calibrated based on the two-

point calibration protocol (PreSens 2017). The reference measurements were conducted in 

anoxic water (prepared by dissolving 10 g of sodium sulfite in 1000 mL water) and water-vapor 

saturated air. 

Food concentration is measured using fluorometers (Cyclops 7f, Turner Designs, San Jose, 

USA; Application: Chlorophyll in vivo, blue excitation; Minimum detection limit: 0.00003 mg 

L-1; Linear range: 0–0.5 mg L-1) in dark and well-mixed conditions inside the fluorometry 
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chambers (Figs. 1 and S1). Fluorometers are set up, and data are recorded using the Cyclops-

explorer connectors and software (Turner Designs, San Jose, USA). 

The size of incubation (oximetry) chambers must be large enough to satisfy the space 

requirements for the species’ normal activities (i.e., related to the size of study specimens). The 

volume of the fluorometry chamber is chosen to provide a distance of ~ 8 cm between the 

fluorometer’s optical face and the chamber floor while the optical face and shade caps of the 

fluorometer are entirely submerged (Turner Designs 2020). 

The source-water tank (600 L) is equipped with a control system (Profilux 3.1TeX; GHL 

Advanced Technology, Kaiserslautern, Germany) automating thermal simulations. A 

temperature profile (in .csv format) is submitted via the GHL-controller software to the 

ProfiLux computer, which then adjusts the source-water temperature. More parameters 

(pH/pCO2, salinity, etc.) can also be manipulated in automated procedures. This type of GHL-

equipped source-water tank has been successfully implemented within the Kiel Indoor and 

Outdoor Benthocosm systems (for more details, see Wahl et al. 2015 and Pansch and Hiebenthal 

2019). 

To minimize heat loss in FOFS, a water pump (EHEIM, Deizisau, Germany) generates a flux 

of source water (~ 2 L min-1) into two water baths positioned in sequence: the first water bath 

(aquarium of 50×30×15 cm) holds incubation and fluorometry chambers and the second water 

bath (20×15×10 cm) holds the dilution tank (see Fig. 1a). Additionally, air-exposed areas of 

silicon tubes are covered by heat-reflective thermal blankets to conserve heat. 

If the source water becomes supersaturated with air, the formation of air bubbles can disturb 

the oximetry and fluorometry. This can be avoided by intensive aeration of the source-tank 

water during the experiment. 
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Fig. 1. Schematics of the Fluorometer- and Oximeter-equipped Flow-through Setup (FOFS). (a) Schematic top 
view indicating the flux of seawater, concentrated and diluted food suspension (depicted by the brown shading) 
through the setups’ main components, including the source-water tank, the food tank, the dilution tank, water 
baths, and incubation- (Plexiglas, 100 mL) and fluorometry- (PVC, 350 mL) chambers. Pathc indicates the control 
path where oximetry and fluorometry are conducted without any study specimen. During a trial, filter-feeders are 
placed within the incubation chambers (PathS1–3). (b) Schematic side view indicating the flux of suspension in 
PathSn. The dissolved oxygen and chlorophyll concentrations are recorded within the incubation (oximetry) and 
fluorometry chambers, respectively.  

 

General experimental design and procedure 

A randomized block design can be used for experimenting with FOFS. Each experiment can 

involve several temporally repeated trials with similar treatments but different study specimens. 

Each trial has three subsequent stages, a pre-, a main-, and a post-trial (for an exemplary 

scheme, see Fig. 2). During pre- and post-trials, the setup runs in the absence of specimens for 

~ 3 h at a constant baseline temperature until the readout of all sensors becomes and remains 
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stable for > 60 min (Fig. 2). Later in the data processing, we use data of each pre- and post-trial 

to account for the baseline dissimilarities between readouts of different sensors and to check 

whether measurements were affected by random factors over the corresponding main trial. 

During all stages of a trial, one of the paths (i.e., PathC) acts as the control. Accordingly, the 

incubation chamber located on PathC contains only the temperature logger (EnvLogger, 

ElectricBlue, Vairão, Portugal) but no filter-feeder. After the pre-trial, the other incubation 

chambers located on PathSn are de-capped, and the study specimens are placed on plastic-mesh 

seats inside the chambers (Fig. 1b). The chambers are then recapped, avoiding air bubbles. At 

this point, the fluorometry chamber caps must be also repositioned to eliminate potentially 

trapped air bubbles.  

After each post-trial, and before starting a new pre-trial, FOFS must be run with deionized water 

for ~ 20 min and the chambers’ interior must be brushed thoroughly to remove remnants of the 

studied specimens (e.g., feces and associated microbial biota). 

 

Fig. 2. An exemplary trial with a daily thermal fluctuation cycle is indicated. The main trial is preceded and 
followed by a pre- and post-trial period without filter-feeder, respectively. During the main trial, the organisms’ 
response to fluctuation is recorded. The main trial can also comprise periods of a constant condition before and 
after the fluctuation, which allows organisms to acclimate to the ambient condition and provides insight into how 
consistent the responses are during exposure to a static ambient condition. 

 

Data processing through Python scripts 

Here, an overview of different steps of the data processing is provided with a focus on the 

techniques used to correct and convert measurements and calculate the response variables. The 

associated Python scripts can be found in the Supplementary Information Scripts. Notes and 

explanatory remarks provided throughout the scripts clarify how the steps and commands in the 

scripts work and how one can use and adopt them. 
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Dissolved-oxygen concentration calculator 

‘DO_calculator.py’ (Supplementary Information Script S1) transforms the phase angle data 

(phi) collected via PreSens Pts3 sensor spots (and Oxi4-mini oximeter) to the dissolved-oxygen 

concentration in % air-saturation considering the temperature-sensitivity of the phase angle and 

Stern-Volmer constant. The % air-saturation data are then converted to µmolO2 L-1 considering 

ambient temperature and salinity. The ambient temperature data used in the processing are 

recorded by the logger placed within FOFS. The equations used in this calculator are based on 

the Oxi4-mini instruction manual (PreSens 2004). 

Future users applying oximeters lacking the automatic temperature-correction and unit 

conversion can revise the script based on the specifications of their device (sensors). 

 

Trial-by-trial analysis 

FOFS_trial-by-trial_processing.py (Supplementary Information Script S2) can be applied to 

process raw data and generate outputs including data frames and time series plots of raw, 

corrected and converted versions of measurements and calculated data of the response variables 

for each experimental trial. 

 

Step 1 (filtration and feeding rates) 

The script reads in pre-trial series of food concentration (mV) and names them 

‘pre_C_mV_Chl’ or ‘pre_Sn_mV_Chl’. The series are denoised (trended) using a time-

windowed slider with an iterative robust location estimator such as Tukey’s biweight or Welsch 

estimators (Wotan module; Hippke et al. 2019). Robust estimation assigns more weight to the 

data points closer to the central values of the sliding window (for a detailed description of 

different types of estimators, refer to Hippke et al. 2019). The trended mV series suffixed by 

‘_Trend’ are then corrected using the temperature correction coefficient (Supporting 

Information Text S1) and saved with the additional suffix ‘_TC’. 

The trended- and temperature-corrected mV series are plotted to select the ‘pre-trial stable-

data’. The criterion for selecting the stable-data is explained in Supplementary Information Text 

S2. The pre-trial stable-data of PathC is averaged and then converted from mV to cells mL-1 

using the conversion coefficient (Supporting Information Text S1), which will be used later as 

‘the initial concentration’. Ideally, the conversion coefficient is checked at each pre-trial since 
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it might change slightly due to variation in the positioning of the fluorometer on the chamber 

and the rate of magnetic stirring. 

The main trial mV series are also denoised and, then, corrected using the temperature-correction 

coefficient (e.g., Fig. 3b). The mV data of each sensor are then expressed as percentage of the 

mean value of the pre-trial stable-data of the same sensor (named ‘percent_C’ and ‘percent_Sn’ 

in the script). This procedure eliminates the baseline differences in the absolute value of output 

between the fluorometers as the output of each fluorometer is directly proportional to the 

chlorophyll (R. salina) concentration signal (Cyclops 7 User’s Manual; R2 > 0.985 based on 

our observations). The food concentration series are finally converted from the percentage to 

cells mL-1 (‘cell_per_ml_C’ and ‘cell_per_ml_Sn’), considering that the ‘initial cell 

concentration’ is 100 % (compare Fig. 3b with 3c). 

In each FOFS path, the fluorometry chamber, which has a 350-mL volume due to the space 

requirements of the fluorometer (refer to Material and Procedures: The setup), is inevitably 

positioned downstream to the incubation (oximetry) chambers (Fig. 1b). The oximetry chamber 

contains a relatively small volume of a well-mixed solution. Any change in the respiration or 

filtration activities of the study specimen almost instantly alters the dissolved oxygen or food 

concentration in the oximetry chamber and in the inflow to the fluorometry chamber. The 

inflow is being mixed with the solution in the larger fluorometry chamber; therefore, any 

measured change in food concentration is a dampened (temporally lagged and weakened) 

version of a change in the inflow food concentration. The script uses a linear differential 

equation (Campbell and Haberman 2008; Supporting Information Text S3) to improve the 

estimation of rapid changes in the measured food concentration (Fig. 3c, d). These rapid 

changes in food concentration can occur because of filtration shutdown or recovery of the study 

organism. Notably, if the measured food concentration follows a consistent trend with no rapid 

changes, no correction is done (Supplementary Information Fig. S3). 

The resulting time-series is used to calculate the filtration and feeding rates of study specimens 

(Fig. 3e) based on Eq. 1 and Eq. 2, respectively (modified after Larsen and Riisgård 2011).  

Eq. 1. filtPQ(mL	minV/) = WXXYZ6[\]]^	_`a8:	–	WXXYcd6[\]]^	_`a8:	
WXXYcd([\]]^	_`a8	)

× 	flow	rate	(mL	minV/) 

Eq. 2. feedPQ(cells	minV/) = 	 foodn(cells	mLV/)	–	foodPQ(cells	mLV/) × 	flow	rate	(mL	minV/) 

The final time-series of filtration and feeding rates are named ‘filt_ml_per_min_Sn’ and 

‘feed_cell_per_min_Sn’ in the script. 
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Fig. 3. Data processing flowchart with acquired time-series graphs of fluorescence intensity in mV, Rhodomonas 
salina concentration, and mussel (Mytilus spp.) filtration rates for an experimental trial (November 4–6, 2019) 
including pre- (a), main- (b–e) and post-trial (f) stages. Data from Pathc (the control path) are displayed as green 
lines. Data from PathS1–3 are displayed as shades of blue (see the legend at the top of the plot). The measurement 
frequency is 0.5 min (x-axis titles of pre- and post-trial subplots). 
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Step 2 (respiration rate) 

The same techniques are used to denoise pre- and main-trial dissolved oxygen concentration 

(% air-saturation and µmol L-1) and to define and average the 'pre-trial stable-data’ (refer to 

Step 1; Fig. 4a, b).  

There might be small baseline differences between the outputs of the oximeters due to imperfect 

sensor calibration. For example, we calibrated the sensor spots twice manually and twice using 

the calibration data provided in the Final Inspection Protocol for the PreSens Pts3 sensor spots. 

The differences between the sensors when FOFS was running in the absence of filter-feeders 

were comparable to the differences recorded in air (i.e., < 1.2 % air saturation). The sensors’ 

baseline outputs may be even more comparable if the sensors are calibrated in a shared 

calibration medium, though this is hard to conduct when the sensor spots are attached to 

different chambers. Nonetheless, the average pre-trial stable measurement of each sensorSn is 

subtracted from the counterpart value of the sensorC, and this baseline difference is later added 

to the main-trial data of the sensorSn (Fig. 4c). Notably, this correction simplistically assumes 

that the calibration curves of sensorSn and sensorC are nearly parallel over the experimental 

range of dissolved-oxygen concentration and therefore imposes cumulative errors as the 

measured concentration of sensorSn deviate from the pre-trial reference. For example, if the 

difference between measurements of sensorS1 and sensorC is ~ 1 % at a real ambient 

concentration of 100 % air saturation, after the correction the two values will depart < 0.1 % 

per 10 % decrease in the ambient concentration. 

The final version of main-trial data (named ‘control_ymol_per_l_C’ and 

‘corrected_ymol_per_l_Sn’ in the script) are then applied to Eq. 3 to calculate the respiration 

rate. 

Eq. 3. respPQ(µmolO1	minV/) =	 (oxygn(µmol	LV/) − oxygPQ(µmol	LV/)) 	× 	flow	rate	(L		minV/) 
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Fig. 4. Data analysis flowchart with acquired time-series graphs of the dissolved-oxygen concentration and mussel 
(Mytilus spp.) respiration rates for an experimental trial (November 4–6, 2019) including pre- (a), main- (b–e) and 
post-trial (f) stages. The measurement frequency is 0.5 min (x-axis titles of pre- and post-trial subplots). 
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Step 3 (Scope for Growth) 

The principal outputs of data processing are filtration and respiration records. The script also 

provides a very simplistic estimation of surplus of energy available for growth based on the 

assimilated energy minus the respired energy (the basic definition of the Scope for Growth, 

SFG; Widdows 1976). The SFG can be estimated based on the experimental feeding rate (Eq. 

4) or, instead, based on the feeding rate at a hypothetical food concentration (e.g., the average 

experimental food concentration). The hypothetical feeding rate (feeduvwPQ in J h-1) is 

calculated based on the filtration rate at a constant food concentration fooduvw in J mL-1 (Eq. 

5). SFGuvwPQ is then estimated based on feeduvwPQ, respPQ (i.e., the respiration rate in J h-1), 

and the assimilation efficiency (AE) of 80 % (based on the average value reported in Widdows 

and Bayne 1971) though Eq. 6. 

Eq. 4. SFGPQ	(J	hV/) = 	 feedPQ(J	hV/) × AE	–	respPQ(J	hV/) 
Eq. 5. feeduvwPQ(J	minV/) = filtPQ(mL	minV/) 	× 	fooduvw(J	mLV/) 

Eq. 6. SFGuvwPQ	(J	hV/) = 	 feeduvwPQ(J	hV/) × AE	–	respPQ(J	hV/)  

Conversion factors of 1.75 µJ per R. salina cell (Kiørboe et al. 1985) and 450 kJ per molO2 

(Widdows and Hawkins 1989) are applied. 

 

Step 4 (cumulative random effects) 

FOFS assumes that the deviations in food and dissolved-oxygen concentrations between PathC 

and each PathSn are only due to the study specimens’ filtration and respiration during the main 

trial. Therefore, it is important to check the possible contribution of random (non-filter-feeder) 

factors. To do so, the average of the ‘post-trial stable-data’ (of each sensorSn) is used to assess 

how close the post-trial filtration and respiration rates are to zero (refer to Figs. 3f and 4f). Post-

trial responses are expected to be equal or close to zero, as this stage is conducted in the absence 

of study specimens. The post-trial responses are compared with the main-trial baseline filtration 

and respiration rates to roughly estimate the ratios of the non-filter-feeder- to filter-feeder-

induced signals (i.e., the cumulative random impacts in percent; refer to Figs. 3e-f and 4e-f). 

Baseline filtration or respiration rate is defined in the script as the average of 180th to 480th 

main-trial data points, while future users may need to change the interval based on the observed 

responses. 
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It must be considered that cumulative random effects are those non-filter-feeder (confounding) 

effects which are still detectable after the main trial (in the post-trial stable-data), which could 

be due to long-lasting drifts in sensor measurements, bacterial respiration which may be boosted 

due to remnants of the study specimens (i.e., ammonia/feces released), settlement of the food-

organism (in this case R. salina) and possible changes in the speed of magnetic stirrers. Future 

users need to also ensure that their measurements are not impacted by transient random effects 

(e.g. temporary electrical interventions and sensor malfunctions) through ‘blank trials’ (for an 

example, see Assessment and Discussion: Demonstration experiment). 

 

FOFS integrative processing 

The data frames created through the trial-by-trial processing can be integrated using 

‘FOFS_integrative_processing.py’ (Supplementary Information Script S3). Importantly, a data 

sheet containing dry weights and shell lengths of study specimens (e.g., Supplementary 

Information Table S1) must be manually added to the experimental folder, before executing the 

script. 

The script first merges post-stage data frames, including all estimated cumulative random 

effects (‘%_cumulative_random_effects_Sn’ in the script). Then, it concatenates main-trial data 

frames one by one, plus defining size-standardized rates of filtration, feeding, respiration, and 

SFG for the replicates. All responses are standardized to shell length and dry tissue weight as 

proxies for gill surface area and tissue volume (Hamburger et al. 1983; Riisgård 2001). Any 

change to the complete experimental data frame (‘experiment_df’), such as excluding a broken 

part, can be done through ‘manual imposition of changes’. 

The script produces line-plots, each aggregating over replicated values of a specific variable at 

each time point and shows estimates of the averages with the respective 95% confidence 

intervals. 

Finally, thermal variations in responses are described through Generalized Additive Models 

(pyGAM module; Servén and Brummitt 2018) using data of the whole experiment or a specific 

phase of it (e.g., the warming or cooling phase of a thermal fluctuation treatment). The best fit 

GAM is selected using a grid-search over multiple values of the regularization parameter and 

n-spline values seeking the lowest Generalized Cross-Validation score (for more details on 

GAM, refer to Wood 2017). 
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Assessment and Discussion 

Demonstration experiment 

In a few studies, flow-through setups were applied for simultaneous measurement of filtration 

and respiration of aquatic organisms under static experimental conditions (Widdows 1973; 

Haure et al. 2003). Besides, guidelines are available for the design of flow-through setups 

proper for measuring the filtration rate under static conditions (Filgueira et al. 2006; Larsen and 

Riisgård. 2011). Here, we describe the design of a Fluorometer- and Oximeter-equipped Flow-

through Setup (FOFS) and provide the protocols used for semi-automated data processing 

through Python scripts. The method described here allows for high-resolution monitoring of 

filtration and respiration rates in response to dynamic environmental conditions, ultimately 

enabling the detection of the ecological limits of benthic filter feeders facing climate change. 

The methods’ functionality is tested in a demonstration experiment, testing the key assumption 

that the deviations of processed concentrations of each specimen path (PathSn) from those of 

the control path (PathC) of FOFS in time is only due to the respective filter-feeder being 

examined during a dynamic treatment. 

In many shallow-water marine habitats (including the Baltic Sea), temperature changes at time 

scales of seconds, minutes or hours to days and weeks, during daily temperature cycles, 

heatwaves and/or upwelling events (Lima and Wethey 2012; supplementary information in 

Pansch and Hiebenthal 2019). Therefore, we applied our newly developed method in six trials 

using daily thermal cycles. 

In four trials, we exposed mussels (Mytilus spp. specimens from Kiel Fjord, Western Baltic 

Sea) to daily temperature fluctuations. Before the trials, study specimens were kept at constant 

16 °C and fed once per day with R. salina for three weeks. The minimum and maximum 

temperatures experienced by the mussels in the main trials were 18 and 27.5 °C, which were 

reached at 5:00 and 17:00 during the day, respectively. The rate of linear change (rise and 

decline) was ± 0.79 °C h-1. After each trial, all specimens were kept in 0.5 µm filtered seawater 

at room temperature (16 °C) for ~ 10 h to release feces (minimizing the effect of feces-weight 

on mussel dry tissue weight). Afterwards, the length of specimens was measured using a caliper 

and their tissue was dried at 80 °C for 30 h and weighed using an electronic balance (0.1 mg; 

Sartorius, Berlin, Germany). Besides, we checked that the thermal exposures do not impose 

substantial changes on the phytoplanktonic food (Rhodomonas salina) concentration 

(Supplementary Information Text S4 and Fig. S4). 
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Two blank trials, each with a pre- and a main-trial phase, were conducted to check whether 

processed measurements of different sensors remain comparable over the experimental time 

and over the temperature range in the absence of mussels. The pre-stage of the first blank trial 

(October 14–16, 2019) was carried out following the standard cleaning procedure. The pre-

stage of the second trial (November 1–3, 2019) was initiated as a follow-up of the mussel-

inclusive trial (without the cleaning) to see how remnants of the mussels (e.g., ammonia/feces 

released, which might have possibly affected microbial activities in the tubing and chambers) 

could have affected the respiration and filtration time series under the influence of temperature 

and time over the main trial. The minimum and maximum temperatures in our two blank trials 

were 18 or 20 and 28 or 29 °C, respectively. 

During all demonstration trials, seawater salinity was ca. 21 PSU, and the flow rates of Pump1 

and Pump2 were constantly 16 and ~ 2 mL min-1, respectively. The food tank was refilled with 

concentrated food-solution after each trial. The sensitivity of the fluorometers was set to X10, 

which is suitable for measuring in the range of 1 to 5 µg Chl L-1, comprising the concentration 

range of our experiment. Readout frequencies of the fluorometers, the oximeter, and the 

temperature logger were set to 30 s. 

All data of the demonstration experiment, including blank and mussel trials’ data, are archived 

and accessible in Pangaea (www.pangaea.de: Vajedsamiei et al. 2020). 

 

Blank trials provide a performance check  

Trends of food or dissolved oxygen concentration were comparable between PathSn and PathC 

over the main stage of the blank trials, supporting the main assumption that differences between 

PathSn and PathC should only emerge from the study specimens (Supplementary Information 

Fig. S5). There were minor temporal decreases in food concentration (Supplementary 

Information Fig. S5a, c), possibly due to settlement and/or death of R. salina cells. As both, 

oxygen solubility in seawater and the rate of dissolved-oxygen removal within the FOFS tubing 

and chambers are temperature-dependent, oxygen content varied linearly with temperature 

(Supplementary Information Fig. S5b, d). Due to the constant air bubbling of the source tank, 

the source water remained saturated (~ 100 %) with oxygen (confirmed by a WTW dissolved 

oxygen concentration meter, Multi 3630 IDS, Kaiserslautern, Germany). 

Calculated filtration and respiration rates stayed consistently close to zero with slight variability 

for both blank trials (Supplementary Information Fig. S6). The mean and standard deviation of 
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responses during the main stage of the two blank trials are reported in Supplementary 

Information Table S2. 

The pre-stage of the second blank trial (‘01_nov’) was done as an immediate follow-up of a 

mussel-trial, without cleaning of the system. Its outcomes indicate that remnants of the mussels 

did not cause notable deviations in concentration between PathC and each PathS1-3 under the 

influence of temperature and time over the main trial. In the second blank trial, slight (transient) 

irregularity in dissolved-oxygen records of PathC caused minor transient drifts in the calculated 

respiration rates of PathS1-3 (Supplementary Information Figs. S5d and S6d), contributing 

almost half of the mean respiration rate (Supplementary Information Table S2). Random 

transient irregularities were also observed in chlorophyll data but affected data of all four paths 

similarly. Yet, these random drifts are minor compared to the filter-feeders’ response signal 

(compare Supplementary Information Figs. S5 with Fig. 5). Random irregularities might be 

explained by voltage fluctuations during working hours when high loads of electricity are being 

used. Future users may need to apply an online Uninterruptible Power Supply (UPS) to stabilize 

the voltage. 

 

Mussel trials confirm applicability 

The mussels induced differences in food and dissolved oxygen concentrations between PathS1-

S3 and the control (PathC), which were used to define filtration and respiration rates 

(Supplementary Information Figs. S7 and S8). In one mussel trial, the specimen of PathS3 

expressed filtration shutdown and intermittent respiration shutdowns before being exposed to 

the thermal fluctuation, which was different from the responses of other studied mussels 

(Supplementary Information Fig. S8c-d). Besides, in another mussel-trial, the resumption of 

respiration of the specimen of PathS2 resulted in unusually high respiration rates 

(Supplementary Information Fig. S8f), due to magnetic stirrer arrest preventing efficient mixing 

of the solution inside the oximetry chamber. As the size of the studied mussels was large, the 

release of hypoxic water trapped within the shells during the metabolic depression resulted in 

a decrease in oxygen concentration recorded when the medium was not mixed efficiently. Data 

of these two replicates were excluded from the following integrative processing. 

For each replicate, the ratio of the post-trial filtration (or respiration) and the main-trial baseline 

filtration (or respiration) rate expressed as a fraction of 100 are provided as estimates of 

cumulative random effects, estimating how big the random effect is compared to the baseline 

response signal (Supplementary Information Table S3). A negative (or positive) effect means 
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that non-filter-feeder factors might have led to a higher (or lower) food or dissolved oxygen 

measurements by SensorSn compared to SensorC during the post-trial. The values indicate how 

much the filtration (or respiration) might have been under- or overestimated especially for data 

points recorded closer to the end of the main-trial period. The absolute value of average post-

trial filtration rate was 0.1 mL min-1 that could be expressed as ~ 0.2 % with reference to the 

baseline rate. The remnants of mussels and the resulting microbial activity contributed to post-

trial respiration rates, which was on average 0.016 µmolO2 min-1 (i.e., ~ 7 % of the mussels’ 

mean baseline respiration). While the random effects cannot be corrected, their recognition can 

help the user to better interpret the results and decide if data of a replicate must be removed 

from the analysis due to large drifts. 

The rates of Scope for Growth of the studied mussels, estimated based on calculated filtration 

rates at (hypothetical) concentrations of 1000 and 4000 cells mL-1, are presented in 

Supplementary Information Fig. S9. It should be noted that our estimation of hypothetical SFG 

simplistically assumes that the respiration rate is independent of the ambient food concentration 

(not considering respiratory costs of the feeding at different food levels; Secor 2009). Future 

users can also estimate ‘SFG at the experimental food regime’ based on real-time feeding and 

respiration rates (plots not presented here). Notably, both experimental and hypothetical SFGs 

neglect that assimilation efficiency may vary when environmental conditions change, especially 

in relation to organic content of food and ingestion rate (Hawkins 1996). 

Temporal variation in rates of filtration and respiration averaged over pooled replicated data of 

the mussel-trials are presented in Fig. 5. The mean rates of filtration decreased with warming 

(Fig. 5a). The maximum tolerated temperature, at which a steep drop in average filtration rate 

could be observed, was ~ 24 °C during the warming phase. During the subsequent cooling 

phase, mussels started increasing their filtration at ~ 27–28 °C, however, only to a maximum 

level of ~ 50 % of the initial rate (Fig. 5a). The mean respiration rate started to decline during 

the warming phase at ~ 24 °C, down to half of the initial values, and then started to increase 

again during the subsequent cooling phase at ~ 30 °C, and finally reached the initial respiration 

rate (Fig. 5b). Variance (inter-individual variability) was larger for the respiration-depression 

response than for the filtration shutdown. 
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Fig. 5. Temporal variation in the length-specific filtration rate (a) and weight-specific respiration rate (b), along 
the daily temperature cycle. Data were pooled over multiple trials and replicates (10 replicates blocked in time) in 
the demonstration experiment. Replicated values were averaged at each time point, presented with 95 % confidence 
intervals. 

 

The ambient food concentration and feeding rate of the study organisms over an experiment 

would be of interest to those investigating energetic costs of feeding or Specific Dynamic 

Action (refer to Secor 2009). Considering the study question and the optimal filtration rates of 

the study specimens, one can regulate the food-tank concentration and the pumping rates to 

generate any ambient food concentrations of interest. Our studied mussels were large and their 

filtration activity on average decreased their ambient food concentration from ~ 3800 to 

800 cells mL-1 over the period preceding the filtration shutdown (Supplementary Information 

Fig. S10a). Concentrations < 1000 cells mL-1 can be considered as marginal to suboptimal food 

levels for the filtration activity of Mytilus spp. (Riisgård et al. 2013); therefore, our studied 

mussels were probably food limited over that few-hour period. Mussels’ respiration rates 

induced on maximum ~ 10 % air-saturation decrease in dissolved oxygen (Supplementary 

Information Fig. S10b). The outflowing water oxygen levels remained above 80 % saturation. 

We compared our estimates of the baseline mean filtration and respiration rates of Mytilus 

specimens with the predictions based on previously published literature functions (Hamburger 

et al. 1983; Pleissner et al. 2013; more detailed description in Supplementary Information Text 

S5). The predicted rates of length-specific filtration and weight-specific respiration for Mytilus 

are 1.85 (mL mm-1 min-1) and 0.41 (µmolO2 g-1 h-1). Our average baseline estimates were ~ 1.3 

a

b
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and 0.4, respectively (Fig. 5a, b), showing that our estimates are in line with expectations. 

Thermal variation in filtration and respiration rates in the warming and cooling phases of the 

mussel trails was described by Generalized Additive Models (GAMs; Fig. 6). Differences of 

the thermal response curves between the warming and cooling phases indicate time-dependent 

effects (i.e., in general, changes in the instant rate of thermal response over time due to alteration 

of the functional context by, for example, acclimatization, stress and damage; Kingsolver et al. 

2015). 

 

Fig. 6. Thermal response curves. Filtration and respiration rates of mussels as functions of the temperature in the 
warming (a–b) and cooling phases (c–d) of the mussel trials of demonstration experiment, modelled by the best-
fit Generalized Additive Models (dark-blue lines). The warming and cooling phases correspond to the time 
intervals 5:00-17:00 and 17:00-5:00, respectively. 

 

Challenges and solutions provided by FOFS and the suggested data processing 

In FOFS, we successfully used submersible fluorometers that are more affordable and easier to 

handle due to their small size compared to previously applied laboratory fluorometers (Haure 

et al. 2003; Pleissner et al. 2013). We provide the procedure for temperature correction and unit 

conversion of Chlorophyll data, which was successfully tested in the demonstration experiment. 

The Python scripts explicitly facilitate all steps of data processing, making our method more 

understandable and adaptable for future studies. It applies a robust modeling technique for 

denoising measurements. It includes the dampening-effect correction which can be applied to 

data obtained through similar flow-through setups (including aquarium or mesocosm-based 

systems) in which the sensors are inevitably positioned in a series of chambers of different 

a

b

c

d
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sizes. The three-stage design of experimental trials enables estimation of cumulated random 

effects (as a measure of the temporal precision of measurements) soon after the end of a trial, 

allowing the users to exchange malfunctioning sensors in time and to better interpret the 

observed patterns of temporal variation in responses. 

Other technical issues include the bubble formation in tubing and chambers and inherent 

differences between sensor readouts. These are explained and resolved in our method. 

 

Limitations and potential solutions 

Respiration rates recorded using FOFS represent the energy consumption rate by aerobic 

metabolism (Widdows and Hawkins 1989). To measure the rate of anaerobic metabolism, 

which might be especially important when filter-feeders experience phases of (thermally-

induced) metabolic depression (valve closure), a direct calorimetry method would have to be 

applied (Guppy and Withers 1999; Regan et al. 2013; Nelson 2016). Another limitation of 

FOFS is the lack of automated control over the ambient food level, which can change under the 

influence of any filter-feeders’ filtration activity throughout an experiment (e.g., thermal 

shutdown of filtration). By developing a feedback loop connecting Cyclops fluorometers and 

Pump2 through their software interfaces in the present setup, it should be possible to upgrade 

the setup to a system allowing automated control of ambient food concentrations. 

Biofilm or bio-deposit accumulation may limit the time window of continuous recording of 

respiration in FOFS experiments. After our 1.5-day-long trials, the respiration from the 

remnants of mussels and biofilms was, on average, ca. 7 % of the mussels’ mean baseline 

respiration (for mussels with ca. 4 cm shell length). To keep the error caused by microbial 

respiration minimal, especially during longer-term trials, one must stop the trial for a few 

minutes, for example, once a day, clean the incubation (Plexi-glass) chambers using deionized 

water and soft brush, and then continue the trial. 

 

Significance, directions and possible advancements of the method 

The decadal to centennial patterns of thermal changes in shallow-water marine habitats can be 

decomposed into (i) long-term trends, (ii) mid- and short-term (annual to daily) systematic 

fluctuations, and (iii) stochastic fluctuations of various durations (minutes and hours to months) 

(Lima and Wethey 2012). Empirical studies recently inferred that, because of acclimatization 

and other time-dependent effects (e.g. physiological stress or damage), consequences of short-
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term environmental fluctuations on the ecological performance might differ from mathematical 

predictions based on performance curves empirically-established under static treatment 

conditions (Niehaus et al. 2012; Kingsolver et al. 2015; Koussoroplis et al. 2017). Advancement 

in empirical methods is thus urgently needed to enable the description of the underlying causes 

of discrepancies between the predicted and observed effects of environmental fluctuations. 

FOFS practically provides a tool for researchers exposing organisms to environmental 

variability for some weeks or months, to relate the observed long-term integrated performance 

responses to short-term energy budget responses and explain their findings with the potential 

to generalize patterns. This procedure may improve the description of stress-response 

relationships and detection of species’ tolerance limits. 

The method can be used to provide more accurate data needed for parametrizing theoretical 

mechanistic models such as Scope-For-Growth (SFG, Winberg 1960) and Dynamic Energy 

Budget models (DEB, Kooijman 2010). Besides, it will allow researchers to investigate inter-

individual variability in energetics responses of filter-feeders to temperature, mechanistically 

explaining intra-species variability in growth, reproduction, and survival (Fuentes-Santos et al. 

2018). 

We tested the setup to describe mussels’ responses to a scenario of daily thermal fluctuations. 

The setup with the attributes described here can be used in more extended trials (~ 7–10 days 

compared to two days currently), and to investigate responses of many other filter-feeding taxa. 

Also, this setup might be used to explain physiological responses of organisms (from online 

recordings) with data retrieved in longer-term experiments (e.g. Pansch and Hiebenthal 2019; 

Morón Lugo et al. 2020). With minor modifications in chamber characteristics and flow-rates, 

the setup can be applied to studies of small- to large-sized filter-feeders, and may be extended 

to small communities of in- and epi-faunal suspension feeders. In that line, the setup can also 

be applied to test the response of systems of closely interacting species such as the filter-feeder-

predator and filter-feeder-endoparasite systems to environmental variability (Stier et al. 2015). 

In principle, many drivers (e.g., temperature, oxygen, food, salinity, pH, and biological cues 

such as predator cues) can be manipulated in the setup, while respiration and filtration are 

constantly monitored. Therefore, we infer that the method can be adapted for multi-factorial 

exploration of filter-feeders’ eco-physiology. 
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Conclusions 

We described and successfully demonstrated the functionality of a method, including the 

experimental setup (FOFS), design, and data processing protocols, enabling researchers to 

monitor energy budget responses including filtration and metabolic activities of benthic filter-

feeders in response to fine-tuned environmental variability. Importantly, the method can be 

adapted to study multi-factorial eco-physiology of shallow-water marine filter-feeders, 

shedding light onto species responses to environmental changes occurring within timescales of 

minutes or hours especially during daily cycles or extreme events such as marine heatwaves or 

hypoxic upwelling. This method can be applied by researchers exposing organisms to 

environmental variability for some weeks or months, to describe the observed integrated 

impacts of variability on the performance through energy budget responses to short-term 

environmental changes. In general, the method, therefore, allows a more mechanistic 

description of stress-response relationships and species’ tolerance limits which are required for 

enhancing our understanding of filter feeders’ performance responses to climate change. 
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Abstract 

Predicting the implications of ongoing ocean climate warming demands a better understanding 
of how short-term weather conditions, e.g., daily to week-long thermal fluctuations, impact 
marine ectotherms, particularly at beyond-optimal average conditions such as during extreme 
summers or prolonged heatwaves. Using a globally important species, the blue mussel Mytilus 
spp., in a five-week-long experiment, we (i) compared growth performance traits under daily 
thermal fluctuation cycles to those measured in static temperature regimes, along a temperature 
gradient from benign to critical averages (18.5–26 °C). Besides, we applied a short-term assay 
to (ii) test for mussel’s ability for active suppression and recovery of metabolic performance 
(feeding and aerobic respiration) in response to a one-day thermal fluctuation (16.8–30.5 °C). 
Using the highly-resolved assay data, we (iii) generated thermal performance curves to predict 
and explain the growth responses found in the long-term experiment. We found that daily high-
amplitude thermal cycles (± 4 °C) improved mussel growth (shell length, dry tissue, and shell 
mass) when fluctuations were imposed around an extreme average condition (26 °C) 
representative of end-of-century heatwaves. In contrast, the thermal cycles negatively affected 
mussel growth at a less extreme average (23.5 °C), representing today’s peak summer 
temperatures in the region. These results suggest that fluctuations ameliorate heat stress impacts 
only at critically high average temperatures. The short-term assay indicates that the study 
species could suppress and recover their metabolic performance when the temperature 
fluctuates in the range tested. Furthermore, nonlinear averaging of the short-term (non-
acclimated) thermal feeding responses could well predict fluctuation impacts observed on 
growth rates from the long-term experiment. Our findings suggest that fluctuations that induce 
metabolic suppression and recovery can be beneficial or detrimental to ectotherm’s long-term 
performance, depending on the fluctuations’ baseline and amplitude. We propose a simple 
framework based on temporal changes in the thermal metabolic performance to explain this 
context-dependent stress sensitivity. Our research highlights the significance of studying 
metabolic performance at naturally relevant scales to advance our understanding of climate 
change impacts on aquatic systems. 

 

Keywords: depression, elasticity, energy budget, Jensen’s Inequality, plasticity, scale 
transition, Taylor expansion  
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Introduction 

Marine environments, particularly coastal and shallow water regions, can experience short-term 

weather conditions, including thermal variations on timescales of minutes to days, 

predominantly driven by variations in irradiance, up and downwelling, and tides (Boyd et al. 

2016; Choi et al. 2019). Ongoing climate change imposes decadal to centurial warming trends 

on marine environments (Rhein et al. 2013), and at the same time, affects the characteristics of 

shorter-term thermal fluctuations (Lima & Wethey 2012; Wang & Dillon 2014; Sun et al. 

2018). For example, marine heatwaves are projected to become more frequent and prolonged 

and will be of stronger amplitude (Hobday et al. 2016; Holbrook et al. 2019). Therefore, the 

probability of marine organisms being exposed to beyond-optimal temperature conditions 

generally increases due to ocean warming (Somero 2010), and the impacts may be influenced 

by the pattern of short-term (daily to week-long) fluctuations around these warming trends 

(Jentsch et al. 2007; Smale et al. 2019). 

The performance of organisms in response to temperature is usually nonlinear, commonly 

presented by thermal performance curves, TPCs (Angilletta 2006). The mathematics of 

nonlinear averaging (Jensen’s Inequality; Jensen 1906) predicts that, compared to a non-

fluctuating regime, the average response to a fluctuating thermal regime with the same average 

condition is higher for convex and lower for concave regions of an organism’s TPC (Ruel & 

Ayres 1999; Fig. S1). Yet, predictions from nonlinear averaging assume that an organism’s 

instant thermal response, as defined by its TPC, remains constant over time (i.e., lack of time-

dependent effects; sensu Kingsolver et al. 2015; Sinclair et al. 2016). This assumption limits 

predicting the consequences of thermal fluctuations for marine organisms that evolved in 

variable habitats, such as shallow subtidal and intertidal habitats with pronounced diurnal or 

stochastic thermal fluctuations and aerial exposures (Helmuth et al. 2014). In such habitats, the 

capacity for active suppression and recovery of metabolic performance (Schulte et al. 2011) is 

required for species to persist. 

Organisms have the potential to depress their metabolism by temporally shutting down high-

energy demanding processes such as growth to avoid lethal thermodynamic stress during 

critical environmental conditions (Schulte et al. 2011). In metazoans, suppression of 

metabolism commonly involves decreases in the feeding rate, followed by reductions in aerobic 

respiration and occasional transition to anaerobic metabolism (Sokolova & Pörtner 2001). 

Metabolic suppression is mediated via post-translational modification of enzymes 

(Falfushynska et al. 2020), followed by changes in gene expression over time (Podrabsky & 
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Somero 2004). When metabolic suppression at constant but critical temperatures last for 

extended periods, organisms may not be able to maintain the balance between their demand for 

metabolic substrates and energy and the supply capacity (Schulte et al. 2011), rendering them 

vulnerable to stress (Stillman 2003). Therefore, TPCs commonly established through days- to 

months-long exposures of organisms to static treatment conditions usually show concave drops 

at the higher (beyond-optimal) end (Deutsch et al. 2008; Martin & Huey 2008). Thus, projecting 

the influence of thermal fluctuations on the long-term performance in a warming ocean, based 

on such TPCs, may only yield negative impacts (Paaijmans et al. 2013; Vasseur et al. 2014; 

Bernhardt et al. 2018). Yet, alternative (positive) effects may also be relevant according to some 

empirical observations (Bozinovic et al. 2011; Niehaus et al. 2012; Kingsolver et al. 2015; 

Kang et al. 2019). Potentially, alternations between phases of metabolic suppression and phases 

of recovery elicited by fluctuating regimes might be responsible for these observations of 

fluctuation-enhanced fitness (Schulte 2011; Wahl et al. 2015). Nonlinear averaging on TPCs 

generated at timescales (e.g., hours) that relate to (daily) cycles (i.e., in general, the upscaling 

approach; Chesson et al. 2005; Denny & Benedetti-Cecchi 2012; Denny 2019) may enable us 

to predict fluctuations’ refuge effects. 

Through a long-term (5-weeks) experiment on a globally important organism, the blue mussel 

Mytilus spp., this study first evaluates the hypothesis that (i) daily thermal fluctuations can be 

beneficial for the growth of an ectothermic organism at critical averages. In a second step, we 

applied a short-term (one-day) fluctuation assay testing (ii) whether the study organism can 

express thermal suppression and recovery of metabolic performance (feeding and aerobic 

respiration) in response to the fluctuation amplitude representing the thermal range experienced 

in the 5-week experiment. We finally (iii) evaluate whether upscaling of the short-term (non-

acclimated) thermal metabolic responses by nonlinear averaging can predict the longer-term 

fluctuations’ impacts observed in the 5-weeks experiment. The detailed workflow is presented 

in Fig. 1. 



 

 
54 

 

Figure 1 General sketch of the study workflow. Long-term experiment (a and b): (a) Time-integrated changes in 
growth traits, E(G), are evaluated in a 5-weeks experiment. Here, the exemplary treatments include four levels of 
thermal averages 7�  (violet to red) potentially representing benign to critical average conditions, and two levels 
of fluctuations (continued and dotted lines for constant versus fluctuating regimes). (b) Thermal performance 
curves describing E(G) as a function of µT are defined (solid and dotted lines represent growth under constant and 
fluctuating treatments, respectively). The positive and negative effects of fluctuations over µT are shown by green 
and yellow areas. Short-term assay (c–f): (c) The metabolic performance (feeding or respiration) g(T) in response 
to one-day thermal cycle documents the metabolic suppression and recovery of the study organism. (d) Using data 
from the warming phase of the cycle, the best-fit polynomial curve explaining the thermal metabolic response, 
gP(T), is selected (representing a non-acclimated TPC). (e) Upscaling by taking the expectation of the Taylor 
expansion of gP(T) around 7� , allows describing the long-term expected metabolic rates E(g) as a function of 
temperature. The upscaled relation captures the effects of the thermal averages and variability of the long-term 
experiment (colored lines) as well as the nonlinearity of gP(T) (black curve). (f) The upscaled relation is used to 
generate predictions of E(g) at the 7�  for constant and fluctuating scenarios of the long-term experiment (continued 
versus dotted black-line). Green and yellow areas indicate positive and negative fluctuation effects. (g) The 
correlation between the fluctuations’ observed impact on E(G) and the predicted impact on E(g) is assessed. The 
color-coding in g captures thermal averages in a. 
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Materials and methods 

Our study organism is the marine filter feeder Mytilus edulis trossulus (Stuckas et al. 2017), a 

keystone species complex dominating the Baltic Sea’s mussel beds (Larson et al. 2017). The 

genus Mytilus has a worldwide distribution, and its various species are known as ecosystem 

engineers creating mussel beds in the sub- and intertidal habitats of temperate- and cold-water 

ecosystems (Seed & Suchanek 1992; Zippay & Helmuth 2012). 

 

Long-term (5-weeks) experiment 

400 Mytilus spp. specimens with shell-lengths of 2.5 ± 0.2 mm were collected in 0.5 m water 

depth from a hard-bottom area (50 m2) in Western Baltic Sea (Kiel Fjord), Kiel, Germany 

(54.4330891, 10.1711679) on September 22, 2018, at water temperatures of ca. 16 °C. A 

subsample of 30 specimens was randomly selected and frozen to present the mussel’s initial 

size characteristics. From the remaining mussels, batches of ten randomly selected individuals 

(hereafter, group) were placed inside a rigid mesh bag (1 mm2 pore size, ca. 10 cm3 volume) 

distributed among 36 containers (2 L). Mussels were exposed to laboratory and container 

conditions (at 18.5 °C) for three days. Three of the containers were placed inside each of the 

twelve computer-controlled Kiel Indoor Benthocosms (Pansch & Hiebenthal 2019). Mussels 

were exposed to the different average temperature treatments (18.5, 21.0, 23.5, and 26.0 °C) by 

gradual (linear) warming of 2.5 °C day-1 until the target temperature was reached. Over the five 

next weeks, mussels experienced twelve temperature scenarios, including three daily 

fluctuation amplitudes (± 0, 2, and 4 °C) around four thermal averages (18.5, 21.0, 23.5, and 

26.0 °C). 

Our nested experimental design is schematically described in Fig. S2 in Supporting Information 

(for details on the partitioning of variance in a nested design, refer to Schielzeth & Nakagawa 

2013). Fluctuations were imposed as sinusoidal waves around constant averages to prevent 

possible confounding effects of unbalanced sequences of thermal exposures. Therefore, the 

treatments represent a simplified version of natural daily thermal cycles, which generally 

express higher stochasticity levels. The logged experimental temperatures are plotted in Fig. 

S3. The average temperatures applied in this study represent daily-average temperatures for the 

maximum climatology (18.5 °C) (Pansch et al. 2018), current or near-future heatwaves (21 and 

23.5 °C), and a heatwave expected by the end of the 21st century during summer in the study 

region (26 °C) (see Gräwe et al. 2013). The daily fluctuation amplitudes (± 0, 2, and 4 °C) used 

in this study represent conditions experienced by mussel populations at depths of 0.5–2.5 m in 
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the non-tidal western Baltic Sea where the daily thermal change can be 3–6 °C regularly and as 

high as 8 °C occasionally during the warm season (Pansch & Hiebenthal 2019; Franz et al. 

2020). Notably, the treatment levels were likely to impose benign to critical temperatures since 

it was recently showed that the species could initiate suppression of metabolic performance at 

23–25 °C when exposed to a 24 h fluctuation ranging from 18 to 27 °C (Vajedsamiei et al. 

2021). 

During the experiment, mussels were fed a continuous-flux of filtered (0.5 µm) seawater 

enriched with phytoplankton (Rhodomonas salina) at a flow of ca. 3.5 mL min-1, from an 

independent source container (18 L). The positioning of the mesh bags and aeration mixing the 

food was kept equal between all containers and water baths. Nonetheless, mussel groups were 

redistributed between the three 2-L containers in each water bath every three days. The 

cryptophyte R. salina was cultured at 16 °C and Kiel Fjord salinities by the Kiel Marine 

Organism Culture Centre at GEOMAR, KIMOCC. The food concentration in the source and 

experimental containers was measured every five days using a Cell and Particle Counter 

(Coulter Z2, Beckman Coulter GmbH, Krefeld, Germany) for the cell concentration (cells ml-

1; data are presented in Fig. S4). The Coulter Counter was set to detect particles of 5–8 µm 

diameter, the typical R. salina dimensional range. Food concentrations allowing optimal 

filtration activity of Mytilus specimens (i.e., ca. 1000–7000 R. salina cells mL-1; Riisgård et al. 

2006) were maintained throughout the assessments. 

At the end of the experiment, study specimens were kept in 0.5 µm-filtered seawater at 18.5 °C 

over three days to release remaining feces, so feces-weight could not affect the mussel’s dry 

tissue-weight. Afterward, the length of specimens was measured using a caliper, and their tissue 

was removed from the shell and dried at 80 °C for 24 h and weighted using an electronic scale 

(± 0.1 mg; Sartorius, Berlin, Germany). 

The response variables shell-length (mm d-1), mass growth, and tissue dry weight growth (both 

mg d-1) were calculated as the fitness-related traits (Sebens et al. 2018). Each study specimen’s 

final size was subtracted from the average initial size, and the difference was divided by the 

experiment’s duration. Averages and 95 % confidence intervals of the responses to different 

treatments were plotted group-wise (Fig. S5). 

The significance of the main and the interactive effects for fixed factors (thermal average and 

fluctuation, crossed), and the effect of the random nested factor (i.e., group), were tested using 

Generalized Additive Mixed-effect Models (GAMM). The random (group) effects were 

negligible (for all three response variables, p-value > 0.3). Thus, responses to each treatment 
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combination were pooled over groups. The fixed-effect GAM performance was checked 

compared to more complex mixed-effect models based on AIC and adjusted R-squared and was 

found comparable. The average response was also compared between fluctuation levels (at each 

thermal average) using one-way ANOVA followed by post-hoc Tukey-HSD tests. Analyses 

were done using the packages mgcv and nmle in R (R Core Team, 2019; see Script S1). 

The simplest models (fixed-effect GAMs) were fitted to data using the package pygam and 

plotted in combination with sample averages and 95 % confidence intervals in Python (Python 

Software Foundation; see Scripts S2 and S3). 

 

Short-term (one-day) assay 

Mytilus spp. specimens were collected from a shallow-water environment in Kiel Fjord 

(54.44655, 10.34551) on November 20, 2018, at water temperatures of ca. 10 °C, kept at 

constant 16 °C for three weeks, and fed once per day with R. salina (KIMOCC) before the start 

of the assays. The short-term assay was composed of seven temporally repeated trials. During 

each trial, we recorded metabolic performance (feeding and aerobic respiration rates) of three 

different mussel specimens in response to a one-day temperature fluctuation using our recently 

developed Fluorometer- and Oximeter-equipped Flow-through Setup (FOFS; Vajedsamiei et 

al. 2021). Using FOFS, we recorded mussel-induced deviations in chlorophyll and dissolved 

oxygen concentrations while continuous fluxes of a phytoplankton suspension maintained 

optimal food-levels for mussel routine metabolic functioning (Vajedsamiei et al. 2021). The 

initial data processing was done based on the protocol described in Vajedsamiei et al. (2021). 

In short, we used robust regression techniques to remove the noise from the measured time 

series. The chlorophyll concentration measurement was time-lagged compared to the oxygen 

measurement because the chlorophyll sensor was positioned after the oximeter in each flow-

through path of FOFS. The time lag was corrected through linear differential modeling. Finally, 

the feeding (filtration) and aerobic respiration rates were calculated based on the revised time 

series of measured variables. 

In the short-term assay, mussels with a ca. 20 mm shell length were used, allowing us to record 

individual-mussel responses using FOFS. In each trial, minimum and maximum temperatures 

experienced by the mussels were ca. 16.8 and 30.5 °C, respectively, covering the whole thermal 

range experienced by the specimens in the long-term thermal growth experiment. The rate of 

linear change over the warming and cooling phases was ± 1.17 °C h-1, and the times of minimum 
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and maximum temperatures were reached at 5:00 and 17:00, respectively (Fig. S6 temperature 

axes). 

The time series of each response variable (see averages with 95 % confidence intervals in Fig. 

S6) were split into the warming- and cooling-phase series, based on the time intervals 5:30–

16:30 and 17:30–4:30, respectively, in the trials. We merged replicated series of each phase and 

described thermal metabolic response curves by the polynomial model gp(T) with temperature 

T as the predictor variable, and (ii) by GAM in Python (see Script S4). The order of the best-fit 

polynomial model (i ≤ 10) was selected based on the Bayesian Information Criterion (BIC), 

and the best-fit GAM was chosen from 700 models using a grid-search over many multiple 

regularization parameters and knots (4 to 10) seeking for the lowest Generalized Cross-

Validation (GCV) score (Wood 2017). The GAMs were only used to visually check the 

goodness of the fit of polynomials, since GAMs, in general, use the benefit of its spline basis 

expansion and the regularization (Wood 2017). 

 

Predicting long-term metabolic rates by upscaling 

To predict long-term-expected feeding or respiration rates E(g) with the assumption of a lack 

of time-dependent effects (here, a lack of acclimation or stress; Fig. 1), we upscaled the 

polynomial curve of the short-term assay’s warming phase, which represented the non-

acclimated thermal feeding and respiration responses. Upscaled curves were used to predict 

E(g) as a function of thermal average and fluctuation scenarios of the 5-weeks experiment. 

Upscaled thermal metabolic response curves describing E(g) as a function of thermal averages 

at fluctuating conditions are defined by taking the expectation of the ith-order Taylor expansion 

of the ith-order polynomial function around the predictor average (i.e., a type of delta method 

for bias correction; see Oehlert 1992; Ver Hoef 2012). The analytical procedure was done in 

Python (Script S4). The mathematical derivation starts with rewriting of the polynomial 

function, gp(T), as its Taylor Series expanded at the average temperature 7�, 

Equation 1 ,(Ä) ≅ 	,Ç(7�) 	+	!#É!� (Ä − 7�) 	+	
/
1!
!"#É
!�" (Ä − 7�)1 	+	…	+	

/
3!
!9#É
!�9 (Ä −

7�)n, 

where !
Ö#É
!�%  shows the ith derivative of the original polynomial function evaluated at T=µT. Then, 

the average (or expected) metabolic response as a function of the temperature, E(g(T)), can be 

estimated (Equations 2). 
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Equation 2 *6,(Ä): 	≅ 	* I,Ç(7�)K 	+ 	* G!#É!� (Ä − 7�)H + 	* I
/
1!
!"#É
!�" (Ä − 7�)1K 	+	…	+

	* I /3!
!9#É
!�9 (Ä − 7�)3K 

The expected values of the derivatives at the average temperatures are the derivatives 

themselves, and they can thus be pulled out of the expected value calculation (Equation 3).  

Equation 3	*6,(Ä): 	≅ 	,Ç(7�) 	+	!#É!� *(Ä − 7�) 	+	
/
1!
!"#É
!�" *(Ä − 7�)1 	+	…	+

	 /3!
!d#É
!�9 *(Ä − 7�)Q	 

In Equation 3, *(Ü − 7�)= represents the ith central moment of the temperature probability 

distribution. The central moments describe the probability distribution of the temperature 

fluctuations applied in the long-term experiment. Generally, central moments describe the 

variability structure of data sets with respect to the 7�, presenting dispersion statistics like the 

variance, skewness, and Kurtosis (Zwillinger & Kokoska 2000). We calculated the first ten 

central moments of the temperature data sets from our long-term experiment (see Script S2) 

and considered all existing derivatives of each polynomial function to achieve close-to-exact 

approximations (see Script S4). 

 

Relating observed impacts on growth with upscaling-predicted impacts 

The observed 5-weeks growth rate and the upscaling-predicted feeding and respiration rates 

were normalized considering their minimum and maximum values (min-max-scaled) under the 

constant-treatments 18.5–26 °C as 0 and 100, respectively (see Script S5). The relationship 

between the observed impact of fluctuations on growth and their upscaling-predicted impact on 

metabolic responses across thermal averages was tested based on Pearson’s correlation 

coefficient (see Script S5). The correlation analysis was only done for the ± 4 °C treatment 

scenario since this fluctuation amplitude significantly impacted mussel’s growth traits. 

 

Results 

Impacts of thermal averages and daily fluctuations on mussel growth during the long-

term experiment 

The GAMMs showed that, for all growth traits measured, the main effect of fluctuations was 

statistically not significant (p-values > 0.05), while the main effect of thermal average and the 
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interactive effect of thermal average and fluctuation were statistically significant (p-values < 

0.05; Table S1). Besides, ANOVA and subsequent Tukey HSD tests (Table S2) indicated that 

the average response to temperature was significantly different (p-values < 0.05) between the 

two fluctuation amplitudes ± 0 and 4 °C, both at 23.5 and 26 °C thermal averages for all growth 

traits and between ± 0, 2 and 4 °C at 26 °C for tissue growth only. 

The resulting thermal performance curves, describing rates of growth traits as functions of the 

thermal average, differed substantially between fluctuation regimes, particularly so at ± 4 °C 

compared to treatments with ± 2 °C fluctuation amplitude (Fig. 2a–c; Table S1). The GAMs 

predicted decreases in growth traits for thermal averages between 20.5 and 25.5 °C at the 

highest amplitude (± 4 °C) compared to the static conditions (Fig. 2a–c). In contrast, we find 

that the growth increases in the fluctuating treatment compared to the static treatment at thermal 

averages beyond 25.5 °C (Fig. 2a–c). 

 

Figure 2 Thermal performance curves. (a–c) Thermal growth curves as retrieved from the long-term experiment. 
Generalized Additive Models (shaded areas represent 95% CIs) were fitted to data on variation in growth traits of 
mussel shell length (a) and shell and tissue dry weights (b and c) in 12 temperature scenarios (four average 
temperatures of 18.5, 21.0, 23.5 and 26.0 °C with 3 diurnal fluctuation amplitudes of ± 0, 2, and 4 °C). Sample 
averages with 95 % CIs are shown as dots and whiskers. (d–g) Thermal metabolic response curves as retrieved 
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from the short-term assay. Thermal variation in rates of metabolic processes (feeding and respiration) during the 
warming- (d and e) or cooling-phase (f and g) of a diurnal fluctuation were described by the best-fit polynomial 
function (red dashed lines, order 6 to 9) and by Generalized Additive Models (GAMs; black lines; the number of 
splines 8 to 10). The best-fit GAMs were used to check the goodness of the fit of Polynomials visually. Gray lines 
indicate experimental data (n = 11). 

 

Metabolic performance during the short-term fluctuation assay 

The best-fit polynomial functions describing thermal metabolic responses (feeding and 

respiration) over the warming and cooling phases of the one-day-long thermal fluctuation of 

the short-term assay are presented in Fig. 2d–g. In general, mussels suppressed their activities 

when exposed to high thermal extremes during the warming phase (Fig. 2d and e) while 

recovering during the subsequent cooling phase (Figs S6 and 2f and g). The average feeding 

rate of mussels initially only slightly increased during the warming phase (Fig. 2d). Beyond ca. 

23°C, a steep decrease of the feeding rate could be observed, followed by a complete shutdown 

at 27 °C. During the subsequent cooling phase, mussels gradually increased feeding rates; 

however, only to a maximum level of ca. 40 % of the initial rate (Fig. 2f). Respiration rate 

increased stronger during the warming interval and decreased from ca. 25 °C onwards down to 

nearly zero (Fig. 2e). However, respiration increased again during the subsequent cooling phase 

and recovered to the initial rate (Fig. 2g). 

 

Upscaling-predicted impacts of fluctuations on feeding and respiration 

Predicted rates of feeding and respiration for a hypothetical long-term fluctuation regime with 

the same characteristics as our long-term experiment are presented as min-max-scaled values 

in Figure 3a and b (also see Fig. S7 for the responses in J g-1 h-1), together with the measured 

shell length growth patterns obtained from our 5-week experiment (Fig. 3c, see Fig. 2a). In the 

treatments with daily fluctuations (± 2 and 4 °C), upscaling of the short-term performance 

predicts feeding and respiration rates to reach maximum values at lower average temperatures 

(Fig. 3a and b) compared to the constant treatment, which is similar to the pattern observed for 

shell length growth (Fig. 3c). At the average temperatures 21, 23.5, and 26 °C, the long-term 

impacts of the ± 4 °C fluctuations on feeding rates predicted from upscaling were comparable 

to the impact of fluctuations on the 5-week integrated length growth observed in the long-term 

experiment (indicated by black arrows in Fig. 3a and c). The decrease of feeding and growth 

for higher average temperatures is slower in the ± 4 °C treatment compared to the constant (± 

0 °C) treatment and finally results in relatively higher rates of length growth and feeding at 

thermal averages beyond 25.5 °C. For the respiration rate, upscaling predicts decreasing effects 
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of fluctuations for thermal averages of 21–26 °C, with the maximum decreases at ca. 24–26 °C 

(Fig. 3b). 

 

Figure 3 Effects of fluctuations on scaled metabolic rates (predicted) and growth traits (observed) at different 
thermal averages. (a–b) The upscaled thermal metabolic response relations obtained in the short-term assay were 
used to predict long-term expected rates of metabolic processes (feeding and respiration) at different average 
temperatures in response to the three scenarios of daily fluctuations of the long-term experiment. Predictions were 
min-max scaled, considering the minimum and maximum values of the constant treatment predictions. (c) Min-
max scaled shell length growth from the long-term experiment (see Fig. 4a). Arrows indicate the consequences of 
± 4 °C fluctuations around the average temperatures of 21, 23.5, and 26 °C. (d–e) The impact of large-amplitude 
(± 4 °C) fluctuations on growth as observed in the long-term experiment is correlated against the upscaling-
predicted impact of fluctuations on the long-term-expected feeding and respiration rates obtained from the short-
term assay. 

 

Correlating observed and predicted impacts of thermal fluctuations 

We find that for average temperatures of 21–26 °C, the impact of daily fluctuations (± 4 °C) on 

long-term-integrated growth rate is linearly correlated with the fluctuation impact on long-term-

expected feeding rate predicted by upscaling. Pearson’s correlation coefficients for the shell 

length growth and the growth of shell and tissue dry weights were 0.98, 0.98, and 0.81, 

respectively (Figs 3d and S8). However, there were no or weak linear correlations for the 

respiration rate (Pearson’s correlation coefficients: 0, -0.03, and -0.46, respectively; Figs 3e and 

S8). 

 

Sh
el

l le
ng

th
 g

ro
wt

h 
(%

)

± 4 °C fluc. impact on feed. (%)

±
4 

°C
 f

lu
c.

 im
pa

ct
 o

n 
sh

el
l le

ng
th

 g
ro

wt
h 

(%
)

± 4 °C fluc. impact on resp. (%)

(a) (b) (c)

(d) (e)



 

 
63 

Discussion 

At critically high summer thermal averages, fluctuations may be beneficial to the long-

term performance of marine ectotherms 

Using the blue mussel (Mytilus spp.) as a globally important benthic species, we provide 

supporting evidence to the hypothesis that short-term fluctuations can alleviate the longer-term 

impacts of critically high average temperatures on an ectothermic organism. In our long-term 

experiment, we found that, compared to colder averages, mussel growth was substantially 

lowered by static exposure to 26 °C, representing thermal average of end-of-century summer 

heatwaves (Gräwe et al. 2013). Large-amplitude fluctuations, however, enabled mussels to 

improve their growth traits at an average temperature of 26 °C, while the benefit of intermediate 

amplitude fluctuations was minor. In contrast, mussel growth traits were only marginally 

affected by the static exposure to 23.5 °C, representing conditions found during current or near-

future marine heatwaves in the Western Baltic Sea (Pansch et al. 2018; Holbrook et al. 2019). 

At an average of 23.5 °C, large-amplitude fluctuations substantially decreased mussel growth 

while intermediate amplitude fluctuations had a minor effect. Therefore, in general, both 

average and amplitude of fluctuations were significant for long-term mussel growth, 

corroborating previous empirical findings for other ectotherms (Siddiqui et al. 1973; Bozinovic 

et al. 2011; Niehaus et al. 2012; Cavieres et al. 2018). 

Shallow coastal waters of the Baltic Sea (depth ca. 0.5–2.5 m) experience minimal tidal water-

level changes. Daily variation in seawater temperature can be 3–6 °C regularly and as high as 

8 °C occasionally during down- and upwelling events (Pansch & Hiebenthal 2019; Franz et al. 

2020). Even more intense fluctuations in the body temperature can be observed at the lower 

distribution ranges of Mytilus spp. along the Atlantic coast, especially where specimens 

experience aerial exposure during low tides (Helmuth et al. 2014). Therefore, in these habitats, 

daily fluctuations are likely influencing mussel growth and may mainly do so in a warming 

climate. 

A large body of literature shows observed/predicted detrimental effects of thermal fluctuations 

on organisms’ long-term performance (Paaijmans et al. 2013; Vasseur et al. 2014; Bernhardt et 

al. 2018). However, most of these studies have restricted their investigations to maximum 

temperatures only slightly beyond the thermal optimum, which is a necessary restriction when 

organisms are exposed to beyond-optimal and constant temperatures for a long time. Yet, 

alternative observations/projections may be equally true if organisms are subjected to more 

realistic fluctuating treatment conditions representative of the natural environment, allowing 
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the recovery at fluctuations’ benign phases (Schulte 2011; Wahl et al. 2015), as some first 

empirical observations suggest (Bozinovic et al. 2011; Niehaus et al. 2012; Kingsolver et al. 

2015; Kang et al. 2019). 

 

Metabolic suppression and recovery and the potential benefits and costs during daily 

thermal cycles  

Our studied mussels expressed suppression and recovery of feeding and respiration in response 

to a one-day thermal fluctuation between 16.8–30.5 °C while submerged. This daily thermal 

oscillation of feeding and respiration rates has not been recorded previously for any other 

bivalve species to the best of our knowledge. The mussels initiated feeding suppression 

followed by aerobic respiration suppression at about 23–25 °C. Similar thermal thresholds were 

recently reported for the same species exposed to a one-day fluctuation ranging from 18 to 27 

°C (Vajedsamiei et al., 2021). During hours-long exposures to temperatures of 10 to 20 °C, 

Mytilus respiration was shown to be more temperature-dependent (Q10 of 2.1–2.5; Widdows 

1976) than filtration (Q10 of 1.25), the latter being driven mostly by the thermal change in 

viscosity of the surrounding solution (Kittner & Riisgård 2005). A lower thermal dependence 

of filtration than respiration was also evident over the temperature range of 17–23 °C applied 

during the warming phase of our short-term assay. This low thermal dependency of filtration 

might have partly helped mussels to control the ATP and oxygen demands of feeding and the 

associated energetic costs for digestion (i.e., typically ca. 20 % of the total mussel metabolic 

energy expenditure; Widdows & Hawkins 1989) when the total metabolic energy demand was 

rising sharply due to increasing temperature. However, above a critical temperature threshold, 

feeding activities might have become too costly due to limiting supply capacity. Filtration 

suppression poses a likely mechanism to decrease ATP and oxygen demand, enabling 

prolonged reserve use (Pörtner 2012; Verberk et al. 2016). 

Mussels substantially suppressed their aerobic respiration rates, possibly to further reduce 

demand. Hypoxia-tolerant species, including Mytilus spp., can temporally shift to anaerobic 

metabolism and more efficient anaerobic pathways, which yields less energy but enhances their 

resistance against a thermodynamic collapse of cellular processes during hypoxic or hyper-

thermic events, especially when exposed to air in intertidal habitats (Gracey & Connor 2016). 

Eventually, the colder phase of the cycle in the short-term assay could have provided an 

opportunity to reduce the concentration of accumulated anaerobic end products (oxygen debt, 

Ellington 1983), a process potentially impossible in a static thermal scenario. In this recovery 
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phase, mussels expressed high respiration in parallel to a partially recovered feeding activity, 

with the latter being likely due to the accumulated oxygen debt’s energy requirements. 

 

Upscaling from short-term thermal feeding responses may predict longer-term 

fluctuation impacts 

Upscaling from the short-term (non-acclimated) thermal feeding response assay well predicts 

the observed 5-weeks integrated impact of large-amplitude daily fluctuations on mussel growth. 

This significant correlation suggests that fluctuations-mediated feeding suppression and 

recovery could lead to declined growth at the less extreme average conditions and improved 

growth at the critical average condition. In contrast, short-term (non-acclimated) thermal 

respiration responses did not predict the long-term fluctuation impact on growth. Notably, the 

respiration rate was predicted to be lower in the fluctuating compared to the static regime at the 

average condition of 26 °C, while the observed growth rate was higher in the fluctuating regime. 

Considering a high energy cost of growth (i.e., ca. 32 % of the energy stored as new tissue in 

mussels or 34 % of the total energy used by actively ingesting mussels; Widdows & Hawkins 

1989; Clarke 2020), the higher growth should have been accompanied by a higher respiration 

rate to satisfy the ATP demand for growth processes (e.g., cell division costs, protein 

biosynthesis costs). In general, short-term (unacclimated) thermal respiration responses may 

not accurately represent long-term-expected respiration rates at beyond-optimal temperatures 

due to acclimation or stress effects (Semsar-Kazerouni & Verberk 2018). 

The thermal growth response curve established through 5-weeks constant exposures fairly 

resembled the thermal feeding response curve from the short-term assay, considering the 

optimal thermal thresholds and relative temperature-induced changes in two responses. Overall, 

these findings suggest that feeding responses to short-term thermal changes may well represent 

the long-term performance responses of ectotherms to various thermal fluctuation regimes, at 

least in the absence of time-dependent effects. Therefore, when available, these unacclimated 

thermal feeding responses may be more appropriate than respiration data to be used for 

parametrizing the temperature correction coefficient in energy-budget modelling (e.g., DEB 

modeling; Kooijman 2010) for ectotherms expressing remarkable metabolic suppression and 

recovery (Monaco & McQuaid 2018). 

 



 

 
66 

A framework indicating how thermal fluctuations may provide a refuge for ectotherms 

In general, characteristics of thermal fluctuations, such as the rate, duration, and time of 

occurrence, as well as an ectotherm’s functional traits, are essential factors defining how its 

metabolic performance may change during exposure to a constant or a fluctuating thermal 

regime (Terblanche et al. 2007; Bozinovic et al. 2013; Kingsolver et al. 2016; Semsar-

Kazerouni & Verberk 2018). This wide variety of influential factors may explain why empirical 

studies have sometimes obtained contrasting results regarding the long-term effects of thermal 

fluctuations at various thermal averages or in different ecological contexts (Siddiqui et al. 1973; 

Bozinovic et al. 2011; Niehaus et al. 2012). 

We propose a simple framework that may explain this context-dependency based on possible 

scenarios of acclimation- or stress-induced changes in an ectotherm’s capacity for thermal 

metabolic performance. In a simple model, such plasticity would manifest as horizontal shifts 

of the thermal performance curve (TPC), defining the instant response to temperatures. When 

an individual is exposed to beyond-optimal conditions, whether constant or fluctuating, its 

capacity for thermal metabolic performance may remain constant or change due to acclimation 

or accumulation of stress (Precht 1958; Terblanche et al. 2007; Fischer et al. 2010; Kingsolver 

et al. 2016; Havird et al. 2020). This translates into either an unchanged TPC, a right-shifted 

TPC, or a left-shifted TPC, respectively (Fig. 4a–c). Our framework acknowledges the general 

possibility that such shifts could occur independently for static beyond-optimal conditions and 

fluctuating beyond-optimal conditions with the same average. Upscaling these three TPCs for 

beyond-optimal constant conditions predicts three long-term performance expectations (black 

curves in Fig. 4d–f). A similar upscaling predicts the three different performance expectations 

for beyond-optimal fluctuating conditions (dashed-blue curves in Fig. 4d–f). Assuming their 

independence, this gives rise to nine possible combinations of long-term performance responses 

to thermal averages under static versus fluctuating regimes (Fig. 4g–o). The correlation between 

thermal fluctuation effects on long-term growth and feeding rates allows us to generalize these 

predictions to the long-term performance responses. Note that we assume logit TPCs in this 

model by omitting the passive thermal dependence of (or thermodynamic effects on) metabolic 

rate (Schulte 2011). For simplicity, the acclimation- or stress-induced change in the 

performance was considered only as changes in the curve’s turning points and not their 

maximum or slope. 
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Figure 4 Mechanistic framework to understand the impact of fluctuations on ectotherms from highly fluctuating 
environments. (a–c, upper box) An organism’s initial capacity for thermal metabolic performance (dotted red 
curves in left-side subplots) can remain constant or change over time by acclimation or stress accumulation during 
exposure to beyond-optimal thermal conditions. These scenarios can be simply represented as unchanged thermal 
performance curve (TPC), a right-shifted TPC, or a left-shifted TPC, respectively (dotted red curves in right-side 
subplots). The grey shading separates the Arrhenius thermal interval (where Q10 effects may cause gradual 
changes) from the critical interval where heat-driven inactivation of metabolic performance occurs (Schoolfield et 
al. 1981). (d–f, middle box) Based on the three possible TPCs, via nonlinear averaging, we can predict three 
general patterns of long-term-expected metabolic responses E(g) to thermal averages under constant (black curves) 
or fluctuating regimes (dashed blue curves). (g–o, lower box) As acclimation to constant conditions may, in theory, 
be independent of acclimation to fluctuating conditions, we can predict nine hypothetical combinations explaining 
that thermal fluctuations may be detrimental or beneficial for an ectotherm, depending on the context. 

 

Fluctuations’ beneficial effects are predicted in six out of nine hypothetical scenarios of the 

framework (Fig. 4g, h, k, m–o), suggesting that the refuge effect of thermal fluctuations may 

indeed be a general pattern. A static exposure to extreme thermal conditions may stretch an 

organism’s metabolic performance up to a level that initiates stress accumulation or prevents 

warm acclimation. Alternatively, the counterpart fluctuating regime with the same average as 

the static regime may provide a refuge if the duration and intensity of beyond-optimal exposures 

do not negatively impact the organism’s capacity for elastic suppression and recovery of 

metabolic performance. In such conditions, thermal fluctuations may cause alternations 

between (i) phases of tolerance at high temperatures when the organism minimizes stress by 

matching the metabolic supply and demand at low levels, and (ii) phases of recovery at lower 

temperatures when the organism enhances the performance to recover from metabolic debt, 
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such as the oxygen debt and cellular heat damages experienced at high temperatures, and to 

refuel development, growth, and reproduction. 

Empirical evidence suggests that the capacity for acclimation to extremely warm conditions is 

limited for organisms living close to their critical thermal thresholds, particularly those from 

highly fluctuating environments (Stillman 2003; Somero 2010; Seebacher et al. 2014). Our 

framework shows that even for these organisms that lack strong acclimation capacity, 

fluctuations may still be beneficial (Fig. 4g and k). Notably, with ongoing climate change, 

extreme events are being intensified and elongated in many coastal and shallow-water regions 

(Holbrook et al. 2019), possibly increasing the relevance of this refuge effect provided by 

fluctuations. 

 

Perspectives and conclusion 

Predictions based on nonlinear averaging of fluctuation impacts neglect time-dependent 

changes of TPCs. Therefore, these predictions can only be used as ecological null-models 

(Estay et al. 2014; Dowd et al. 2015; Koussoroplis et al. 2019). For ectotherms adapted to 

highly fluctuating regimes, nonlinear averaging on TPCs of feeding rate generated at timescales 

(e.g., hours) that relate to short-term (e.g., daily) thermal fluctuations may better predict the 

effect of beyond-optimal fluctuations compared to TPCs established through longer-term but 

static exposures. 

To mechanistically explain the long-term impacts of temperature fluctuations, it is essential to 

shift from studies applying static treatments to those that include natural system dynamics. Our 

hybrid approach of long-term and short-term assessments is the first step towards the long-term 

recording of metabolic performance during dynamic thermal regimes. 

Our study describes how temperature fluctuations inducing metabolic suppression and recovery 

may decrease or enhance fitness depending on the fluctuations’ average and amplitude. More 

studies are needed to describe various realized scenarios of within- and between-generational 

plasticity in species’ capacity for thermal metabolic suppression and recovery to better 

understand the ecological impacts of temperature fluctuations in a warming ocean. 
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Abstract 

An adaptive trait of ectotherms living in highly fluctuating environments is the capacity to 
suppress and recover their metabolic performance over successive phases of stressful and 
benign environmental conditions. Potentially, intensified summer thermal regimes may result 
in individuals with lower demand for metabolic substrates mediating a higher heat tolerance in 
their responses to short-term (e.g., daily) thermal fluctuations. Using a globally important 
ectotherm, the blue mussel Mytilus, we evaluate this hypothesis that assumes the lower demand 
enables a more efficient control of thermodynamics stress caused by the mismatch between 
metabolic supply and demand at high critical temperatures. In a four-month incubation, mussels 
were grown from the juvenile stage or recruited and grown from larvae under current versus 
end-of-century extreme summer temperatures in a near-natural mesocosm system. Afterward, 
in short-term assays, mussel performance traits (feeding and respiration rates) were recorded in 
response to a mild temperature (20.8 °C) for six hours (baseline performance), followed by two 
24 h fluctuation cycles (20.8–30.5 °C). The baseline performance represented the total supply 
of metabolic substrates to internal storage (except for oxygen) and the total metabolic demand, 
respectively, and were used for scaling the daily responses. We found no effect of thermal 
history on the metabolic performance of transplanted mussels. Recruitment of mussels was 
substantially (96.5 %) reduced in the future thermal history regime compared to the current one. 
Compared to recruits from the current regime, these potentially selected recruits were more 
capable of recovering their feeding and respiration rates in benign phases of daily temperature 
fluctuations and showed lower baseline respiration rates. Our findings support the hypotheses 
that (i) extremely warm events may select rare heat-tolerant individuals of marine ectotherms 
at their very early life stages, and (ii) lower metabolic demand is a mechanism for such higher 
heat tolerance. These propositions and whether such increases in stress tolerance can lead to 
rapid evolutionary adaptation of populations to ocean warming represent fruitful future research 
subjects. 

 

Keywords: acclimation, climate change, energy budget, heatwave, metabolic depression, 
variability 
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Introduction 

Marine ectotherms that have evolved in response to fluctuating stress regimes in environments 

such as shallow habitats can express remarkable suppression and recovery of metabolic 

performance over successive phases of critical and benign temperatures (Marshall and 

McQuaid, 1991). Metabolic suppression is expressed as substantial declines in feeding 

activities followed by partial decreases in aerobic respiration or extensive transition from 

aerobic to anaerobic respiration (Sokolova and Pörtner, 2001). By suppressing the rate of 

energy-intensive processes (e.g., feeding and growth), these organisms reduce their demand for 

metabolic substrates and energy (Schulte et al., 2011). Otherwise, their demands rise sharply 

with increasing temperature and eventually exceed the capacity to supply the required substrates 

from internal reserves. The supply capacity is related to the rates of resource uptake, internal 

reserve formation, and reserve mobilization (Kooijman, 2010), and is generally less 

temperature-dependent than the metabolic demand (Pörtner, 2012; Rall et al., 2012; Ritchie, 

2018). The heat-induced mismatch between metabolic supply and demand can give rise to 

internal entropy, stress, and damage, exacerbating organismal performance over time (Pörtner, 

2012; Ritchie, 2018). Therefore, metabolic suppression may allow organisms to minimize the 

negative impacts of critical temperatures during short-term (e.g., daily) thermal fluctuations 

(Vajedsamiei et al., under review). 

Ongoing ocean warming increases the probability of exposure to high, beyond-optimal 

temperatures for marine organisms (Brewer et al., 2014). Due to this warming, periods of 

suppression may become longer while recovery phases may shorten, assuming no change in the 

temperature fluctuation amplitude and length. Enforcing metabolic suppression in response to 

more intense or extended periods of high critical temperatures may cause or exacerbate the 

supply and demand mismatch and its associated stress, limiting an organism’s capacity to 

resume activity during the shortened recovery phases (Vajedsamiei et al., under review). Thus, 

it is crucial to know whether and how exposure to warming trends is associated with increased 

heat tolerance in the form of elevated thermal thresholds of metabolic suppression or increased 

capacity for recovery during thermal fluctuations. 

Within- and between-generational acclimation to warmer ambient baseline regimes may 

increase heat tolerance in ectotherm individuals, leading to warm adaptation in some 

populations (Wittmann et al., 2008; Davenport and Davenport, 2005). Nonetheless, such 

acclimation capacity may be limited for species from highly fluctuating environments 

(Stillman, 2003; Somero, 2010; Seebacher et al., 2014) due to a tradeoff in favor of the capacity 
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for metabolic suppression and recovery (McMahon et al., 1995). Additionally, increases in heat 

tolerance through beneficial genetic mutation alone might not be fast enough to adapt 

populations to ocean warming (Somero, 2010) as suggested by the observed warming-induced 

extinctions and changes of biogeographical distributions of species (Barry et al., 1995; Sagarin 

et al., 1999; Wethey and Woodin, 2008). Finally, emerging evidence suggests that directional 

selection in favor of heat-tolerant individuals may enforce a shift in a population’s mean thermal 

performance (Logan et al., 2014, 2018; Ma et al., 2014; Gilbert and Miles, 2017). Many marine 

ectothermic species express their lowest heat-tolerance during the spawning, egg, and larval 

stages (Pörtner and Farrell, 2008; Nasrolahi et al., 2012). Therefore, in theory, directional 

selection may be imposed by extreme events on these sensitive life-history stages, a critical 

phenomenon to investigate since such extreme events are being enforced by climate change 

(Grant et al., 2017; Al-Janabi et al., 2019). 

Whether through directional selection or acclimation, ectothermic individuals or populations 

may need to acquire lowered metabolic demand to decrease the risks of heat-induced supply 

and demand mismatch and its associated stress during critically warm phases of thermal 

fluctuations. This hypothesis also corroborates the temperature compensation (Hazel and 

Prosser, 1974) or metabolic cold adaptation (Clarke, 2003) hypotheses proposing that 

individuals adapted to warmer environments, compared to cold-adapted ones, usually have 

lower metabolic demand (represented by the respiration rate of non-stressed individuals) at 

similar benign temperatures. This allows individuals to optimize their metabolic performances 

according to their local thermal regimes (Le Lann et al., 2011).  

Using blue mussels, Mytilus spp., an economically and ecologically important species and a 

system for studying metabolic suppression capability of ectotherms, this research evaluates (i) 

whether extremely warm summer conditions would select for individuals with higher heat 

tolerance in their daily metabolic suppression and recovery responses and (ii) whether such a 

potentially warm-adaptive shift in the metabolic responses is linked to lower metabolic demand 

of the individuals. In a quasi-natural flow-through benthocosm system, mussels from the 

western Baltic Sea (Kiel Fjord) introduced as juveniles (transplanted organisms) or as larvae 

(recruited organisms) were grown under the current (+ 0 °C) versus future (+ 4 °C) thermal 

history levels, imposed onto summer 2018 natural temperature regimes. After incubation for 

four months, the performance traits feeding and aerobic respiration were recorded in response 

to a mild temperature (20.8 °C) for six hours (baseline performance) followed by two 24 h 

thermal fluctuation cycles with extreme amplitudes (20.8–30.5 °C). 
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The hypotheses of this study were: (i) The warmer thermal history would result in individuals 

with higher heat tolerance as evidenced by warmer thresholds of metabolic suppression or 

higher recovery or both responses to daily thermal fluctuation cycles (Figure1A), and (ii) such 

higher heat tolerance is mediated by a lower baseline metabolic demand (Figure1B). 

 

Figure 1. Hypotheses sketch. (a) Organisms selected by or acclimated to extreme summer baselines (e.g., 
prolonged heatwaves) can express higher heat tolerance in the form of (i) warmer thresholds of feeding and 
respiration suppression and recovery (a broader temperature range for optimal performance) or (ii) a higher 
metabolic performance (recovery) at benign phases of thermal fluctuations or both. (b) Compared to non-selected 
or non-acclimated individuals, the heat-tolerant organisms have lower metabolic demand (baseline performances) 
but with a normally high demand/supply ratio (not presented here) under a mild ambient temperature. When an 
organism’s initial thermal performance (middle plot) is maintained over several daily fluctuation cycles, it means 
that the heat tolerance has not changed over time (i.e., elastic metabolic suppression and recovery in response to 
thermal fluctuations). However, the initial thermal performance (middle plot) can change over time due to 
acclimation or stress (plastic responses to fluctuations), resulting in other forms of responses. Notes: To simplify, 
we assumed there are no gradual thermal changes in the performance due to thermodynamics (Q10 effects), and 
the slope of fast changes in the performance is infinity leading to immediate suppression and recovery. 

 

Material and methods 

The study organism is the filter feeder Mytilus edulis trossulus, the species complex that forms 

extensive mussel beds in the Baltic Sea (Larson et al., 2017; Stuckas et al., 2017) where the 

tidal range is minimal (< few cm). However, ambient temperature regimes fluctuate in time due 

to daily irradiance variation (by 1–6 °C at depths ca. 1 m) or days- to weeks-long weather events 

(up to 8 °C at depths ca. 2 m) (Franz et al., 2019; Pansch and Hiebenthal 2019). By the end of 

the 21st century, the average sea surface water temperature is projected to increase by 1.5–4 °C 

in the Baltic Sea (Gräwe et al., 2013; Meier et al., 2012). 
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Long-term incubations and short-term assays 

The long-term incubation was conducted as a part of a four-month community-level study on 

the effects of warming and upwelling on Baltic Sea benthic communities in summer 2018 (Wahl 

et al. in prep.; Pansch et al. in prep.). On May 23, 2018, juvenile mussels (7–13 mm) were 

collected in 0.5 m water depth from a jetty area (50 m2) in Kiel Fjord, Germany (54.4330891° 

N, 10.1711679° E). Batches of 40 specimens were transplanted (transplanted mussels) inside 

two separate baskets (3 mm2 pore size and ca. 500 cm3 volume of each basket) within each 

1500 L tank of the Kiel Outdoor Benthocosms (KOBs, located alongside a jetty in the Kiel 

Fjord; 54.330119° N, 10.149742° E; Wahl et al., 2015). Each tank received a flow-through of 

unfiltered Kiel Fjord seawater (ca. 8.5 L d-1), which allowed near-natural abiotic (salinity, pH, 

oxygen, and nutrients) and biotic (bacterial load, phytoplankton, and zooplankton) conditions 

(Wahl et al., 2015). 

In two short-term assays, we focused on measuring metabolic performance traits (filtration and 

respiration) for mussels from the two benthocosm tanks in which we simulated the current fjord 

temperature and a warmed future-expected thermal regime (hereafter, + 0 °C and + 4 °C thermal 

history levels; Figure 2A). There was only one benthocosm tank per treatment level (see the 

Shortcomings in the Discussion). In the Kiel Fjord, summer 2018 was an extremely warm 

season, involving two subsequent marine heatwaves (durations of 20 and 26 days) with 

maximum temperatures reaching  24–25 °C for a few days in the whole summer period (Wolf 

et al., 2020). The 24 °C was previously established as the high temperature threshold for 

initiation of mussels’ metabolic suppression in response to short-term (hours-long) warming 

(Vajedsamiei et al., 2021; Vajedsamiei et al., under review). The + 4 °C thermal history level 

represented a future extreme summer regime, which will probably occur by the end of the 21st 

century (Gräwe et al., 2013; Meier et al., 2012). In this treatment level, the transplants had been 

exposed for ca. one month to temperatures above 24 °C (Figure 2A). Therefore, the two thermal 

history levels represent current versus future extreme summer-time thermal regimes. 

We conducted lab assays for two periods. The first assay was conducted in the period from 

August 29 to September 10, during which filtration and respiration of 18 transplanted mussels 

(from + 0 °C and + 4 °C thermal history levels) were recorded in six temporally replicated 

(independent) trials. In each trial, filtration and respiration of three different specimens, 

randomly selected from the samples incubated under + 0 °C and + 4 °C levels, were recorded 

in response to a constant mild temperature condition (20.8 °C) followed by two 24 h thermal 

fluctuation cycles (Figure 2B) using a Fluorometer- and Oximeter-equipped Flow-through 
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Setup (FOFS; Vajedsamiei et al., 2021). In each trial, mussel-induced changes in the 

chlorophyll and dissolved oxygen concentrations were recorded as the difference between 

measurements taken from three flow-through paths containing mussels and the measurements 

taken from one mussel-free flow-through path. Minimum and maximum temperatures in the 

cycles were 20.8 and 30.5 °C, respectively, the former representing a current high (ca. the 90-

percentile limit) daily thermal average in summer and the latter representing a future daily 

extreme (Gräwe et al., 2013; Pansch et al., 2018; Franz et al., 2019). During the performance 

trials, mussels were continuously fed with Rhodomonas salina, maintained at the concentration 

of their surrounding solution (Supplementary Figure 1) within the range (1000–7000 cells mL-

1) needed for mussel’s optimal filtration activity (Riisgard et al., 2012). 

For the second assay, on September 12, 2018, we collected mussels recruited and grown on 

baskets located in the KOBs (recruited mussels). 480 specimens had recruited under the current 

thermal history level (+ 0 °C), while 17 were found under the + 4 °C level. The recruited mussels 

were kept in filtered seawater at 20 °C for five days before the assay. In total, we recorded 

filtration and respiration rates of six batches of 5 or 6 mussels with similar shell lengths (three 

batches from each thermal history level) in temporally replicated trials of the same treatment, 

as explained earlier. Batches were randomly assigned to the repeated trials. 

The size traits and assignments of replicates (individuals or batches of mussels) to trials are 

presented in Supplementary Table 1. Mussel dry tissue weights were measured after each assay 

and later used as proxies for tissue volumes (Hamburger et al., 1983; Riisgård, 2001). 

 

Figure 3. Temperature regimes of long-term incubation and short-term assays. (a) Thermal history treatment 
levels (+ 0 °C and + 4 °C) imposed on mussels transplanted or recruited in summer 2018 in the two mesocosm 
tanks of the Kiel Outdoor Benthocosms (KOBs). (b) The assay treatment included the before-fluctuation phase 
(when mussels were exposed to constantly 20.8 °C) and the fluctuation phase when the maximum temperature 
reached 30.5 ˚C. 
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Initial data processing 

Data collected in each short-term assay were processed separately. Initial data processing was 

conducted using Python (Python Software Foundation) based on the scripts and the protocol 

described in Vajedsamiei et al., 2021. In short, the initial data processing had two main steps: 

(i) Trial-by-trial processing denoised the time series of dissolved oxygen and Chlorophyll (or 

cell) concentrations (measured in each trial) using the robust estimation technique, corrected 

for the effect of temperature, and converted to units of interest. The cell concentration 

measurement was time-lagged compared to the oxygen measurement, as the Chl sensor was 

positioned after the oximeter in each path of FOFS. The time lag was corrected using linear 

differential modeling. The revised time series of the measured variables were then applied to 

calculate the response variables (i.e., filtration, feeding, and respiration rates), all saved into the 

respective trial's output data frame. The variables’ definitions, as used in the trial-by-trial 

processing Python script, are provided in Supplementary Script 1. (ii) Integrative processing 

scaled filtration and respiration rates for each replicate with respect to the average responses 

over the before-fluctuation phase and combined the revised output data frames of each assay. 

 

Hypothesis testing 

Statistical hypothesis testing was done in R (R Core Team, 2019) using the packages mgcv, 

visreg, and itsadug (Wood, 2017; van Rij et al., 2020). The testing was done for transplanted 

and recruited mussels separately.  

To test the first hypothesis, we used Generalized Additive Mixed-effect Models (GAMMs) to 

explain sources of variation in the scaled filtration (potential for feeding) and respiration rates 

observed during the whole assay. We tested for the significance of the fixed (intercept or 

average) effect of thermal history, the smoothed effect of time, and the interactive effect of 

thermal history and time. The number of the basis functions (knots) in the GAMMs was chosen 

to maximize the k-index considering the tradeoff between the models’ nonlinearity (degree of 

freedom) and the goodness of fit (Wood, 2017).  

To test the second hypothesis, we used GAMMs to explain the sources of variation observed 

during the before fluctuation phase (at the constant temperature of 20.8°C). The potential for 

feeding (J h-1), estimated based on the filtration rate at a constant medium food level (3000 cell 

mL-1), and the respiration rates (J h-1) were used as the response variables. The number of knots 

in the GAMMs was restricted to 3, limiting the smooths' maximum allowed nonlinearity. 

Considering all possible sources of variation in the potential for feeding, we tested for the fixed 
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effect of thermal history, the smooth effect of dry tissue weight (as a measure of body volume), 

and the smooth effect of time and its interactions with thermal history. For modeling the 

respiration rate, besides these factors, we also tested for the smooth effect of real-time feeding 

rate since the feeding rate could have influenced the respiration rate (due to the cost of feeding 

activities; Secor 2008). Therefore, in our hypothesis testing, we assumed that the smoothers 

explaining the responses as functions of dry tissue weight or real-time feeding rate would be 

relatively similar for mussels with different thermal histories. 

Notably, in all GAMMs, thermal history was defined as an ordered factor to structure the model 

in the form of an ANOVA contrast, enabling direct comparison of the reference level smooth 

(+ 0 °C) with the elevated one (+ 4 °C) (van Rij et al., 2020). As measurements were 

longitudinal (with temporal dependency), replicate was defined as the random intercept factor, 

and the residual autocorrelation was considered by including a lag-one autoregressive term or 

AR(1) parameter in the GAMMs (Wood, 2017; van Rij et al., 2020). We also used Restricted 

Maximum Likelihood (REML) for the unbiased estimation of variance components (Wood et 

al., 2016). After the tests, we checked residuals’ normality and independency through QQ and 

ACF plots, respectively. The general version of the R scripts can be found in Supplementary 

Script 2. 

 

Results and discussion 

The future summer thermal extreme resulted in rare recruits of higher heat tolerance 

Over the daily cycles of our short-term assays, all transplanted and recruited mussels with 

different thermal histories (+ 0 °C and + 4 °C) expressed some levels of metabolic suppression 

and recovery (Figure 3). Their metabolic performance traits, represented by scaled rates of 

potential for feeding (filtration) and aerobic respiration, were depressed in response to the 

temperature exceeding a specific threshold range (24–26 °C) during the warming phases. The 

responses recovered to some extent at subsequent exposures to less extreme temperatures 

(recovery phases). 

For recruited mussels, the variation of both metabolic traits was significantly explained by 

thermal history, as both the intercept (future – current) and the smooth term (s(time):future) 

were very significant (p-values < 0.0001; Supplementary Table 2). Indeed, recruited mussels 

from the warmer regime (+ 4 °C), compared to the recruits from the colder regime (+ 0 °C), 

were better able to restore their respiration and feeding rates during recovery phases to before-
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fluctuation levels (Figure 3A, B, E, F). The thermal thresholds of respiration suppression and 

recovery were relatively comparable between these two groups of recruited mussels (Figure 

3B), and so was the threshold of feeding suppression (Figure 3A). However, the thermal 

threshold of feeding recoveries was lower for recruited mussels from + 4 °C compared to the 

recruits from + 0 °C (Figure 3A).  

Recruitment under the + 4 °C regime was reduced by ca. 96.5 % of what was found in the 

current regime (+ 0 °C) (see Material and Methods). Jointly, these findings propose that high 

selective pressure imposed by the intensified (> 24 °C) thermal regime on mussels at very early 

life stages might have resulted in a selection for increased heat tolerance (the capability for 

metabolic recovery). Most marine ectotherms at the spawning, embryo, and larval stages have 

the narrowest thermal tolerance window and are most vulnerable to thermal extremes (Pörtner 

and Farrell, 2008; Nasrolahi et al., 2012). 

Instead, for transplanted mussels, thermal history's effects were not significant, both in terms 

of the intercept (future – current) and the smooth (s(time):future) (p-values > 0.26; 

Supplementary Table 2). Mussels with different thermal histories on average showed very 

similar metabolic depression or recovery patterns (Figure 3C, D, G, H). Additionally, the 

feeding recovery of these mussels weakened over the short-term assay, probably in response to 

the critical temperatures. These patterns generally suggest that the studied species have a limited 

capacity to improve their metabolic performance under critical temperatures through 

physiological acclimation. Accordingly, at + 4 °C, growth rates of mussels' shell length, dry 

shell weight, and dry tissue weight over the summer were ca. 80, 60, and 40 %, respectively, of 

that found under + 0 °C (Supplementary Table 3). All these findings corroborate previous 

empirical evidence, suggesting that marine organisms from shallow habitats with pronounced 

thermal fluctuations generally have a limited capacity to acclimate to warm extreme conditions 

(Stillman, 2003; Somero, 2010; Seebacher et al., 2014).  

Metabolic suppression and recovery, mediated by thermal fluctuations, may allow eurytherms 

such as mussels to improve their fitness, which may be instead detrimental under constant 

regimes (Vajedsamiei et al., under review). Such refuge effects are more relevant to organisms 

as ongoing ocean climate warming generally increases the probability of beyond-optimal 

temperature exposures. Our findings are partly in line with emerging evidence, proposing that 

extreme events may result in a directional selection of heat-tolerant individuals, which can 

potentially lead to increases in the populations' mean heat tolerance over generations (Logan et 

al., 2014, 2018; Ma et al., 2014; Gilbert and Miles, 2017). Yet, selection by one environmental 
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factor may cause cross-tolerance or increased sensitivity to other environmental factors (Al-

Janabi et al., 2019). Such selective forces may substantially decrease the recruitment success 

and population size in time, raising the risks of extinction due to decreased population size and 

genetic variation (Grant et al., 2017). 

 

Figure 3. Mussel responses in the short-term assays. Generalized Additive Mixed-effect Models (GAMMs) of 
the scaled potential for feeding and respiration rates of recruited (a–b) and transplanted (c–d) mussels over diurnal 
thermal fluctuation cycles. The specimens experienced a thermal history of + 0 °C and + 4 °C imposed onto 
summer 2018 ambient conditions. Responses of single transplanted mussels and the recruited mussels, in groups 
of 5–6 specimens as a replicate, were assessed using the Fluorometer- and Oximeter-equipped Flow-through Setup 
(FOFS; Vajedsamiei et al., 2021). Each replicated time series was normalized concerning the average responses 
over the before-fluctuation phase. Respective post-hoc curve comparison plots are presented on the right (e–h) in 
which the predictions of the treated-level smoother (+ 4 °C) are subtracted from the reference level smoother (+ 0 
°C). Red lines denote the intervals of significant differences between smoothers. 

 

Lower metabolic demand might have led to higher heat tolerance in recruited mussels 

In the before-fluctuation phase, recruited mussels from + 4 °C showed, on average, significantly 

lower respiration and potential for feeding (Figure 4A and B), as the intercepts (future – current) 

of the models were very significant (p-values < 0.0001; Supplementary Table 4). Instead, 
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transplanted mussels from + 4 °C expressed slightly lower potential for feeding and respiration 

rates than transplanted mussels from + 0 °C (Figure 4C and D; p-values > 0.21; Supplementary 

Table 4). The ratio of respired energy to energy uptake from feeding (fed energy) can be 

calculated using the parametric coefficients’ "Estimate" values (intercept or averages) presented 

in Supplementary Table 4. The ratios were nearly identical, on average 0.17 versus 0.19 (J h-1), 

for the recruited mussels from the + 0 °C versus + 4 °C, respectively. This pattern suggests that 

the lower metabolic demand (represented by the aerobic respiration) in recruits of the + 4 °C 

regime was coupled with the lower supply-to-reserve rate. The latter process is mainly 

represented by the potential for feeding but can include all processes involved in uptake and 

transport of metabolic substrates and energy into appropriate internal storage reservoirs 

(Kooijman, 2010). In contrast, the respired energy to fed energy ratios were on average 0.29 

versus 0.36 (J h-1) for transplanted mussels from the + 0 °C versus + 4 °C, respectively, 

suggesting that the heat-treated transplants were more at the risk of heat-induced mismatch of 

metabolic supply and demand. 

  

Figure 4. Mussel baseline performance at constantly 20.8 °C in the short-term assay. Potential-for-feeding 
and respiration rates of recruited (a and b) and transplanted (c and d) mussels at an ambient food concentration ca. 
3000 cells mL-1 during the before-fluctuation phase of the short-term assay. The plots are Generalized Additive 
Mixed-effect Model (GAMM) outputs after setting the median tissue dry weight (and a median feeding rate for 
predicting the respiration) and a specific replicate level. The dots represent partial residual for each model. For 
recruited mussels, the fixed effects of thermal history on both responses were significant (p-values < 0.001, 
adjusted-R2 > 0.95), while for transplanted mussels, the effect was only significant for the potential for feeding (p-
value = 0.03 and 0.39, and adjusted-R2 = 0.97 and 0.94, for feeding and respiration, respectively). For tests on the 
significance of smooth and random effects, see Table 2. 
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These findings suggest that recruits of marine ectotherms with lower metabolic demand (but 

enough supply rate) may have higher heat tolerance regarding their metabolic responses to 

transient critical exposures during short-term thermal fluctuations. The link between lower 

metabolic demand and higher heat tolerance can be explained through a heat-induced limitation 

in marine ectotherms' capacity to supply their demand for metabolic substrates and energy, as 

discussed in the following.  

For individuals of a marine ectotherm population (at a specific life-stage and the whole 

organism level), thermal dependency (denoted by Q10) is usually higher for the metabolic 

demand than for the feeding (Rall et al., 2012). Besides, oxygen supply capacity can also 

become limited at high temperatures (Pörtner, 2012; Verberk et al., 2016). At the cellular level, 

Q10 may also be higher for metabolic product formation (or demand) as compared to substrate 

diffusion and transport processes (or supply) (Ritchie, 2018). For a growing juvenile mussel, 

for example, a temperature-induced rise in feeding rate (Q10 ca. 1.5; Kittner and Riisgård, 2005) 

may be enough to compensate for a relatively higher increase of energy demand (Q10 2–3; 

Widdows, 1976; Vajedsamiei et al., under review) only if the food resource is sufficiently 

nutritious. However, after a specific temperature threshold or period of exposure is exceeded, 

the feeding activities may become too costly, as they usually consume a large portion (ca. 20 

%) of the whole metabolic expenditure (Widdows and Hawkins, 1989; Secor, 2009). When 

organisms restrict their supply-to-reserve rate due to the high costs, the supply-from-reserve 

will become time-limited, meaning that the organisms may become more and more in debt, 

specifically regarding metabolic substrates and energy. Therefore, in theory, and as our findings 

suggest, more heat-tolerant ectothermic individuals compared to less tolerant ones would tend 

to have lower metabolic demand to better control metabolic supply and demand mismatch. The 

associated debt and stress of such a mismatch would be directly linked to an organism's basic 

levels of metabolic demand. 

 

Shortcomings and perspectives 

Our short-term assays were conducted as post-incubations to a community-level 4-month long 

incubation experiment, the results of which are mainly reported in two associated papers 

(Pansch et al., in prep; Wahl et al. in prep; but see also: Materials and Methods). The sample 

size and the level of between-replicate dependency were not ideal in our short-term assays. The 

number of recruited mussels in the end-of-century treatment level was only 17; therefore, just 

three replicated time series could be measured for three batches of 5–6 recruited mussels. 
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Additionally, since replicate mussels shared one benthocosm tank during the summer, we could 

not exclude (or account for) the confounding effects of between-replicate dependency in the 

modeling. Nonetheless, some factors could have lowered the dependency of replicate mussels, 

including the potential difference in their genetics, the large size of the tanks, and the high 

seawater exchange rate (see the Material and Methods). Notably, the growth and recruitment 

data collected in the two treatment levels (+ 0 °C and + 4 °C) fitted well into thermal 

performance curves which were created using the whole dataset from all six thermal history 

levels (+ 0 °C to + 5 °C) of the 4-months long incubation (See Supplementary Figure 2), 

inferring that the mussels under the + 4 °C regime were mainly impacted by the temperature 

and no other confounding factors.  

Nevertheless, more investigations are needed to support the two general propositions: (i) 

Extreme seasons (events) select for ectothermic early-stage individuals with more heat-tolerant 

metabolic performance and (ii) such heat tolerance is due to the lowered metabolic demand 

enabling these organisms to more efficiently control the mismatch between metabolic supply 

and demand at high temperatures. In a second step, we must understand if the directional 

selection of less metabolically demanding recruits can lead to rapid evolutionary warm 

adaptation of populations of ectothermic benthic metazoans, as recently shown for a microbial 

alga (Padfield et al., 2016). Such elevated heat resistance may not result in population 

persistence in response to future warming when it involves a substantial decrease in new 

cohorts' abundance and genetic diversity. 
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General Discussion 
The empirical findings presented in Chapter 2 and 3 generally imply that: 

(i) Short-term (daily) thermal fluctuations mediating oscillations in metabolic 

performance (suppressions and recoveries) of an ectotherm (Chapters 1–3) can lead 

to its lower or higher time-integrated performance (fitness) compared to the 

response under a static exposure to the fluctuations’ average temperature (Chapter 

2). 

(ii) The fluctuations can provide refuge to an ectotherm at critical average temperatures, 

i.e., the temperatures at which the organism’s metabolic performance is suppressed 

(Chapter 2). 

(iii) The ectotherms with remarkable capacity for metabolic suppression may have low 

capacities for compensational acclimation to critically high temperatures within 

day-to-months-long exposures (Chapters 2 and 3). 

(iv) Extremely-warm events may select for heat-tolerant ectothermic individuals at their 

very early life-history stages (Chapter 3). 

(v) The higher heat tolerance in metabolic suppression and recovery of an ectotherm 

can be mediated through lower metabolic demand (Chapter 3).  

The experimental studies were enabled through the Fluorometer- and Oximeter-equipped Flow-

through Setup (FOFS) and associated data processing protocols (Vajedsamiei et al., 2021). 

 

FOFS-like experimental methods can fill methodological gaps 

FOFS integrated method allows monitoring of filter-feeders’ metabolic performance (feeding 

and aerobic respiration) in response to environmental variations at temporal resolutions relevant 

to natural systems. The approach addresses several critical considerations for users and 

prospective developers of continuous biomonitoring systems from benchtop to mesocosm 

setups. These issues particularly involve (i) the confounding effect of environmental variability 

on sensor measurements, (ii) the time series noise removal or trending using robust regression 

techniques, (iii) the random drift estimation, and (iv) the lag-time estimation and correction 

based on linear differential modeling. Besides, FOFS Python scripts provide semi-automatic 

and adaptable data processing.  

The FOFS approach was successfully used to record the thermal metabolic performance of the 

study species, Mytilus spp., in short-term assays and as complements to longer-term 
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incubations. Using this approach, I could relate the observed effects of daily fluctuations on 

mussel growth to their capacity for thermal suppression and recovery of feeding and respiration 

(Chapter 2; Vajedsamiei et al., under review), and explain whether and how a thermal history 

of extremely warm summer conditions may alter heat tolerance of a mussel population (Chapter 

3; Vajedsamiei et al., submitted). 

 

Depending on the context, fluctuations can be beneficial or harmful for ectotherms 

Results of the 5-weeks long experiment show that daily thermal fluctuations can be negative or 

positive for mussel growth depending on the fluctuations’ average and amplitude (Chapter 2). 

(i) At the less-extreme average condition (23.5 °C), the large-amplitude fluctuations (± 4 °C) 

significantly decreased mussel growth while the impact of the intermediate-amplitude 

fluctuations (± 2 °C) was not significant. In contrast, (ii) at the more extreme thermal average 

(26 °C), the ± 4 °C fluctuations improved the growth, and the ± 2 °C also benefited mussels. 

Still, the latter effect was only significant in terms of mussels’ tissue growth, i.e., one of three 

measured response traits. 

Our experimental thermal averages corresponded to current and future-expected scenarios in 

the Western Baltic Sea, as specified based on published literature in the method section of 

Chapter 2. According to a more recent analysis, in this location, a 22-year (1997–2018) thermal 

mean and the upper 90th-percentile thermal threshold at a depth of 1.5 m reached ca. 18.5 and 

22 °C, respectively (Wolf et al., 2020). In summer 2018, the daily mean temperature was > 22 

°C (max. 24 °C) for 13 days (Wolf et al., 2020). Therefore, our moderately-warm and 

extremely-warm average treatment levels (23.5 and 26 °C, respectively) represented the 

average temperatures for a current to near-future and an end-of-century marine heatwave (Meier 

et al., 2012; Gräwe et al., 2013). In the Kiel Fjord, daily thermal variation in temperature can 

rarely be as high as 8 °C (± 4 °C), while a 5 °C daily variation is expected in coastal habitats 

with depths < 1 m during summers (Franz et al., 2019; Hennigs 2020). While ± 4 °C amplitude 

is considered an extreme scenario, the peak temperature of 30 °C, which was shortly 

experienced in such daily cycles, may be experienced regularly in summer by Baltic shallow-

water organisms as we approach the year 2100. Therefore, as the findings suggest, in the Baltic 

Sea shallow-water habitats where organisms are usually submerged due to minor tidal changes 

in water levels, the Mytilus performance is probably modulated by the daily thermal cycles 

during current or near-future summers. In other marine shallow-water regions, especially in 
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areas where species experience aerial exposure during low tides, the modulatory impacts of 

daily thermal cycles on the growth may be even more substantial (Helmuth et al., 2014).  

Literature findings regarding observed or predicted long-term effects of cyclic temperature 

fluctuations on ectotherms’ performance are partly contradicting. Thermal treatments of most 

studies predicting or observing fluctuations’ detrimental impacts (Paaijmans et al., 2013; 

Vasseur et al., 2014; Bernhardt et al., 2018) were limited in range as the specimens could not 

have withstood the constant exposure to critically high temperatures for extended durations 

(e.g., weeks). Alternatively, some studies have been able to witness positive effects of 

fluctuations when specimens were subjected to fluctuating versus static regimes of similar 

critical average conditions (Bozinovic et al., 2011; Niehaus et al., 2012; Kingsolver et al., 2015; 

Kang et al., 2019). Possibly, the organisms benefited from fluctuations’ benign phases (Schulte 

2011; Wahl et al. 2015). 

 

Ectotherms’ capacity for thermal metabolic suppression and recovery defines their long-

term responses to thermal fluctuations 

Using FOFS, I demonstrated the study species’ ability to suppress and recover its feeding and 

aerobic respiration in response to daily fluctuations in the thermal range utilized in our 5-weeks 

long experiment. As introduced in Chapter 2, temperature fluctuations’ refuge effects could be 

predicted through nonlinear averaging on thermal performance curves (TPCs) generated at very 

short timescales (e.g., hours) relating to (daily) thermal cycles. Through upscaling from the 

non-acclimated TPCs of feeding performance, we indicated that feeding rates could be higher 

at the fluctuating compared to the static regime (both with the same critical average 

temperature). This prediction suggests that an elastic suppression and recovery of metabolic 

performance (with no compensational acclimation or stress effects) during thermal fluctuations 

would elevate the long-term performance (growth) at critical average temperatures. In addition, 

I found a strong linear correlation between the fluctuations’ upscaled impacts on feeding 

(predicted) and their 5-weeks impacts on growth (observed). These findings are also a critical 

notice for energy budget modeling of ectotherms evolved in response to highly fluctuating 

environments: non-acclimated TPCs of feeding are more appropriate than respiration TPCs for 

parametrizing the temperature correction coefficient in growth-projecting models (such as 

Dynamic Energy Budget models; Kooijman, 2010; Monaco and McQuaid, 2018). 

As indicated in Chapter 2, investigations focusing on thermal metabolic performance and how 

it changes in time may provide a broader understanding of how ectotherm populations respond 
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to thermal fluctuations of today and in the future. The combination of the long- and short-term 

approaches and the associated upscaling framework went beyond the mere description of 

observed patterns as done in numerous previous studies addressing the influence of fluctuations 

on organism responses with less explanatory power (Bozinovic et al., 2011; Niehaus et al., 

2012; Paaijmans et al., 2013; Vasseur et al., 2014; Kingsolver et al., 2015; Bernhardt et al., 

2018). Nevertheless, conducting longer-term recordings of metabolic performance in response 

to thermal fluctuations can provide direct evidence on the implications of compensational 

acclimation or stress, an essential advancement to this field of research. 

The hypothesis set (framework) presented in Chapter 2, central to all questions raised and 

answered in this thesis, simply integrates my findings with physiological and mathematical 

principles from the literature and explains possible outcomes of such compensational or reverse 

acclimations to beyond-optimal conditions, corroborating the experimental findings sometimes 

contradicting each other. I explained the fluctuations’ beneficial effects in more detail as these 

were predicted in six out of nine hypothetical scenarios of the framework. In short, a fluctuating 

regime with the same average temperature as a stressful static regime may provide a refuge 

when the duration and intensity of critical exposures during fluctuations do not negatively 

impact the ectotherm’s capacity for metabolic suppression and recovery. In the Discussion of 

Chapter 2, it is further explained that such refuge effects are relevant for eurythermal ectotherms 

from highly fluctuating environments as they commonly lack a capacity for warm 

compensational acclimation (Stillman, 2003; Seebacher et al., 2014), possibly due to a trade-

off favoring the ability to actively control metabolic performance (McMahon et al., 1995). 

Thus, thermal fluctuations’ refuge effects may be vital for these ectotherms as climate change 

induces intensification and elongation of extremely warm events in many coastal and shallow-

water regions (Holbrook et al., 2019). 

Scenarios of temporal changes in thermal metabolic performance are also presented in the 

hypotheses set of Chapter 3. Here, the null and alternative hypotheses were predicted based on 

time-dependent changes not only in the thermal thresholds of metabolic suppression and 

recovery but also in the absolute values of metabolic performance at benign (recovery) phases. 

The assumptions of both hypothesis sets are still simplistic. In reality, for example, adaptation 

to warmer regimes may also change the slope of gradual temperature-induced changes in 

metabolic performance. Nonetheless, such principle-based hypotheses sets are still crucial to 

improve the capacity for generalization from empirical studies. Acknowledging that all 

biological systems have some capacity for elastic metabolic performance in response to 

environmental variation, the frameworks presented here may be generalized to other systems. 
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Notably, the hypothesis sets can be modified with the aim to explain the organismal 

performance in response to different external drivers (e.g., the dissolved oxygen concentration 

or salinity) or the co-variabilities (see the General Introduction). 

 

May summer heatwaves induce warm adaptation? 

As expected, based on literature findings and the results from Chapter 2, we found that the 

transplanted mussels incubated under the intensified summer regime had a minor capacity for 

warm compensational acclimation (as evidenced by the warming-induced decline of growth; 

Chapter 3; Vajedsamiei et al. submitted). Nevertheless, this thesis provides support for the 

hypotheses jointly proposing that extremely warm seasons (events) may select ectotherm 

recruits with lower baseline demand for metabolic substrates, the capacity mediating their 

higher heat tolerance in response to cyclic thermal fluctuations. Compared to the recruited 

mussels grown under the less-extreme summer regime (current), the recruited mussels from the 

extremely warm summer regime (future) had (i) lower metabolic demand at constant exposure 

to a mild temperature and (ii) were afterward more capable of recovering their metabolic 

performance (filtration and respiration) at benign phases of the two successive 24 h thermal 

FOFS fluctuations.  

In line with the metabolic cold adaptation or the temperature compensation hypothesis (Hazel 

and Prosser, 1974; Clarke, 2003; Le Lann et al., 2011), it is argued in Chapter 3 that more heat-

tolerant ectothermic individuals, compared to less tolerant ones, would tend to have lower 

metabolic demands allowing them to better control metabolic supply and demand mismatch 

occurring at high beyond-optimal temperatures. The energetic debt, stress, and damages 

associated with such a mismatch would be directly linked to an organism’s basic levels of 

metabolic demand. 

Notably, the findings do not strictly mean that the selection of heat-tolerant individuals at very 

early life-history stages will lead to populations adapted to ocean warming, as suggested by 

some recent studies (Logan et al., 2014; Ma et al., 2014; Gilbert and Miles, 2017). In contrast, 

we observed a 96.5 percent decline in mussel recruitment success and ca. 30 percent decrease 

in transplanted mussels’ growth rate due to the warmed summer regime. Such selective forces 

may substantially reduce the abundance, performance, and genetic diversity of populations and, 

therefore, decrease populations’ persistence in response to future extreme events (Grant et al., 

2017; Klerks et al., 2019). Besides, selecting individuals highly tolerant to one environmental 

factor (regime) may cause cross-tolerance or increased sensitivity against other environmental 
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factors (Al-Janabi et al., 2019), making inference and generalization from empirical findings 

even more complicated. Nevertheless, insights about possible mechanisms of fast warm 

adaptation in ectotherm metazoans may enable such generalization and advance the science of 

artificial selection (Carabaño et al., 2019; Ding et al., 2020). 

 

Perspectives for future research 

This thesis emphasizes the importance of investigating marine ectotherms’ thermal metabolic 

performance in response to environmental variations within naturally-relevant timescales. 

While the studies focused on the feeding and aerobic respiration rates of mussels, future studies 

can be more inclusive and record other response variables such as the excretion rate and 

assimilation efficiency for a variety of model heterotrophs or photosynthesis rates for 

autotrophs. 

Collecting such data in side-incubations or longer-term assays can provide valuable insights on 

how the capacity for thermal metabolic suppression and recovery is altered by acclimation. 

Further evaluation of mechanistic hypotheses such as the one tested here (based on the role of 

metabolic demand) helps us to generalize from empirical findings to the real-word significance 

of acclimation and selection in fast warm adaptation of ectothermic metazoan populations. 

More specifically, such studies need to test the following hypotheses:  

(i) Inter-individual variability in metabolic demand is related to the spatial or temporal 

variability in thermal tolerance. 

(ii) Natural selection by extreme events favors individuals having lower metabolic 

demands. 

(iii) Inter-individual variability in metabolic demand (and its thermal sensitivity) is 

significantly linked to inter-individual variability in the capacity for warm 

compensational acclimation. 

(iv) Warm acclimation of individuals will result in lower metabolic demands. 

 

Success in relating metabolic demand variability to the organisms’ capacity for warm 

acclimation and rapid evolutionary adaptation would enable us to improve the predictions 

regarding global climate change impacts on ecosystems. Particularly, the roles of other 

environmental forces such as deoxygenation, acidification, and (de)salination as well as 

biological forces such as predation and parasitism can be also explained in terms of their 
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impacts on the metabolic demand which itself may mediate the capacity for metabolic 

suppression and recovery. 
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Supplementary Texts 

Text S1: Temperature correction and conversion coefficients for chlorophyll data 

Food concentrations foodá	are measured as chlorophyll fluorescence intensity in units of mV 
using the fluorometers. Fluorescence, however, decreases linearly with temperature (Turner 
Designs 2020). Thus, we must correct the food concentrations (foodá in mV) that are measured 
at different temperatures (Tá in °C) during the trials using a temperature correction coefficient 
(c) that gives the relative change in fluorescence intensity per °C deviation from the reference 
temperature (Tâ).  

Eq. S1 foodáäZ = WXXYã
/	–	[	×	(åã	–	åç) 

c is estimated by conducting fluorometry at different temperatures when the fluorometry 
chamber is filled with the standard solution (RWT 400 ppb, Turner Design, San Jose, USA). 
For our system, we obtained c	= 0.022 per °C deviations from the reference temperature of 18 
°C (Fig. S2).  

The reference temperature is the temperature at which also the food concentration conversion-
coefficient é in units of cells mL-1 per mV is defined. Different fluorometers show absolutely 
different but proportionally equal responses to a concentration change. As the inflow to all paths 
is identical, it is enough to define é only for the fluorometer deployed in PathC. Samples can be 
taken from the final outflow of PathC when FOFS is running in the absence of mussels at the 
reference temperature. The samples were then immediately analyzed for the cell concentration 
(cells mL-1) using a Cell and Particle Counter (Coulter Z2, Beckman Coulter GmbH, Krefeld, 
Germany; set to detect particles of the expected R. salina dimensional range 5–8 µm diameter). 
The ratio of cells mL-1/mV is then used as the conversion coefficient é. We obtained é = 1èêë

êíí ≅
6.7, based on the samples taken from the outflow of PathC at the end of the pre-trial (October 
16, 2019). 

 

Text S2: Criterion for selecting the ‘pre- or post-trial stable data’ 

In the Script S2 (FOFS_trial_by_trial_processing.py), pre- and post-trial stable data are chosen 
and used, respectively, to correct the baseline variations between sensors’ measurements and 
estimate the random confounding drifts. As time passes in a pre- or a post-trial, the actual 
concentration of food (or dissolved oxygen) becomes more comparable between suspensions 
in different fluorometry (or oximetry) chambers, given there is the baseline discrepancies 
between the sensor measurements. The stable data interval is when the actual concentration of 
food (or dissolved oxygen) is comparable between the fluorometry (or oximetry) chambers.  

We calculate the ‘lag-time’ which is a system parameter that describes how quickly the initial 
difference of food (or oxygen) concentration between the dilution tank’s suspension being 
pumped into a path and the suspension flowing out of the fluorometry (or oximetry) chamber 
is removed during a pre- or a post-trial. The ‘lag-time’ (t]ñó) is described as 

Eq. S2. t]ñó =
V]Q

ZÖda	Zòôööõúöùûü
ZÖdaZòôööõ

†
°Ö

, 



 

 
111 

where C£Q and CX§• are the food (or dissolved oxygen) concentrations of the inflow to a path 
and outflow of the fluorometry (or oximetry) chamber, respectively, t0 is the time of the start 
of the pre- or post-trial, F is the flow rate and V£ is the integrated volume of the chambers 
positioned downstream to the respective fluorometer (or dissolved-oxygen sensor). For 
example, in our FOFS, V£ is 350 + 100 = 450 mL for each fluorometer and 100 mL for each 

oximeter. Applying the V£ values, F = 16 mL min-1, and the ratio 
nÖdV	nòôöö
nÖdVnòôööõ

 = 0.01 into Eq. S2, 

we estimate the time needed for the removal of 99 % of the initial difference, t]ñóßß% ≅ 130 
and 29 min, for the real food and oxygen concentrations, respectively. The lower limit of the 
stable data interval must be chosen to be > tßß% . Eq. S2 is a version of Eq. S6 (derived in Text 
S3) solved for the time, but with different definitions of the concentration and volume variables. 

 

Text S3: Dampening-effect correction 

One way to decrease the dampening effect is to choose and apply a higher experimental flow 
rate, but this is not always possible as the flow rate is reversely related to the magnitude of the 
respiration signal (that is usually small).  

The script (FOFS_trial_by_trial_processing.py) applies a linear differential modelling to 
correct for the dampening of rapid changes in the measured food concentrations and thus 
achieve a better estimation of the food concentration in the oximetry chamber. Here we explain 
the procedure enabling to correct for the dampening of rapid concentration changes caused by 
the study organisms’ filtration shutdown or recovery.  

We assume that the concentration of the inflow into the fluorometry chamber (food©Q) is altered 
by a rapid change in the filtration activity at time t™. Afterwards, food©Q stays constant at least 
for a short duration (food£Qöõ ≅ 	food£Qö). Then, we describe the dynamic system as a linear 
differential equation (Campbell and Haberman 2008):  

Eq. S3. Y´Y• +
¨
≠ 	x	 = 	food£Q	F, 

where x is the number of cells in the fluorometry chamber at the time t, F is the flow rate, and 
V is the volume of the fluorometry chamber. Therefore, the first term in Eq. S2 represents the 
change of the food concentration in the fluorometry chamber following the rapid change in the 
oximetry chamber, the second term gives the outflow from the fluorometry chamber and the 
right-hand side is the inflow into the fluorometry chamber. The solution to this linear 
differential equation is  

Eq. S4. x• = WXXYÖd	¨
†
°

+ 	a	eV¨•/≠ = food£Q	V + 	a	eV¨•/≠, 

where a is a constant defined by the initial conditions x•õ. Diving both sides of Eq. S4 by V 
results in 

Eq. S5. foodáö = food£Q + ñ
≠	eV¨•/≠, 
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where foodáö is the fluorometrically-measured concentration at time t (which is dampened 
compared to food£Q) and, by choosing Ü™ = 0, ñ≠ is the initial concentration difference 
(foodáöõ– 	food£Q). Thus, Eq. S5 can be rewritten as 

Eq. S6. 
WXXYãöVWXXYÖd
WXXYãöõ–	WXXYÖd

= 	eV†ö° . 

Since 
WXXYãöVWXXYÖd
WXXYãöõ–	WXXYÖd

= WXXYãöVWXXYãöõ
	WXXYãöõV	WXXYÖd

+ 1, Eq. S6 can be rewritten as 

Eq. S7. foodáöõ − 	food£Q = Ifoodáö − foodáöõK
/

\a
†ö
°V/

,  

and 

Eq. S8. 	food£Q = foodáöõ + Ifoodáö − foodáöõK
/

/V\a
†ö
°

,  

which allows to estimate the food concentration in the oximetry chamber food£Q at t™ from the 
measured food concentrations at t™ and some later time point t. 
If we now assume the time span between these two time points to be Δt, and that food£Q stays 
constant for at least Δt then we can correct the inflow food concentration for every time point t 
during the treatment using the measured concentration from that time point and from a later 
time point. 

Eq. S9. food£Qö = foodáö +	6foodáöú±ö − foodáö: /
/	–	\a

†	±ö
°

. 

Eq. S9 is used in the script to achieve the dampening correction and obtain the dampening-
corrected food-concentration food£Qö (in cells mL-1) at time t. The work flow goes as follows: 
(i) each data series (cells_per_ml_C or cells_per_ml_Sn) is differenced using a sliding time-
window of differencing (length of the window Δt is specified in the 'Variables definition' section 
of the script), (ii) the difference between each two measured food-concentrations (foodáöú±ö −
foodáö) is corrected by the dampening-effect correction-coefficient /

/	–	\a
†	±ö
°

 (specified in the 

'Variables definition' section), (iii) the corrected difference is added back to the data point, 
foodáö. The volume of the fluorometry chamber (350 mL in our FOFS) and the flow rate are 
also defined in the ‘Variables definition’ section of the script. 

 

Text S4: Temperature sensitivity of the planktonic food 

During a FOFS trial, the phytoplanktonic food is exposed to the treatment only for a short period 
of time from their injection into the dilution tank until their release into the final outflow of the 
setup. Yet, it must be checked that the exposure does not impose substantial changes on the 
cells’ concentration. 

We assessed the concentration of Rhodomonas salina applied as the food in our FOFS in the 
four final outflows and the food-tank suspension hourly, during a temperature ramp on October 
15, 2019 when FOFS was run in the absence of filter-feeders. The concentrations were stable 
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in time (Fig. S3), suggesting that the short-term thermal exposures as occurring in our FOFS 
imposes no substantial impact on the concentration and integrity of R. salina cells. 

 

Text S5: Mytilus filtration and respiration based on published literature 

In addition to our main assessment, here we compare our estimates of the average baseline 
filtration and respiration rates of Mytilus (over the initial period of the mussel trials of the 
demonstration experiment) with related published literature values. It is worth to notice that all 
differences between the systems studied by us versus others can create a discrepancy between 
our observations and the predictions. This comparison is thus aimed solely to indicate that the 
absolute values of our estimates are in line with expectations. 

The following published-studies describe filtration and respiration rates of Mytilus edulis at 
optimal conditions as functions of body-size variables. Pleissner et al. (2013) described the 
filtration rate (F in mL min-1) using a flow-through setup as a function of the shell length (L in 
mm); F = 	0.0024	 ×	L1.™/ ×	 (/™™™í™ ). Hamburger et al. (1983) described the respiration rate (R 
in µmolO2 h-1) in the presence of flagellate foods Isochrysis galbana and Monochrysis lutheri 
using a closed chamber setup as a function of tissue dry weight (W in g); R =
	0.475 ×W™.ííê × Ièè.í∂ßíí™ K. 

When we apply the size characteristics of our studied mussels (mean shell length 45 mm and 
mean dry tissue weight 0.63 g) into these equations, the predicted rates of length-specific 
filtration and weight-specific respiration are 1.85	mL	mmV/	minV/ and 0.41	µmolO1	gV/	hV/ 
from these equations. Our experimentally determined average estimates are  
1.3	mL	mmV/	minV/ and 0.4	µmol	O1	gV/	hV/, respectively (Fig. 5a, c). 

 
References: 

Campbell, S., and R. Haberman. 2008. Introduction to differential equations with dynamical 
systems. Princeton University Press. 

Hamburger, K., F. Mohlenberg, A. Randlov, and H. U. Riisgård. 1983. Marine Size, oxygen 
consumption and growth in the mussel Mytilus edulis. J Mar Biol 75: 303–306. 

Pleissner, D., K. Lundgreen, F. Lüskow, and H. U. Riisgård. 2013. Fluorometer controlled 
apparatus designed for long-duration algal-feeding experiments and environmental effect 
studies with mussels. J Mar Biol 2013: 401961. 

Turner Designs. 2020. Cyclops submersible sensors: User’s manual.  
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Supplementary Figures 

 
Fig. S1. Photographic view of the Fluorometer- and Oximeter-equipped flow-through setup (FOFS). PathC stands 
for the control path in which the oximetry and fluorometry are conducted in the absence of any study specimen 
(from the incubation or oximetry chamber) over all stages (pre-, main-, and post-trial), while within PathSn the 
oximetry and fluorometry are conducted in the presence of specimens during the main trial. For details on water 
flows see also Fig. 1 in the paper. 

 

 
Fig. S2. Illustration of the linear thermal dependence of fluorescence. Data (mV and °C) were logged through the 
Cyclops 7f fluorometer and a temperature logger deployed in the fluorometry chamber filled with the standard 
solution when the temperature was ramped between 06:00-15:00 (on October 19, 2019). 
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Fig. S3. Illustration of the dampening-effect correction. Dampened (D-food), dampening-corrected (DC-food), 
and secondary-trended dampening-corrected (ST-DC-food) food concentrations in response to a wide temperature 
range (~ 18–27.5 °C) from one mussel-trial conducted in November 4. Data of the fluorometers deployed in in the 
control path PathC (a) and the specimen paths PathS1-3 holding Mytilus (b–d) of FOFS. 

 

 
Fig. S4. Consistency of the concentration of phytoplanktonic food, Rhodomonas salina, in response to high 
temperatures used in our FOFS. Cell concentrations in samples taken every 30 min from the food tank (samples 
were diluted 1 to 50 mL; lightest grey) and final outflows of the four paths (other shades) when FOFS was run in 
the absence of study specimens. The black line indicates the ramp in the temperature from 20 to 27 °C. The food 
tank was kept constant at 16 °C. 
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Fig. S5. Blank-trial runs to verify the method functionality. Food (a and c) and dissolved-oxygen (b and d) 
concentrations in the control path (PathC) and the specimen paths (PathS1-3) during the main stage of the blank 
trials conducted in the absence of study specimens using FOFS. The blank trials were carried out once following 
the standard cleaning procedure (a–b) and another time as a follow-up of a mussel-trial with no prior cleaning (c–
d) in response to a wide temperature range (18–28.5 °C). Food and dissolved-oxygen concentrations are outputs 
of the data processing explained in Materials and Procedures in this paper. 

 

 
Fig. S6. Blank-trial runs to verify the method functionality. Estimates of filtration and respiration rates based on 
data collected in the absence of mussels from the incubation chambers of PathS1-3 during the main-stage of two 
blank trials of the demonstration experiment. The blank trials were carried out once following the standard cleaning 
procedure (a–b) and another time as a follow-up of a mussel-trial with no prior cleaning (c–d) in response to a 
wide temperature range (18–28.5 °C).
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Fig. S7. Mussel-trial runs to verify the method functionality. Food (a, c, e, and g) and dissolved-oxygen 
concentrations (b, d, f, and h) in the control path (PathC that had no mussel) and the specimen paths (PathS1-3 that 
contained the study Mytilus mussels) during the main stage of the four mussel trials using the FOFS. Food and 
dissolved-oxygen concentrations are processed as explained in Materials and Procedures in this paper. 
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Fig. S8. Mussel-trial runs to verify the method functionality. Filtration (a, c, e, and g) and respiration rates (b, d, 
f, and h) of Mytilus mussels placed in the incubation chambers of PathS1-3 of FOFS during the main-stage of the 
four mussel trials of the demonstration experiment. Filtration and respiration rates are outputs of the data 
processing explained in Materials and Procedures in this paper. 
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Fig. S9. Estimated Scope for Growth (SFG) at hypothetical Rhodomonas concentrations of 1000 (a–d) and 4000 
cells (e–h) for Mytilus mussels placed in PathS1-3 during the main stage of the mussel trials. It should be noted that 
our estimation of SFG, based on the calculated filtration and respiration rates, simplistically assumes that the rate 
of energy respiration is independent of the ambient food concentration, not considering respiratory costs of the 
feeding at different food levels. 
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Fig. S10. Mussel-trial runs to verify the method functionality. Processed food (a) and dissolved-oxygen 
concentrations (b and c) in the PathC (a) and PathS1-3 (holding mussel, Mytilus, specimens), along the applied daily 
temperature cycle (red lines). The replicated values (collected in the four mussel-trials) were averaged at each time 
point, presented with 95% confidence intervals.  
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Supplementary Tables 
Table S1. The data sheet containing the dry-weights (‘w’ in g) and shell-lengths (‘l’ in mm) of the mussels placed 
in the incubation chambers of PathS1-3 during four mussel-trials of the demonstration experiment. Future users 
must manually add a data sheet (size_traits.xlsx) with the same format to the experimental folder, which will later 
be used by the script ‘FOFS_integrative_processing.py’ to define size-standardized filtration, feeding, respiration, 
and SFG rates for each replicate.  

trial_name S1_l S2_l S3_l S1_w S2_w S3_w 
16_oct 41.40 41.60 44.40 0.58 0.49 0.51 
26_oct 44.17 47.55 44.56 0.55 0.82 0.46 
30_oct 42.03 49.21 51.39 0.57 0.75 0.84 
04_nov 49.41 42.47 45.85 0.82 0.34 0.70 

 

Table S2. Blank-trial responses. The mean and standard deviation (SD) of filtration and respiration rates over the 
main stage of the two blank trials, calculated based on concentration data collected in PathC and PathS1-3 of FOFS 
in the absence of study specimens (refer to Figs. S5 and S6). The values in the brackets indicate the statistics after 
the removal of the estimates which were impacted by the transient irregularity in dissolved-oxygen measurements 
of PathC (Figs. S5d and S6d). 

 Filtration rate (mL min-1) Respiration rate (µmolO2 min-1) 
Trial name Statistics PathS1 PathS2 PathS3 PathS1 PathS2 PathS3 

‘14_oct’ Mean 0.193 -0.150 0.231 -0.002 0.001 0.007 
SD 0.247 0.242 0.269 0.004 0.005 0.003 

‘01_nov’ 
Mean -0.066 -0.202 -0.476 -0.010 

[-0.006] 
-0.010 
[-0.005] 

-0.007 
[-0.005] 

SD 0.156 0.165 0.202 0.012 
[0.007] 

0.011 
[0.005] 

0.013 
[-0.008] 
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Table S3. Post-trial estimates of filtration and respiration rates were expected to be equal or close to zero, as the 
stage was conducted in the absence of study mussels. The post-trial estimates are compared with the baseline rates 
of main-trial filtration and respiration to roughly estimate the ratios of the non-filter-feeder- to filter-feeder-induced 
signals (i.e., the cumulative random impacts in percent; also refer to Figs. 3e-f and 4e-f in the paper). Baseline 
main-trial filtration or respiration rate were defined as the average of 180th to 480th main-trial data points. Estimates 
of cumulated random effects on filtration and respiration rates of the studied mussels categorized based on the 
respective trial and specimen Path. Values with an asterisk were not used in the calculation of the mean and SD. 

 Filtration rate 
 Post-trial rate (mL min-1) Cumulated random effect (%) 
Trial name PathS1 PathS2 PathS3 PathS1 PathS2 PathS3 

16_oct -0.223 0.359 0.058 -0.570 0.731 0.079 
26_oct -0.319 0.012 -0.422 -0.519 0.028 -1.194 
30_oct -0.131 -0.115 0.063 -0.202 -0.175 0.118 
04_nov -0.155 -0.233 -0.217 -0.296 -0.440 -0.341 
Mean -0.207 0.006 -0.129 -0.396 0.036 -0.335 
SD 0.084 0.256 0.235 0.176 0.501 0.610 
 Respiration rate 
 Post-trial rate (µmolO2 min-1) Cumulated random effect (%) 
Trial name PathS1 PathS2 PathS3 PathS1 PathS2 PathS3 

16_oct 0.024 0.027 0.014 10.280 9.797 5.045 
26_oct -0.024* 0.013 0.016 -10.840* 5.672 7.493 
30_oct 0.015 0.011 0.023 6.749 3.211 8.221 
04_nov 0.014 0.018 0.002 6.499 9.667 1.014 
Mean 0.018 0.017 0.014 7.843 7.087 5.443 
SD 0.006 0.007 0.009 2.115 3.216 3.250 
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Supplementary Python scripts 

The following Python scripts can be used to process data produced in FOFS experiments (e.g., 
the data produced in our demonstration experiment, including blank and mussel trial data, 
published in PANGEA [https://doi.org/10.1594/PANGAEA.919682]). 

 

Script S1: ‘Dissolved_oxygen_calculator.py’ 

#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
Created on Fri Oct 25 10:47:23 2019 
 
@author: Jahangir Vajedsamiei (last test date: August 26, 2020) 
This script can be applied for calculating temperature-corrected DO  
(in percent air saturation and micromole per liter) using  
the phase angle data (phi) collected via PreSens Pts3 sensor spots  
(and Oxi4-mini oximeter) and independently-logged temperature data.  
The equations applied in the DO calculator were published by  
PreSens (Users’ Manual).  
""" 
 
# The modules used in this script 
import os 
import math 
from glob import glob as glob 
import pandas as pd 
from sympy import solve, Symbol, sqrt 
from pandas import ExcelWriter 
import numpy as np 
import time 
 
 
# Function definitions 
 
''' The function needed for calculation of temperature-corrected \ 
percent_air_saturation using the phase angle data (phi) collected via \ 
PreSens Pts3 sensor spots and the temperature (tempC_) recorded via \ 
temperature-loggers deployed independent of the oximeter.''' 
def oxyg_air_sat_func(phi, phi_0, Ksv_T100_, TCC_phi, TCC_Ksv, tempC_, 
                      temp_cal0_, temp_cal100_, m, f1_): 
    A = ((math.tan(phi*math.pi/180))/ 
         (math.tan((phi_0+(TCC_phi*(tempC_-temp_cal0_)))*math.pi/180))* 
         1/m*math.pow((Ksv_T100_+(TCC_Ksv*(tempC_-temp_cal100_))), 2)) 
    B = ((math.tan(phi*math.pi/180))/ 
         (math.tan((phi_0+(TCC_phi*(tempC_-temp_cal0_)))*math.pi/180))* 
         (Ksv_T100_+(TCC_Ksv*(tempC_-temp_cal100_)))+ 
         (math.tan(phi*math.pi/180))/ 
         (math.tan((phi_0+(TCC_phi*(tempC_-temp_cal0_)))*math.pi/180))* 
         1/m*(Ksv_T100_+(TCC_Ksv*(tempC_-temp_cal100_)))-f1_*1/m* 
         (Ksv_T100_+(TCC_Ksv*(tempC_-temp_cal100_)))- 
         (Ksv_T100_+(TCC_Ksv*(tempC_-temp_cal100_)))+ 
         f1_*(Ksv_T100_+(TCC_Ksv*(tempC_-temp_cal100_)))) 
    C = ((math.tan(phi*math.pi/180))/ 
         (math.tan((phi_0+(TCC_phi*(tempC_-temp_cal0_)))*math.pi/180))-1) 
    y = (-B+(math.sqrt((math.pow(B, 2)-4*A*C))))/(2*A) 
    return(y) 
 
''' The functions needed for converting percent_air_saturation to \ 
micro_mol_O2_per_liter.''' 
def tempK_func(x): 
    K = x + 273.15 
    return(K) 
def chlorinity_func(x):  # provide salinity 
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    y = (sal-0.03) / 1.805 
    return(y) 
def pwT_func(x):  # provide temp in K as argument 
    y = math.exp(52.57 - (6690.9/x) - 4.681*math.log(x)) 
    return(y) 
def aT_func(tempK_, chlorinity_): 
    a = -7.424 
    b = 4.417 * (10**3) 
    c = -2.927 
    D = 4.238*(10**-2) 
    P = -1.288*(10**-1) 
    Q = 5.344*10 
    R = -4.442*(10**-2) 
    S_ = 7.145*(10**-4) 
    aT = (math.exp((a + (b/tempK_) + c*math.log(tempK_) + D*tempK_) - 
                   chlorinity_*(P + (Q/tempK_) + (R*math.log(tempK_)) + 
                                (S_*tempK_))))/1000 
    return(aT) 
# the final funtion 
def oxyg_func(air_sat_, tempC_, sal_): 
    patm_ = 1013.0 
    pn_ = 1013.0 
    vm_ = 22.414 
    tempK_ = tempK_func(tempC_) 
    pwT_ = pwT_func(tempK_) 
    chl_ = chlorinity_func(sal_) 
    aT_ = aT_func(tempK_, chl_) 
    o2_ymol = ((patm_ - pwT_)/pn_)*( 
            air_sat_/100.)*0.2095*aT_*1000000.*(1./vm_) 
    return(o2_ymol) 
 
# Function definitions end 
 
 
# experimental data path definition 
 
experiment_path = "/Users/jahangir/Desktop/FOFS_new_test_/mussel_trials" 
raw_data_path = experiment_path + "/Data" 
 
# experimental data path definition  end 
 
 
# Variables and constants definition 
 
''' The sensor constants including the temperature correction-coefiicients,  
TCC_phi (dphi/dtemp = -0.08255) and Ksv_T100_ (dKsv/dtemp = 0.000492), m and  
f1 are provided by PreSens on the 'Final Inspection Protocol' and are  
identical for the sensor spots of one batch.''' 
TCC_phi_ = -0.0803 
TCC_Ksv_ = 0.000433 
m_ = 29.87 
f1__ = 0.808 
 
''' Please provide the seawater salinity used in the experiment (will be \ 
applied as a parameter in oxyg_func).''' 
sal = 21  # (ppt) 
 
# Variables and constants definition end 
 
 
### Run script and answer the questions that will be asked on the console!!! 
 
# make the temperature dataframe 
os.chdir(raw_data_path + "/raw_data_temperature") 
temp_filenames = glob("*.xlsx") 
appended_data = [] 
for temp_filename in temp_filenames: 
    temp_df = pd.ExcelFile(temp_filename) 
    temp_df.sheet_names 
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    [u'Sheet1'] 
    temp_df = temp_df.parse("Sheet1") 
    appended_data.append(temp_df) 
temp_df = pd.concat(appended_data) 
 
 
# Please choose the experimental trials or a specific trial of interest!!! 
trial_name_list = os.listdir(raw_data_path + "/raw_data_Oxygen")[1:] 
 
answer = input( 
    "Do you want to correct/convert DO data of a specific trail? \ 
    Enter y or n: ") 
if answer == "y": 
    trial_name = input("Enter the name of that trial (e.g., 10_Dec): ") 
    while trial_name not in trial_name_list: 
        trial_name = input( 
            "The name is not in the trial_list. Enter the name correctly \ 
            (e.g., 10_Dec): ") 
    trial_name_list = [trial_name] 
elif answer == "n": 
    print("OK. Then, the processing will include all the trials.") 
else: 
    while answer not in ("y", "n"): 
        answer = input("Enter y or n: ") 
        if answer == "y": 
            trial_name_list = input( 
                "Enter the name of that trial (e.g., 10_Dec): ") 
        elif answer == "n": 
            print("OK. Then, the processing includes all trials.") 
        else: 
            print("Please enter y or n.") 
 
start = time.time() 
for trial_name in trial_name_list: 
    print('Started processing of the ' + trial_name + 
          ' data...........................................................') 
 
    stage_list = ['pre', 'main', 'post'] 
    for stage in stage_list: 
        if os.path.isdir(raw_data_path + "/raw_data_Oxygen/" + 
                         trial_name + '/' + stage): 
            os.chdir(raw_data_path + "/raw_data_Oxygen/" + 
                     trial_name + '/' + stage) 
            filelist = glob("*.txt") 
            appended_data = [] 
            counter = 0 
            for filename in filelist: 
                # reading out calibration parameters included in txt files 
                cal_param = pd.read_csv( 
                    filename, sep='delimiter', nrows=30, 
                    error_bad_lines=False, engine='python', names=['col']) 
                phi_0_ = float(cal_param[24:25].col.str[20:25]) 
                phi_100 = float(cal_param[25:26].col.str[20:25]) 
                temp_cal0__ = float(cal_param[24:25].col.str[30:34]) 
                temp_cal100__ = float(cal_param[25:26].col.str[30:34]) 
                # calculating Ksv based on the calibration data 
                Ksv_T100 = Symbol('Ksv_T100') 
                A = ((math.tan(phi_100*math.pi/180))/ 
                     (math.tan((phi_0_)*math.pi/180))*1/m_*Ksv_T100**2) 
                B = ((math.tan(phi_100*math.pi/180))/ 
                     (math.tan((phi_0_)*math.pi/180))* 
                     (Ksv_T100)+(math.tan(phi_100*math.pi/180))/ 
                     (math.tan((phi_0_)*math.pi/180))* 
                     1/m_*(Ksv_T100)-f1__*1/m_*(Ksv_T100)-(Ksv_T100)+ 
                     f1__*(Ksv_T100)) 
                C = ((math.tan(phi_100*math.pi/180)) / 
                     (math.tan((phi_0_)*math.pi/180))-1) 
                equation = ((-B+sqrt((B**2)-4*A*C))/(2*A))-100 
                Ksv_T100__ = solve(equation, Ksv_T100)[1] 
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                oxyg_df = pd.read_csv(filename, encoding="ISO-8859-1", sep=";", 
                                      skiprows=39, skipinitialspace=True, 
                                      names=['Date', 'Time', 'phi_'], 
                                      parse_dates=[0], dayfirst=True, 
                                      usecols=[0, 1, 4]) 
                oxyg_df.loc[:, 'DateTime'] = pd.to_datetime( 
                    oxyg_df['Date'].apply(str)+' '+oxyg_df['Time']) 
                oxyg_df = oxyg_df.set_index( 
                        pd.DatetimeIndex(oxyg_df['DateTime'])) 
                oxyg_df = oxyg_df.resample('30s').mean() 
                ''' 
                # If data collection frequency is > 30s use the following: 
                oxyg_df['phi_'] = oxyg_df['phi_'].apply( 
                        pd.to_numeric).interpolate(axis=0) 
                ''' 
                oxyg_df.reset_index(inplace=True) 
                oxyg_temp_df = pd.merge( 
                    oxyg_df, temp_df, on='DateTime', how='inner') 
                # changes Temp_C from object to float64 
                oxyg_temp_df.loc[:, 'Temp_C'] = ( 
                    oxyg_temp_df['Temp_C'].apply(pd.to_numeric, 
                                errors='coerce')) 
                # calculating temperature-corrected percent_air_sat using \ 
                # the oxyg_air_sat_func 
                oxyg_temp_df.loc[:, 'percent_air_sat'] = oxyg_temp_df.apply( 
                        lambda row: oxyg_air_sat_func(row['phi_'], phi_0_, 
                                                      Ksv_T100__, TCC_phi_, 
                                                      TCC_Ksv_, row['Temp_C'], 
                                                      temp_cal0__, 
                                                      temp_cal100__, m_, 
                                                      f1__), 
                                                      axis=1) 
                # calculating dissolved oxygen concentration in micro_mol_O2  
                # (ymol_per_l) using the oxyg_air_sat_func 
                oxyg_temp_df.loc[:, 'ymol_per_l'] = oxyg_temp_df.apply( 
                    lambda row: oxyg_func(row['percent_air_sat'], 
                                          row['Temp_C'], sal), axis=1) 
                if counter == 0: 
                    oxyg_temp_df = pd.DataFrame( 
                        oxyg_temp_df, columns=['DateTime', 'Temp_C', 
                                               'ymol_per_l', 
                                               'percent_air_sat']) 
                else: 
                    oxyg_temp_df = pd.DataFrame( 
                        oxyg_temp_df, columns=['ymol_per_l', 
                                               'percent_air_sat']) 
                oxyg_temp_df.loc[:, filename[:-4] + 
                               '_ymol_per_l'] = oxyg_temp_df['ymol_per_l'] 
                oxyg_temp_df.loc[:, filename[:-4] + 
                               '_percent_air_sat'] = oxyg_temp_df[ 
                                       'percent_air_sat'] 
                appended_data.append(oxyg_temp_df) 
                counter = counter + 1 
            appended_data = pd.concat(appended_data, axis=1) 
            oxyg_temp_df = appended_data[ 
                    ['DateTime', 'Temp_C', stage + '_C_ymol_per_l', 
                     stage + '_S1_ymol_per_l', stage + '_S2_ymol_per_l', 
                     stage +'_S3_ymol_per_l', stage + '_C_percent_air_sat', 
                     stage + '_S1_percent_air_sat', 
                     stage + '_S2_percent_air_sat', 
                     stage + '_S3_percent_air_sat']] 
 
            oxyg_temp_df = oxyg_temp_df.dropna() 
            oxyg_temp_df.reset_index(inplace=True) 
 
            writer = ExcelWriter(trial_name + '_' + stage + '.xlsx') 
            oxyg_temp_df.to_excel(writer, 'Sheet1') 
            writer.save() 
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end = time.time() 
print(end - start) 
 

Script S2: ‘FOFS_trial-by-trial_processing.py’ 

#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
@author: Jahangir Vajedsamiei (last test date: August 26, 2020) 
 
NOTES: 
- This interactive Script ('FOFS_trial-by-trial_processing.py') processes  
raw-data collected in the three stages of each trial of a FOFS experiment,  
creating data frames and plots of temporal variations in measured variables  
(raw and corrected/converted values) and responses (NOT-standardized by  
the length and weight of the study organisms).  
 
- The main directory of experimental data (e.g., FOFS_test/blank_trials) must  
contain subdirectories termed raw_data_temperature (including °C-temperature  
.xlsx files), raw_data_Chl, and raw_data_Oxygen, the two latter contain  
folders named after the starting dates of the trials (e.g., 10_Dec).  
- Each of these folder has three subfolders named after the three stages of  
trial (i.e., pre, main, and post).  
- Each subfolder includes data sheets of mV-Chl (.CSV) or %air-saturation  
(.xlxs, which are outputs of the DO-calulator.py) that were collected in the  
corresponding stage and trial.  
- In the script, data collected in the control path of the setup (Path_C) are  
denoted by the suffix _C, and data collected in other paths (Path_Sn) have _S1,  
_S2, and _S3 suffices.  
- Notes and explanatory remarks provided throughout the scripts clarify how one  
can use (and revise) the script and how the steps and commands work.   
- Description of techniques used in different steps of  
'FOFS trial-by-trial processing.py' can be found in the method paper.  
 
- For each trial, outputs of this scipt are:  
    (i) an excel sheet containing raw-measurements, converted/corrected  
    measurements and not-standardized responses for the processed main-trial  
    data (e.g., 10_Dec.xlsx),  
    (ii) plots of (raw, trended, converted and corrected) data for all three  
    stages and plots of responses (NOT-standardized by size-characteristics of  
    the study mussels) for the processed main-trial  
    (e.g., 10_Dec_filt_resp_temp_time.pdf), and  
    (iii) tables of descriptive statistics for the 'pre-trial stable-period'  
    and tables of descriptive statistics for the 'post-trial satable-period'  
    including estimated %drift of responses (statistics_Chl_post_10_Dec.xlsx). 
""" 
 
# The modules used in this script 
import os 
from glob import glob as glob 
import pandas as pd 
import matplotlib.pyplot as plt 
from pandas import ExcelWriter 
import numpy as np 
import matplotlib as mpl 
import seaborn as sns 
from wotan import flatten 
import math 
import time 
 
answer = input( 
    "Did you already revise the absolute path to the experimental folder\ 
    (experiment_path) and the variables. Enter y or n: ") 
if answer == "n": 
    print("Please push control+c, manually revise the '###experiment_path'\ 
          and '###variables' below, and then rerun the script.") 
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    print("Push control+c") 
    print("Push control+c") 
    time.sleep(30) 
elif answer == "y": 
    print("Continued...") 
 
 
# Experimental data path definition 
 
experiment_path = "/Users/jahangir/Desktop/FOFS_new_test_/mussel_trials" 
raw_data_path = experiment_path + "/Data" 
 
# Experimental data path edefinition nd 
 
 
# Variables definition (please provide the variables) 
 
flow_rate = 16  # # The flow rate of the pump1 (ml/min) 
Volume = 350  # fluorometry-chamber volume in ml 
fluo_data_collection_frequency = 0.5 # in min 
oxyg_data_collection_frequency = 0.5 # in min 
 
'''The robust m-estimator used for modelling the trend of time-series can \ 
# inlcude 'biweight' or 'welsch' or another robust m-estimator''' 
robust_estimator = 'welsch' 
 
'''Other variables needed for calculation of the dampening_effect correction \ 
coefficient''' 
dt = 5  # the time-window (min) for differencing of food-concentration series  
diff_window = dt/fluo_data_collection_frequency 
 
''' The coefficients for converting the food (Rhodomonas salina) concentration\ 
from mV_Chl to cells/ml. The conversion coefficient should be empirically-\ 
established at a specific reference-temperature for the control sensor of \ 
FOFS (ideally before each experiment)''' 
FC_conversion_coef = 2438/366  # (cells/ml/mV)  
reference_temperature = 18  # (°C) 
 
''' Temperature-specific coefficient for Cyclops 7f fluorometers, i.e., \ 
the change in Chl or food concentration (in percentage) per °C deviation from \ 
the reference temperature.''' 
TS_coef = (-2.2/100)   
 
''' The coefficients for coverting the respired molO2 and ingested R. salina \ 
cells to energy (J), and the assimilation efficiency and the hypothetical food\ 
(Rhodomonas) concentrations used for estimation of SFG''' 
coef_molO2_to_kJ = 450 # 450 kJ/mol O2 (Widdows and Hawkins 1989)) 
coef_cells_to_microJ = 1.75 # 1.75 µJ per (R. salina) cell (Kiørboe et al. 1985) 
assimilation_efficiency = 0.8 
food_conc = [1000, 4000] 
 
''' plotting specifications: provide the values of interest.''' 
min_temp = 16 
max_temp = 31 
max_filt = 110  # ml/min 
min_filt = -10  # ml/min 
max_resp = 0.6  # micromolO2/min 
min_resp = -0.2  # micromolO2/min 
max_SFG = 25  # J/h 
min_SFG = -25  # J/h 
min_percent_air_sat = 70 
max_percent_air_sat = 100 
min_micromol_per_L = 160 
max_micromol_per_L = 270 
min_mvChl = 0 
max_mvChl = 3000 
min_cells_per_mL = 0 
max_cells_per_mL = 7000 
font_size = 14 
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legend_font_size = 13 
fig_width = 6 
fig_height = 2.5 
 
# Variables definition end 
 
 
# Dampening-effect correction-coefficient definition (do not change) 
 
dampening_effect_CC = 1 / \ 
    (1-(1/(math.exp(dt*flow_rate/Volume)))) 
 
# Dampening-effect correction-coefficient definition end 
 
 
# Output-path definition 
 
if not os.path.isdir(experiment_path + "/trial_by_trial_processing_outputs"): 
    os.mkdir(experiment_path + "/trial_by_trial_processing_outputs") 
output_path = experiment_path + "/trial_by_trial_processing_outputs" 
 
if not os.path.isdir(output_path + "/all_plots"): 
    os.mkdir(output_path + "/all_plots") 
    os.mkdir(output_path + "/all_plots/time_series") 
if not os.path.isdir(output_path + "/main_trial_dfs"): 
    os.mkdir(output_path + "/main_trial_dfs") 
if not os.path.isdir(output_path + "/pre_stat_post_drift_tables"): 
    os.mkdir(output_path + "/pre_stat_post_drift_tables") 
    os.mkdir(output_path + "/pre_stat_post_drift_tables/post") 
    os.mkdir(output_path + "/pre_stat_post_drift_tables/post/food") 
    os.mkdir(output_path + "/pre_stat_post_drift_tables/post/oxyg") 
    os.mkdir(output_path + "/pre_stat_post_drift_tables/pre") 
    os.mkdir(output_path + "/pre_stat_post_drift_tables/pre/food") 
    os.mkdir(output_path + "/pre_stat_post_drift_tables/pre/oxyg") 
 
# Output-path definition end 
 
 
# Make the complete experimental temperature dataframe 
os.chdir(raw_data_path + "/raw_data_temperature") 
temp_filenames = glob("*.xlsx") 
appended_data = [] 
for temp_filename in temp_filenames: 
    temp_df = pd.ExcelFile(temp_filename) 
    temp_df.sheet_names 
    [u'Sheet1'] 
    temp_df = temp_df.parse("Sheet1") 
    appended_data.append(temp_df) 
temp_df = pd.concat(appended_data) 
 
# Input the name(s) of the trial or trials of interest to process!!! 
trial_name_list = os.listdir(raw_data_path + "/raw_data_Chl")[1:] 
 
answer = input("Do you want to work on a specific trail? Enter y or n: ") 
if answer == "y": 
    trial_name = input("Enter the name of that trial (e.g., 04_nov): ") 
    while trial_name not in trial_name_list: 
        trial_name = input( 
            "The name is not in the trial_list. Enter the name correctly\ 
            (e.g., 10_Dec): ") 
    trial_name_list = [trial_name] 
elif answer == "n": 
    print("OK. Then, the processing will include all the trials.") 
else: 
    while answer not in ("y", "n"): 
        answer = input("Enter y or n: ") 
        if answer == "y": 
            trial_name_list = input( 
                "Enter the name of that trial (e.g., 04_nov): ") 
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        elif answer == "n": 
            print("OK. Then, the processing includes all trials.") 
        else: 
            print("Please enter y or n.") 
 
for trial_name in trial_name_list: 
    print('Started processing of the ' + trial_name + 
          ' data...........................................................') 
##########(1)##########(1)##########(1)##########(1)##########(1)##########(1) 
########## Step 1 (filtration and feeding rates) 
 
    ''' Read in mV-Chl recorded by each sensor, extract the robust-estimated \ 
    trend, merge trended data with temp_df, correct the temperature-effect  \ 
    and finally merge 4 Chl_temp_dfs to create the pre_Chl_temp_df.''' 
    os.chdir(raw_data_path + "/raw_data_Chl/" + trial_name + "/pre") 
    filelist = glob("*.csv") 
    appended_data = [] 
    counter = 0 
    for filename in filelist: 
        Chl_df = pd.read_csv(filename, encoding='utf-8', sep=",", 
                             names=['Date', 'Time', 'Gain', 
                                    filename[:-4]+'_mV_Chl'], 
                                    header=0, usecols=[0, 1, 2, 3]) 
        Chl_df['DateTime'] = pd.to_datetime( 
            Chl_df['Date'].apply(str)+' '+Chl_df['Time']) 
        Chl_df = Chl_df.reset_index() 
        # extracting the robust estimated trend   
        flatten_lc1, trend_lc1 = flatten(Chl_df['index'], 
                                         Chl_df[filename[:-4]+'_mV_Chl'], 
                                         method=robust_estimator, 
                                         window_length=60, cval=5, 
                                         return_trend=True) 
        Chl_df[filename[:-4] + '_mV_Chl' + '_Trend'] = pd.Series(trend_lc1) 
        Chl_df = Chl_df.set_index('DateTime').resample('30S').last() 
        Chl_df.reset_index(inplace=True) 
        Chl_temp_df = pd.merge(Chl_df, temp_df, on='DateTime', how='inner') 
        Chl_temp_df['Temp_C'] = Chl_temp_df['Temp_C'].apply( 
            pd.to_numeric, errors='coerce')  # from object to float64 
        # temperature compensation (TC) 
        Chl_temp_df[filename[:-4] + '_mV_Chl' + '_Trend_TC'] = ( 
                Chl_temp_df[filename[:-4] + '_mV_Chl' + '_Trend']/ 
                (1 + ((Chl_temp_df['Temp_C'] - reference_temperature)* 
                      TS_coef))) 
        if counter == 0: 
            Chl_temp_df = pd.DataFrame( 
                    Chl_temp_df, columns=['DateTime', 'Temp_C', 
                                          filename[:-4]+'_mV_Chl', 
                                          filename[:-4] + '_mV_Chl' + '_Trend', 
                                          filename[:-4] + '_mV_Chl' + '_Trend_TC']) 
        else: 
            Chl_temp_df = pd.DataFrame( 
                    Chl_temp_df, columns=[filename[:-4]+'_mV_Chl', 
                                          filename[:-4] + '_mV_Chl' + '_Trend', 
                                          filename[:-4] + '_mV_Chl' + '_Trend_TC']) 
        appended_data.append(Chl_temp_df) 
        counter = counter + 1 
    appended_data = pd.concat(appended_data, axis=1) 
    pre_Chl_temp_df = appended_data.reset_index() 
 
    with pd.option_context('display.max_rows', 100, 'display.max_columns', None): 
        print(pre_Chl_temp_df) 
 
    ''' Plot raw, temperature-corrected, and trended mV_Chl time-seies \ 
    of the pre_trial for visuall-checking of the Trend modelling and \ 
    determining 'pre-trial stable-period' over which variation in measurements \ 
    of all sensors are stable (the real concentrations in different paths \ 
    are comparable while the absolute value of records are dissimilar).''' 
    # define the path for plot-saving 
    if not os.path.isdir(output_path + "/all_plots/time_series/" + trial_name): 
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        os.mkdir(output_path + "/all_plots/time_series/" + trial_name) 
        os.chdir(output_path + "/all_plots/time_series/" + trial_name) 
    else: 
        os.chdir(output_path + "/all_plots/time_series/" + trial_name) 
    # Plot 
    mpl.rcParams["font.size"] = font_size 
    sns.set_style("white") 
    sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})  
    fig = plt.figure(figsize=(fig_width, fig_height)) 
    ax = fig.add_subplot(111) 
    lns1 = ax.plot(pre_Chl_temp_df["index"], pre_Chl_temp_df["pre_C_mV_Chl"], 
                   label='C', color='limegreen', linestyle='-', linewidth=1, alpha=0.5) 
    lns2 = ax.plot(pre_Chl_temp_df["index"], pre_Chl_temp_df["pre_S1_mV_Chl"], 
                   label='S1', color='steelblue', linestyle='-', linewidth=1, alpha=0.5) 
    lns3 = ax.plot(pre_Chl_temp_df["index"], pre_Chl_temp_df["pre_S2_mV_Chl"], 
                   label='S2', color='blue', linestyle='-', linewidth=1, alpha=0.5) 
    lns4 = ax.plot(pre_Chl_temp_df["index"], pre_Chl_temp_df["pre_S3_mV_Chl"], 
                   label='S3', color='deepskyblue', linestyle='-', linewidth=1, alpha=0.5) 
    lns5 = ax.plot(pre_Chl_temp_df["index"], pre_Chl_temp_df["pre_C_mV_Chl_Trend"], 
                   label='C', color='limegreen', linestyle='-', linewidth=2) 
    lns6 = ax.plot(pre_Chl_temp_df["index"], pre_Chl_temp_df["pre_S1_mV_Chl_Trend"], 
                   label='S1', color='steelblue', linestyle='-', linewidth=2) 
    lns7 = ax.plot(pre_Chl_temp_df["index"], pre_Chl_temp_df["pre_S2_mV_Chl_Trend"], 
                   label='S2', color='blue', linestyle='-', linewidth=2) 
    lns8 = ax.plot(pre_Chl_temp_df["index"], pre_Chl_temp_df["pre_S3_mV_Chl_Trend"], 
                   label='S3', color='deepskyblue', linestyle='-', linewidth=2) 
    lns9 = ax.plot(pre_Chl_temp_df["index"], pre_Chl_temp_df["pre_C_mV_Chl_Trend_TC"], 
                   label='C', color='black', linestyle=':', linewidth=1) 
    lns10 = ax.plot(pre_Chl_temp_df["index"], pre_Chl_temp_df["pre_S1_mV_Chl_Trend_TC"], 
                   label='S1', color='black', linestyle=':', linewidth=1) 
    lns11 = ax.plot(pre_Chl_temp_df["index"], pre_Chl_temp_df["pre_S2_mV_Chl_Trend_TC"], 
                   label='S2', color='black', linestyle=':', linewidth=1) 
    lns12 = ax.plot(pre_Chl_temp_df["index"], pre_Chl_temp_df["pre_S3_mV_Chl_Trend_TC"], 
                   label='S3', color='black', linestyle=':', linewidth=1) 
    ax.set_xlabel('Cumulative time (' + str(fluo_data_collection_frequency) + ' min)') 
    ax.set_ylabel('Chl (mV)') 
    ax1 = fig.add_subplot(111) 
    ax1 = ax.twinx() 
    lns13 = ax1.plot(pre_Chl_temp_df["index"], pre_Chl_temp_df["Temp_C"], 
                    label='Temperature', color='darkred', linestyle='-', linewidth=1) 
    ax1.set_yticks(np.arange(min_temp, max_temp, 3)) 
    ax1.set_ylim(bottom=min_temp-1) 
    ax1.set_ylabel("Temperature (°C)") 
    lns = lns5+lns6+lns7+lns8 
    labs = [l.get_label() for l in lns] 
    leg = plt.legend(lns, labs, ncol=4, loc='upper center', prop={'size': legend_font_size}, 
                     fancybox=False, frameon=False, bbox_to_anchor=(0.5, 1.2), 
                     framealpha=0.7) 
    # set the linewidth of each legend object 
    for legobj in leg.legendHandles: 
        legobj.set_linewidth(3.0) 
 
    ax1.tick_params(axis='y', colors='darkred') 
    ax1.yaxis.label.set_color('darkred') 
    plt.savefig(trial_name + '_pre_mVChl_raw_vs_trend_TC.pdf', 
                bbox_inches='tight') 
    plt.show() 
    plt.pause(0.001) 
    #input("Press [enter] to continue.") 
 
    # Choose the stable interval based on the plot and the data frame presented  
    # in the Console 
    while True: 
        try: 
            start_stable_data = int(input( 
                'Please provide start_stable_data as an integer based on the\ 
                plot and the data frame presented in the Console (the stable\ 
                data interval usually include the last (120 or less) data points): ')) 
            if start_stable_data < 5 or start_stable_data > \ 
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            (max(pre_Chl_temp_df["index"]-2)): 
                raise ValueError   
            break 
        except ValueError: 
            print("Invalid integer. The input is out of range or not an integer!") 
 
    while True: 
        try: 
            end_stable_data = int(input( 
                'Please provide end_stable_data as an integer (based on the \ 
                plot and the data frame presented in the Console): ')) 
            if end_stable_data < start_stable_data or \ 
            end_stable_data > max(pre_Chl_temp_df["index"]): 
                raise ValueError   
            break 
        except ValueError: 
            print("Invalid integer. The input is out of range or not an integer!") 
 
    # Crop the 'pre-trial stable-period'. 
    mask = (pre_Chl_temp_df["index"] >= start_stable_data) & ( 
        pre_Chl_temp_df["index"] <= end_stable_data) 
    pre_Chl_temp_df = pre_Chl_temp_df.loc[mask] 
 
    ''' Calculate descriptive statistics for the 'pre-trial stable-period'.  
    the mean value of the trended and temperature-corrected mV_Chl data \ 
    collected by each sensor over the ‘pre-trial stable-period’ will be used \ 
    as the reference-value for converting main-trial data of the sensor to \ 
    percent_Chl (later in the processing).'''  
    statistics_Chl_pre = pre_Chl_temp_df.describe() 
    os.chdir(output_path + "/pre_stat_post_drift_tables/pre/food") 
    writer = ExcelWriter('statistics_Chl_pre_' + trial_name + '.xlsx') 
    statistics_Chl_pre.to_excel(writer, 'Sheet1') 
    writer.save() 
 
    # Create the main_Chl_temp_df (similar to the pre-trial procedure) 
    os.chdir(raw_data_path + "/raw_data_Chl/" + trial_name + "/main") 
    filelist = glob("*") 
    appended_data = [] 
    counter = 0 
    for filename in filelist: 
        os.chdir(raw_data_path + "/raw_data_Chl/" + trial_name + "/main") 
        Chl_df = pd.read_csv(filename, encoding='utf-8', sep=",", 
                             names=['Date', 'Time', 'Gain', filename[:-4]+'_mV_Chl'], 
                             header=0, usecols=[0, 1, 2, 3]) 
        Chl_df.loc[:, 'DateTime'] = pd.to_datetime( 
            Chl_df['Date'].apply(str)+' '+Chl_df['Time']) 
        Chl_df = Chl_df.reset_index() 
        # producing the robust estimated trend  
        flatten_lc1, trend_lc1 = flatten( 
                Chl_df['index'], Chl_df[filename[:-4]+'_mV_Chl'], 
                method=robust_estimator, window_length=60, cval=5, 
                return_trend=True) 
        Chl_df[filename[:-4] + '_mV_Chl' + '_Trend'] = pd.Series(trend_lc1) 
        Chl_df = Chl_df.set_index('DateTime').resample('30S').last() 
        Chl_df.reset_index(inplace=True) 
        # merging two dataframes while keeping the overlapping ones 
        Chl_temp_df = pd.merge(Chl_df, temp_df, on='DateTime', how='inner') 
        Chl_temp_df.loc[:, 'Temp_C'] = Chl_temp_df['Temp_C'].apply( 
            pd.to_numeric, errors='coerce')  # from object to float64 
         
        # temperature compensation (TC) 
        Chl_temp_df[filename[:-4] + '_mV_Chl' + '_Trend_TC'] = ( 
                Chl_temp_df[filename[:-4] + '_mV_Chl' + '_Trend']/ 
                (1 + ((Chl_temp_df['Temp_C'] - reference_temperature)*TS_coef))) 
         
        if counter == 0: 
            Chl_temp_df = pd.DataFrame( 
                    Chl_temp_df, columns=['DateTime', 'Temp_C', 
                                          filename[:-4]+'_mV_Chl', 
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                                          filename[:-4] + '_mV_Chl' + '_Trend', 
                                          filename[:-4] + '_mV_Chl' + '_Trend_TC']) 
        else: 
            Chl_temp_df = pd.DataFrame( 
                    Chl_temp_df, columns=[filename[:-4]+'_mV_Chl', 
                                          filename[:-4] + '_mV_Chl' + '_Trend', 
                                          filename[:-4] + '_mV_Chl' + '_Trend_TC']) 
        appended_data.append(Chl_temp_df) 
        counter = counter + 1 
    Chl_temp_df_main = pd.concat(appended_data, axis=1).reset_index() 
 
    # Plot 
    if not os.path.isdir(output_path + "/all_plots/time_series/" + trial_name): 
        os.mkdir(output_path + "/all_plots/time_series/" + trial_name) 
        os.chdir(output_path + "/all_plots/time_series/" + trial_name) 
    else: 
        os.chdir(output_path + "/all_plots/time_series/" + trial_name) 
    mpl.rcParams["font.size"] = font_size 
    sns.set_style("white") 
    sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})  
    fig = plt.figure(figsize=(fig_width, fig_height)) 
    ax = fig.add_subplot(111) 
    lns1 = ax.plot(Chl_temp_df_main["index"], Chl_temp_df_main["main_C_mV_Chl"], 
                   label='C', color='limegreen', linestyle='-', linewidth=0.2, alpha=0.5) 
    lns2 = ax.plot(Chl_temp_df_main["index"], Chl_temp_df_main["main_S1_mV_Chl"], 
                   label='S1', color='steelblue', linestyle='-', linewidth=0.2, alpha=0.5) 
    lns3 = ax.plot(Chl_temp_df_main["index"], Chl_temp_df_main["main_S2_mV_Chl"], 
                   label='S2', color='blue', linestyle='-', linewidth=0.2, alpha=0.5) 
    lns4 = ax.plot(Chl_temp_df_main["index"], Chl_temp_df_main["main_S3_mV_Chl"], 
                   label='S3', color='deepskyblue', linestyle='-', linewidth=0.2, alpha=0.5) 
    lns5 = ax.plot(Chl_temp_df_main["index"], Chl_temp_df_main["main_C_mV_Chl_Trend"], 
                   label='C', color='limegreen', linestyle='-', linewidth=1) 
    lns6 = ax.plot(Chl_temp_df_main["index"], Chl_temp_df_main["main_S1_mV_Chl_Trend"], 
                   label='S1', color='steelblue', linestyle='-', linewidth=1) 
    lns7 = ax.plot(Chl_temp_df_main["index"], Chl_temp_df_main["main_S2_mV_Chl_Trend"], 
                   label='S2', color='blue', linestyle='-', linewidth=1) 
    lns8 = ax.plot(Chl_temp_df_main["index"], Chl_temp_df_main["main_S3_mV_Chl_Trend"], 
                   label='S3', color='deepskyblue', linestyle='-', linewidth=1) 
    lns9 = ax.plot(Chl_temp_df_main["index"], Chl_temp_df_main["main_C_mV_Chl_Trend_TC"], 
                   label='C', color='black', linestyle=':', linewidth=0.2) 
    lns10 = ax.plot(Chl_temp_df_main["index"], Chl_temp_df_main["main_S1_mV_Chl_Trend_TC"], 
                   label='S1', color='black', linestyle=':', linewidth=0.2) 
    lns11 = ax.plot(Chl_temp_df_main["index"], Chl_temp_df_main["main_S2_mV_Chl_Trend_TC"], 
                   label='S2', color='black', linestyle=':', linewidth=0.2) 
    lns12 = ax.plot(Chl_temp_df_main["index"], Chl_temp_df_main["main_S3_mV_Chl_Trend_TC"], 
                   label='S3', color='black', linestyle=':', linewidth=0.2) 
    ax.set_xlabel('Cumulative time (' + str(fluo_data_collection_frequency) + ' min)') 
    ax.set_ylabel('Chl (mV)') 
    ax1 = fig.add_subplot(111) 
    ax1 = ax.twinx() 
    lns13 = ax1.plot(Chl_temp_df_main["index"], Chl_temp_df_main["Temp_C"], 
                    label='Temperature', color='darkred', linestyle='-', 
                    linewidth=1) 
    ax1.set_yticks(np.arange(min_temp, max_temp, 3)) 
    ax1.set_ylim(bottom=min_temp-1) 
    ax1.set_ylabel("Temperature (°C)") 
    lns = lns5+lns6+lns7+lns8 
    labs = [l.get_label() for l in lns] 
    leg = plt.legend(lns, labs, ncol=4, loc='upper center', 
                     prop={'size': legend_font_size}, fancybox=False,  
                     frameon=False, bbox_to_anchor=(0.5, 1.2), framealpha=0.7) 
    # set the linewidth of each legend object 
    for legobj in leg.legendHandles: 
        legobj.set_linewidth(3.0) 
    ax1.tick_params(axis='y', colors='darkred') 
    ax1.yaxis.label.set_color('darkred') 
    plt.savefig(trial_name + '_main_mVChl_raw_vs_trend_TC.pdf', 
                bbox_inches='tight') 
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    ############################################################################### 
 
    food_temp_feed_filt_df = Chl_temp_df_main 
     
    ''' Calculate percent_Chl (accounting for inherent differences in the \ 
    absolute sensors' readouts)''' 
    food_temp_feed_filt_df.loc[:, 'percent_C'] = ( 
        (food_temp_feed_filt_df['main_C_mV_Chl_Trend_TC']/ 
         statistics_Chl_pre.at["mean", "pre_C_mV_Chl_Trend_TC"])*100) 
    food_temp_feed_filt_df.loc[:, 'percent_S1'] = ( 
        (food_temp_feed_filt_df['main_S1_mV_Chl_Trend_TC']/ 
         statistics_Chl_pre.at["mean", "pre_S1_mV_Chl_Trend_TC"])*100) 
    food_temp_feed_filt_df.loc[:, 'percent_S2'] = ( 
        (food_temp_feed_filt_df['main_S2_mV_Chl_Trend_TC']/ 
         statistics_Chl_pre.at["mean", "pre_S2_mV_Chl_Trend_TC"])*100) 
    food_temp_feed_filt_df.loc[:, 'percent_S3'] = ( 
        (food_temp_feed_filt_df['main_S3_mV_Chl_Trend_TC']/ 
         statistics_Chl_pre.at["mean", "pre_S3_mV_Chl_Trend_TC"])*100) 
 
    # to prevent an error related to D&T 
    food_temp_feed_filt_df = food_temp_feed_filt_df[( 
        food_temp_feed_filt_df['DateTime'] > '2018-01-01')] 
 
    ''' Estimate the initial concentration (cells/ml) based on the mean values  
    over 'pre-trial stable-period' and the empirical conversion coefficient''' 
    initial_concentration_cells_per_ml = statistics_Chl_pre.at[ 
            "mean", "pre_C_mV_Chl_Trend_TC"]*FC_conversion_coef 
                          
    ''' Convert main-trial food concentration data from percentage to  
    cells_per_ml''' 
    food_temp_feed_filt_df.loc[:, 'cells_per_ml_C'] = ( 
        food_temp_feed_filt_df['percent_C']* 
        initial_concentration_cells_per_ml)/100 
    food_temp_feed_filt_df.loc[:, 'cells_per_ml_S1'] = ( 
        food_temp_feed_filt_df['percent_S1']* 
        initial_concentration_cells_per_ml)/100 
    food_temp_feed_filt_df.loc[:, 'cells_per_ml_S2'] = ( 
        food_temp_feed_filt_df['percent_S2']* 
        initial_concentration_cells_per_ml)/100 
    food_temp_feed_filt_df.loc[:, 'cells_per_ml_S3'] = ( 
        food_temp_feed_filt_df['percent_S3']* 
        initial_concentration_cells_per_ml)/100 
 
 
    ### Dampening-effect correction (DC) 
    dampened_cols = [i for i in list( 
        food_temp_feed_filt_df) if 'cells_per_ml' in i] 
 
    for i in dampened_cols: 
        ''' The data column is differenced (diff-window specified in the \ 
        'Variables' section). The differences are corrected applying the \ 
        'dampening_effect_CC' (specified in the 'Variables' section). The \ 
        corrected-differences are added back the original data column.''' 
        food_temp_feed_filt_df[i + '_diff_DC'] = ( 
            food_temp_feed_filt_df[i].diff(int(diff_window)). 
            shift(- int(diff_window)).mul(dampening_effect_CC)) 
        food_temp_feed_filt_df['DC_' + i] = food_temp_feed_filt_df[i] + \ 
            food_temp_feed_filt_df[i + '_diff_DC'] 
             
        '''The secondry trending (ST) is needed to remove the noise \ 
        boosted by the dampening-effect correction.''' 
        flatten_lc1, trend_lc1 = flatten(food_temp_feed_filt_df['index'], 
                                         food_temp_feed_filt_df['DC_' + i], 
                                         method=robust_estimator, 
                                         window_length=40, cval=5, 
                                         return_trend=True) 
        food_temp_feed_filt_df['ST_' + 'DC_' + i] = pd.Series(trend_lc1).fillna(0)  
         
        # Plot 
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        mpl.rcParams["font.size"] = font_size 
        sns.set_style("white") 
        sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})  
        fig = plt.figure(figsize=(fig_width, fig_height)) 
        ax = fig.add_subplot(111) 
        lns1 = ax.plot(food_temp_feed_filt_df['DC_' + i][:-20], 
                       label=' DC-food', color='lightblue', linestyle='-', linewidth=1) 
        lns2 = ax.plot(food_temp_feed_filt_df['ST_' + 'DC_' + i][:-20], 
                       label=' ST-DC-food', color='blue', linestyle='-', linewidth=1) 
        lns3 = ax.plot( 
            food_temp_feed_filt_df[i][:-20], label=' D-food', color='black', 
            linestyle='-', linewidth=1) 
        ax.set_xlabel('Cumulative time' + ' (' + str(fluo_data_collection_frequency) + ' min)') 
        ax.set_ylabel(r"Food (cells mL$^{-1}$)") 
        ax.set_ylim(-max(food_temp_feed_filt_df['DC_' + i])/20, max( 
            food_temp_feed_filt_df['DC_' + i]) + max(food_temp_feed_filt_df['DC_' + i])/20) 
        ax1 = fig.add_subplot(111) 
        ax1 = ax.twinx() 
        lns4 = ax1.plot(food_temp_feed_filt_df["index"], food_temp_feed_filt_df["Temp_C"], 
                        label='Temperature', color='darkred', linestyle='-', linewidth=1) 
        ax1.set_yticks(np.arange(min_temp, max_temp, 3)) 
        ax1.set_ylim(bottom=min_temp-1) 
        ax1.set_ylabel("Temperature (°C)") 
        lns = lns3+lns1+lns2 
        labs = [l.get_label() for l in lns] 
        leg = plt.legend(lns, labs, ncol=3, loc='upper center', 
                         prop={'size': legend_font_size}, 
                         fancybox=False, frameon=False, 
                         bbox_to_anchor=(0.5, 1.2), framealpha=0.7) 
        # set the linewidth of each legend object 
        for legobj in leg.legendHandles: 
            legobj.set_linewidth(3.0) 
        ax1.tick_params(axis='y', colors='darkred') 
        ax1.yaxis.label.set_color('darkred') 
        plt.savefig(trial_name + '_' + i + '_dampening_correction' + 
                    '.pdf', bbox_inches='tight') 
        plt.pause(0.001) 
       
         
    '''Filtration and feeding rates are calculated based on secondary-trended  
    dampening-corrected food-concentration (ST_DC_cells_per_ml).''' 
    food_temp_feed_filt_df.loc[:, 'filt_ml_per_min_S1'] = ( 
            (food_temp_feed_filt_df["ST_DC_cells_per_ml_C"] - 
             food_temp_feed_filt_df["ST_DC_cells_per_ml_S1"])/ 
             food_temp_feed_filt_df["ST_DC_cells_per_ml_S1"]) * flow_rate 
    food_temp_feed_filt_df.loc[:, 'filt_ml_per_min_S2'] = ( 
            (food_temp_feed_filt_df["ST_DC_cells_per_ml_C"] - 
             food_temp_feed_filt_df["ST_DC_cells_per_ml_S2"])/ 
             food_temp_feed_filt_df["ST_DC_cells_per_ml_S2"]) * flow_rate 
    food_temp_feed_filt_df.loc[:, 'filt_ml_per_min_S3'] = ( 
            (food_temp_feed_filt_df["ST_DC_cells_per_ml_C"] - 
             food_temp_feed_filt_df["ST_DC_cells_per_ml_S3"])/ 
             food_temp_feed_filt_df["ST_DC_cells_per_ml_S3"]) * flow_rate 
    food_temp_feed_filt_df.loc[:, 'feed_cells_per_min_S1'] = ( 
        food_temp_feed_filt_df['ST_DC_cells_per_ml_C']- 
        food_temp_feed_filt_df['ST_DC_cells_per_ml_S1']) * flow_rate 
    food_temp_feed_filt_df.loc[:, 'feed_cells_per_min_S2'] = ( 
        food_temp_feed_filt_df['ST_DC_cells_per_ml_C']- 
        food_temp_feed_filt_df['ST_DC_cells_per_ml_S2']) * flow_rate 
    food_temp_feed_filt_df.loc[:, 'feed_cells_per_min_S3'] = ( 
        food_temp_feed_filt_df['ST_DC_cells_per_ml_C']- 
        food_temp_feed_filt_df['ST_DC_cells_per_ml_S3']) * flow_rate 
      
    
##########(2)##########(2)##########(2)##########(2)##########(2)##########(2) 
########## Step 2 (Respiration rate)  
     
    ''' Read in data already corrected using 'Dissolved-oxygen calculator.py'  
    and extract the robust estimated trends.''' 
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    os.chdir(raw_data_path + "/raw_data_Oxygen/" + trial_name + "/pre") 
    filename = glob("*.xlsx") 
    pre_oxyg_temp_df = pd.ExcelFile(filename[0]) 
    pre_oxyg_temp_df.sheet_names 
    [u'Sheet1'] 
    pre_oxyg_temp_df = pre_oxyg_temp_df.parse("Sheet1") 
    pre_oxyg_temp_df = pre_oxyg_temp_df.reset_index() 
 
    oxyg_cols = [i for i in list(pre_oxyg_temp_df) if 'pre_' in i] 
    for i in oxyg_cols: 
        # producing robust time-series models using robust_estimators 
        flatten_lc1, trend_lc1 = flatten(pre_oxyg_temp_df['index'], pre_oxyg_temp_df[i], 
                                         method=robust_estimator, window_length=60, 
                                         cval=5, return_trend=True) 
        pre_oxyg_temp_df[i + '_Trend'] = pd.Series(trend_lc1) 
         
    with pd.option_context('display.max_rows', 100, 'display.max_columns', None): 
        print(pre_oxyg_temp_df) 
 
    # Change the path for plot-saving 
    if not os.path.isdir(output_path + "/all_plots/time_series/" + trial_name): 
        os.mkdir(output_path + "/all_plots/time_series/" + trial_name) 
        os.chdir(output_path + "/all_plots/time_series/" + trial_name) 
    else: 
        os.chdir(output_path + "/all_plots/time_series/" + trial_name) 
     
    ''' Plot raw and trended percent_air_sat time-seies of the pre_trial for \ 
    visuall-checking of the Trend modelling and determining 'pre-trial \ 
    stable-period' over which variation in measurements of all sensors are \ 
    stable (the real concentrations in different paths are comparable while \ 
    the absolute value of records are dissimilar).''' 
    mpl.rcParams["font.size"] = font_size 
    sns.set_style("white") 
    sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})  
    fig = plt.figure(figsize=(fig_width, fig_height)) 
    ax = fig.add_subplot(111) 
    lns1 = ax.plot(pre_oxyg_temp_df["index"], pre_oxyg_temp_df["pre_C_percent_air_sat"], 
                   label='C', color='limegreen', linestyle='-', linewidth=1, alpha=0.5) 
    lns2 = ax.plot(pre_oxyg_temp_df["index"], pre_oxyg_temp_df["pre_S1_percent_air_sat"], 
                   label='S1', color='steelblue', linestyle='-', linewidth=1, alpha=0.5) 
    lns3 = ax.plot(pre_oxyg_temp_df["index"], pre_oxyg_temp_df["pre_S2_percent_air_sat"], 
                   label='S2', color='blue', linestyle='-', linewidth=1, alpha=0.5) 
    lns4 = ax.plot(pre_oxyg_temp_df["index"], pre_oxyg_temp_df["pre_S3_percent_air_sat"], 
                   label='S3', color='deepskyblue', linestyle='-', linewidth=1, alpha=0.5) 
    lns5 = ax.plot(pre_oxyg_temp_df["index"], pre_oxyg_temp_df["pre_C_percent_air_sat_Trend"], 
                   label='C', color='limegreen', linestyle='-', linewidth=2) 
    lns6 = ax.plot(pre_oxyg_temp_df["index"], pre_oxyg_temp_df["pre_S1_percent_air_sat_Trend"], 
                   label='S1', color='steelblue', linestyle='-', linewidth=2) 
    lns7 = ax.plot(pre_oxyg_temp_df["index"], pre_oxyg_temp_df["pre_S2_percent_air_sat_Trend"], 
                   label='S2', color='blue', linestyle='-', linewidth=2) 
    lns8 = ax.plot(pre_oxyg_temp_df["index"], pre_oxyg_temp_df["pre_S3_percent_air_sat_Trend"], 
                   label='S3', color='deepskyblue', linestyle='-', linewidth=2) 
    ax.set_xlabel('Cumulative time (' + str(oxyg_data_collection_frequency) + ' min)') 
    ax.set_ylabel('Diss. O$_2$ (% air sat.)') 
    ax1 = fig.add_subplot(111) 
    ax1 = ax.twinx() 
    lns9 = ax1.plot(pre_oxyg_temp_df["index"], pre_oxyg_temp_df["Temp_C"], 
                    label='Temperature', color='darkred', linestyle='-', linewidth=1) 
    ax1.set_ylabel("Temperature (°C)") 
    ax1.set_yticks(np.arange(min_temp, max_temp, 3)) 
    ax1.set_ylim(bottom=min_temp-1) 
    lns = lns5+lns6+lns7+lns8 
    labs = [l.get_label() for l in lns] 
    leg = plt.legend(lns, labs, ncol=4, loc='upper center', prop={'size': legend_font_size}, 
                     fancybox=False, frameon=False, bbox_to_anchor=(0.5, 1.2), 
                     framealpha=0.7) 
    # set the linewidth of each legend object 
    for legobj in leg.legendHandles: 
        legobj.set_linewidth(3.0) 
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    ax1.tick_params(axis='y', colors='darkred') 
    ax1.yaxis.label.set_color('darkred') 
    plt.savefig(trial_name + '_pre_oxyg_raw_vs_trended.pdf', bbox_inches='tight') 
    plt.show() 
    plt.pause(0.001) 
 
    while True: 
        try: 
            start_stable_data = int(input( 
                'Please provide start_stable_data as an integer based on the\ 
                plot and the data frame presented in the Console (the stable\ 
                data interval usually include the last 120 or more minutes): ')) 
            if start_stable_data < 0 or start_stable_data > \ 
            (max(pre_oxyg_temp_df["index"]-2)): 
                raise ValueError   
            break 
        except ValueError: 
            print("Invalid integer. The input is out of range or not an integer!") 
 
    while True: 
        try: 
            end_stable_data = int( 
                input('Please provide end_stable_data as an integer: ')) 
            if end_stable_data < start_stable_data or end_stable_data > \ 
            max(pre_oxyg_temp_df["index"]): 
                raise ValueError   
            break 
        except ValueError: 
            print("Invalid integer. The input is out of range or not an integer!") 
     
    # Crop the 'pre-trial stable-period'. 
    mask = (pre_oxyg_temp_df["index"] >= start_stable_data) & ( 
        pre_oxyg_temp_df["index"] <= end_stable_data) 
    pre_oxyg_temp_df = pre_oxyg_temp_df.loc[mask] 
     
    '''The differences between the measurements of the sensors of Path_Sn and \ 
    Path_C (over the pre-trial stable-period) is calculated.''' 
    pre_oxyg_temp_df.loc[:, 'pre_C_minus_S1_percent_air_sat'] = ( 
        pre_oxyg_temp_df['pre_C_percent_air_sat_Trend'] - 
        pre_oxyg_temp_df['pre_S1_percent_air_sat_Trend']) 
    pre_oxyg_temp_df.loc[:, 'pre_C_minus_S2_percent_air_sat'] = ( 
        pre_oxyg_temp_df['pre_C_percent_air_sat_Trend'] - 
        pre_oxyg_temp_df['pre_S2_percent_air_sat_Trend']) 
    pre_oxyg_temp_df.loc[:, 'pre_C_minus_S3_percent_air_sat'] = ( 
        pre_oxyg_temp_df['pre_C_percent_air_sat_Trend'] - 
        pre_oxyg_temp_df['pre_S3_percent_air_sat_Trend']) 
 
    pre_oxyg_temp_df.loc[:, 'pre_C_minus_S1_ymol_per_l_Trend'] = ( 
        pre_oxyg_temp_df['pre_C_ymol_per_l_Trend'] - 
        pre_oxyg_temp_df['pre_S1_ymol_per_l_Trend']) 
    pre_oxyg_temp_df.loc[:, 'pre_C_minus_S2_ymol_per_l_Trend'] = ( 
        pre_oxyg_temp_df['pre_C_ymol_per_l_Trend'] - 
        pre_oxyg_temp_df['pre_S2_ymol_per_l_Trend']) 
    pre_oxyg_temp_df.loc[:, 'pre_C_minus_S3_ymol_per_l_Trend'] = ( 
        pre_oxyg_temp_df['pre_C_ymol_per_l_Trend'] - 
        pre_oxyg_temp_df['pre_S3_ymol_per_l_Trend']) 
 
    ''' Calculate descriptive statistics of the 'pre-trial stable-data'.'''  
    os.chdir(output_path + "/pre_stat_post_drift_tables/pre/oxyg") 
    statistics_oxyg_pre = pre_oxyg_temp_df.describe() 
    writer = ExcelWriter('statistics_oxyg_pre_' + trial_name + '.xlsx') 
    statistics_oxyg_pre.to_excel(writer, 'Sheet1') 
    writer.save() 
 
    # Create main_oxyg_temp_df 
    # main 
    os.chdir(raw_data_path + "/raw_data_Oxygen/" + trial_name + "/main") 
    filename = glob("*.xlsx") 
    main_oxyg_temp_df = pd.ExcelFile(filename[0]) 
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    main_oxyg_temp_df.sheet_names 
    [u'Sheet1'] 
    main_oxyg_temp_df = main_oxyg_temp_df.parse("Sheet1") 
    main_oxyg_temp_df = main_oxyg_temp_df.reset_index() 
 
    oxyg_cols = [i for i in list(main_oxyg_temp_df) if 'main_' in i] 
    for i in oxyg_cols: 
        # producing robust time-series models using robust_estimators 
        flatten_lc1, trend_lc1 = flatten(main_oxyg_temp_df['index'], 
                                         main_oxyg_temp_df[i], 
                                         method=robust_estimator, 
                                         window_length=40, cval=5, 
                                         return_trend=True) 
        main_oxyg_temp_df[i + '_Trend'] = pd.Series(trend_lc1) 
 
    # change the path  
    if not os.path.isdir(output_path + "/all_plots/time_series/" + trial_name): 
        os.mkdir(output_path + "/all_plots/time_series/" + trial_name) 
        os.chdir(output_path + "/all_plots/time_series/" + trial_name) 
    else: 
        os.chdir(output_path + "/all_plots/time_series/" + trial_name) 
    mpl.rcParams["font.size"] = font_size 
    sns.set_style("white") 
    sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})  
    fig = plt.figure(figsize=(fig_width, fig_height)) 
    ax = fig.add_subplot(111) 
    lns1 = ax.plot(main_oxyg_temp_df["index"], main_oxyg_temp_df["main_C_percent_air_sat"], 
                   label='C', color='limegreen', linestyle='-', linewidth=0.2, alpha=0.5) 
    lns2 = ax.plot(main_oxyg_temp_df["index"], main_oxyg_temp_df["main_S1_percent_air_sat"], 
                   label='S1', color='steelblue', linestyle='-', linewidth=0.2, alpha=0.5) 
    lns3 = ax.plot(main_oxyg_temp_df["index"], main_oxyg_temp_df["main_S2_percent_air_sat"], 
                   label='S2', color='blue', linestyle='-', linewidth=0.2, alpha=0.5) 
    lns4 = ax.plot(main_oxyg_temp_df["index"], main_oxyg_temp_df["main_S3_percent_air_sat"], 
                   label='S3', color='deepskyblue', linestyle='-', linewidth=0.2, alpha=0.5) 
    lns5 = ax.plot(main_oxyg_temp_df["index"], main_oxyg_temp_df["main_C_percent_air_sat_Trend"], 
                   label='C', color='limegreen', linestyle='-', linewidth=1) 
    lns6 = ax.plot(main_oxyg_temp_df["index"], main_oxyg_temp_df["main_S1_percent_air_sat_Trend"], 
                   label='S1', color='steelblue', linestyle='-', linewidth=1) 
    lns7 = ax.plot(main_oxyg_temp_df["index"], main_oxyg_temp_df["main_S2_percent_air_sat_Trend"], 
                   label='S2', color='blue', linestyle='-', linewidth=1) 
    lns8 = ax.plot(main_oxyg_temp_df["index"], main_oxyg_temp_df["main_S3_percent_air_sat_Trend"], 
                   label='S3', color='deepskyblue', linestyle='-', linewidth=1) 
    ax.set_xlabel('Cumulative time (' + str(oxyg_data_collection_frequency) + ' min)') 
    ax.set_ylabel('Diss. O$_2$ (% air sat.)') 
    ax1 = fig.add_subplot(111) 
    ax1 = ax.twinx() 
    lns9 = ax1.plot(main_oxyg_temp_df["index"], main_oxyg_temp_df["Temp_C"], 
                    label='Temperature', color='darkred', linestyle='-', linewidth=1) 
    ax1.set_ylabel("Temperature (°C)") 
    ax1.set_yticks(np.arange(min_temp, max_temp, 3)) 
    ax1.set_ylim(bottom=min_temp-1) 
    lns = lns5+lns6+lns7+lns8 
    labs = [l.get_label() for l in lns] 
    leg = plt.legend(lns, labs, ncol=4, loc='upper center', prop={'size': legend_font_size}, 
                     fancybox=False, frameon=False, bbox_to_anchor=(0.5, 1.2), framealpha=0.7) 
    # set the linewidth of each legend object 
    for legobj in leg.legendHandles: 
        legobj.set_linewidth(3.0) 
    ax1.tick_params(axis='y', colors='darkred') 
    ax1.yaxis.label.set_color('darkred') 
    plt.savefig(trial_name + '_main_oxyg_raw_vs_trended.pdf', 
                bbox_inches='tight') 
 
    ############################################################################### 
 
    oxyg_temp_resp_df = main_oxyg_temp_df 
     
    ''' The average difference between measurements of Path_Sn and Path_C sensors\ 
    over the 'pre-trial stable-period' is added to the main-trial data of the \ 
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    corresponding sensor_Sn.''' 
    # adding "corrected_µmol_per_l" columns to the main_oxyg_temp_df 
    oxyg_temp_resp_df.loc[:, 'control_ymol_per_l_C'] = ( 
        oxyg_temp_resp_df['main_C_ymol_per_l_Trend']) 
    oxyg_temp_resp_df.loc[:, 'corrected_ymol_per_l_S1'] = ( 
        oxyg_temp_resp_df['main_S1_ymol_per_l_Trend'] + 
        statistics_oxyg_pre.at["mean", 'pre_C_minus_S1_ymol_per_l_Trend']) 
    oxyg_temp_resp_df.loc[:, 'corrected_ymol_per_l_S2'] = ( 
        oxyg_temp_resp_df['main_S2_ymol_per_l_Trend'] + 
        statistics_oxyg_pre.at["mean", 'pre_C_minus_S2_ymol_per_l_Trend']) 
    oxyg_temp_resp_df.loc[:, 'corrected_ymol_per_l_S3'] = ( 
        oxyg_temp_resp_df['main_S3_ymol_per_l_Trend'] + 
        statistics_oxyg_pre.at["mean", 'pre_C_minus_S3_ymol_per_l_Trend']) 
 
    # adding "corrected_percent_air_sat" columns to the main_oxyg_temp_df 
    oxyg_temp_resp_df.loc[:, 'control_percent_air_sat_C'] = ( 
        oxyg_temp_resp_df['main_C_percent_air_sat_Trend']) 
    oxyg_temp_resp_df.loc[:, 'corrected_percent_air_sat_S1'] = ( 
        oxyg_temp_resp_df['main_S1_percent_air_sat_Trend'] + 
        statistics_oxyg_pre.at["mean", 'pre_C_minus_S1_percent_air_sat']) 
    oxyg_temp_resp_df.loc[:, 'corrected_percent_air_sat_S2'] = ( 
        oxyg_temp_resp_df['main_S2_percent_air_sat_Trend'] + 
        statistics_oxyg_pre.at["mean", 'pre_C_minus_S2_percent_air_sat']) 
    oxyg_temp_resp_df.loc[:, 'corrected_percent_air_sat_S3'] = ( 
        oxyg_temp_resp_df['main_S3_percent_air_sat_Trend'] + 
        statistics_oxyg_pre.at["mean", 'pre_C_minus_S3_percent_air_sat']) 
 
    # to prevent an error related to D&T 
    oxyg_temp_resp_df = oxyg_temp_resp_df[( 
        oxyg_temp_resp_df['DateTime'] > '2018-01-01')] 
 
    # adding "Resp_µmolO2/min_ch" columns to the oxyg_temp_resp_df 
    oxyg_temp_resp_df.loc[:, 'resp_ymolO2_per_min_S1'] = ( 
        oxyg_temp_resp_df["control_ymol_per_l_C"]- 
        oxyg_temp_resp_df["corrected_ymol_per_l_S1"]) * (flow_rate * 0.001) 
    oxyg_temp_resp_df.loc[:, 'resp_ymolO2_per_min_S2'] = ( 
        oxyg_temp_resp_df["control_ymol_per_l_C"]- 
        oxyg_temp_resp_df["corrected_ymol_per_l_S2"]) * (flow_rate * 0.001) 
    oxyg_temp_resp_df.loc[:, 'resp_ymolO2_per_min_S3'] = ( 
        oxyg_temp_resp_df["control_ymol_per_l_C"]- 
        oxyg_temp_resp_df["corrected_ymol_per_l_S3"]) * (flow_rate * 0.001) 
 
 
##########(3)##########(3)##########(3)##########(3)##########(3)##########(3) 
########## Step 3 (Scope for Growth and plots) 
     
    # Merge the "Chl_temp_feed_filt_df" and the "oxyg_temp_resp_df" and  
    # create SFG columns 
    main_df = pd.merge(food_temp_feed_filt_df, 
                       oxyg_temp_resp_df, on='DateTime', how='inner') 
 
    # Define respiration rate in J_per_h 
    resp_cols = [i for i in list(main_df) if 'resp_ymolO2_per_min' in i] 
    for i in resp_cols: 
        main_df.loc[:, 'resp_J_per_h_' + i[-2:] 
                    ] = (((main_df[i])*60)/(10**3))*coef_molO2_to_kJ 
 
    # Define (experimental) feeding and SFG rates in J_per_h \ 
    # with assimilation Efficiency = 80%. 
    feed_cols = [i for i in list(main_df) if 'feed_cells_per_min' in i] 
    for i in feed_cols: 
        main_df.loc[:, 'feed_J_per_h_' + i[-2:] 
                    ] = ((main_df[i]*60*coef_cells_to_microJ)/(10**6)) 
         
        main_df.loc[:, 'SFG_J_per_h_' + i[-2:] 
                    ] = ((main_df['feed_J_per_h_' + i[-2:]] * assimilation_efficiency) -  
                         main_df['resp_J_per_h_S3']) 
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    # Define the hypothetical feeding rate and SFG (in J_per_h) based on filtration at\ 
    # a hypothetical concentration assuming assimilation Efficiency of 80%. 
    filt_S1_cols = [i for i in list(main_df) if 'filt_ml_per_min_S1' in i] 
    for i in food_conc: 
        for j in filt_S1_cols: 
            main_df.loc[:, 'feed_hyp_J_per_h_' + str(i) + '_cells_' + j[-2:]] = ( 
                (main_df[j]*float(i)*60*coef_cells_to_microJ)/(10**6)) 
            main_df.loc[:, 'SFG_hypo_J_per_h_' + str(i) + '_cells_' + j[-2:]] = ( 
                    (main_df.loc[:, 'feed_hyp_J_per_h_' + str(i) + '_cells_' + j[-2:]] * 
                                 assimilation_efficiency) - main_df['resp_J_per_h_S1']) 
    filt_S2_cols = [i for i in list(main_df) if 'filt_ml_per_min_S2' in i] 
    for i in food_conc: 
        for j in filt_S2_cols: 
            main_df.loc[:, 'feed_hyp_J_per_h_' + str(i) + '_cells_' + j[-2:]] = ( 
                (main_df[j]*float(i)*60*coef_cells_to_microJ)/(10**6)) 
            main_df.loc[:, 'SFG_hypo_J_per_h_' + str(i) + '_cells_' + j[-2:]] = ( 
                    (main_df.loc[:, 'feed_hyp_J_per_h_' + str(i) + '_cells_' + j[-2:]] * 
                                 assimilation_efficiency) - main_df['resp_J_per_h_S2']) 
    filt_S3_cols = [i for i in list(main_df) if 'filt_ml_per_min_S3' in i] 
    for i in food_conc: 
        for j in filt_S3_cols: 
            main_df.loc[:, 'feed_hyp_J_per_h_' + str(i) + '_cells_' + j[-2:]] = ( 
                (main_df[j]*float(i)*60*coef_cells_to_microJ)/(10**6)) 
            main_df.loc[:, 'SFG_hypo_J_per_h_' + str(i) + '_cells_' + j[-2:]] = ( 
                    (main_df.loc[:, 'feed_hyp_J_per_h_' + str(i) + '_cells_' + j[-2:]] * 
                                 assimilation_efficiency) - main_df['resp_J_per_h_S3']) 
 
    main_df = main_df.iloc[50:-50]  # delete marginal rows 
 
    ### Save the complete trial dataframe  
    if not os.path.isdir(output_path + "/main_trial_dfs"): 
        os.mkdir(output_path + "/main_trial_dfs") 
        os.chdir(output_path + "/main_trial_dfs") 
    else: 
        os.chdir(output_path + "/main_trial_dfs") 
 
    writer = ExcelWriter(trial_name + '.xlsx') 
    main_df.to_excel(writer, 'Sheet1') 
    writer.save() 
 
    ### Change the path for saving the next plots 
    if not os.path.isdir(output_path + "/all_plots/time_series/" + trial_name): 
        os.mkdir(output_path + "/all_plots/time_series/" + trial_name) 
        os.chdir(output_path + "/all_plots/time_series/" + trial_name) 
    else: 
        os.chdir(output_path + "/all_plots/time_series/" + trial_name) 
 
    mpl.rcParams["font.size"] = font_size 
    sns.set_style("white") 
 
    #  Plot the food concentration (cells_per_ml; NOT dampening-corrected) 
    fig = plt.figure(figsize=(fig_width, fig_height)) 
    ax = fig.add_subplot(111) 
    lns0 = ax.plot_date(main_df["DateTime"], main_df["cells_per_ml_C"], 
                        label='C', color='limegreen', linestyle='-', linewidth=1, ms=0.01) 
    lns1 = ax.plot_date(main_df["DateTime"], main_df["cells_per_ml_S1"], 
                        label='S1', color='steelblue', linestyle='-', linewidth=1, ms=0.01) 
    lns2 = ax.plot_date(main_df["DateTime"], main_df["cells_per_ml_S2"], 
                        label='S2', color='blue', linestyle='-', linewidth=1, ms=0.01) 
    lns3 = ax.plot_date(main_df["DateTime"], main_df["cells_per_ml_S3"], 
                        label='S3', color='deepskyblue', linestyle='-', linewidth=1, ms=0.01) 
    ax.set_xlabel('Date & time (MM-dd HH)') 
    ax.set_ylim(min_cells_per_mL, max_cells_per_mL) 
    ax.set_ylabel("Food (cells mL$^{-1}$)") 
    ax1 = fig.add_subplot(111) 
    fig.autofmt_xdate() 
    ax1 = ax.twinx() 
    lns4 = ax1.plot_date(main_df["DateTime"], main_df["Temp_C_x"], 
                         label='temperature', color='darkred', linestyle='-', 
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                         linewidth=1, ms=0.01) 
    ax1.set_ylabel("Temperature (°C)") 
    lns = lns0+lns1+lns2+lns3 
    labs = [l.get_label() for l in lns] 
    leg = plt.legend(lns, labs, ncol=4, loc='upper center', 
                     prop={'size': legend_font_size},fancybox=False, 
                     frameon=False, bbox_to_anchor=(0.5, 1.2), framealpha=0.7) 
    # set the linewidth of each legend object 
    for legobj in leg.legendHandles: 
        legobj.set_linewidth(3.0) 
    ax1.set_yticks(np.arange(min_temp, max_temp, 3)) 
    ax1.set_ylim(bottom=min_temp-1) 
    ax1.tick_params(axis='y', colors='darkred') 
    ax1.yaxis.label.set_color('darkred') 
    plt.savefig(trial_name + '_NOTDampeningEffectCorrected_food_cells_per_ml' + 
                '.pdf', bbox_inches='tight') 
     
    # Plot Secondary-Trended Dampening-effect-Corrected food-concentration  
    # (ST_DC_cells_per_ml_C) 
    fig = plt.figure(figsize=(fig_width, fig_height)) 
    ax = fig.add_subplot(111) 
    lns0 = ax.plot_date(main_df["DateTime"], main_df["ST_DC_cells_per_ml_C"], 
                        label='C', color='limegreen', linestyle='-', linewidth=1, ms=0.01) 
    lns1 = ax.plot_date(main_df["DateTime"], main_df["ST_DC_cells_per_ml_S1"], 
                        label='S1', color='steelblue', linestyle='-', linewidth=1, ms=0.01) 
    lns2 = ax.plot_date(main_df["DateTime"], main_df["ST_DC_cells_per_ml_S2"], 
                        label='S2', color='blue', linestyle='-', linewidth=1, ms=0.01) 
    lns3 = ax.plot_date(main_df["DateTime"], main_df["ST_DC_cells_per_ml_S3"], 
                        label='S3', color='deepskyblue', linestyle='-', linewidth=1, ms=0.01) 
    ax.set_xlabel('Date & time (MM-dd HH)') 
    ax.set_ylim(min_cells_per_mL, max_cells_per_mL) 
    ax.set_ylabel(r"Food (cells mL$^{-1}$)") 
    ax1 = fig.add_subplot(111) 
    fig.autofmt_xdate() 
    ax1 = ax.twinx() 
    lns4 = ax1.plot_date(main_df["DateTime"], main_df["Temp_C_x"], 
                         label='temperature', color='darkred', linestyle='-', 
                         linewidth=1, ms=0.01) 
    ax1.set_ylabel("Temperature (°C)") 
    lns = lns0+lns1+lns2+lns3 
    labs = [l.get_label() for l in lns] 
    leg = plt.legend(lns, labs, ncol=4, loc='upper center', 
                     prop={'size': legend_font_size}, fancybox=False, 
                     frameon=False, bbox_to_anchor=(0.5, 1.2), framealpha=0.7) 
    # set the linewidth of each legend object 
    for legobj in leg.legendHandles: 
        legobj.set_linewidth(3.0) 
    ax1.set_yticks(np.arange(min_temp, max_temp, 3)) 
    ax1.set_ylim(bottom=min_temp-1) 
    ax1.tick_params(axis='y', colors='darkred') 
    ax1.yaxis.label.set_color('darkred') 
    plt.savefig(trial_name + 
                '_SecondaryTrended_DampeningEffectCorrected_food_cells_per_ml_C' + 
                '.pdf', bbox_inches='tight') 
 
    # Plot dissolved-oxygen concentration (percent_air_sat) 
    fig = plt.figure(figsize=(fig_width, fig_height)) 
    ax = fig.add_subplot(111) 
    lns0 = ax.plot_date(main_df["DateTime"], main_df["control_percent_air_sat_C"], 
                        label='C', color='limegreen', linestyle='-', linewidth=1, ms=0.01) 
    lns1 = ax.plot_date(main_df["DateTime"], main_df["corrected_percent_air_sat_S1"], 
                        label='S1', color='steelblue', linestyle='-', linewidth=1, ms=0.01) 
    lns2 = ax.plot_date(main_df["DateTime"], main_df["corrected_percent_air_sat_S2"], 
                        label='S2', color='blue', linestyle='-', linewidth=1, ms=0.01) 
    lns3 = ax.plot_date(main_df["DateTime"], main_df["corrected_percent_air_sat_S3"], 
                        label='S3', color='deepskyblue', linestyle='-', linewidth=1, ms=0.01) 
    ax.set_xlabel('Date & time (MM-dd HH)') 
    ax.set_ylim(min_percent_air_sat, max_percent_air_sat) 
    ax.set_ylabel("Diss. O$_2$ (% air sat.)") 
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    ax1 = fig.add_subplot(111) 
    fig.autofmt_xdate() 
    ax1 = ax.twinx() 
    lns4 = ax1.plot_date(main_df["DateTime"], main_df["Temp_C_x"], 
                         label='temperature', color='darkred', linestyle='-', 
                         linewidth=1, ms=0.01) 
    ax1.set_ylabel("Temperature (°C)") 
    lns = lns0+lns1+lns2+lns3 
    labs = [l.get_label() for l in lns] 
    leg = plt.legend(lns, labs, ncol=4, loc='upper center', prop={'size': legend_font_size}, 
                     fancybox=False, frameon=False, bbox_to_anchor=(0.5, 1.2), framealpha=0.7) 
    # set the linewidth of each legend object 
    for legobj in leg.legendHandles: 
        legobj.set_linewidth(3.0) 
    ax1.set_yticks(np.arange(min_temp, max_temp, 3)) 
    ax1.set_ylim(bottom=min_temp-1) 
    ax1.tick_params(axis='y', colors='darkred') 
    ax1.yaxis.label.set_color('darkred') 
    plt.savefig( 
            trial_name + '_trended_corrected_oxyg_percent_air_sat' + 
            '.pdf', bbox_inches='tight') 
     
    # Plot dissolved-oxygen concentration (ymol_per_l) 
    fig = plt.figure(figsize=(fig_width, fig_height)) 
    ax = fig.add_subplot(111) 
    lns0 = ax.plot_date(main_df["DateTime"], main_df["control_ymol_per_l_C"], 
                        label='C', color='limegreen', linestyle='-', linewidth=1, ms=0.01) 
    lns1 = ax.plot_date(main_df["DateTime"], main_df["corrected_ymol_per_l_S1"], 
                        label='S1', color='steelblue', linestyle='-', linewidth=1, ms=0.01) 
    lns2 = ax.plot_date(main_df["DateTime"], main_df["corrected_ymol_per_l_S2"], 
                        label='S2', color='blue', linestyle='-', linewidth=1, ms=0.01) 
    lns3 = ax.plot_date(main_df["DateTime"], main_df["corrected_ymol_per_l_S3"], 
                        label='S3', color='deepskyblue', linestyle='-', linewidth=1, ms=0.01) 
    ax.set_xlabel('Date & time (MM-dd HH)') 
    ax.set_ylim(min_micromol_per_L, max_micromol_per_L) 
    ax.set_ylabel('Diss. O$_2$ (µmol L$^{-1}$)') 
    ax1 = fig.add_subplot(111) 
    fig.autofmt_xdate() 
    ax1 = ax.twinx() 
    lns4 = ax1.plot_date(main_df["DateTime"], main_df["Temp_C_x"], 
                         label='temperature', color='darkred', linestyle='-', 
                         linewidth=1, ms=0.01) 
    ax1.set_ylabel("Temperature (°C)") 
    lns = lns0+lns1+lns2+lns3 
    labs = [l.get_label() for l in lns] 
    leg = plt.legend(lns, labs, ncol=4, loc='upper center', prop={'size': legend_font_size}, 
                     fancybox=False, frameon=False, bbox_to_anchor=(0.5, 1.2), framealpha=0.7) 
    # set the linewidth of each legend object 
    for legobj in leg.legendHandles: 
        legobj.set_linewidth(3.0) 
    ax1.set_yticks(np.arange(min_temp, max_temp, 3)) 
    ax1.set_ylim(bottom=min_temp-1) 
    ax1.tick_params(axis='y', colors='darkred') 
    ax1.yaxis.label.set_color('darkred') 
    plt.savefig(trial_name + '_trended_corrected_oxyg_ymol_per_l' + 
                '.pdf', bbox_inches='tight') 
 
    ### Plot filtration rate (ml_per_min) and respiration rate (ymolO2_per_min) 
    fig = plt.figure(figsize=(fig_width, 1.94 * fig_height)) 
    ax = fig.add_subplot(211) 
    lns1 = ax.plot_date(main_df["DateTime"], main_df["filt_ml_per_min_S1"], 
                        label='S1', color='steelblue', linestyle='-', linewidth=1, ms=0.01) 
    lns2 = ax.plot_date(main_df["DateTime"], main_df["filt_ml_per_min_S2"], 
                        label='S2', color='blue', linestyle='-', linewidth=1, ms=0.01) 
    lns3 = ax.plot_date(main_df["DateTime"], main_df["filt_ml_per_min_S3"], 
                        label='S3', color='deepskyblue', linestyle='-', linewidth=1, ms=0.01) 
    ax.set_xlabel('Date & time (MM-dd HH)') 
    ax.set_ylabel(r"Filt. (ml min$^{-1}$)") 
    ax.set_ylim(min_filt, max_filt) 
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    ax1 = fig.add_subplot(211) 
    fig.autofmt_xdate() 
    ax1 = ax.twinx() 
    lns4 = ax1.plot_date(main_df["DateTime"], main_df["Temp_C_x"], 
                         label='temperature', color='darkred', linestyle='-', 
                         linewidth=1, ms=0.01) 
    ax1.set_ylabel("Temperature (°C)") 
    ax1.set_yticks(np.arange(min_temp, max_temp, 3)) 
    ax1.set_ylim(bottom=min_temp-1) 
    lns = lns1+lns2+lns3 
    labs = [l.get_label() for l in lns] 
    leg = plt.legend(lns, labs, ncol=3, loc='upper center', prop={'size': legend_font_size}, 
                     fancybox=False, frameon=False, bbox_to_anchor=(0.5, 1.2), 
                     framealpha=0.7) 
    # set the linewidth of each legend object 
    for legobj in leg.legendHandles: 
        legobj.set_linewidth(3.0) 
    ax3 = fig.add_subplot(212) 
    lns5 = ax3.plot_date(main_df["DateTime"], main_df['resp_ymolO2_per_min_S1'], 
                         label='S1', color='steelblue', linestyle='-', linewidth=1, ms=0.01) 
    lns6 = ax3.plot_date(main_df["DateTime"], main_df['resp_ymolO2_per_min_S2'], 
                         label='S2', color='blue', linestyle='-', linewidth=1, ms=0.01) 
    lns7 = ax3.plot_date(main_df["DateTime"], main_df['resp_ymolO2_per_min_S3'], 
                         label='S3', color='deepskyblue', linestyle='-', linewidth=1, ms=0.01) 
    ax3.set_xlabel('Date & time (MM-dd HH)') 
    ax3.set_ylabel('Resp. (µmolO$_2$ min$^{-1}$)') 
    ax3.set_ylim(min_resp, max_resp) 
    ax4 = fig.add_subplot(212) 
    fig.autofmt_xdate() 
    ax4 = ax3.twinx() 
    lns8 = ax4.plot_date(main_df["DateTime"], main_df["Temp_C_x"], 
                         label='temperature', color='darkred', linestyle='-', 
                         linewidth=1, ms=0.01) 
    ax4.set_ylabel("Temperature (°C)") 
    ax4.set_yticks(np.arange(min_temp, max_temp, 3)) 
    ax4.set_ylim(bottom=min_temp-1) 
    ax1.tick_params(axis='y', colors='darkred') 
    ax1.yaxis.label.set_color('darkred') 
    ax4.tick_params(axis='y', colors='darkred') 
    ax4.yaxis.label.set_color('darkred') 
    fig.subplots_adjust(hspace=0.07) 
    plt.savefig( 
        trial_name + '_filtration (ml_per_min) and respiration (ymolO2_per_min)' + 
        '.pdf', bbox_inches='tight') 
 
    # Plot the (experimental) feeding  (cells_per_min and J_per_h ) 
    fig = plt.figure(figsize=(fig_width, 1.94 * fig_height)) 
    ax = fig.add_subplot(211) 
    lns1 = ax.plot_date(main_df["DateTime"], main_df["feed_cells_per_min_S1"], 
                        label='S1', color='steelblue', linestyle='-', linewidth=1, ms=0.01) 
    lns2 = ax.plot_date(main_df["DateTime"], main_df["feed_cells_per_min_S2"], 
                        label='S2', color='blue', linestyle='-', linewidth=1, ms=0.01) 
    lns3 = ax.plot_date(main_df["DateTime"], main_df["feed_cells_per_min_S3"], 
                        label='S3', color='deepskyblue', linestyle='-', linewidth=1, ms=0.01) 
    ax.set_xlabel('Date & time (MM-dd HH)') 
    ax.set_ylabel(r"Feed. (cells min$^{-1}$)") 
    ax1 = fig.add_subplot(211) 
    fig.autofmt_xdate() 
    ax1 = ax.twinx() 
    lns4 = ax1.plot_date(main_df["DateTime"], main_df["Temp_C_x"], 
                         label='temperature', color='darkred', linestyle='-', 
                         linewidth=1, ms=0.01) 
    ax1.set_ylabel("Temperature (°C)") 
    lns = lns1+lns2+lns3 
    labs = [l.get_label() for l in lns] 
    leg = plt.legend(lns, labs, ncol=3, loc='upper center', 
                     prop={'size': legend_font_size}, fancybox=False, 
                     frameon=False, bbox_to_anchor=(0.5, 1.2), framealpha=0.7) 
    # set the linewidth of each legend object 
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    for legobj in leg.legendHandles: 
        legobj.set_linewidth(3.0) 
    ax3 = fig.add_subplot(212) 
    lns5 = ax3.plot_date(main_df["DateTime"], main_df['feed_J_per_h_S1'], 
                         label='S1', color='steelblue', linestyle='-', linewidth=1, ms=0.01) 
    lns6 = ax3.plot_date(main_df["DateTime"], main_df['feed_J_per_h_S2'], 
                         label='S2', color='blue', linestyle='-', linewidth=1, ms=0.01) 
    lns7 = ax3.plot_date(main_df["DateTime"], main_df['feed_J_per_h_S3'], 
                         label='S3', color='deepskyblue', linestyle='-', linewidth=1, ms=0.01) 
    ax3.set_xlabel('Date & time (MM-dd HH)') 
    ax3.set_ylabel('Feed. (J h$^{-1}$)') 
    ax4 = fig.add_subplot(212) 
    fig.autofmt_xdate() 
    ax4 = ax3.twinx() 
    lns8 = ax4.plot_date(main_df["DateTime"], main_df["Temp_C_x"], 
                         label='temperature', color='darkred', linestyle='-', 
                         linewidth=1, ms=0.01) 
    ax4.set_ylabel("Temperature (°C)") 
    ax1.set_yticks(np.arange(min_temp, max_temp, 3)) 
    ax1.set_ylim(bottom=min_temp-1) 
    ax4.set_yticks(np.arange(min_temp, max_temp, 3)) 
    ax4.set_ylim(bottom=min_temp-1) 
    ax1.tick_params(axis='y', colors='darkred') 
    ax1.yaxis.label.set_color('darkred') 
    ax4.tick_params(axis='y', colors='darkred') 
    ax4.yaxis.label.set_color('darkred') 
    fig.subplots_adjust(hspace=0.07) 
    plt.savefig( 
        trial_name + '_experimental feeding (cells_per_min and J_per_h )' + 
        '.pdf', bbox_inches='tight') 
 
    # Plot the respiration rate (J_per_h)  
    fig = plt.figure(figsize=(fig_width, fig_height)) 
    ax = fig.add_subplot(111) 
    lns1 = ax.plot_date(main_df["DateTime"], main_df["resp_J_per_h_S1"], 
                        label='S1', color='steelblue', linestyle='-', linewidth=1, ms=0.01) 
    lns2 = ax.plot_date(main_df["DateTime"], main_df["resp_J_per_h_S2"], 
                        label='S2', color='blue', linestyle='-', linewidth=1, ms=0.01) 
    lns3 = ax.plot_date(main_df["DateTime"], main_df["resp_J_per_h_S3"], 
                        label='S3', color='deepskyblue', linestyle='-', linewidth=1, ms=0.01) 
    ax.set_xlabel('Date & time (MM-dd HH)') 
    ax.set_ylabel(r"Resp. (J h$^{-1}$)") 
    ax1 = fig.add_subplot(111) 
    fig.autofmt_xdate() 
    ax1 = ax.twinx() 
    lns4 = ax1.plot_date(main_df["DateTime"], main_df["Temp_C_x"], 
                         label='temperature', color='darkred', linestyle='-', 
                         linewidth=1, ms=0.01) 
    ax1.set_ylabel("Temperature (°C)") 
    lns = lns1+lns2+lns3 
    labs = [l.get_label() for l in lns] 
    leg = plt.legend(lns, labs, ncol=3, loc='upper center', 
                     prop={'size': legend_font_size}, fancybox=False, 
                     frameon=False, bbox_to_anchor=(0.5, 1.2), framealpha=0.7) 
    # set the linewidth of each legend object 
    for legobj in leg.legendHandles: 
        legobj.set_linewidth(3.0) 
    ax1.set_yticks(np.arange(min_temp, max_temp, 3)) 
    ax1.set_ylim(bottom=min_temp-1) 
    ax1.tick_params(axis='y', colors='darkred') 
    ax1.yaxis.label.set_color('darkred') 
    plt.savefig(trial_name + '_respiration  (J_per_h)' + '.pdf', bbox_inches='tight') 
 
    # Plot the (hypothetical) SFG (J_per_h) 
    for i in food_conc: 
        fig = plt.figure(figsize=(fig_width, fig_height)) 
        ax = fig.add_subplot(111) 
        lns1 = ax.plot_date(main_df["DateTime"], main_df["SFG_hypo_J_per_h_" + str( 
            i) + "_cells_S1"], label='S1', color='steelblue', linestyle='-', linewidth=1, ms=0.01) 
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        lns2 = ax.plot_date(main_df["DateTime"], main_df["SFG_hypo_J_per_h_" + str( 
            i) + "_cells_S2"], label='S2', color='blue', linestyle='-', linewidth=1, ms=0.01) 
        lns3 = ax.plot_date(main_df["DateTime"], main_df["SFG_hypo_J_per_h_" + str( 
            i) + "_cells_S3"], label='S3', color='deepskyblue', linestyle='-', linewidth=1, ms=0.01) 
        ax.set_xlabel('Date & time (MM-dd HH)') 
        ax.set_ylabel("SFG (J h$^{-1}$)") 
        ax.set_ylim(min_SFG, max_SFG) 
        ax1 = fig.add_subplot(111) 
        fig.autofmt_xdate() 
        ax1 = ax.twinx() 
        lns4 = ax1.plot_date(main_df["DateTime"], main_df["Temp_C_x"], 
                             label='temperature', color='darkred', linestyle='-', linewidth=1, ms=0.01) 
        ax1.set_ylabel("Temperature (°C)") 
        lns = lns1+lns2+lns3 
        labs = [l.get_label() for l in lns] 
        leg = plt.legend(lns, labs, ncol=3, loc='upper center', 
                         prop={'size': legend_font_size}, fancybox=False, 
                         frameon=False, bbox_to_anchor=(0.5, 1.2), framealpha=0.7) 
        # set the linewidth of each legend object 
        for legobj in leg.legendHandles: 
            legobj.set_linewidth(3.0) 
        ax1.set_yticks(np.arange(min_temp, max_temp, 3)) 
        ax1.set_ylim(bottom=min_temp-1) 
        ax1.tick_params(axis='y', colors='darkred') 
        ax1.yaxis.label.set_color('darkred') 
        plt.savefig(trial_name + '_hypothetical_SFG (J_per_h) at' + str(i) + 
                    '.pdf', bbox_inches='tight') 
 
    plt.pause(0.001) 
   
 
##########(4)##########(4)##########(4)##########(4)##########(4)##########(4) 
########## Step 4 (Post-trial analyses: estimation of %drift in filtration and respiration rates) 
    '''Calculate the baseline main-trial filtration and respiration rates \ 
    (here, averaged over 180th to 480th index). The post-trial responses are \ 
    compared with baseline responses of filter-feeders in the main-trial to \ 
    roughly estimate the ratios of the non-filter-feeder- to  
    filter-feeder-induced signals (i.e., the cumulative random impacts in %''' 
    os.chdir(output_path + "/main_trial_dfs") 
    df_main_baseline = pd.ExcelFile(trial_name + '.xlsx') 
    df_main_baseline.sheet_names 
    [u'Sheet1'] 
    df_main_baseline = df_main_baseline.parse("Sheet1") 
    df_main_baseline.head() 
 
    df_main_baseline = df_main_baseline.truncate( 
        before=180, after=480)  # 2.5 hours as the reference-interval  
    df_main_baseline = df_main_baseline[['filt_ml_per_min_S1',  
                                                   'filt_ml_per_min_S2', 
                                                   'filt_ml_per_min_S3',  
                                                   'resp_ymolO2_per_min_S1', 
                                                   'resp_ymolO2_per_min_S2',  
                                                   'resp_ymolO2_per_min_S3']] 
 
    statistics_main_baseline = df_main_baseline.describe().iloc[[ 
        1], :] 
 
    ### Estimate the post-trial average filtration rates 
    if os.path.isdir(raw_data_path + "/raw_data_Chl/" + trial_name + "/post"): 
        os.chdir(raw_data_path + "/raw_data_Chl/" + trial_name + "/post") 
        filelist = glob("*.csv") 
        appended_data = [] 
        counter = 0 
        for filename in filelist: 
            Chl_df = pd.read_csv( 
                    filename, encoding='utf-8', sep=",", 
                    names=['Date', 'Time', 'Gain', filename[:-4]+'_mV_Chl'], 
                    header=0, usecols=[0, 1, 2, 3]) 
            Chl_df['DateTime'] = pd.to_datetime( 
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                Chl_df['Date'].apply(str)+' '+Chl_df['Time']) 
            Chl_df = Chl_df.reset_index() 
            # producing robust estimated trends 
            flatten_lc1, trend_lc1 = flatten(Chl_df['index'], 
                                             Chl_df[filename[:-4]+'_mV_Chl'], 
                                             method=robust_estimator, 
                                             window_length=60, cval=5, 
                                             return_trend=True) 
            Chl_df[filename[:-4] + '_mV_Chl' + 
                    '_Trend'] = pd.Series(trend_lc1) 
            Chl_df = Chl_df.set_index('DateTime').resample('30S').last() 
            Chl_df.reset_index(inplace=True) 
            Chl_temp_df = pd.merge( 
                Chl_df, temp_df, on='DateTime', how='inner') 
            Chl_temp_df['Temp_C'] = Chl_temp_df['Temp_C'].apply( 
                pd.to_numeric, errors='coerce')  # changes Temp_Chl from object to float64 
            # temperature compensation (TC) 
            Chl_temp_df[filename[:-4] + '_mV_Chl' + '_Trend_TC'] = ( 
                    Chl_temp_df[filename[:-4] + '_mV_Chl' + '_Trend']/ 
                    (1 + ((Chl_temp_df['Temp_C'] - reference_temperature)* 
                          TS_coef))) 
             
            if counter == 0: 
                Chl_temp_df = pd.DataFrame( 
                        Chl_temp_df, columns=[ 
                                'DateTime', 'Temp_C', filename[:-4]+'_mV_Chl', 
                                filename[:-4] + '_mV_Chl' + '_Trend', 
                                filename[:-4] + '_mV_Chl' + '_Trend_TC']) 
            else: 
                Chl_temp_df = pd.DataFrame( 
                        Chl_temp_df, columns=[ 
                                filename[:-4]+'_mV_Chl', 
                                filename[:-4] + '_mV_Chl' + '_Trend', 
                                filename[:-4] + '_mV_Chl' + '_Trend_TC']) 
            appended_data.append(Chl_temp_df) 
            counter = counter + 1 
        appended_data = pd.concat(appended_data, axis=1) 
        post_Chl_temp_df = appended_data.reset_index() 
 
        # checking post_Chl_temp_df 
        with pd.option_context('display.max_rows', 10, 'display.max_columns', None): 
            print(post_Chl_temp_df) 
 
        # the trend plot 
        if not os.path.isdir(output_path + "/all_plots/time_series/" + trial_name): 
            os.mkdir(output_path + "/all_plots/time_series/" + trial_name) 
            os.chdir(output_path + "/all_plots/time_series/" + trial_name) 
        else: 
            os.chdir(output_path + "/all_plots/time_series/" + trial_name) 
 
        mpl.rcParams["font.size"] = font_size 
        sns.set_style("white") 
        sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})  
        fig = plt.figure(figsize=(fig_width, fig_height)) 
        ax = fig.add_subplot(111) 
        lns1 = ax.plot(post_Chl_temp_df["index"], post_Chl_temp_df["post_C_mV_Chl"], 
                   label='C', color='limegreen', linestyle='-', linewidth=1, alpha=0.5) 
        lns2 = ax.plot(post_Chl_temp_df["index"], post_Chl_temp_df["post_S1_mV_Chl"], 
                       label='S1', color='steelblue', linestyle='-', linewidth=1, alpha=0.5) 
        lns3 = ax.plot(post_Chl_temp_df["index"], post_Chl_temp_df["post_S2_mV_Chl"], 
                       label='S2', color='blue', linestyle='-', linewidth=1, alpha=0.5) 
        lns4 = ax.plot(post_Chl_temp_df["index"], post_Chl_temp_df["post_S3_mV_Chl"], 
                       label='S3', color='deepskyblue', linestyle='-', linewidth=1, alpha=0.5) 
        lns5 = ax.plot(post_Chl_temp_df["index"], post_Chl_temp_df["post_C_mV_Chl_Trend"], 
                       label='C', color='limegreen', linestyle='-', linewidth=2) 
        lns6 = ax.plot(post_Chl_temp_df["index"], post_Chl_temp_df["post_S1_mV_Chl_Trend"], 
                       label='S1', color='steelblue', linestyle='-', linewidth=2) 
        lns7 = ax.plot(post_Chl_temp_df["index"], post_Chl_temp_df["post_S2_mV_Chl_Trend"], 
                       label='S2', color='blue', linestyle='-', linewidth=2) 
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        lns8 = ax.plot(post_Chl_temp_df["index"], post_Chl_temp_df["post_S3_mV_Chl_Trend"], 
                       label='S3', color='deepskyblue', linestyle='-', linewidth=2) 
        lns9 = ax.plot(post_Chl_temp_df["index"], post_Chl_temp_df["post_C_mV_Chl_Trend_TC"], 
                       label='C', color='black', linestyle=':', linewidth=1) 
        lns10 = ax.plot(post_Chl_temp_df["index"], post_Chl_temp_df["post_S1_mV_Chl_Trend_TC"], 
                       label='S1', color='black', linestyle=':', linewidth=1) 
        lns11 = ax.plot(post_Chl_temp_df["index"], post_Chl_temp_df["post_S2_mV_Chl_Trend_TC"], 
                       label='S2', color='black', linestyle=':', linewidth=1) 
        lns12 = ax.plot(post_Chl_temp_df["index"], post_Chl_temp_df["post_S3_mV_Chl_Trend_TC"], 
                       label='S3', color='black', linestyle=':', linewidth=1) 
        ax.set_xlabel('Cumulative time (' + str(fluo_data_collection_frequency) + ' min)') 
        ax.set_ylabel('Chl (mV)') 
        ax1 = fig.add_subplot(111) 
        ax1 = ax.twinx() 
        lns13 = ax1.plot(post_Chl_temp_df["index"], post_Chl_temp_df["Temp_C"], 
                        label='Temperature', color='darkred', linestyle='-', 
                        linewidth=1) 
        ax1.set_yticks(np.arange(min_temp, max_temp, 3)) 
        ax1.set_ylim(bottom=min_temp-1) 
        ax1.set_ylabel("Temperature (°C)") 
        lns = lns5+lns6+lns7+lns8 
        labs = [l.get_label() for l in lns] 
        leg = plt.legend(lns, labs, ncol=4, loc='upper center', 
                         prop={'size': legend_font_size}, fancybox=False, 
                         frameon=False, bbox_to_anchor=(0.5, 1.2), 
                         framealpha=0.7) 
        # set the linewidth of each legend object 
        for legobj in leg.legendHandles: 
            legobj.set_linewidth(3.0) 
        ax1.tick_params(axis='y', colors='darkred') 
        ax1.yaxis.label.set_color('darkred') 
        plt.savefig(trial_name + '_post_Chl_raw_vs_trended.pdf', 
                    bbox_inches='tight') 
        plt.show() 
        plt.pause(0.001) 
        #input("postss [enter] to continue.") 
 
        # choose the stable interval based on the plot and the data frame  
        # postsented in the Console 
        while True: 
            try: 
                start_stable_data = int(input( 
                    'Please provide start_stable_data as an integer based on the\ 
                    plot and the data frame presented in the Console (the stable\ 
                    data interval usually include the last 10-50 data points): ')) 
                if start_stable_data < 5 or start_stable_data > \ 
                (max(post_Chl_temp_df["index"]-2)): 
                    raise ValueError  # this will send it to the print message and back to the input option 
                break 
            except ValueError: 
                print("Invalid integer. The input is out of range or not an integer!") 
 
        while True: 
            try: 
                end_stable_data = int(input( 
                    'Please provide end_stable_data as an integer (based on the\ 
                    plot and the data frame postsented in the Console): ')) 
                if end_stable_data < start_stable_data or end_stable_data > \ 
                max(post_Chl_temp_df["index"]): 
                    raise ValueError  # this will send it to the print message and back to the input option 
                break 
            except ValueError: 
                print("Invalid integer. The input is out of range or not an integer!") 
 
       
 
        ############################################################################### 
         
        # Crop the the 'post-trial stable-period' 
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        mask = (post_Chl_temp_df["index"] > start_stable_data) & ( 
            post_Chl_temp_df["index"] <= end_stable_data) 
        post_Chl_temp_filt_df = post_Chl_temp_df.loc[mask] 
 
        if not os.path.isdir(output_path + "/pre_stat_post_drift_tables/post/food"): 
            os.mkdir(output_path + "/pre_stat_post_drift_tables/post/food") 
            os.chdir(output_path + "/pre_stat_post_drift_tables/post/food") 
        else: 
            os.chdir(output_path + "/pre_stat_post_drift_tables/post/food") 
 
         
        ''' Similar to the main-trial processing, calculate percent_Chl with \ 
        respect to mV_Chl_Trend_TC of the 'pre-trial stable-period' (to account \ 
        for inherent differences in the absolute sensors' readouts) and, then,\ 
        convert main-trial food-concentration data from percentage to \ 
        cells_per_ml using the 'initial concentration' (the mean concentration \ 
        recorded by sensor_C over 'pre-trial stable-period)'.''' 
        post_Chl_temp_filt_df.loc[:, 'percent_C'] = ( 
            post_Chl_temp_filt_df['post_C_mV_Chl_Trend_TC']/ 
            statistics_Chl_pre.at["mean", "pre_C_mV_Chl_Trend_TC"])*100 
        post_Chl_temp_filt_df.loc[:, 'percent_S1'] = ( 
            post_Chl_temp_filt_df['post_S1_mV_Chl_Trend_TC']/ 
            statistics_Chl_pre.at["mean", "pre_S1_mV_Chl_Trend_TC"])*100 
        post_Chl_temp_filt_df.loc[:, 'percent_S2'] = ( 
            post_Chl_temp_filt_df['post_S2_mV_Chl_Trend_TC']/ 
            statistics_Chl_pre.at["mean", "pre_S2_mV_Chl_Trend_TC"])*100 
        post_Chl_temp_filt_df.loc[:, 'percent_S3'] = ( 
            post_Chl_temp_filt_df['post_S3_mV_Chl_Trend_TC']/ 
            statistics_Chl_pre.at["mean", "pre_S3_mV_Chl_Trend_TC"])*100 
 
        post_Chl_temp_filt_df.loc[:, 'cells_per_ml_C'] = ( 
            post_Chl_temp_filt_df['percent_C']*initial_concentration_cells_per_ml)/100 
        post_Chl_temp_filt_df.loc[:, 'cells_per_ml_S1'] = ( 
            post_Chl_temp_filt_df['percent_S1']*initial_concentration_cells_per_ml)/100 
        post_Chl_temp_filt_df.loc[:, 'cells_per_ml_S2'] = ( 
            post_Chl_temp_filt_df['percent_S2']*initial_concentration_cells_per_ml)/100 
        post_Chl_temp_filt_df.loc[:, 'cells_per_ml_S3'] = ( 
            post_Chl_temp_filt_df['percent_S3']*initial_concentration_cells_per_ml)/100 
 
        # to prevent an error related to D&T 
        post_Chl_temp_filt_df = post_Chl_temp_filt_df[( 
            post_Chl_temp_filt_df['DateTime'] > '2018-01-01')] 
 
        # Define post_filt columns 
        post_Chl_temp_filt_df.loc[:, 'post_filt_S1'] = ( 
                ((post_Chl_temp_filt_df["cells_per_ml_C"] - 
                  post_Chl_temp_filt_df["cells_per_ml_S1"])/ 
                post_Chl_temp_filt_df["cells_per_ml_S1"]) * flow_rate) 
        post_Chl_temp_filt_df.loc[:, 'post_filt_S2'] = ( 
                ((post_Chl_temp_filt_df["cells_per_ml_C"] - 
                  post_Chl_temp_filt_df["cells_per_ml_S2"])/ 
                post_Chl_temp_filt_df["cells_per_ml_S2"]) * flow_rate) 
        post_Chl_temp_filt_df.loc[:, 'post_filt_S3'] = ( 
                ((post_Chl_temp_filt_df["cells_per_ml_C"] - 
                  post_Chl_temp_filt_df["cells_per_ml_S3"])/ 
                post_Chl_temp_filt_df["cells_per_ml_S3"]) * flow_rate) 
         
        ''' Calculate the cumulative_random_effects (ratio of the post_trial 
        to the main_trial_baseline filtration rates.''' 
        post_Chl_temp_filt_df.loc[:, 'filt_%_cumulative_random_effects_S1'] = ( 
            post_Chl_temp_filt_df["post_filt_S1"])/( 
                    statistics_main_baseline.at["mean", "filt_ml_per_min_S1"])*100 
        post_Chl_temp_filt_df.loc[:, 'filt_%_cumulative_random_effects_S2'] = ( 
            post_Chl_temp_filt_df["post_filt_S2"])/( 
                    statistics_main_baseline.at["mean", "filt_ml_per_min_S2"])*100 
        post_Chl_temp_filt_df.loc[:, 'filt_%_cumulative_random_effects_S3'] = ( 
            post_Chl_temp_filt_df["post_filt_S3"])/( 
                    statistics_main_baseline.at["mean", "filt_ml_per_min_S3"])*100 
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        statistics_Chl_post = post_Chl_temp_filt_df.describe() 
        statistics_Chl_post = statistics_Chl_post.iloc[[1], :] 
        statistics_Chl_post 
 
        writer = ExcelWriter('statistics_post_stable_period_' + trial_name + '.xlsx') 
        statistics_Chl_post.to_excel(writer, 'Sheet1') 
        writer.save() 
 
    ### Estimate the post-trial respiration rate 
     
    if os.path.isdir(raw_data_path + "/raw_data_Oxygen/" + trial_name + "/post"): 
        os.chdir(raw_data_path + "/raw_data_Oxygen/" + trial_name + "/post") 
        filename = glob("*.xlsx") 
        post_oxyg_temp_df = pd.ExcelFile(filename[0]) 
        post_oxyg_temp_df.sheet_names 
        [u'Sheet1'] 
        post_oxyg_temp_df = post_oxyg_temp_df.parse("Sheet1") 
 
        post_oxyg_temp_df = post_oxyg_temp_df.reset_index() 
 
        oxyg_cols = [i for i in list(post_oxyg_temp_df) if 'post_' in i] 
        for i in oxyg_cols: 
            # producing robust time-series models using robust_estimators 
            flatten_lc1, trend_lc1 = flatten(post_oxyg_temp_df['index'], 
                                             post_oxyg_temp_df[i], 
                                             method=robust_estimator, 
                                             window_length=60, cval=5, 
                                             return_trend=True) 
            post_oxyg_temp_df[i + '_Trend'] = pd.Series(trend_lc1) 
 
        with pd.option_context('display.max_rows', 20, 'display.max_columns', None): 
            print(post_oxyg_temp_df) 
 
        # the trend plot 
        if not os.path.isdir(output_path + "/all_plots/time_series/" + trial_name): 
            os.mkdir(output_path + "/all_plots/time_series/" + trial_name) 
            os.chdir(output_path + "/all_plots/time_series/" + trial_name) 
        else: 
            os.chdir(output_path + "/all_plots/time_series/" + trial_name) 
 
        mpl.rcParams["font.size"] = font_size 
        sns.set_style("white") 
        sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})  
        fig = plt.figure(figsize=(fig_width, fig_height)) 
        ax = fig.add_subplot(111) 
        lns1 = ax.plot(post_oxyg_temp_df["index"], post_oxyg_temp_df["post_C_percent_air_sat"], 
                       label='C', color='limegreen', linestyle='-', linewidth=1, alpha=0.5) 
        lns2 = ax.plot(post_oxyg_temp_df["index"], post_oxyg_temp_df["post_S1_percent_air_sat"], 
                       label='S1', color='steelblue', linestyle='-', linewidth=1, alpha=0.5) 
        lns3 = ax.plot(post_oxyg_temp_df["index"], post_oxyg_temp_df["post_S2_percent_air_sat"], 
                       label='S2', color='blue', linestyle='-', linewidth=1, alpha=0.5) 
        lns4 = ax.plot(post_oxyg_temp_df["index"], post_oxyg_temp_df["post_S3_percent_air_sat"], 
                       label='S3', color='deepskyblue', linestyle='-', linewidth=1, alpha=0.5) 
        lns5 = ax.plot(post_oxyg_temp_df["index"], post_oxyg_temp_df["post_C_percent_air_sat_Trend"], 
                       label='C', color='limegreen', linestyle='-', linewidth=2) 
        lns6 = ax.plot(post_oxyg_temp_df["index"], post_oxyg_temp_df["post_S1_percent_air_sat_Trend"], 
                       label='S1', color='steelblue', linestyle='-', linewidth=2) 
        lns7 = ax.plot(post_oxyg_temp_df["index"], post_oxyg_temp_df["post_S2_percent_air_sat_Trend"], 
                       label='S2', color='blue', linestyle='-', linewidth=2) 
        lns8 = ax.plot(post_oxyg_temp_df["index"], post_oxyg_temp_df["post_S3_percent_air_sat_Trend"], 
                       label='S3', color='deepskyblue', linestyle='-', linewidth=2) 
        ax.set_xlabel('Cumulative time (' + str(oxyg_data_collection_frequency) + ' min)') 
        ax.set_ylabel('Diss. $O_2$ (% air sat.)') 
        ax1 = fig.add_subplot(111) 
        ax1 = ax.twinx() 
        lns9 = ax1.plot(post_oxyg_temp_df["index"], post_oxyg_temp_df["Temp_C"], 
                        label='Temperature', color='darkred', linestyle='-', linewidth=1) 
        ax1.set_ylabel("Temperature (°C)") 
        ax1.set_yticks(np.arange(min_temp, max_temp, 3)) 
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        ax1.set_ylim(bottom=min_temp-1) 
        lns = lns5+lns6+lns7+lns8 
        labs = [l.get_label() for l in lns] 
        leg = plt.legend(lns, labs, ncol=4, loc='upper center', 
                         prop={'size': legend_font_size}, fancybox=False, 
                         frameon=False, bbox_to_anchor=(0.5, 1.2), 
                         framealpha=0.7) 
        # set the linewidth of each legend object 
        for legobj in leg.legendHandles: 
            legobj.set_linewidth(3.0) 
        ax1.tick_params(axis='y', colors='darkred') 
        ax1.yaxis.label.set_color('darkred') 
        plt.savefig(trial_name + '_post_oxyg_raw_vs_trended.pdf', 
                    bbox_inches='tight') 
        plt.show() 
        plt.pause(0.001) 
 
        while True: 
            try: 
                start_stable_data = int(input( 
                    'Please provide start_stable_data as an integer based on the\ 
                    plot and the data frame presented in the Console (the stable\ 
                    data interval usually include the last 100 or more data points): ')) 
                if start_stable_data < 0 or start_stable_data > \ 
                (max(post_oxyg_temp_df["index"]-2)): 
                    raise ValueError 
                break 
            except ValueError: 
                print("Invalid integer. The input is out of range or not an integer!") 
 
        while True: 
            try: 
                end_stable_data = int( 
                    input('Please provide end_stable_data as an integer: ')) 
                if end_stable_data < start_stable_data or end_stable_data > \ 
                max(post_oxyg_temp_df["index"]): 
                    raise ValueError   
                break 
            except ValueError: 
                print("Invalid integer. The input is out of range or not an integer!") 
 
        ############################################################################### 
        # Crop the 'post-trial stable-interval' 
        mask = (post_oxyg_temp_df["index"] >= start_stable_data) & ( 
            post_oxyg_temp_df["index"] <= end_stable_data) 
        post_oxyg_temp_resp_df = post_oxyg_temp_df.loc[mask] 
 
        if not os.path.isdir(output_path + "/pre_stat_post_drift_tables/post/oxyg"): 
            os.mkdir(output_path + "/pre_stat_post_drift_tables/post/oxyg") 
            os.chdir(output_path + "/pre_stat_post_drift_tables/post/oxyg") 
        else: 
            os.chdir(output_path + "/pre_stat_post_drift_tables/post/oxyg") 
 
        ''' The average difference between measurements of Path_Sn and Path_C sensors 
        over the 'pre-trial stable-period' is added to the post-trial data of the  
        corresponding sensor_Sn.''' 
         
        post_oxyg_temp_resp_df.loc[:, 'control_ymol_per_l_C'] = ( 
            post_oxyg_temp_resp_df['post_C_ymol_per_l_Trend']) 
        post_oxyg_temp_resp_df.loc[:, 'corrected_ymol_per_l_S1'] = ( 
            post_oxyg_temp_resp_df['post_S1_ymol_per_l_Trend'] + 
            statistics_oxyg_pre.at["mean", 'pre_C_minus_S1_ymol_per_l_Trend']) 
        post_oxyg_temp_resp_df.loc[:, 'corrected_ymol_per_l_S2'] = ( 
            post_oxyg_temp_resp_df['post_S2_ymol_per_l_Trend'] + 
            statistics_oxyg_pre.at["mean", 'pre_C_minus_S2_ymol_per_l_Trend']) 
        post_oxyg_temp_resp_df.loc[:, 'corrected_ymol_per_l_S3'] = ( 
            post_oxyg_temp_resp_df['post_S3_ymol_per_l_Trend'] + 
            statistics_oxyg_pre.at["mean", 'pre_C_minus_S3_ymol_per_l_Trend']) 
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        post_oxyg_temp_resp_df.loc[:, 'control_percent_air_sat_C'] = ( 
            post_oxyg_temp_resp_df['post_C_percent_air_sat_Trend']) 
        post_oxyg_temp_resp_df.loc[:, 'corrected_percent_air_sat_S1'] = ( 
            post_oxyg_temp_resp_df['post_S1_percent_air_sat_Trend'] + 
            statistics_oxyg_pre.at["mean", 'pre_C_minus_S1_percent_air_sat']) 
        post_oxyg_temp_resp_df.loc[:, 'corrected_percent_air_sat_S2'] = ( 
            post_oxyg_temp_resp_df['post_S2_percent_air_sat_Trend'] + 
            statistics_oxyg_pre.at["mean", 'pre_C_minus_S2_percent_air_sat']) 
        post_oxyg_temp_resp_df.loc[:, 'corrected_percent_air_sat_S3'] = ( 
            post_oxyg_temp_resp_df['post_S3_percent_air_sat_Trend'] + 
            statistics_oxyg_pre.at["mean", 'pre_C_minus_S3_percent_air_sat']) 
 
        # to prevent an error related to D&T 
        post_oxyg_temp_resp_df = post_oxyg_temp_resp_df[( 
            post_oxyg_temp_resp_df['DateTime'] > '2018-01-01')] 
 
        # Add "resp_µmolO2/min_ch" columns to the post_oxyg_temp_resp_df 
        post_oxyg_temp_resp_df.loc[:, 'post_resp_ymolO2_per_min_S1'] = ( 
            post_oxyg_temp_resp_df["control_ymol_per_l_C"]- 
            post_oxyg_temp_resp_df["corrected_ymol_per_l_S1"]) * (flow_rate * 0.001) 
        post_oxyg_temp_resp_df.loc[:, 'post_resp_ymolO2_per_min_S2'] = ( 
            post_oxyg_temp_resp_df["control_ymol_per_l_C"]- 
            post_oxyg_temp_resp_df["corrected_ymol_per_l_S2"]) * (flow_rate * 0.001) 
        post_oxyg_temp_resp_df.loc[:, 'post_resp_ymolO2_per_min_S3'] = ( 
            post_oxyg_temp_resp_df["control_ymol_per_l_C"]- 
            post_oxyg_temp_resp_df["corrected_ymol_per_l_S3"]) * (flow_rate * 0.001) 
 
        ''' Calculate the cumulative_random_effects (i.e., ratio of the post_trial 
        to 'main_trial_baseline' respiration rates.''' 
        post_oxyg_temp_resp_df.loc[:, 'resp_%_cumulative_random_effects_S1'] = ( 
                post_oxyg_temp_resp_df["post_resp_ymolO2_per_min_S1"]/( 
                        statistics_main_baseline.at["mean", "resp_ymolO2_per_min_S1"]))*100 
        post_oxyg_temp_resp_df.loc[:, 'resp_%_cumulative_random_effects_S2'] = ( 
                post_oxyg_temp_resp_df["post_resp_ymolO2_per_min_S2"]/( 
                        statistics_main_baseline.at["mean", "resp_ymolO2_per_min_S2"]))*100 
        post_oxyg_temp_resp_df.loc[:, 'resp_%_cumulative_random_effects_S3'] = ( 
                post_oxyg_temp_resp_df["post_resp_ymolO2_per_min_S3"]/( 
                        statistics_main_baseline.at["mean", "resp_ymolO2_per_min_S3"]))*100 
         
        statistics_oxyg_post_10_Dec = post_oxyg_temp_resp_df.describe() 
        statistics_oxyg_post_10_Dec = statistics_oxyg_post_10_Dec.iloc[[1], :] 
 
        writer = ExcelWriter('statistics_post_stable_period_' + trial_name + '.xlsx') 
        statistics_oxyg_post_10_Dec.to_excel(writer, 'Sheet1') 
        writer.save() 
 
 

Script S3: ‘FOFS_integrative_processing.py’ 

#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
@author: Jahangir Vajedsamiei (last test data: August 26, 2020) 
 
Notes: 
- This script continues data analysis for 2018-experiment. 
- Before using the second script, an excel-sheet including the dry-weights and  
shell-lengths of the studied bivalves must be made. 
""" 
 
# The modules used in this script 
import os 
from glob import glob as glob 
import pandas as pd 
import numpy as np 
import datetime   
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import matplotlib.pyplot as plt 
from pandas import ExcelWriter  
import seaborn as sns 
from pygam import LinearGAM, s, f 
from matplotlib.lines import Line2D   
from matplotlib.pylab import rcParams 
import matplotlib as mpl 
import matplotlib.dates as mdates 
import time 
 
 
answer = input("Did you already revise the absolute path to the experimental \ 
               folder (experiment_path) and the variables. Enter y or n: ") 
if answer == "n": 
        print("Please push control+c, manually revise the '###experiment_path' \ 
              and '###variables' below, and then rerun the script.") 
        print("Push control+c") 
        print("Push control+c") 
        time.sleep(30)  
elif answer == "y": 
    print("OK. continued...") 
 
 
# Input path definition 
 
experiment_path = "/Users/jahangir/Desktop/FOFS_new_test_/mussel_trials" 
 
main_trial_dfs_path = experiment_path + \ 
"/trial_by_trial_processing_outputs/main_trial_dfs" 
percent_drifts_path = experiment_path + \ 
"/trial_by_trial_processing_outputs/pre_stat_post_drift_tables/post" 
 
# Input path definition end 
 
 
# Variables definition (please provide the variables) 
 
''' specifications for the lineplots: provide your values of interest.''' 
min_temp = 16 
max_temp = 29 
max_filt = 1.7 # ml/min 
min_filt = 0  # ml/min 
max_resp = 0.7  # micromolO2/min 
min_resp = 0  # micromolO2/min 
max_feed = 1200  # cells/min 
min_feed = 0  # cells/min 
 
min_percent_air_sat = 75 
max_percent_air_sat = 100 
min_micromol_per_L = 170 
max_micromol_per_L = 260 
min_cells_per_mL = 0 
max_cells_per_mL = 5000 
font_size = 13 
fig_width = 6 
fig_height = 3 
 
'''will be used for making the hypothetical datetime-column, i.e., similar for  
all replicates, allowing selection of specific intervals in iteration (and will 
also be used as the x-axis in integrative plots).''' 
hypothetical_trial_start_date = '2019-11-01' 
 
# Variables definition end 
 
#Output-path definition 
 
if not os.path.isdir(experiment_path + "/integrative_processing_outputs"): 
            os.mkdir(experiment_path + "/integrative_processing_outputs") 
output_path = experiment_path + "/integrative_processing_outputs"           
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if not os.path.isdir(output_path + "/drift_all_trials"): 
            os.mkdir(output_path + "/drift_all_trials") 
            os.mkdir(output_path + "/experiment_df") 
            os.mkdir(output_path + "/mean_error_lineplots") 
             
#Output-path definition end 
             
 
##########(1)##########(1)##########(1)##########(1)##########(1)##########(1) 
########## Step 1 (integrate %drift dataframes of all trials) 
### for Chl and filtration rates 
os.chdir(percent_drifts_path + "/food")     
trial_names = glob("*.xlsx") 
appended_data = [] 
for trial_name in trial_names: 
    df = pd.ExcelFile(trial_name) 
    df.sheet_names 
    [u'Sheet1'] 
    df = df.parse("Sheet1") 
    df = df.assign(trial = trial_name[ 
            trial_name.find("post_")+5:trial_name.find(".xlsx")])   
    appended_data.append(df) 
df1 = pd.concat(appended_data) 
df1.index = range(len(df1['trial'])) 
 
### for DO and respiration rates 
os.chdir(percent_drifts_path + "/oxyg")       
trial_names = glob("*.xlsx") 
appended_data = [] 
for trial_name in trial_names: 
    df = pd.ExcelFile(trial_name) 
    df.sheet_names 
    [u'Sheet1'] 
    df = df.parse("Sheet1") 
    df = df.assign(trial = trial_name[ 
            trial_name.find("post_")+5:trial_name.find(".xlsx")])   
    appended_data.append(df) 
df2 = pd.concat(appended_data) 
df2.index = range(len(df2['trial'])) 
 
if not os.path.isdir(output_path + "/drift_all_trials"): 
            os.mkdir(output_path + "/drift_all_trials") 
            os.chdir(output_path + "/drift_all_trials") 
else: 
    os.chdir(output_path + "/drift_all_trials") 
writer = ExcelWriter('filt_drift_all_trials.xlsx')       
df1.to_excel(writer, 'Sheet') 
writer.save()      
writer = ExcelWriter('resp_drift_all_trials.xlsx')       
df2.to_excel(writer, 'Sheet') 
writer.save()         
 
 
##########(2)##########(2)##########(2)##########(2)##########(2)##########(2) 
########## Step 2 (intergation of trials' outcomes) 
start = time. time() 
 
# Read in the size-trait dataframe 
os.chdir(experiment_path)  
size_traits_df = pd.ExcelFile('size_traits.xlsx')     
size_traits_df.sheet_names 
[u'Sheet1'] 
size_traits_df = size_traits_df.parse("Sheet1")    
size_traits_df = size_traits_df.set_index(size_traits_df['trial_name'])      
 
# Integrative processing of the trials' dataframes 
os.chdir(main_trial_dfs_path)  
trial_names = glob("*.xlsx") 
trial_names 
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appended_data = [] 
counter = 0 
for trial_name in trial_names: 
    df = pd.ExcelFile(trial_name) 
    df.sheet_names 
    [u'Sheet1'] 
    df = df.parse("Sheet1") 
     
    '''Define the hypothetical datetime-column, i.e., similar for all replicates,  
    allowing selection of specific intervals in iteration (and will also be  
    used as the x-axis in integrative plots).'''                                                                   
    df.loc[:,'dates'] = pd.to_datetime(df['DateTime']).dt.date 
    df.loc[:,'time'] = pd.to_datetime(df['DateTime']).dt.time 
    df.loc[:,'date_delta'] = (df['dates'] - (df['dates'].iloc[0])) 
    x = datetime.datetime.strptime(hypothetical_trial_start_date, '%Y-%m-%d') 
    df.loc[:,'hypthetical_date'] = x 
    df.loc[:,'hypthetical_date_plus_date_delta'] = df['hypthetical_date'] + df['date_delta'] 
    df.loc[:,'final_hypo_datetime'] = pd.to_datetime(df[ 
            'hypthetical_date_plus_date_delta'].apply(str)+' '+df['time'].apply(str))     
     
    df_a = df 
    response_cols = [i for i in list(df_a) if 'S1' in i] 
    response_cols = [i for i in response_cols if 'feed' in 
                     i or 'filt' in i or 'resp' in i or 'SFG' in i] 
    for i in response_cols: 
        df_a.loc[:,'LS_' + i] = df_a[i]/( 
                size_traits_df.loc[trial_name[:-5], 'S1_l']) # l is shell-length  
        df_a.loc[:,'WS_' + i] = df_a[i]/( 
                size_traits_df.loc[trial_name[:-5], 'S1_w']) # w is tissue dry weight   
    df_a = df_a.assign(path = 'S1') 
    df_a = df_a.assign(replicate = 'r' + str(counter + 1)) 
    #df_a = df_a.assign(grouping_variable_level = df['S1_level'].values[0]) 
    df_a = df_a.assign(trial_name = trial_name[:-5]) 
    df_a.columns = [col.replace('S1', 'S') for col in df_a.columns] 
    delete_cols = [i for i in list(df_a) if 'S2' in i or 'S3' in i] 
    df_a.drop(df_a[delete_cols], axis = 1, inplace = True) 
     
    df_b = df 
    response_cols = [i for i in list(df_b) if 'S2' in i] 
    response_cols = [i for i in response_cols if 'feed' in 
                     i or 'filt' in i or 'resp' in i or 'SFG' in i] 
    for i in response_cols: 
        df_b.loc[:,'LS_' + i] = df_b[i]/( 
                size_traits_df.loc[trial_name[:-5], 'S2_l']) # l is shell-length  
        df_b.loc[:,'WS_' + i] = df_b[i]/( 
                size_traits_df.loc[trial_name[:-5], 'S2_w']) # w is tissue dry weight  
    df_b = df_b.assign(path = 'S2') 
    df_b = df_b.assign(replicate = 'r' + str(counter + 2)) 
    #df_b = df_b.assign(grouping_variable_level = df['S2_level'].values[0]) 
    df_b = df_b.assign(trial_name = trial_name[:-5]) 
    df_b.columns = [col.replace('S2', 'S') for col in df_b.columns] 
    delete_cols = [i for i in list(df_b) if 'S1' in i or 'S3' in i] 
    df_b.drop(df_b[delete_cols], axis = 1, inplace = True) 
     
    df_c = df 
    response_cols = [i for i in list(df_c) if 'S3' in i] 
    response_cols = [i for i in response_cols if 'feed' in 
                     i or 'filt' in i or 'resp' in i or 'SFG' in i] 
    for i in response_cols: 
        df_c.loc[:,'LS_' + i] = df_c[i]/( 
                size_traits_df.loc[trial_name[:-5], 'S3_l']) # l is shell-length  
        df_c.loc[:,'WS_' + i] = df_c[i]/( 
                size_traits_df.loc[trial_name[:-5], 'S3_w']) # w is tissue dry weight  
    df_c = df_c.assign(path = 'S3') 
    df_c = df_c.assign(replicate = 'r' + str(counter + 3)) 
    #df_c = df_c.assign(grouping_variable_level = df['S3_level'].values[0]) 
    df_c = df_c.assign(trial_name = trial_name[:-5]) 
    df_c.columns = [col.replace('S3', 'S') for col in df_c.columns] 
    delete_cols = [i for i in list(df_c) if 'S1' in i or 'S2' in i] 
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    df_c.drop(df_c[delete_cols], axis = 1, inplace = True) 
     
    trial_name = pd.concat([df_a, df_b, df_c]) 
    appended_data.append(trial_name) 
    counter = int(counter+3) 
     
appended_data = pd.concat(appended_data) 
with pd.option_context('display.max_rows', 3, 'display.max_columns', None): 
    print(appended_data)  
    
#Slicing an experimental period of interest 
answer = input("Do you want to keep or taylor out some parts of the integrated\ 
               dataset. e.g., a\ broken interval). Enter y or n: ") 
if answer == "y": 
        print("Please push control+c, manually define the conditions below, and\ 
              then continue the processing.") 
        print("Push control+c") 
        print("Push control+c") 
        time.sleep(30)  
 
elif answer == "n": 
    print("OK. No change is needed.")   
 
################################################### Manual imposition of changes  
#eg: 
 
# Revise the experimental data frame based on the conditions 
mask = (appended_data['final_hypo_datetime'] > '2019-11-01 20:00:00') & (appended_data[ 
        'final_hypo_datetime'] <= '2019-11-03 08:00:00') 
appended_data = appended_data.loc[mask] 
 
# exclude the broken replicate data based on the datetime interval and the path-name      
appended_data = appended_data.loc[ 
        (appended_data["trial_name"] != '26_oct') | (appended_data["path"] != 'S3')] 
appended_data = appended_data.loc[ 
        (appended_data["trial_name"] != '30_oct') | (appended_data["path"] != 'S3')]     
experiment_df = appended_data 
 
# split the complete experiment_df to the dataframes based on experimental periods of interest  
# (here, for example, the warming and cooling phases of the daily thermal cycle) 
mask_warming_phase = (experiment_df['final_hypo_datetime'] > '2019-11-02 05:30:00') & ( 
        experiment_df['final_hypo_datetime'] <= '2019-11-02 16:30:00') 
mask_cooling_phase = (experiment_df['final_hypo_datetime'] > '2019-11-02 17:30:00') & ( 
        experiment_df['final_hypo_datetime'] <= '2019-11-03 05:30:00') 
warming_phase_df = experiment_df.loc[mask_warming_phase] 
cooling_phase_df = experiment_df.loc[mask_cooling_phase] 
''' 
# based on a response variable 
appended_data = appended_data[ 
        appended_data["Respiration rate ($µmolO_2.g^{-1}.min^{-1}$)"] < 6] 
## based on a replicate name 
appended_data = appended_data[ 
        appended_data["replicate"]!= 'r12'] # excluding the replicate r12 
''' 
###Manual imposition of changes end 
 
############################################################################## 
### save dataframes              
if not os.path.isdir(output_path + "/experiment_df"): 
            os.mkdir(output_path + "/experiment_df") 
            os.chdir(output_path + "/experiment_df") 
else: 
    os.chdir(output_path + "/experiment_df") 
writer = ExcelWriter('experiment_df.xlsx')      
experiment_df.to_excel(writer, 'Sheet') 
writer.save()  
 
writer = ExcelWriter('cooling_phase_df.xlsx')      
cooling_phase_df.to_excel(writer, 'Sheet') 
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writer.save() 
 
writer = ExcelWriter('warming_phase_df.xlsx')      
warming_phase_df.to_excel(writer, 'Sheet') 
writer.save()     
 
 
############################################################################## 
#### Make lineplots for the response variables 
start = time.time() 
 
variable_cols = ['WS_resp_ymolO2_per_min_S', 'LS_filt_ml_per_min_S', 
                  'LS_feed_cells_per_min_S'] 
mpl.rcParams["font.size"] = font_size 
sns.set_style("white") 
for variable in variable_cols: 
    fig, ax = plt.subplots(sharex=True, sharey=True, figsize=(fig_width, fig_height))    
    sns.lineplot(x="final_hypo_datetime", y=variable, data=experiment_df, ax=ax, 
                 color="darkblue") 
    ax.set_ylabel(variable) 
    ax2 = ax.twinx() 
    sns.lineplot(x="final_hypo_datetime", y="Temp_C_x", data=experiment_df, 
                 ax=ax2, color="darkred", label="Temperature") 
    ax2.set_ylabel("Temperature (°C)") 
    ax2.set_yticks(np.arange(min_temp, max_temp, 3)) 
    ax2.lines[0].set_linestyle("-") 
    ax2.get_legend().remove() 
    ax.tick_params(axis='y', colors='darkblue') 
    ax.yaxis.label.set_color('darkblue') 
    ax2.tick_params(axis='y', colors='darkred') 
    ax2.yaxis.label.set_color('darkred') 
    ax.set_xlabel('Time (HH)') 
    ax.grid(linestyle=':', linewidth='0.2', which='major', axis='y', color='lightgrey') 
    plt.gcf().autofmt_xdate() 
    myFmt = mdates.DateFormatter('%H') 
    plt.gca().xaxis.set_major_formatter(myFmt) 
    plt.gca().xaxis.set_major_locator(mdates.HourLocator(byhour=range(0, 24, 4)))      
    if 'resp' in variable: 
        ax.set_ylabel('Resp. (µmolO$_2$ g$^{-1}$ min$^{-1}$)') 
        ax.set_ylim(min_resp, max_resp) 
    if 'filt' in variable: 
        ax.set_ylabel(r"Filt. (mL mm$^{-1}$ min$^{-1}$)") 
        ax.set_ylim(min_filt, max_filt) 
    if 'feed' in variable:  
        ax.set_ylabel(r"Feed. (cells mm$^{-1}$ min$^{-1}$)") 
        ax.set_ylim(min_feed, max_feed)   
    if not os.path.isdir(output_path + "/mean_error_lineplots"): 
            os.mkdir(output_path + "/mean_error_lineplots") 
            os.chdir(output_path + "/mean_error_lineplots") 
    else: 
        os.chdir(output_path + "/mean_error_lineplots") 
         
    plt.savefig(variable + '.pdf', bbox_inches='tight')  
 
############################################################################## 
#### Make lineplots for the processed food concentrations 
mpl.rcParams["font.size"] = font_size 
sns.set_style("white") 
sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})  
fig, ax = plt.subplots(sharex=True, sharey=True, figsize=(fig_width, fig_height))    
sns.lineplot(x="final_hypo_datetime", y='ST_DC_cells_per_ml_S', 
             data=experiment_df, ax=ax, color="darkblue") 
sns.lineplot(x="final_hypo_datetime", y='ST_DC_cells_per_ml_C', 
             data=experiment_df, ax=ax, color="darkgreen") 
ax2 = ax.twinx() 
sns.lineplot(x="final_hypo_datetime", y="Temp_C_x", data=experiment_df, 
             ax=ax2, color="darkred", label="Temperature") 
ax2.set_ylabel("Temperature (°C)") 
ax2.set_yticks(np.arange(min_temp, max_temp, 3)) 
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ax2.lines[0].set_linestyle("-") 
ax2.get_legend().remove() 
ax.tick_params(axis='y', colors='black') 
ax.yaxis.label.set_color('black') 
ax2.tick_params(axis='y', colors='darkred') 
ax2.yaxis.label.set_color('darkred') 
ax.set_xlabel('Time (HH)') 
ax.grid(linestyle=':', linewidth='0.2', which='major', axis='y', color='lightgrey') 
plt.gcf().autofmt_xdate() 
myFmt = mdates.DateFormatter('%H') 
plt.gca().xaxis.set_major_formatter(myFmt) 
plt.gca().xaxis.set_major_locator(mdates.HourLocator(byhour=range(0, 24, 4)))      
ax.set_ylabel("Food (cells mL$^{-1}$)") 
ax.set_ylim(min_cells_per_mL, max_cells_per_mL)   
 
legend_elements = [ 
        Line2D([0], [0], color='darkgreen', lw=3, linestyle='-', label='Conc. in Path$_{C}$'), 
        Line2D([0], [0], color='darkblue', lw=3, linestyle='-', label='Conc. in Path$_{S}$')] 
legend = ax.legend(handles=legend_elements, ncol=2, handlelength=0.5, 
                   prop={'size': 13}, loc='upper center', fancybox=False, frameon=False, 
                   bbox_to_anchor=(0.5, 1.2), framealpha=0.7) 
if not os.path.isdir(output_path + "/mean_error_lineplots"): 
        os.mkdir(output_path + "/mean_error_lineplots") 
        os.chdir(output_path + "/mean_error_lineplots") 
else: 
    os.chdir(output_path + "/mean_error_lineplots") 
     
plt.savefig("food__" + 'ST_DC_cells_per_ml' + '.pdf', bbox_inches='tight')  
 
 
############################################################################## 
#### Make lineplots for the processed dissolved oxygen concentrations 
variable_cols = ['percent_air_sat', 'ymol_per_l'] 
for variable in variable_cols: 
    mpl.rcParams["font.size"] = font_size 
    sns.set_style("white") 
    sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})  
    fig, ax = plt.subplots(sharex=True, sharey=True, figsize=(fig_width, fig_height))    
    sns.lineplot(x="final_hypo_datetime", y='corrected_' + variable + '_S', 
                 data=experiment_df, ax=ax, color="darkblue") 
    sns.lineplot(x="final_hypo_datetime", y='control_' + variable + '_C', 
                 data=experiment_df, ax=ax, color="darkgreen") 
    ax2 = ax.twinx() 
    sns.lineplot(x="final_hypo_datetime", y="Temp_C_x", data=experiment_df, 
                 ax=ax2, color="darkred", label="Temperature") 
    ax2.set_ylabel("Temperature (°C)") 
    ax2.set_yticks(np.arange(min_temp, max_temp, 3)) 
    ax2.lines[0].set_linestyle("-") 
    ax2.get_legend().remove() 
    ax.tick_params(axis='y', colors='black') 
    ax.yaxis.label.set_color('black') 
    ax2.tick_params(axis='y', colors='darkred') 
    ax2.yaxis.label.set_color('darkred') 
    ax.set_xlabel('Time (HH)') 
    ax.grid(linestyle=':', linewidth='0.2', which='major', axis='y', color='lightgrey') 
    plt.gcf().autofmt_xdate() 
    myFmt = mdates.DateFormatter('%H') 
    plt.gca().xaxis.set_major_formatter(myFmt) 
    plt.gca().xaxis.set_major_locator(mdates.HourLocator(byhour=range(0, 24, 4)))      
    if 'percent_air' in variable: 
        ax.set_ylabel("Diss. O$_2$ (% air sat.)") 
        ax.set_ylim(min_percent_air_sat, max_percent_air_sat) 
    if 'ymol_per_l' in variable: 
        ax.set_ylabel('Diss. O$_2$ (µmol L$^{-1}$)') 
        ax.set_ylim(min_micromol_per_L, max_micromol_per_L) 
    legend_elements = [ 
            Line2D([0], [0], color='darkgreen', lw=3, linestyle='-', label='Conc. in Path$_{C}$'), 
            Line2D([0], [0], color='darkblue', lw=3, linestyle='-', label='Conc. in Path$_{S}$')] 
    legend = ax.legend(handles=legend_elements, ncol=2, handlelength=0.5, 



 

 
158 

                       prop={'size': 13}, loc='upper center', fancybox=False, 
                       frameon=False, bbox_to_anchor=(0.5, 1.2), framealpha=0.7) 
    if not os.path.isdir(output_path + "/mean_error_lineplots"): 
            os.mkdir(output_path + "/mean_error_lineplots") 
            os.chdir(output_path + "/mean_error_lineplots") 
    else: 
        os.chdir(output_path + "/mean_error_lineplots")  
    plt.savefig("oxyg__" + variable + '.pdf', bbox_inches='tight')  
 
 
############################################################################## 
### Define dataframe and response variable lists for modeling of the thermal response curves 
df_list = [warming_phase_df, cooling_phase_df]  
df_names = ['warming_phase_df', 'cooling_phase_df']                                                               
response_variable_list = ['WS_resp_ymolO2_per_min_S', 'LS_filt_ml_per_min_S', 
                          'LS_feed_cells_per_min_S'] 
 
## All the processing will be repeated for each dataframe and response variable 
counter_ = 0 
for df in df_list: 
    for res in response_variable_list: 
        ''' If masking is needed: 
        mask = (df['Temp_C_x'] >= 16.8)     
        df = df.loc[mask] 
        ''' 
 
        ### GAM  
        # variables of GAM 
        x = df[['Temp_C_x']]                             
        y = df[res]   
         
        ## lam, short for lambda, controls the strength of the regularization  
        # penalty on each spline term. Terms can have multiple penalties, and  
        # therefore multiple lam. 
        lams = np.random.rand(50, 1) # random points on [0, 1], with shape (100, 1) 
        lams = lams * 8 - 3 # shift values to -3, 3 
        lams = np.exp(lams) # transforms values to 1e-3, 1e3 
         
        ## A grid-search over multiple lam and n-splines values to see if we can  
        # improve our model.  
        # We will seek the model with the lowest generalized cross-validation (GCV) score. 
        gam = LinearGAM(s(0)).gridsearch(x.values, y.values, lam=lams, 
                       n_splines=np.arange(5,10)) 
 
        ## Save statistics of the selected GAM 
        d = gam.statistics_ 
        gam_statistics_df = pd.DataFrame.from_dict(d, orient='index') 
 
        ### save GAM statistics  
        if not os.path.isdir(experiment_path + "/GAM_POLY_dfs_plots"): 
                    os.mkdir(experiment_path + "/GAM_POLY_dfs_plots") 
                    os.chdir(experiment_path + "/GAM_POLY_dfs_plots") 
        else: 
            os.chdir(experiment_path + "/GAM_POLY_dfs_plots") 
             
        writer = ExcelWriter('gam_statistics_df_' + df_names[counter_] +'_'+ 
                             res +'_'+  '.xlsx')                               
        gam_statistics_df.to_excel(writer, 'Sheet') 
        writer.save() 
 
        ## Define the x-axis limits of GAM 
        m = x.min() # real min temp of the fluctution treatment 
        M = x.max() # real max temp of the fluctution treatment 
        # define the hypothetical x-values for GAM 
        XX = np.linspace(m - 0, M + 0, 1000) # GAM prediction temp interval 
        Xl = np.linspace(m - 0, m, 50) # m-2 is the min temp of GAM prediction interval 
        Xr = np.linspace(M, M + 0, 50) # M+2 is the max temp of GAM prediction interval 
 
        # Make df of GAM predicts  
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        GAM_response_predict = pd.DataFrame(gam.predict(XX), columns=[res+'_GAM']) 
        GAM_temp = pd.DataFrame(XX, columns=['temp']) 
        GAM_df = pd.concat([GAM_temp, GAM_response_predict], axis=1) 
                      
        # GAM_POLY comparison plots  
        mpl.rcParams["font.size"] = font_size 
        sns.set_style("white") 
        sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})  
        fig, ax = plt.subplots(figsize=(4,2.5)) 
        ax.plot(XX, gam.predict(XX), color= 'darkblue', ls='-', linewidth=2)      
        ## XX[:, i] is the ith 'one dimensional slice' of the X_grid matrix of  
        confi = gam.confidence_intervals(XX, width=0.95) 
        ax.fill_between(XX.ravel(), y1=confi[:,0], y2=confi[:,1], 
                        color='darkblue', alpha=0.2)   
        plt.scatter(df['Temp_C_x'], df[res], s=0.5, c='lightgrey', alpha=0.5) 
        ax.set_xlabel('Temperature (°C)') 
        ax.set_xticks(np.arange(18, 28, 1)) 
        if 'resp' in res: 
            ax.set_ylabel('Resp. (µmolO$_2$ g$^{-1}$ min$^{-1}$)') 
            ax.set_ylim(0, 1) 
        if 'filt' in res: 
            ax.set_ylabel(r"Filt. (mL mm$^{-1}$ min$^{-1}$)") 
            ax.set_ylim(0, 2.5) 
        if 'feed' in res:  
            ax.set_ylabel(r"Feed. (cells mm$^{-1}$ min$^{-1}$)") 
            ax.set_ylim(0, 1500) 
        ax.grid(linestyle=':', linewidth='0.2', which='both', axis='both', 
                color='lightgrey') 
 
        plt.savefig("GAM_Poly_" + df_names[counter_] +'_'+ res +'_'+ '.pdf', 
                    bbox_inches='tight')    #☜☜☜☜☜☜ 
    counter_ += 1 
     
end = time. time() 
print(end - start) 
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SI for Chapter 2 “Burden or relief? Impact of cyclic thermal variability on 
ectotherms capable of metabolic suppression” 
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Supporting Tables 

Table S1 Generalized Additive Mixed-effect Model (GAMM) outcome for growth of mussel shell length and 
shell and tissue dry weights under thermal averages and daily fluctuations (crossed design) of the long-term (5-
weeks) experiment. Twelve temperature scenarios, at four thermal averages (18.5, 21.0, 23.5, and 26.0 °C), were 
applied at three daily fluctuation amplitudes (± 0, 2, and 4 °C). The group was defined as a random-effect factor 
(see Fig. S1). 

     
Shell length growth e.d.f. d.f. F-value p-value 
Thermal Average (T) 2.104 2.496 68.563 <0.001*** 
Fluctuation (F) 1.001 1.002 0.293 0.589 
T x F 2.929 4.000 7.568 <0.001*** 
Group 1.415 33.000 0.045 0.347 
     
Shell dry weight growth     
Thermal Average (T) 1.925 2.331 45.501 <0.001*** 
Fluctuation (F) 1.000 1.000 0.132 0.717 
T x F 2.847 4.000 7.267 <0.001*** 
Group 0.001 33.000 0.000 0.570 
     
Tissue dry weight growth     
Thermal Average (T) 2.403 2.657 30.631 <0.001*** 
Fluctuation (F) 1.001 1.001 0.089 0.766 
T x F 2.800 4.000 6.431 0.001*** 
Group 8.320 33.000 0.347 0.075 
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Table S2 Analyses of variance (ANOVA) outcome for growth of mussel shell length and shell and tissue dry 
weights under thermal averages and daily fluctuations (crossed design) of the long-term (5-weeks) experiment. 
Twelve temperature scenarios, at four thermal averages (18.5, 21.0, 23.5, and 26.0 °C), were applied at three daily 
fluctuation amplitudes (± 0, 2, and 4 °C). ANOVA was applied to data of each thermal average, separately. Daily 
fluctuations were considered as the predictor in all models. 

Thermal 
Average  

Growth response d.f. Sum Sq Average Sq F-value p-value 

18.5 (°C)  Shell length  2 0.0023 0.00114 1.231 0.297 
Shell dry weight  2 0.0463 0.02313 1.977 0.145 

Tissue dry weight  2 0.0002 0.00008 0.196 0.823 

21 (°C) Shell length  2 0.0009 0.00045 0.500 0.608 
Shell dry weight  2 0.0055 0.00277 0.193 0.825 

Tissue dry weight  2 0.0007 0.00036 0.902 0.409 
23.5 (°C) Shell length  2 0.0317 0.01586 15.24 <0.001*** 

Shell dry weight  2 0.3401 0.17006 12.56 <0.001*** 
Tissue dry weight  2 0.0064 0.00320 10.87 <0.001*** 

26 (°C) Shell length  2 0.0046 0.00233 3.173 0.047* 
Shell dry weight  2 0.0342 0.01711 3.806 0.026* 

Tissue dry weight  2 0.0047 0.00235 16.82 <0.001*** 
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Supporting figures 

 
Figure S1 Schematic representation of the general statement of Jensen’s Inequality (nonlinear averaging) in the 
context of Probability Theory. A predictor random variable (temperature T) fluctuates in time (a) following a 
specific probability density (b). Suppose the ecological response (growth G) is a function of the predictor T with 
a linear (c), a concave (d), or a convex (e) relationship on the predictor’s fluctuation interval. In that case, nonlinear 
averaging predicts that the average (expected) value of the response, E(G), is equal to, higher or lower than the 
response to the expected value of the predictor, G(E(T)), respectively. Subplots c–e are modified after Ruel & 
Ayres 1999 (see the main text’s reference section).  
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Figure S2 Experimental design applied in the long-term (5-weeks) experiment. Twelve temperature scenarios, 
at four thermal averages (18.5, 21.0, 23.5, and 26.0 °C), were applied at three daily fluctuation amplitudes (± 0, 2, 
and 4 °C). Main-effect factors (thermal average and daily fluctuation with 3 and 4 levels, respectively) were fully 
crossed. The random effect factor (group) was nested to the main treatments, and each group (3 groups per 
treatment) included 10 observations (single mussels). 

 

 
Figure S3 Treatments applied in the long-term (5-weeks) experiment. Twelve temperature scenarios, at four 
thermal averages (18.5, 21.0, 23.5, and 26.0 °C), were applied at three daily fluctuation amplitudes (± 0, 2, and 4 
°C). Data were logged every 5 min over the five weeks.  
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Figure S4 Food concentrations in the source and experimental containers (a and b, respectively) during the long-
term (5-weeks) experiment. Twelve temperature scenarios, at four thermal averages (18.5, 21.0, 23.5, and 26.0 
°C), were applied at three daily fluctuation amplitudes (± 0, 2, and 4 °C). Food concentration was measured every 
five days in each of the 12 experimental treatments. Deviations between treatments in b arise from mussel’s 
activities in response to the different thermal treatments. 
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Figure S5 Growth of mussel shell length and shell and tissue dry weights under thermal averages and daily 
fluctuations (crossed design) of the long-term (5-weeks) experiment. Presented are 5-weeks-integrated changes. 
Twelve temperature scenarios, at four thermal averages (18.5, 21.0, 23.5, and 26.0 °C), were applied at three daily 
fluctuation amplitudes (± 0, 2, and 4 °C). Data are presented as averages with 95 % confidence intervals for the 
10-mussel-groups (discerned by different colors). The numbers in parentheses (lower x-title row) indicate the 
numbers of dead mussels in each group of 10 by the end of the experiment. 
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Figure S6 Temporal variation in rates of metabolic processes retrieved from the short-term (one-day) assay. 
Weight-specific feeding and respiration (N = 11) along the applied daily thermal fluctuation cycle (orange dashed 
lines) are provided using the method developed by Vajedsamiei et al. (under review). Values are averaged at each 
time point, presented with 95 % confidence intervals. The rate of energy ingestion (feeding) was estimated, 
assuming the constancy of filtration rate at a constant food concentration (4000 cells mL-1).  
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Figure S7 Predictions of temporally-upscaled thermal metabolic-response relations (feeding, a; respiration, b) 
retrieved from the short-term (one-day) assay. Upscaled models (dashed lines) presenting the expected rates of 
metabolic processes (y-axes) as functions of the thermal average (x-axes) and daily fluctuations (note the legends; 
see Equation 3 in the Method). The red dashed lines are the same best-fit Polynomials which described the short-
term responses to temperature. The thermal fluctuation sets used for the predictions (named ± 0, 2, and 4 °C) are 
the same as were applied in the long-term (5-weeks) experiment. Subplots are based on data from the warming-
phase of the fluctuation. Here, the absolute values of predicted responses are presented. For the relative values, 
see Fig. 5a–b. The analytical procedure is described in the Method section of this paper. 

 

 

Figure S8 The impacts from ± 4 °C daily fluctuations on the 5-weeks-integrated growth of mussel shell (upper) 
and tissue (lower) dry weights in correlation to the upscaling-predicted impacts of the same fluctuations on long-
term-expected feeding (left) and respiration (right) rates (based on data from the short-term assay), over thermal 
averages from 21 to 26°C (heat chart to the right). Pearson’s correlation of > 0.7 (or < - 0.7) indicates a strong 
linear correlation.  
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Supporting R and Python scripts 

The following R and Python scripts were used to process the experimental data that will be 
published in PANGEA. 

 

Script S1 
# This R script applies the dataframe of the long-term thermal performance experiment 
to test the significance of the main and interactive (fixed) effects of the thermal  
average and fluctuation treatments and the random effect of the group using  
Generalized Additive Mixed-effect Model. 
# Besides, this script performs the pairwise comparison of the average responses  
between different fluctuation-levels. 
 
@author: Jahangir Vajedsamiei (last checked in Dec. 2020) 
''' 
# needed packages 
install.packages("nlme") 
install.packages("mgcv") 
install.packages("data.table") 
library("nlme") 
library("mgcv") 
library(data.table) 
library(ggplot2) 
install.packages("stargazer") 
library(stargazer) 
 
## Inspecting and revising the data frame  
df <- Performance_data 
head(df) 
str(df) 
 
# Set colnames  
setnames(df, old = c('Mean temperature (°C)'), new = c('Mean_temperature')) 
setnames(df, old = c('Fluctuation scenario'), new = c('Fluctuation')) 
setnames(df, old = c('temp_SD'), new = c('SD_temperature')) 
setnames(df, old = c('group'), new = c('Group')) 
setnames(df, old = c('Length growth (mm/day)'), new = c('Length_growth')) 
setnames(df, old = c('Shell dry weight growth (mg/day)'), new = c('Shell_DW_growth')) 
setnames(df, old = c('Tissue dry weight growth (mg/day)'), new = c('Tissue_DW_growth')) 
 
df$Fluctuation <- as.factor(df$Fluctuation) 
df$SD_temperature <- as.numeric(df$SD_temperature) 
df$Mean_temperature <- as.numeric(df$Mean_temperature) 
df$Group <- as.factor(df$Group)  
 
## GAM definition, test of significance, and model comparison 
lapply(df[,c(names(df)[15:17])], function(y) { 
  GAMM <- gam(y ~ s(Mean_temperature, k=4) + s(SD_temperature, k=3) + 
                 te(Mean_temperature, SD_temperature, k=3) + 
                 s(Group, bs = 're'), 
               data=df , method = 'ML') 
  #summary(GAMM) 
  GAM_simple <- gam(y ~ s(Mean_temperature, k=4, by=Fluctuation) + 
                 Fluctuation, 
               data=df , method = 'ML') 
  #summary(GAM_simple) 
  AIC(GAMM, GAM_simple) 
  #anova(GAM_1, GAM_2) 
}) 
 
## ANOVA on the effect of the fluctuation at each thermal average 
# and, pairwise comparison of the average responses  
df$Mean_temperature <- as.factor(df$Mean_temperature) 
thermal_mean_list = list("18.5", "21", "23.5", "26") 
for (thermal_mean in thermal_mean_list) { 
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  # Compute anova with TukeyHSD 
  print(thermal_mean) 
  res <- aov(Tissue_DW_growth ~ Fluctuation, data = df[df$Mean_temperature == thermal_mean,]) 
  print(summary(res)) 
  #print(res) 
  print(TukeyHSD(res)) 
} 
 
 
Script S2 
#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
# This Python script processes temperature data of the long-term thermal performance  
experiment. It produces Figure S2 of the paper. Besides, it calculates first 10   
central moments for each of the 12 temperature sets.  
Odd moments are nearly equal to zero since the variability around the mean 
was balanced. Average values of the even number moments (2d to 10th moment) are  
applied later to define upscaled models in Script_S4 (also generally presented as  
Equation 3 in the method section of the paper). 
 
@author: Jahangir Vajedsamiei (last checked in Dec. 2020) 
""" 
 
import os 
from glob import glob as glob 
import pandas as pd 
from pandas import ExcelWriter  
import numpy as np 
from scipy.stats import moment 
import datetime as dt 
import seaborn as sns 
import matplotlib.pyplot as plt 
import matplotlib as mpl 
import matplotlib.dates as mdates 
from matplotlib.pylab import rcParams 
import matplotlib.ticker as ticker 
import math 
import time 
 
start = time. time() 
 
# Define the path for the folder containing raw data 
os.chdir("/Users/jahangir/Desktop/fluctuation_plasticity_2018/Long_term_exp/Data/" + 
         "Long_term_thermal_performance/Temperature_csv_xlsx")  
filelist = glob("*.csv") # Make the list of files 
 
appended_temp_data = [] 
moments_df = [] 
counter = 0 
 
# Loop over the files in the filelist 
for filename in filelist: 
    temp_df = pd.read_csv(filename, encoding='utf-8', sep=",", names = [ 
            'datetime', 'Temperature (°C)'], header = 0, usecols = [1,2]) 
    temp_df = temp_df.drop([0]) 
    temp_df = temp_df.dropna() 
    temp_df['datetime'] = pd.to_datetime(temp_df['datetime']) 
    temp_df['Temperature (°C)'] = temp_df['Temperature (°C)'].apply( 
            pd.to_numeric, errors='coerce') 
    mask = (temp_df['datetime'] > '2018-09-27 10:30:00') & (temp_df[ 
            'datetime'] < '2018-10-30 16:10:00') 
    temp_df = temp_df.loc[mask]  
     
    temp_df = temp_df.assign(Thermal_mean = str(filename[:filename.find("_")])) 
    temp_df = temp_df.assign(Thermal_fluctuation = str(filename[ 
            filename.find("_")+1:filename.find(".csv")]))  
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    # Calculate i-th central moment for each of the 12 temperature sets  
    index = [np.arange(1, 11)]  
    columns = ["i_moment__" + str(filename[:filename.find(".csv")]), "i_moment/i_factorial__" + 
str(filename[:filename.find(".csv")])] 
    moments = pd.DataFrame(index=index, columns=columns) 
    for i in np.arange(1, 11, 1): 
        moments["i_moment__" + str(filename[:filename.find(".csv")])].values[i - 1] = moment(temp_df['Temperature (°C)'], 
moment=i) 
        moments["i_moment/i_factorial__" + str(filename[:filename.find(".csv")])].values[i - 1] = 
moment(temp_df['Temperature (°C)'], moment=i)/math.factorial(i) 
 
    appended_temp_data.append(temp_df) 
    moments_df.append(moments) 
     
appended_temp_df = pd.concat(appended_temp_data) 
appended_temp_df['Temperature (°C)'] = appended_temp_df['Temperature (°C)'].apply(pd.to_numeric, errors='coerce') 
appended_temp_df['Thermal_mean'] = appended_temp_df['Thermal_mean'].apply(pd.to_numeric, errors='coerce') 
appended_temp_df['Thermal_fluctuation'] = appended_temp_df['Thermal_fluctuation'].apply(pd.to_numeric, errors='coerce') 
df = appended_temp_df.sort_values(by=['Thermal_mean', 'Thermal_fluctuation'],ascending=True) 
 
moments_df = pd.concat(moments_df, axis = 1) 
moments_df["i"] = np.arange(1, 11) 
 
with pd.option_context('display.max_rows', 10, 'display.max_columns', None): 
    print(moments_df) 
 
## Save Moments dataframe 
os.chdir("/Users/jahangir/Desktop/fluctuation_plasticity_2018/Long_term_exp/Data/" + 
         "Long_term_thermal_performance/Temperature_csv_xlsx") 
writer = ExcelWriter('Moments_df1.xlsx')                                                 
moments_df.to_excel(writer, 'Sheet') 
writer.save()   
 
## Save the complete temperature dataframe 
writer = ExcelWriter('Complete_temperature_df.xlsx')                                                
df.to_excel(writer, 'Sheet') 
writer.save()    
 
## Plot temperature data 
grouped = df.groupby('Thermal_mean') 
 
mpl.rcParams["font.size"] = 15 
sns.set_style("white") 
fig, axes = plt.subplots(ncols=1, nrows=4, sharex=True, sharey=False, figsize=(9,5)) 
for ax, (n,grp) in zip(axes, grouped): 
    sns.lineplot(x="datetime", y='Temperature (°C)', hue='Thermal_fluctuation', data=grp, ax=ax, 
palette=sns.color_palette("hls", 3))    
    ax.yaxis.set_major_locator(ticker.MultipleLocator(3)) 
    ax.set_ylabel(' ') 
    ax.get_legend().remove() 
    ax.set_xlabel("Date (dd.mm)") 
plt.gcf().autofmt_xdate() 
myFmt = mdates.DateFormatter('%d.%m') 
plt.gca().xaxis.set_major_formatter(myFmt) 
plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=2))                                      
fig.subplots_adjust(hspace=0.05, wspace = 2) 
 
os.chdir("/Users/jahangir/Desktop/fluctuation_plasticity_2018/Long_term_exp/Plots/" + 
         "Long_term_thermal_performance/Temperature") 
plt.savefig('Figure_S2_raw' + '.pdf', bbox_inches='tight')       
 
 
 Script S3 
#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
# This Python script calculates the means with 95 % confidence intervals for each  
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response variable (growth trait) and plot them combined with the predictions of  
the simple GAMs (with 95 % confidence intervals), creating Figure 4a-c of the paper. 
 
@author: Jahangir Vajedsamiei (last checked in Dec. 2020) 
""" 
 
import os 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from pygam import LinearGAM, s, f 
from numpy import exp, loadtxt, pi, sqrt 
from matplotlib.lines import Line2D 
import scipy.stats 
import matplotlib as mpl 
from pandas import ExcelWriter  
 
## Read in the experimental performance data 
Performance_data = pd.ExcelFile("/Users/jahangir/Desktop/fluctuation_plasticity_2018/Long_term_exp/Data/" + 
                                "Long_term_thermal_performance/" +  
                                "Performance_xlsx/Performance_data.xlsx") 
Performance_data.sheet_names 
[u'Sheet1'] 
Performance_data = Performance_data.parse("Sheet1") 
df = Performance_data.dropna() 
 
## Mean and error and GAM for all treatments 
response_list = ['Length growth (mm/day)', 'Shell dry weight growth (mg/day)', 
                 'Tissue dry weight growth (mg/day)'] 
mean_temp_grouped = df.groupby('Mean temperature (°C)') 
for response in response_list: 
    mpl.rcParams["font.size"] = 14 
    sns.set_style("white") 
    sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})  
    color = ['red', 'lime', 'blue'] 
    fig, ax = plt.subplots(sharex=True, sharey=True, figsize=(4.5,4)) 
    grouped = df.groupby('temp_SD') 
    counter=0 
    for i, (n,grp) in enumerate(grouped):  
        # mean ± CI  
        sub_df = grp.reset_index() 
        sub_grouped = sub_df.groupby('Mean temperature (°C)') 
        ssms = sub_grouped[response].agg( 
                ['size','sum','mean','std']).reset_index() 
        ssms['CI'] = (scipy.stats.t.ppf((1 + 0.95) / 2., ssms['size']-1))*( 
                ssms['std']/sqrt(ssms['size'])) 
        x = ssms['Mean temperature (°C)'] 
        y = ssms['mean']  
        e = ssms['CI']  
        if counter ==0: 
            ax.errorbar(x, y, yerr = e, fmt = 'o', color = color[i], alpha=0.8, 
                        capsize=3, capthick=2, elinewidth=0.6) 
        elif counter ==1: 
            ax.errorbar(x + 0.05, y, yerr = e, fmt = 'o', color = color[i], 
                        alpha=0.8, capsize=3, capthick=2, elinewidth=0.6) 
        else: 
            ax.errorbar(x - 0.05, y, yerr = e, fmt = 'o', color = color[i], 
                        alpha=0.8, capsize=3, capthick=2, elinewidth=0.6) 
 
        # GAM  
        x = grp['Mean temperature (°C)'] 
        y = grp[response] 
         
        gam = LinearGAM(s(0)).fit(x, y) 
         
        # Save statistics of the simple GAMs 
        os.chdir("/Users/jahangir/Desktop/fluctuation_plasticity_2018/Long_term_exp/output_dfs/" + 
         "Long_term_thermal_performance/GAM_statistics")  
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        d = gam.statistics_ 
        gam_statistics_df = pd.DataFrame.from_dict(d, orient='index') 
        writer = ExcelWriter('SimpleGAM_statistics_df_' + str(n) +'_'+ 
                             response[:response.find(" ")] +'_'+'.xlsx')                              #☜☜☜☜☜☜ 
        gam_statistics_df.to_excel(writer, 'Sheet') 
        writer.save() 
         
        m = x.min() 
        M = x.max() 
        XX = np.linspace(m - 0, M + 0, 500) 
        Xl = np.linspace(m - 0, m, 50) 
        Xr = np.linspace(M, M + 0, 50) 
 
        ax.plot(XX, gam.predict(XX), color=color[i], ls='-', linewidth=2) 
        confi = gam.confidence_intervals(XX) 
        ax.fill_between(XX.ravel(), y1=confi[:,0], y2=confi[:,1], 
                        color=color[i], alpha=0.2)   
        ax.plot(Xl, gam.confidence_intervals(Xl), color=color[i], ls='--') 
        ax.plot(Xr, gam.confidence_intervals(Xr), color=color[i], ls='--') 
        ax.set_ylabel(response) 
         
        GAM_response_predict = pd.DataFrame(gam.predict(XX), columns=[str(n)+ 
                                            '_'+response+'_GAM']) 
        GAM_temp = pd.DataFrame(XX, columns=['temp_Passay']) 
        GAM_df = pd.concat([GAM_temp, GAM_response_predict], axis=1) 
         
        # Save predictions of the simple GAMs 
        os.chdir("/Users/jahangir/Desktop/fluctuation_plasticity_2018/Long_term_exp/output_dfs/" + 
         "Long_term_thermal_performance/GAM_dfs")  
        writer = ExcelWriter('GAM_df_' + str(n) +'_'+ response[ 
                :response.find(" ")] +'_'+'.xlsx')                              
        GAM_df.to_excel(writer, 'Sheet') 
        writer.save() 
         
        counter += 1 
 
    ax.set_xticks(np.arange(18, 26.5, 1)) 
    ax.set_xlabel("Thermal average (°C)") 
    ax.grid(linestyle=':', linewidth='0.2', which='both', color='lightgrey') 
    if response == 'Length growth (mm/day)': 
        legend_elements = [Line2D([0], [0], color=color[0], lw=3, 
                                  label='± 0 °C'),  
                           Line2D([0], [0], color=color[1], lw=3, 
                                  label='± 2 °C'),  
                           Line2D([0], [0], color=color[2], lw=3, 
                                  label='± 4 °C')] 
        legend = ax.legend(handles=legend_elements, ncol=1, handlelength=0.5, 
                           prop={'size': 13}, fancybox=False, frameon=False, 
                           title="Fluctuation ", loc="lower left", framealpha=0.7) 
        ax.set_ylabel('Shell length growth (mm d$^{-1}$)')  
    if response == 'Shell dry weight growth (mg/day)': 
        ax.set_ylabel('Shell dry weight growth (mg d$^{-1}$)') 
    if response == 'Tissue dry weight growth (mg/day)': 
        ax.set_ylabel('Tissue dry weight growth (mg d$^{-1}$)') 
         
    counter=1 
    plt.tight_layout() 
    os.chdir("/Users/jahangir/Desktop/fluctuation_plasticity_2018/Long_term_exp/Plots/" + 
         "Long_term_thermal_performance/Performance") 
    plt.savefig('GAM_mean&error_' + response[0:6] + '.pdf', 
                bbox_inches='tight')  
 
Script S4 
#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
# This script processes data collected in the short-term assay. 
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- Data of the warming and cooling phases (thermal feeding and respiration responses) 
are read in separately. 
- Thermal variation in the traits are described by the best-fit Polynomials with maximum 
possible order of 10 (i.e., g_p(T) in the paper) versus Generalized Additive Models 
(GAMs). The best-fit GAMs are only used to visually check the goodness of the 
polynomial fits (see Figure 4d-g of the paper). 
 
- The expectation of the Taylor expansion of each Polynomial function at the average temperature µ_T, or  
E(g(T)), is defined (Jensen's Inequality; here, JI). 
 
Output dfs and the figure subplots are saved. 
@author: Jahangir Vajedsamiei (last checked in Dec. 2020) 
""" 
 
import os 
import pandas as pd 
import numpy as np 
import datetime   
import matplotlib.pyplot as plt 
import matplotlib as mpl 
from matplotlib.lines import Line2D   
from pandas import ExcelWriter  
from pygam import LinearGAM, s, f 
from RegscorePy import * # For Polynomial model selection based on BIC  
import seaborn as sns 
import time 
 
start = time.time() 
 
 
# Input path definition 
 
experiment_path = "/Users/jahangir/Desktop/fluctuation_plasticity_2018/Short_term_exp/Dec_2018_exp" 
integrated_dfs_path = experiment_path + "/integrative_processing_outputs/experiment_df" 
 
# Input path definition end 
 
 
## Data of the warming and cooling-phase of the short-term thermal energetics 
# experiment are read in separately.  
os.chdir(integrated_dfs_path)  
cooling_phase_df = pd.ExcelFile('cooling_phase_df.xlsx')                             
cooling_phase_df.sheet_names 
[u'Sheet'] 
cooling_phase_df = cooling_phase_df.parse("Sheet")     
 
warming_phase_df = pd.ExcelFile('warming_phase_df.xlsx')                            
warming_phase_df.sheet_names 
[u'Sheet'] 
warming_phase_df = warming_phase_df.parse("Sheet")    
 
 
# Define dataframe and response variable lists  
df_list = [warming_phase_df, cooling_phase_df]  
df_names = ['warming_phase_df', 'cooling_phase_df']                                                               
response_variable_list = ['WS_resp_J_per_h_S', 'WS_feed_hyp_J_per_h_4000_cells_S'] 
 
start = time.time() 
 
## All the processing will be repeated for each dataframe and response variable 
counter_ = 0 
for df in df_list: 
    for res in response_variable_list: 
        # mask 
        mask = (df['Temp_C_x'] >= 16.8)    ############ 
        df = df.loc[mask] 
 
        ### GAM  
        # variables of GAM 
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        x = df[['Temp_C_x']]                             ############ 
        y = df[res]   
         
        ## lam, short for lambda, controls the strength of the regularization  
        # penalty on each spline term. Terms can have multiple penalties, and  
        # therefore multiple lam. 
        lams = np.random.rand(100, 1) # random points on [0, 1], with shape (100, 1) 
        lams = lams * 8 - 3 # shift values to -3, 3 
        lams = np.exp(lams) # transforms values to 1e-3, 1e3 
         
        ## A grid-search over multiple lam and n-splines values to see if we can  
        # improve our model.  
        # We will seek the model with the lowest generalized cross-validation (GCV) score. 
        gam = LinearGAM(s(0)).gridsearch(x.values, y.values, lam=lams, 
                       n_splines=np.arange(4,11)) 
 
        ## Save statistics of the selected GAM 
        d = gam.statistics_ 
        gam_statistics_df = pd.DataFrame.from_dict(d, orient='index') 
         
        ### save GAM statistics  
        if not os.path.isdir(experiment_path + "/GAM_POLY_dfs_plots"): 
                    os.mkdir(experiment_path + "/GAM_POLY_dfs_plots") 
                    os.chdir(experiment_path + "/GAM_POLY_dfs_plots") 
        else: 
            os.chdir(experiment_path + "/GAM_POLY_dfs_plots/GAM_statistics") 
             
        writer = ExcelWriter('gam_statistics_df_' + df_names[counter_] +'_'+ 
                             res +'_'+  '.xlsx')                               
        gam_statistics_df.to_excel(writer, 'Sheet') 
        writer.save() 
 
        ## Define the x-axis limits of GAM 
        m = x.min() # real min temp of the fluctution treatment 
        M = x.max() # real max temp of the fluctution treatment 
        # define the hypothetical x-values for GAM 
        XX = np.linspace(m - 0, M + 0, 1000) # GAM prediction temp interval 
        Xl = np.linspace(m - 0, m, 50) # m-2 is the min temp of GAM prediction interval 
        Xr = np.linspace(M, M + 0, 50) # M+2 is the max temp of GAM prediction interval 
 
        # Make df of GAM predicts  
        GAM_response_predict = pd.DataFrame(gam.predict(XX), columns=[res+'_GAM']) 
        GAM_temp = pd.DataFrame(XX, columns=['temp']) 
        GAM_df = pd.concat([GAM_temp, GAM_response_predict], axis=1) 
                      
        # GAM_POLY comparison plots  
        mpl.rcParams["font.size"] = 15 
        sns.set_style("whitegrid") 
        sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})  
        fig, ax = plt.subplots(figsize=(4,4)) 
         
        ax.plot(XX, gam.predict(XX), color= 'black', ls='-', linewidth=2)      
        ## XX[:, i] is the ith 'one dimensional slice' of the X_grid matrix of  
        #the GAM 
        confi = gam.confidence_intervals(XX) 
        ax.fill_between(XX.ravel(), y1=confi[:,0], y2=confi[:,1], 
                        color='black', alpha=0.2)   
        ax.plot(Xl, gam.confidence_intervals(Xl), color='black', ls='--') 
        ax.plot(Xr, gam.confidence_intervals(Xr), color='black', ls='--') 
         
        ## Find the best-fit polynomial based on BIC and include its  
        # predictions in the graph 
        x = df['Temp_C_x']                             
        y = df[res] 
         
        degrees = np.arange(2, 11) 
        counter = 0 
        for deg in degrees: 
            p =int(deg + 1) 
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            fit = np.polyfit(x, y, deg)  
            yp = np.poly1d(fit) 
            from RegscorePy import * 
            bic = bic.bic(y, yp(x), p) 
            #aic = aic.aic(y, yp(x), p) 
            if counter==0: 
                min_bic = bic 
                best_deg = deg 
            else: 
                if bic < min_bic: 
                    min_bic = bic 
                    best_deg = deg 
            print('degree {} with BIC {}'.format(deg, bic)) 
            counter += 1 
        print('Best degree {} with BIC {}'.format(best_deg, min_bic)) 
         
        # define the best-fit polynomial 
        fit = np.polyfit(x, y, best_deg)  
        yp = np.poly1d(fit) 
 
        # r-squared 
        # fit values, and mean 
        yhat = yp(x)                         # or [p(z) for z in x] 
        ybar = np.sum(y)/len(y)          # or sum(y)/len(y) 
        ssreg = np.sum((yhat-ybar)**2)   # or sum([ (yihat - ybar)**2 for yihat in yhat]) 
        sstot = np.sum((y - ybar)**2)    # or sum([ (yi - ybar)**2 for yi in y]) 
        r_squared = ssreg / sstot 
        print(round(r_squared, 2)) 
     
        # add the axe to the plot  
        Xp = np.linspace(m - 0, M + 0, 1000) 
        ax.plot(Xp, yp(Xp), color='red', ls='-.', lw=2) 
        plt.scatter(df['Temp_C_x'], df[res], s=0.5, c='grey', alpha=0.5) 
        ax.set_xlabel('Temperature (°C)') 
        ax.set_ylabel(res[:res.find("J")-1]) 
        #the forecast is not accountable for >31 
        ax.set_xlim(left=17, right=30.5)       
        ax.set_xticks(np.arange(16, 31, 2)) 
        ax.grid(linestyle=':', linewidth='0.2', which='both', color='lightgrey') 
        legend_elements = [Line2D([0], [0], color='black', lw=3, linestyle='-', 
                                  label='GAM '+'(n-sp: '+str(gam.n_splines[0])+')'),  
                           Line2D([0], [0], color='red', lw=3, linestyle='-.', 
                                  label='PM (ord.: ' + str(best_deg) + 
                                  ', r$^{2}$: ' + str(round(r_squared, 1)) +')')] 
        legend = ax.legend(handles=legend_elements, ncol=1, handlelength=0.5, 
                           prop={'size': 13}, fancybox=False, frameon=False, 
                           title=None, loc="best",framealpha=0.7) 
 
        ## Save the plots  
        os.chdir(experiment_path + "/GAM_POLY_dfs_plots/Plots") 
         
        plt.savefig("GAM_Poly_" + df_names[counter_] +'_'+ res +'_'+ '.pdf', 
                    bbox_inches='tight')    #☜☜☜☜☜☜ 
         
        ## Define Taylor expansions of the polynomial functions around 
        # numerous hypothtical-mean temperatures, based on moments of the  
        # temperature sets used in the long-term experiment. 
        y_SD_0_ = yp(Xp) 
         
        deriv_dic={} 
        for i in range(1,11): 
            #print(i) 
            deriv_dic["derivative{0}".format(i)] = np.polyder(yp, i)                     
         
        ## The numbers (e.g., 0.910) are calculated via the following command in  
        # Script_S2: moment(temp_df['Temperature (°C)'], moment=i)/math.factorial(i) 
        y_SD_1_35_ = (yp(Xp) + (deriv_dic["derivative2"](Xp) * 0.910) + 
                      (deriv_dic["derivative4"](Xp) *0.208) + (deriv_dic["derivative6"](Xp) *0.021) + 
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                      (deriv_dic["derivative8"](Xp) *0.001) + (deriv_dic["derivative10"](Xp) *0.00005)) 
         
        y_SD_2_7_ = (yp(Xp) + (deriv_dic["derivative2"](Xp) * 3.698) + 
        (deriv_dic["derivative4"](Xp) *3.416) + (deriv_dic["derivative6"](Xp) *1.403) + 
        (deriv_dic["derivative8"](Xp) *0.325) + (deriv_dic["derivative10"](Xp) *0.048)) 
         
        pd.Series(y_SD_1_35_.flatten()) 
         
        poly_JI_df = pd.concat([pd.Series(y_SD_0_.flatten()), 
                                pd.Series(y_SD_1_35_.flatten()), 
                                pd.Series(y_SD_2_7_.flatten())], axis=1) 
        poly_JI_df.columns = ['y_SD_0_'+'JI_'+res, 'y_SD_1_35_'+'JI_'+res, 'y_SD_2_7_'+'JI_'+res] 
        GAM_Poly_JI_df = pd.concat([GAM_df, poly_JI_df], axis=1) 
 
        ### save the complete data frame 
        if df is df_list[1]: 
            os.chdir(experiment_path + "/GAM_POLY_dfs_plots/GAM_Poly_JI_dfs/Cooling_phase") 
        if df is df_list[0]: 
            os.chdir(experiment_path + "/GAM_POLY_dfs_plots/GAM_Poly_JI_dfs/Warming_phase") 
             
        writer = ExcelWriter('GAM_Poly_JI_df_' + df_names[counter_] +'_'+ res + 
                             '_'+  '.xlsx')                               
        GAM_Poly_JI_df.to_excel(writer, 'Sheet') 
        writer.save() 
 
        # masking 
        mask = (GAM_Poly_JI_df['temp'] >= 16.8 + 2) & (GAM_Poly_JI_df['temp'] <= 30.7 - 2)  # since the JI 
prediction+forecast (x-)interval is (17.5, 30.3)  
        GAM_Poly_JI_df1_ = GAM_Poly_JI_df.loc[mask] 
         
        mask = (GAM_Poly_JI_df['temp'] >= 16.8 + 4) & (GAM_Poly_JI_df['temp'] <= 30.7 - 4)  # since the JI 
prediction+forecast (x-)interval is (17.5, 30.3)  
        GAM_Poly_JI_df2_ = GAM_Poly_JI_df.loc[mask] 
 
        # Figure with subplots 
        mpl.rcParams["font.size"] = 15 
        sns.set_style("whitegrid") 
        sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})  
        fig, ax = plt.subplots(sharex=True, sharey=True, figsize=(4,4)) 
         
        #ax.plot(GAM_Poly_JI_df['temp'], GAM_Poly_JI_df[res+'_GAM'], color='black', ls='-', lw=2) 
        ax.plot(GAM_Poly_JI_df['temp'], GAM_Poly_JI_df['y_SD_0_'+'JI_'+res], 
                color='red', ls='-.', lw=2) 
        ax.plot(GAM_Poly_JI_df1_['temp'], GAM_Poly_JI_df1_['y_SD_1_35_'+'JI_'+res], 
                color='lime', ls='-.', lw=2) 
        ax.plot(GAM_Poly_JI_df2_['temp'], GAM_Poly_JI_df2_['y_SD_2_7_'+'JI_'+res], 
                color='blue', ls='-.', lw=2) 
         
        ax.set_xlabel('Thermal average (°C)') 
        ax.set_ylabel(res[:res.find("J")-1])  
        ax.set_xlim(left=17, right=30.5) 
        #ax.set_ylim(-50, 100) 
        ax.set_xticks(np.arange(17, 30.5, 2)) 
        ax.grid(linestyle=':', linewidth='0.2', which='both', color='lightgrey') 
        color = ['red', 'lime', 'blue'] 
        legend_elements = [Line2D([0], [0], color=color[0], lw=3, 
                                  linestyle='-.', label='± 0 °C'),  
                           Line2D([0], [0], color=color[1], lw=3, 
                                  linestyle='-.', label='± 2 °C'),  
                           Line2D([0], [0], color=color[2], lw=3, 
                                  linestyle='-.', label='± 4 °C')] 
        legend = ax.legend(handles=legend_elements, ncol=1, handlelength=0.5, 
                           prop={'size': 12}, fancybox=False, frameon=False, 
                           title="Fluctuation ", loc="lower left", framealpha=0.7) 
 
        # save the plots 
        os.chdir(experiment_path + "/GAM_POLY_dfs_plots/Plots") 
 
        plt.savefig("JI-predicts_" + df_names[counter_] +'_'+ res +'_'+ '.pdf', 
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                    bbox_inches='tight')   
 
    counter_ += 1 
     
end = time. time() 
print(end - start)  
 
 

Script S5 

#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
""" 
This Script enables the comparison of thermal performance curves (shell-length growth  
versus feeding and respiration). 
The observed (GAM fits of) growth and upscaling-predicted metabolic responses  
are converted to relative values (considering the maximum and minimum values of 
each response under 18.5 and 26 °C at the constant thermal setting as 0 and 100, 
respectively). 
 
This script prepares subplots of Figure 5 of the paper. 
 
@author: Jahangir Vajedsamiei (last checked in Dec. 2020) 
""" 
 
import os 
import pandas as pd 
from glob import glob as glob 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
import matplotlib as mpl 
from pandas import ExcelWriter  
from matplotlib.lines import Line2D 
 
 
# Input path definition 
experiment_path = "/Users/jahangir/Desktop/fluctuation_plasticity_2018" 
 
 
 
## Merge all GAM-outputs of the long-term thermal performance experiment 
os.chdir(experiment_path + "/Long_term_exp/output_dfs/" + 
         "Long_term_thermal_performance/GAM_dfs")  
files = glob("*.xlsx") 
thermal_performance_df = [] 
for file in files: 
    df = pd.ExcelFile(file) 
    df.sheet_names 
    [u'Sheet'] 
    df = df.parse("Sheet") 
    thermal_performance_df.append(df)        
thermal_performance_df = pd.concat(thermal_performance_df, axis=1) 
thermal_performance_df = thermal_performance_df.loc[ 
        :,~thermal_performance_df.columns.duplicated()] 
with pd.option_context('display.max_rows', 10, 'display.max_columns', None): 
    print(thermal_performance_df) 
 
## Merge all Polynomial-predicts (including Jensen's Inequality predicts) of  
# the warming-phase of the short-term thermal metabolic experiment.  
os.chdir(experiment_path + "/Short_term_exp/Dec_2018_exp" + 
         "/GAM_POLY_dfs_plots/GAM_Poly_JI_dfs/Warming_phase")  
files = glob("*.xlsx") 
thermal_metabolic_df = [] 
for file in files: 
    df = pd.ExcelFile(file) 
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    df.sheet_names 
    [u'Sheet'] 
    df = df.parse("Sheet") 
    thermal_metabolic_df.append(df)       
thermal_metabolic_df = pd.concat(thermal_metabolic_df, axis=1) 
thermal_metabolic_df = thermal_metabolic_df.loc[ 
        :,~thermal_metabolic_df.columns.duplicated()] 
with pd.option_context('display.max_rows', 10, 'display.max_columns', None): 
    print(thermal_metabolic_df) 
 
## Make sub_dfs of thermal_metabolic_df, will be used later in the processing  
mask = (thermal_metabolic_df['temp'] >= 18.5) & ( 
        thermal_metabolic_df['temp'] <= 26)  
thermal_metabolic_df_cropped_ref_ = thermal_metabolic_df.loc[mask] 
 
mask = (thermal_metabolic_df['temp'] >= 16.8) & ( 
        thermal_metabolic_df['temp'] <= 30.7)  
thermal_metabolic_df_cropped_0_ = thermal_metabolic_df.loc[mask] 
 
mask = (thermal_metabolic_df['temp'] >= 16.8 + 2) & ( 
        thermal_metabolic_df['temp'] <= 30.7 - 2)  
thermal_metabolic_df_cropped_2_ = thermal_metabolic_df.loc[mask] 
 
mask = (thermal_metabolic_df['temp'] >= 16.8 + 4) & ( 
        thermal_metabolic_df['temp'] <= 30.7 - 4)  
thermal_metabolic_df_cropped_4_ = thermal_metabolic_df.loc[mask] 
 
 
## Plot the relative rates of performances at differnet thermal means and  
# fluctuations (such as, Figure 6).  
performance_responses = ['Length growth (mm/day)_GAM', 
                         'Shell dry weight growth (mg/day)_GAM', 
                         'Tissue dry weight growth (mg/day)_GAM'] 
mpl.rcParams["font.size"] = 15 
sns.set_style("whitegrid") 
sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})  
for performance_response in performance_responses: 
    ## The rates are converted to relative values considering the max and min 
    # at the constant-temperature treatment as 0 and 100, respectively  
    maximum = thermal_performance_df['0.0_'+ performance_response].max()  
    minimum = thermal_performance_df['0.0_'+ performance_response].min() 
    max_min_range = maximum - minimum 
    target_cols = [i for i in list(thermal_performance_df) if  
                   performance_response in i] 
    for i in target_cols: 
        thermal_performance_df.loc[:,'percent_'+ i] = ( 
                (thermal_performance_df[i] - minimum)/max_min_range)*100   
    fig, ax = plt.subplots(sharex=True, sharey=True, figsize=(4,4)) 
    ax.plot(thermal_performance_df['temp_Passay'], 
            thermal_performance_df['percent_' + '0.0_' + performance_response], 
            color='red', ls='-', lw=2) 
    ax.plot(thermal_performance_df['temp_Passay'], 
            thermal_performance_df['percent_'+'1.35_'+performance_response], 
            color='lime', ls='-', lw=2) 
    ax.plot(thermal_performance_df['temp_Passay'], 
            thermal_performance_df['percent_'+'2.7_'+performance_response], 
            color='blue', ls='-', lw=2)     
    ax.set_xlabel('Thermal average (°C)') 
    ax.set_ylabel(performance_response[:performance_response.find('(')] + ' (%)')  
    ax.set_xlim(left=18, right=27) 
    ax.set_ylim(-20, 120) 
    ax.set_xticks(np.arange(18, 27, 1)) 
    ax.grid(linestyle=':', linewidth='0.2', which='both', color='lightgrey') 
    color = ['red', 'lime', 'blue'] 
    legend_elements = [Line2D([0], [0], color=color[0], lw=2, linestyle='-', 
                              label='Obse., ± 0 °C'),  
                       Line2D([0], [0], color=color[1], lw=2, linestyle='-', 
                              label='Obse., ± 2 °C'),  
                       Line2D([0], [0], color=color[2], lw=2, linestyle='-', 
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                              label='Obse., ± 4 °C')] 
    legend = ax.legend(handles=legend_elements, ncol=1, handlelength=0.5, 
                       prop={'size': 13}, fancybox=False, frameon=False, 
                       title="Mod., Fluc. ", loc="best", framealpha=0.7) 
    os.chdir(experiment_path + "/Long_term_exp/Plots/" + 
             "Long_term_thermal_performance/Performance") 
    plt.savefig('percent_' + performance_response[ 
            :performance_response.find('(')] + '.pdf', bbox_inches='tight')     
         
     
## Plot the relative rates metabolic (JI-predictions) at different thermal  
# means and fluctuations.  
metabolic_responses = ['WS_feed_hyp_J_per_h_4000_cells_S', 'WS_resp_J_per_h_S']     
mpl.rcParams["font.size"] = 15 
sns.set_style("whitegrid") 
sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})  
for metabolic_response in metabolic_responses: 
    ## JI-predicts are converted to relative values considering the max and min   
    # of the best-fit Polynomials (the red dashed lines in Figures S6 and S7)  
    # over the mean temperatures 18.5-26 °C as 0 and 100. 
    maximum = thermal_metabolic_df_cropped_ref_['y_SD_0_JI_'+ 
                                                 metabolic_response].max()  
    minimum = thermal_metabolic_df_cropped_ref_['y_SD_0_JI_'+ 
                                                 metabolic_response].min() 
    max_min_range = maximum - minimum 
    target_cols = [i for i in list(thermal_metabolic_df_cropped_0_) if 'JI_'+ 
                   metabolic_response in i] 
    for i in target_cols: 
        thermal_metabolic_df_cropped_0_.loc[:,'percent_'+ i] = (( 
                thermal_metabolic_df_cropped_0_[i] - minimum)/max_min_range)*100 
    target_cols = [i for i in list(thermal_metabolic_df_cropped_2_) if 'JI_'+ 
                   metabolic_response in i] 
    for i in target_cols:     
        thermal_metabolic_df_cropped_2_.loc[:,'percent_'+ i] = (( 
                thermal_metabolic_df_cropped_2_[i] - minimum)/max_min_range)*100 
    target_cols = [i for i in list(thermal_metabolic_df_cropped_4_) if 'JI_'+ 
                   metabolic_response in i] 
    for i in target_cols: 
        thermal_metabolic_df_cropped_4_.loc[:,'percent_'+ i] = (( 
                thermal_metabolic_df_cropped_4_[i] - minimum)/max_min_range)*100 
    fig, ax = plt.subplots(sharex=True, sharey=True, figsize=(4,4)) 
    ax.plot(thermal_metabolic_df_cropped_0_['temp'], 
            thermal_metabolic_df_cropped_0_['percent_'+'y_SD_0_'+'JI_'+metabolic_response], 
            color='red', ls='-.', lw=2) 
    ax.plot(thermal_metabolic_df_cropped_2_['temp'], 
            thermal_metabolic_df_cropped_2_['percent_'+'y_SD_1_35_'+'JI_'+metabolic_response], 
            color='lime', ls='-.', lw=2) 
    ax.plot(thermal_metabolic_df_cropped_4_['temp'], 
            thermal_metabolic_df_cropped_4_['percent_'+'y_SD_2_7_'+'JI_'+metabolic_response], 
            color='blue', ls='-.', lw=2) 
    ax.set_xlabel('Thermal average (°C)') 
    ax.set_xlim(left=18, right=27) 
    ax.set_ylim(-20, 120) 
    ax.set_xticks(np.arange(18, 27, 1)) 
    ax.grid(linestyle=':', linewidth='0.2', which='both', color='lightgrey') 
    color = ['red', 'lime', 'blue'] 
    legend_elements = [Line2D([0], [0], color=color[0], lw=2, linestyle='-.', 
                              label='Upsc., ± 0 °C'),  
                       Line2D([0], [0], color=color[1], lw=2, linestyle='-.', 
                              label='Upsc., ± 2 °C'),  
                       Line2D([0], [0], color=color[2], lw=2, linestyle='-.', 
                              label='Upsc., ± 4 °C')] 
    if metabolic_response == 'WS_feed_hyp_J_per_h_4000_cells_S': 
        ax.set_ylabel('Feeding rate (%)')  
        legend = ax.legend(handles=legend_elements, ncol=1, handlelength=0.5, 
                           prop={'size': 13}, fancybox=False, frameon=False, 
                           title="Type, Fluc. ", loc="lower left",framealpha=0.7) 
    if metabolic_response == 'WS_resp_J_per_h_S': 
        ax.set_ylabel('Respiration rate (%)') 
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        legend = ax.legend(handles=legend_elements, ncol=1, handlelength=0.5, 
                           prop={'size': 13}, fancybox=False, frameon=False, 
                           title="Type, Fluc. ", loc="upper left",framealpha=0.7) 
    if metabolic_response == 'WS_SFG_hypo_J_per_h_4000_cells_S': 
        ax.set_ylabel('SFG (%)')  
        legend = ax.legend(handles=legend_elements, ncol=1, handlelength=0.5, 
                           prop={'size': 13}, fancybox=False, frameon=False, 
                           title="Type, Fluc. ", loc="best",framealpha=0.7) 
    os.chdir(experiment_path + "/Short_term_exp/Dec_2018_exp/GAM_POLY_dfs_plots/Plots") 
    plt.savefig("Relative-JI-predict_" + metabolic_response + '.pdf', 
                bbox_inches='tight')     
 
 
## Plot the relationship between the fluctuation effects on the length growth  
# and each metabolic trait based on the mean temperature.   
## First, make round the temperatures to one decimal and calculate the mean  
# values of the response at each temperature. 
thermal_performance_df['temp'] = thermal_performance_df['temp_Passay'].round(1)       
thermal_metabolic_df_cropped_0_['temp'] = thermal_metabolic_df_cropped_0_['temp'].round(1)   
thermal_metabolic_df_cropped_2_['temp'] = thermal_metabolic_df_cropped_2_['temp'].round(1)   
thermal_metabolic_df_cropped_4_['temp'] = thermal_metabolic_df_cropped_4_['temp'].round(1)  
thermal_performance_df_grouped = thermal_performance_df.groupby(['temp']).mean() 
thermal_metabolic_df_cropped_0_grouped = thermal_metabolic_df_cropped_0_.groupby(['temp']).mean() 
thermal_metabolic_df_cropped_2_grouped = thermal_metabolic_df_cropped_2_.groupby(['temp']).mean() 
thermal_metabolic_df_cropped_4_grouped = thermal_metabolic_df_cropped_4_.groupby(['temp']).mean()  
## Second, merge the thermal performance and metabolic dataframes based on the  
# their temperature indices.   
complete_df  = pd.concat([thermal_performance_df_grouped, 
                          thermal_metabolic_df_cropped_4_grouped], axis=1, sort=False) 
 
## Third, add the fluctuation effect columns 
for performance_response in performance_responses: 
    complete_df[performance_response[:performance_response.find('(')] + '2-0 %diff'] = complete_df[ 
            'percent_'+'1.35_'+performance_response] - complete_df['percent_' + '0.0_' + performance_response]  
    complete_df[performance_response[:performance_response.find('(')] + '4-0 %diff'] = complete_df[ 
            'percent_'+'2.7_'+performance_response] - complete_df['percent_' + '0.0_' + performance_response]   
for metabolic_response in metabolic_responses: 
    complete_df[metabolic_response[:metabolic_response.find('J')]+ '2-0 %diff'] = complete_df[ 
            'percent_'+'y_SD_1_35_'+'JI_'+metabolic_response] - complete_df['percent_'+'y_SD_0_'+'JI_'+metabolic_response] 
    complete_df[metabolic_response[:metabolic_response.find('J')] + '4-0 %diff'] = complete_df[ 
            'percent_'+'y_SD_2_7_'+'JI_'+metabolic_response] - complete_df['percent_'+'y_SD_0_'+'JI_'+metabolic_response] 
with pd.option_context('display.max_rows', 5, 'display.max_columns', None): 
    print(complete_df) 
 
## Plot the three dimensional relationships 
for performance_response in performance_responses: 
    for metabolic_response in metabolic_responses: 
        mpl.rcParams["font.size"] = 15 
        sns.set_style("whitegrid") 
        sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8})  
        os.chdir(experiment_path + "/Short_term_exp/Dec_2018_exp/GAM_POLY_dfs_plots/Plots") 
        ### (0-2) 
        mini, maxi = 18.8, 26  # or use different method to determine the minimum and maximum to use 
        norm = plt.Normalize(mini, maxi) 
        pair_df  = pd.concat([complete_df[metabolic_response[:metabolic_response.find('J')]+ '2-0 %diff'], 
                              complete_df[performance_response[:performance_response.find('(')] + '2-0 %diff']], axis=1, sort=False) 
        pair_df = pair_df.dropna() 
        x = pair_df[metabolic_response[:metabolic_response.find('J')]+ '2-0 %diff'] 
        y = pair_df[performance_response[:performance_response.find('(')] + '2-0 %diff'] 
        fig = plt.figure(figsize=(5, 4)) 
        plt.scatter(x, y, c=pair_df.index, cmap='jet', norm=norm) 
        plt.xlabel(metabolic_response[:metabolic_response.find('J')]+ '2-0 %diff') 
        plt.ylabel(performance_response[:performance_response.find('(')] + '2-0 %diff')  
        plt.grid(linestyle=':', linewidth='0.2', which='both', color='lightgrey') 
        cor_coef_df = np.corrcoef(x, y) 
        plt.title('Pearson r: ' + str(cor_coef_df[0,1].round(2)), fontsize=14) 
        plt.colorbar().set_label('Thermal average (°C)', labelpad=1.1) 
        plt.savefig('2-0_diff_corr__' + metabolic_response + '_VERSUS_' + 
                    performance_response[:performance_response.find('(')] + 
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                    '.pdf', bbox_inches='tight')  
        ### (0-4) 
        mini, maxi = 20.8, 26  # or use different method to determine the minimum and maximum to use 
        norm = plt.Normalize(mini, maxi) 
        pair_df  = pd.concat([complete_df[metabolic_response[:metabolic_response.find('J')]+ '4-0 %diff'], 
                              complete_df[performance_response[:performance_response.find('(')] + '4-0 %diff']], axis=1, sort=False) 
        pair_df = pair_df.dropna() 
        x = pair_df[metabolic_response[:metabolic_response.find('J')]+ '4-0 %diff'] 
        y = pair_df[performance_response[:performance_response.find('(')] + '4-0 %diff'] 
        fig = plt.figure(figsize=(5, 4)) 
        plt.scatter(x, y, c=pair_df.index, cmap='jet', norm=norm) 
        plt.xlabel(metabolic_response[:metabolic_response.find('J')]+ '4-0 %diff') 
        plt.ylabel(performance_response[:performance_response.find('(')] + '4-0 %diff')  
        plt.grid(linestyle=':', linewidth='0.2', which='both', color='lightgrey') 
        cor_coef_df = np.corrcoef(x, y) 
        plt.title('Pearson r: ' + str(cor_coef_df[0,1].round(2)), fontsize=14) 
        plt.colorbar().set_label('Thermal average (°C)', labelpad=1.1) 
        plt.savefig('4-0_diff_corr__' + metabolic_response + '_VERSUS_' + 
                    performance_response[:performance_response.find('(')] + 
                    '.pdf', bbox_inches='tight')  
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SI for Chapter 3 “The higher the needs, the lower the tolerance: Extreme 
events may select ectotherm recruits with lower metabolic demand and heat 
sensitivity” 

 

Content: 

Supplementary Figure 
Supplementary Tables 
Supplementary Python and R Scripts 
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Supplementary figures 

 
Figure S1. Variation in the food (Rhodomonas salina) concentration in the surrounding solution of recruited (A) 
and transplanted (B) mussels along the applied daily temperature fluctuation cycles (orange lines) during the short-
term assays. The replicated values were averaged at each time point, presented with 95 % confidence intervals. 
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Figure S2. Mussel growth (A–C) and recruitment success (D) in response to all, + 0, + 1, + 2, + 3, + 4, + 5 °C (X-
axes), incubation levels of the four-months long community-level study conducted in summer 2018 (Pansch et al. 
in prep.). Second-order polynomial curves fitted to data and the R-square values are presented. See Material and 
methods in the main text of the present paper for details. 
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Supplementary Tables 

Table S1. Dry tissue weights (‘W’ in g) and shell-lengths (‘L’ in mm) for each transplanted mussel or batch of 
recruited mussels (S1–3) used in the trials of the short-term assays (darkest grey boxes). The replicates from two 
thermal history (TH) treatment levels (current and future extreme summer conditions denoted by + 0 °C and + 4 
°C, respectively) were randomly assigned to the trials (intermediate grey boxes). The number of mussels (n) 
assigned as one replicate is presented (lightest grey boxes). 

T
ra

ns
pl

an
ts

 

Trial name S1 W S1 L S2 W S2 L S3 W S3 W S1 TH S2 TH S3 TH S1 N S2 N S3 N 

29_aug 0.0469 20.43 0.0634 23.10 0.0751 23.50 + 0 °C + 4 °C + 0 °C 1 1 1 

01_sep 0.0478 23.65 0.0396 17.35 0.0677 24.04 + 4 °C + 4 °C + 0 °C 1 1 1 

04_sep 0.0722 25.17 0.0395 23.32 0.0581 25.73 + 0 °C + 4 °C + 0 °C 1 1 1 

07_sep 0.0399 23.50 0.0401 20.52 0.0567 22.61 + 4 °C + 4 °C + 0 °C 1 1 1 

10_sep - - 0.0752 26.33 0.0604 24.50 + 4 °C + 0 °C + 0 °C 1 1 1 

13_sep 0.0313 20.30 0.0327 21.60 0.0443 20.14 + 4 °C + 4 °C + 0 °C 1 1 1 

R
ec

ru
its

 Trial name B1 W B1 L B2 W B2 L B3 W B3 L B1 TH B2 TH B3 TH B1 N B2 N B3 N 

17_sep 0.0259 57.40 0.0256 64.20 0.0345 69.40 + 0 °C + 4 °C + 4 °C 5 6 6 

21_sep 0.0187 58.33 0.0268 59.95 0.0165 51.15 + 0 °C + 0 °C + 4 °C 5 5 5 

 

Table S2. Tests on the significance of thermal history (with two levels: current and future) as a source of variation 
in the scaled filtration (potential for feeding) and respiration rates observed during the entire assay. Thermal history 
was defined as an ordered factor in the Generalized Additive Mixed-effect Models (GAMMs), and the intercept 
(or the average) and smooth terms of the reference level smoother (current or + 0 °C) were compared to zero and 
the respective terms of the heat-treated level smoother (future or + 4 °C). Parametric coefficients’ estimates and 
the effective degrees of freedom (edf) represents each smoother’s intercept and nonlinearity. Parametric 
coefficients’ estimates and the effective degrees of freedom (edf) represent each smoother's intercept and 
nonlinearity, respectively. As measurements were replicated time series, and replicate was included as the random 
(intercept) factor. The predictors with a p-value < 0.05 had significant effects. See Material and Methods for more 
details on how residual autocorrelation was considered in GAMMs. 

  Recruited mussels Transplanted mussels 

Sc
al

ed
 p

ot
en

tia
l f

or
 

fe
ed

in
g 

A. parametric 
coefficients Estimate Std. Error t-value p-value Estimate Std. Error t-value p-value 

current 0.2691 0.0194 13.8767 < 0.0001 0.2920 0.0620 4.7060 < 0.0001 
future − current 0.1608 0.0274 5.8647 < 0.0001 0.1043 0.0929 1.1233 0.2613 
B. smooth terms edf Ref.df F-value p-value edf Ref.df F-value p-value 
s(time):current 11.2988 11.8777 62.0867 < 0.0001 8.4106 8.9222 25.2412 < 0.0001 
s(time):future 10.9640 11.7895 8.5746 < 0.0001 1.2706 1.4973 0.0811 0.8856 

s(replicate) 0.0130 4.0000 0.0025 0.5537 7.2451 14.0000 1.0726 0.0105 

Sc
al

ed
 r

es
pi

ra
tio

n 
ra

te
 

A. parametric 
coefficients Estimate Std. Error t-value p-value Estimate Std. Error t-value p-value 

current 0.5981 0.0507 11.8031 < 0.0001 0.7419 0.0768 9.6667 < 0.0001 
future − current 0.3360 0.0717 4.6887 < 0.0001 -0.0058 0.1159 -0.0503 0.9599 
B. smooth terms edf Ref.df F-value p-value edf Ref.df F-value p-value 
s(time):current 17.2592 19.6052 24.2018 < 0.0001 15.5938 16.7618 20.1044 < 0.0001 
s(time):future 5.3690 6.7357 22.1215 < 0.0001 1.0005 1.0010 0.0539 0.8172 

s(replicate) 3.7258 4.0000 13.5864 < 0.0001 12.6693 14.0000 9.5210 < 0.0001 
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Table S3. Growth rates of transplanted mussels' shell length, dry shell weight, and dry tissue weight under the 
current (+ 0 °C) and future (+ 4 °C) extreme summer regimes (thermal history levels) of the long-term incubation. 

Thermal 
history 

Statistics Shell length 
growth (mm d-1) 

Dry shell weight 
growth (g d-1) 

Dry tissue weight 
growth (g d-1) 

+ 0 °C Mean 0.13292 0.004379 0.00053 

+ 0 °C 
Standard 
deviation 0.01866 0.00122 0.00009 

+ 4 °C Mean 0.10682 0.002821 0.00027 

+ 4 °C 
Standard 
deviation 0.01907 0.00077 0.00010 

 

Table S4. Tests on the significance of thermal history (+ 0 °C versus + 4 °C) explain the variation in the scaled 
filtration (potential for feeding) and respiration rates during the before-fluctuation phase. Thermal history was 
defined as an ordered factor in the Generalized Additive Mixed-effect Models (GAMMs). Accordingly, the 
intercept (or the average) and smooth terms of the reference level smoothers (+ 0 °C) were compared to zero and 
the other smoothers' respective terms (+ 4 °C). Besides time, dry tissue weight (TDW) and real-time feeding rate 
(RF) were included as smooth-effect factors in the GAMMs. Parametric coefficients’ estimates and the effective 
degrees of freedom (edf) represent each smoother's intercept and nonlinearity, respectively. As measurements were 
replicated time series, replicate was included as the random (intercept) factor. The predictors with a p-value <0.05 
had significant effects. See Material and Methods for more details on how residual autocorrelation was considered 
in GAMMs.  

  Recruited mussels Transplanted mussels 

Po
te

nt
ia

l f
or

 fe
ed

in
g  

A. parametric 
coefficients Estimate Std. Error t-value p-value Estimate Std. Error t-value p-value 

current 2.4103 0.1320 18.2550 < 0.0001 5.9865 1.5011 3.9881 0.0001 
future − current -0.9963 0.1925 -5.1743 < 0.0001 -1.6633 2.6741 -0.6220 0.5341 
B. smooth terms edf Ref.df F-value p-value edf Ref.df F-value p-value 

s(TDW) 1.6193 1.6288 0.7352 0.3121 1.0001 1.0001 0.9299 0.3351 
s(time):current 1.5854 1.8065 54.8413 < 0.0001 1.4111 1.6530 77.7932 < 0.0001 
s(time):future 1.8366 1.9517 3.2410 0.0276 1.0019 1.0035 1.3053 0.2540 

s(replicate) 2.2850 3.0000 16.1139 < 0.0001 12.9445 13.0000 233.6223 < 0.0001 
R2 0.9600 0.9700 

R
es

pi
ra

tio
n 

ra
te

 

A. parametric 
coefficients Estimate Std. Error t-value p-value Estimate Std. Error t-value p-value 

current 0.4027 0.0194 20.7236 < 0.0001 1.7567 0.0840 20.9247 < 0.0001 
future − current -0.1400 0.0295 -4.7477 < 0.0001 -0.1869 0.1514 -1.2346 0.2172 
B. smooth terms edf Ref.df F-value p-value edf Ref.df F-value p-value 

s(TDW) 1.0000 1.0000 0.0037 0.9514 1.3571 1.3643 8.9104 0.0007 
s(RF) 1.0001 1.0002 2.7690 0.0968 1.9235 1.9901 12.6097 < 0.0001 

s(time):current 1.0003 1.0006 4.2485 0.0399 1.0001 1.0002 0.3741 0.5409 
s(time):future 1.0003 1.0005 1.5849 0.2088 1.0001 1.0002 0.7141 0.3983 

s(replicate) 2.6615 3.0000 5.4562 0.0005 12.0767 13.0000 27.7578 < 0.0001 
R2 0.9500 0.9400 
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Supplementary Python and R scripts 

Script S1 

The following Python script (in combination to the Python scripts and the protocol described 
in Vajedsamiei et al., 2021) were used to conduct the initial processing of the raw experimental 
data (will be published in PANGEA). See Materials and Methods and References in the main 
text of the current study for more details. 

 
### Variables definition  
flow_rate = 15  # # The flow rate of the pump1 (ml/min) 
Volume = 350  # fluorometry-chamber volume in ml 
fluo_data_collection_frequency = 0.5 # in min 
oxyg_data_collection_frequency = 0.5 # in min 
'''The robust m-estimator used for modelling the trend of time-series can \ 
# inlcude 'biweight' or 'welsch' or another robust m-estimator''' 
robust_estimator = 'welsch' 
'''Other variables needed for calculation of the dampening_effect (time-lag) correction \ 
coefficient''' 
dt = 5 # the time-window (min) for differencing of food-concentration series  
diff_window = dt/fluo_data_collection_frequency 
''' The coefficients for converting the food (Rhodomonas salina) concentration\ 
from mV_Chl to cells/ml. The conversion coefficient should be empirically-\ 
established at a specific reference-temperature for the control sensor of \ 
FOFS (ideally before each experiment)''' 
FC_conversion_coef = 2100/764  # (cells/ml/mV)  
reference_temperature = 20.5  # (°C) 
''' Temperature-specific coefficient for Cyclops 7f fluorometers, i.e., \ 
the change in Chl or food concentration (in percentage) per °C deviation from \ 
the reference temperature.''' 
TS_coef = (-2.2/100)   
''' The coefficients for converting the respired molO2 and ingested R. salina \ 
cells to energy (J), and the assimilation efficiency and the hypothetical food\ 
(Rhodomonas) concentrations used for estimation of SFG''' 
coef_molO2_to_kJ = 450 # 450 kJ/mol O2 (Widdows and Hawkins 1989)) 
coef_cells_to_microJ = 1.75 # 1.75 µJ per (R. salina) cell (Kiørboe et al. 1985) 
assimilation_efficiency = 0.8 
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Script S2 

The following R scripts were used to analyze data of the short-term experiments. The integrated 
experimental data frames used in the analyses will be published in PANGEA. See also the 
Material and methods in the main text of the current study for more details. 

(1) Modelling before-fluctuation phase data 

### define ordered factor 
df$OFGroup <- as.ordered(df$thermal_history)  
contrasts(df$OFGroup) <- "contr.treatment" 
contrasts(df$OFGroup) 
### Generalized Additive Mixed Moldel (GAMM) definition "RI" (random intercept) and "AC" (auto-correlation 
corrected). 
### GAMM for the potential for feeding (feed_hyp_J_per_h_3000_cells_S_ind) 
k_=3 
simp_bam_RI = bam(feed_hyp_J_per_h_3000_cells_S_ind ~ OFGroup +  
                      s(dry_weigth_g_ind, k=k_) +  s(total_min, k=k_) + 
                    s(total_min, by=OFGroup, k=k_) + s(replicate, bs='re'),  
                  family=gaussian, data=df, method = "REML") 
summary(simp_bam_RI) 
# NOTE: The dependency of replicate data along time was better modeled via AR1 than the random slope! It was checked 
thoroughly by comparing RIS versus RI_AC residuals and AIC values. 
### consider auto-correlation of residuals 
r1 <- start_value_rho(simp_bam_RI, plot=T) 
simp_bam_RI_AC <- bam(feed_hyp_J_per_h_3000_cells_S_ind ~ OFGroup +  
                          s(dry_weigth_g_ind, k=k_) + s(total_min, k=k_) + 
                        s(total_min, by=OFGroup, k=k_) + s(replicate, bs='re'), 
                      family=gaussian, data=df, method = "REML", 
                      rho=r1, AR.start=df$start.event) 
 
#### GAMM for respiration (resp_J_per_h_S_ind) 
simp_bam_RI = bam(resp_J_per_h_S_ind ~ OFGroup + 
                      s(dry_weigth_g_ind, k=k_) + s(feed_J_per_h_S_ind, k=k_) + 
                      s(total_min, k=k_) + s(total_min, by=OFGroup, k=k_) + 
                      s(replicate, bs='re'), family=gaussian, data=df, method = "REML") 
### consider auto-correlation of residuals 
r1 <- start_value_rho(simp_bam_RI, plot=T) 
simp_bam_RI_AC <- bam(resp_J_per_h_S_ind ~ OFGroup +  
                        s(dry_weigth_g_ind, k=k_) + s(feed_J_per_h_S_ind, k=k_) + 
                        s(total_min, k=k_) + s(total_min, by=OFGroup, k=k_) + 
                        s(replicate, bs='re'), family=gaussian, data=df, method = "REML", 
                      rho=r1, AR.start=df$start.event) 
 

(2) Modelling fluctuation-phase data 

### scaled response variables 
i = "resp_ymolO2_per_min_S_RefSca" 
i = "filt_ml_per_min_S_RefSca" 
### GAMM definition 
k_= ? # For the exact number, see the effective degree of freedom (edf) in Table 1 of the main text. 
simp_bam_RI = bam(df[,i] ~ OFGroup + s(total_min, k=k_) + s(total_min, by=OFGroup, k=k_) + 
                      s(replicate, bs='re'), family=gaussian, data=df, method = "REML") 
### consider auto-correlation of residuals 
r1 <- start_value_rho(simp_bam_RI, plot=T) 
simp_bam_RI_AC <- bam(df[,i]  ~ OFGroup + s(total_min, k=k_) + s(total_min, by=OFGroup, k=k_) + 
                          s(replicate, bs='re'), family=gaussian, data=df, method = "REML", rho=r1, AR.start=df$start.event) 
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