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The ability of corals to detach their polyps (leaving
behind a naked skeleton) in times of stress, allows polyps
to escape from a local source of hostility (Sammarco
1982). In situ observations of this behavior (referred to
as “polyp bailout”) were first documented in tropical
reef-building corals. Later it was observed in some cold-
water corals of Acanthogorgia (Braga-Henriques 2014),
and Acanella arbuscula (Rakka et al. 2019) in aquaria.
To the best of our knowledge, field observations of polyp
bailout in the deep-sea have not been made, and trigger-
ing factors are unknown. Here, we describe massive tis-
sue and polyp loss (potentially polyp bailout) on
bamboo corals Keratoisidinae (family Isididae) photo-
graphed on Discovery seamount southwest of Cape
Town, South Africa (South East Atlantic Ocean) at

850-960 m depth, and at 1,135-1,160 m depth on Mon-
grel seamount off the coast of Tasmania, Australia
(Southwest Pacific Ocean; Fig. 1). Perched atop these
naked colonies were large numbers of the deep-sea
urchins (family Echinidae) Dermechinus horridus at Dis-
covery and Mongrel seamounts and two instances of
Gracilechinus multidentatus at Mongrel seamount. At
Discovery seamount, 31% of the naked colonies con-
tained D. horridus. All observations were from areas his-
torically exposed to extensive fisheries: demersal
longlining (southeast Atlantic; Bensch et al. 2009) and
bottom trawling (southwest Pacific; Williams et al.
2010). Unfavorable environmental conditions are
believed to cause polyp bailout and subsequent death of
colonies (see references in Rakka et al. [2019]). For trop-
ical corals, low food availability, competitive interactions
with macroalgae, as well as rapid changes in tempera-
ture, salinity, and pH have been listed as the main
stressors. However, in the deep sea, low food availability,
and stable temperature, salinity, and pH is typical. Thus,
deep-sea ecosystems are predominantly structured by
species interactions rather than by physical factors and
are known to be more stable and less stressful (Ashford
et al. 2018). We discuss possible triggering factors that
may explain massive tissue and polyp loss of Keratoisidi-
nae corals. To compare D. horridus occurrence on vari-
ous substrates, a linear model and post hoc test were
performed on their densities using R version 3.6.2 for
Mac OS X (Hothorn and Bretz 2008, R Core Team
2019). Significance was determined at P < 0.05. Visual
inspection of standard model validation graphs was used
to verify model assumptions. A log transformation, plus
offset of 1, was used to meet the assumption of normal-
ity. The substrate categories of hosts for D. horridus were
(1) dead coral (dead Keratoisis, attached to substrate,
broken or intact, 0% live tissue), (2) partly dead coral
(Keratoisis, attached to substrate, broken or intact, >0 to
<90% live tissue), (3) live coral (Keratoisis, attached to
substrate, only minor injuries, >90% live tissue), (4) coral
fragments (dead or partly alive loose fragments), and (5)
sponge (live sponge of various species and sizes).

In 2019, R/V Dr Fridtjof Nansen surveyed 14 locations
across five seamounts in the SEAFO (South East Atlan-
tic Fisheries Organization) sub area D, at 400-1,800 m
depth with an ROV (Buhl-Mortensen, 2020). Some of
these seamounts are currently closed to fishing whereas
others are being fished for Patagonian toothfish (Bensch
et al. 2009). Abundant bamboo corals (Keratoisis sp.)
were only observed on Discovery seamount, where high
abundance of sea urchins and naked colonies were also
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Fic. 1. (a, b, ¢, f, g) Dermechinus horridus and (d, €) Gracilechinus multiradiatus perched on dead and partly dead bamboo coral
Keratoisidinae on Mongrel seamount, in Tasmania, Southwest Pacific Ocean (a, d, €), and on Keratoisis sp on Discovery seamount,
in the South East Atlantic Fisheries Organization (SEAFO) Convention Area (b, c, f, g). (h) “Fragments” (pieces of the colony
branches) found on the seafloor (some with coenenchymal tissue and polyps and others without). Large quantities of old (bioeroded
and manganese coated) Dermechinus horridus spine rubble on Discovery seamount (h—i).
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Fic. 2. Average urchin density (Dermechinus horridus; num-
ber per host area) for three categories of bamboo corals (Kera-
toisis sp.) and for sponges, estimated from a sample of 23 video
frames (total area = 63 m?) containing coral and/or urchins
from depths between 846 and 946 m at Discovery seamount.
Vertical lines are 95% confidence limits (Student ¢ distribution).
No urchins were observed on the surrounding seabed in these
images.

observed. Similar interactions were noticed previously
during a research expedition onboard the R/V Southern
Surveyor in 2006. Here, 17 adjacent seamounts were sur-
veyed across two areas (Tasman Fracture and Huon
areas) south of Tasmania, using a towed camera system
(Williams et al. 2010). Naked bamboo coral populated
by D. horridus and G. multidentatus were observed on
Mongrel seamount in the Huon area between 1,135 and
1,160 m depth. Deep-sea fisheries in the area started in
the early 1990s, and were still actively trawled at the time
of the study (Williams et al. 2010).

At Discovery Seamount, there were significantly more
D. horridus on dead and partly dead coral than on
sponges (P < 0.001 for both), live coral (P < 0.01, for
both), and coral fragments (P < 0.001, for both)
(Fig. 2). There were no significant differences between
densities of D. horridus on dead compared to partly
dead coral, and on sponges vs. live coral vs. coral frag-
ments. The few intact colonies were not populated with
sea urchins. Sea urchins were never observed over live
polyps or coral tissue.

We present three possible causes for massive bamboo
coral damage. First, we consider sea urchin bioerosion
and/or corallivory.

Large-scale habitat impacts as a consequence of sea
urchin gluttony has not been reported in the deep sea.
However, gut content analyses suggest deep-sea urchins
may erode and/or consume reef-forming scleractinian
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corals (Stevenson and Rocha 2013). These analyses
revealed bioerosion and corallivory of deep-sea reef-
building corals Desmophyllum pertusum and Madrepora
oculata by several sea urchin taxa, including other mem-
bers of family Echinidae (Gracilechinus elegans and Gra-
cilechinus alexandri) from the Northeast Atlantic Ocean
(Stevenson and Rocha 2013). While bioerosion or con-
sumption of non-reef building corals have not been
reported for sea urchins, other echinoderms have been
found to feed on antipatharians and octocorals, includ-
ing bamboo corals (Mah and Nizinski 2010).

The jaw mechanism of D. horridus is less extensive
than those of other Echinidae species, but bamboo
corals are more fragile than reef-building corals because
of their partly organic joint-like nodes. It is possible that
D. horridus and G. multidentatus are bioeroding the
axes, non-retractile polyps, and/or the coenenchyma of
the bamboo coral.

Second, it may be a colony stress response to sea
urchin perching on the coral branches, leading to polyp
bailout.

The weak jaw mechanism of D. horridus, in combina-
tion with the pronounced vertical elongation of the
corona and its modified secondary spines has led some
to propose a suspension feeding mode (Fell 1976). While
this remains undocumented, suspension feeding has
been described in four other sea urchin taxa (e.g., Den-
draster, Echinostrephus, Echinometra, and Evechinus).
Consistent with this feeding mode, and as seen in Fig. 1,
D. horridus is commonly observed atop living coral
structures (as opposed to low-lying and less complex
habitats like sediment, coral rubble, or bedrock) (Steven-
son et al. 2018). Placement atop coral (Fig la—g), above
the seafloor and into swifter currents facilitate the cap-
ture of organic particles and reduce sediment clogging.
This position in strong currents implies that D. horridus
needs to hold firmly to the coral branches in order to
feed. Physical damage may thus be a consequence of
D. horridus grasping the fragile coral branches rather
than bioerosion or corallivory. However, initial tissue
(coenosarc) withdrawal was evident in some branch tips
(see arrows in Fig. 1f), which could not have been due to
the physical presence of the urchins in these parts of the
colony. Naked tips are a typical feature of polyp bailout
and indicate that the colony is stressed (e.g., by the pres-
ence of D. horridus). We propose that polyp bailout pro-
gress from tips (Fig. 1f) as well as from near the urchins,
resulting in polyp loss along the entire skeleton (see
newly naked skeleton in Fig. 1a, e).

Corals attached to a substrate with different health
status (dead, partly dead, and live) were within the same
height range but differed with respect to density of
urchins. However, we do not believe that D. horridus pre-
fer dead vs. live coral and propose the higher density of
D. horridus on dead and partly dead coral branches is a
consequence of the sea urchins colonizing a live colonies,
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causing coenenchymal tissue and polyp mortality
(through physical contact), then a bailout response (via
stress to the whole colony), and eventually, coral death,
rather than a preference for dead corals.

Selective removal of predatory fish by deep-water
longline fishing may cause long-term shifts in species
composition, trophic cascades, and changes in predation
levels (Daskalov et al. 2007). It is possible that longlin-
ing and trawling in the southeast Atlantic and southwest
Pacific, could indirectly damage these vulnerable marine
ecosystems (VMEs) by removing demersal predators
that regulate sea urchin populations, like D. horridus.
We found large amounts of old (bioeroded and manga-
nese coated) D. horridus spines along ~30% of the tran-
sect on Discovery seamount in the rubble among the
bamboo corals at this seamount, suggesting high levels
of predation on D. horridus in the past (Fig. 1h-i).
While we are not aware of predators on D. horridus, the
fishes Molva molva, Mora moro, Lepidion spp., and Tra-
chyscorpia spp., as well as several shark, octopus, and
decapod species (Chaceon affinis and Bathynectes) have
been observed feeding on sea urchins off Tasmania, Aus-
tralia, or sea urchin material was found in their guts
(Stevenson et al. 2015). One of these species and another
closely related one (Chaceon cf. affinis and Moridae
fishes [Antimora rostrata]) were observed at the Discov-
ery seamount (Buhl-Mortensen et al. 2020). Previous
analyses suggest predators like fish and decapods drive
sea urchin population structure in deep-sea coral habi-
tats by influencing how sea urchins use space and
resources in these locations when in proximity of such
predators (Stevenson et al. 2015).

The third possible explanation to the observed coral
damage could be polyp loss from mechanical damage
caused by fishing gear. Deep-sea fishing activities have
the potential to impact benthic communities by remov-
ing habitat forming organisms (and also inducing
mechanical damages such as abrasion, breakage, or par-
tial mortality; see Braga-Henriques et al. 2013) or
in/directly applying pressure on demersal predators that
regulate benthic populations, as described above. The
former has been shown to be an influential factor in
shaping deep-sea urchin community composition
(Stevenson et al. 2018), with certain taxa being more resis-
tant to fishing impacts and/or favoring early colonizers
(Clark and Rowden 2009). Dead bamboo coral branches
found in the observed areas and naked/broken tips of
intact coral colonies are consistent with this hypothesis,
indicating longline fishing impact. It is possible that the
monofilament lines of the longline gear could damage
branching coral during hauling operations. However, no
evidence of human footprint was found in the southeast
Atlantic area and longline gear could not be responsible
for the damage observed in sites surveyed in the southwest
Pacific (e.g., bare skeleton in bottom/midsections of
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Keratoisidinae in Fig. 1b—d, g). Also, the light manganese
coating on the skeletal elements in Fig. 1h-i suggest the
pieces are very old (Edinger and Sherwood 2012).

Of the three proposed hypotheses, the second is the
most likely, i.e., to enhance suspension feeding efficiency,
D. horridus perches high above the seafloor on the bam-
boo coral to elevate itself into swifter currents to facili-
tate feeding and prevent sediment obstructions, but
during exposure to swifter currents it must firmly hold
the fragile branches of the coral to maintain its position.
In the process, the sea urchins may damage the polyps
and stress the colony, which starts to release polyps
(bailout) at the tip/base and locations near the sea
urchin. Are we observing a periodic event, or possibly an
alternate stable state (a tipping point) caused by over-
fishing top predators (see Scheffer et al. 2001)? The glut-
tony of sea urchins has marked this taxon as a powerful
structuring force in coastal ecosystems with the potential
to cause catastrophic shifts in ecosystems when preda-
tors are removed (e.g., kelp forests [Pearse et al. 1970],
tropical coral reefs [McClanahan and Kurtis 1991]).
Similar shifts have not yet been documented in the deep
sea, and much still remains unknown about the intimate
community dynamics, predator—prey relationships, and
their structuring force for these organisms here. How-
ever, community interactions should be considered when
assessing the health status of the system as its resilience
may depend on a healthy balance between predators
(e.g., fish) and their prey (e.g., sea urchins). In this case,
it would be prudent to further probe into the effect of
demersal fish predator shifts on sea urchin populations,
and indeed on the benthic community as a whole.
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